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Abstract

In acoustics of inhomogeneous media, Fermat’s principle of least time has often been used 
in bending methods of ray tracing to determine ray paths for purposes of forward modeling. 
Fermat’s principle plays an equally important role in traveltime inversion, i.e., when attempting 
to estimate the wave velocities in a medium through which the wave has traveled in a measured 
time from known source to receiver. Since measured first-arrival traveltimes are necessarily the 
minimum traveltimes through the medium whose sound velocity profile is to be reconstructed, 
Fermat’s principle allows us to assign all possible wave-speed profiles to one of two classes: a 
model is either infeasible or feasible depending on whether or not there are any paths from 
source to receiver that have less traveltime than that measured. The feasible set is convex 
and furthermore an exact solution to the inversion problem (if any) must lie on the boundary 
between the feasible and infeasible sets. Thus, Fermat’s principle permits the convexification 
of the nonlinear traveltime inversion problem, so the only extrema are global extrema.

1 Traveltime Tomography

A typical problem in seismic traveltime tomography is to infer the (isotropic) compressional- 
wave slowness (reciprocal of velocity) distribution of an inhomogeneous medium, given a set 
of observed first-arrival traveltimes between sources and receivers of known location within, 
the medium. This problem is common for borehole-to-borehole seismic tomography in oil field 
applications [Justice et al., 1989]. We also consider the problem of inverting for wave slowness 
when the absolute traveltimes are not known, as is normally the case in earthquake seismology.

1.1 Slowness Models

We consider three kinds of slowness models. Sometimes we allow the slowness to be a general 
function of position, s(x). However, we often make one of two more restrictive assumptions 
that (i) the model comprises homogeneous blocks, or cells, with Sj then denoting the slowness 
value of the jth cell, or (u) the model is composed of a grid with values of slowness assigned 
at the grid points with some interpolation scheme to assign the values between grid points. Of 
course, we can think of blocks of constant slowness as a special case of continuous models, or 
continuous models as a limiting case of blocks as the blocks become infinitesimal.

When it is not important which type of slowness model is involved, we will refer to the 
model abstractly as a vector s in a vector space S. For a block model with n blocks we have 
S = Rn, the n-dimensional Euclidean vector space. A continuous slowness model is an element 
of a function space, e.g., S = C(R3), the set of continuous functions of three real variables.
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1.2 Fermat’s Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting the 
source and receiver. To make this more precise, we will define two functionals for traveltime.

Let P denote an arbitrary path connecting a given source and receiver in a slowness model 
s. We will refer to P as a trial ray path. We define a functional tp which yields the traveltime 
along P. Letting s be the continuous slowness distribution s(x), we have

’(s) Jps(x) dll (1)

where dlp denotes the infinitesimal distance along the path P.
Fermat’s principle states that the correct ray path between two points is the one of least 

overall traveltime, i.e., it minimizes rF(s) with respect to P. [Actually, Fermat’s principle is 
the weaker condition that the traveltime integral is stationary with respect to variations in 
the ray path, but for traveltime tomography using measured first arrivals it follows that the 
traveltimes must be minima.]

Let us define r* to be the functional that yields the traveltime along the Fermat (least-time) 
ray path. Fermat’s principle then states

r*(s) = min rp(s), 
PePaths

(2)

where Paths denotes the set of all continuous paths connecting the given source and receiver. 
The particular path that produces the minimum in (2) is denoted P*. If more than one path 
produces the same minimum traveltime value, then P* denotes any particular member in this 
set of minimizing paths.

To summarize, we have

rP(s) = J?s(x)dlp,

r*(s) = j s(x)

Jp-
dlP’ _ mm

P
j s(x) dlp.

(3)

(4)

The traveltime functional r*(s) is stationary with respect to small variations in the path P*(s).
Snell’s law is well-known to be a consequence of the stationarity of the traveltime functional 

[Feynman et al, 1963].

1.3 Seismic Inversion

Suppose we have a set of observed traveltimes, fj, ..., tm, from m source-receiver pairs in a 
medium of slowness s(x). Let P,- be the Fermat ray path connecting the tth source-receiver 
pair. In the absence of observational errors, we can write

/„ s(x) dlp' = f,-, i = 1,..., m. (5)

Given a block model of slowness, let be the length of the ith ray path through the jth
cell:

ip,ncellj dlPi. (6)
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Travel time for ray path i

Figure 1: Schematic illustration of acoustic ray paths through a block velocity model. 

Given a model with n cells, (5) can then be written

n
yiijsj — ^ i> • • • >m- (t)
j=i

Note that for any given t, the ray-path lengths /,y are zero for most cells j, as a given ray path 
will in general intersect only a few of the cells in the model. Figure 1 illustrates the ray path 
intersections for a 2-D block model.

We can rewrite (7) in matrix notation by defining the column vectors s and t and the matrix 
M as follows:

(S1) (ii\ flu l\2 hn^

*2
, M =

hi hz ■ hn
s = , t =

K. tm ) K tml lm2 ‘ Imn J

(8)
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Equation (7) then becomes

Ms = t. (9)

1.4 Linear vs Nonlinear Tomography

We now define three problems in the context of Eq. (9).
In the forward problem, we are given s; the goal is to determine M and t. This entails 

computing the ray path between each source and receiver (using a ray tracing algorithm) and 
then computing the traveltime integral along each path.

In the linear tomography problem, we are given M and t; the objective is to determine 
s. The assumption here is that the ray paths are known a priori, which is justified under a 
linear approximation that ignores the dependence of the ray paths on the slowness distribution. 
Typically, the ray paths are assumed to be straight lines connecting sources and receivers, 
adding a second connotation to the term “linear.” Linear tomography is commonly practiced 
in medical imaging and in many geophysical situations as well.

In nonlinear tomography, we are given only t (along with the source and receiver locations); 
the goal is to infer both M and s. In this problem, the dependence of the ray paths on 
the slowness distribution is acknowledged. Nonlinear tomography is necessary for problems 
in which the slowness varies significantly across the medium of interest, which includes many 
seismic tomography problems. The ray paths in such media will show significant curvature (i.e., 
be nonlinear) in a way that cannot be known a priori.

The linear tomography problem can be solved with a variety of optimization techniques. In 
the least-squares method, for example, the normal solution for s is expressed analytically as

s = (MrM)-1MTt, (10)

assuming the matrix inverse exists. If the inverse does not exist, then (10) must be “regularized.” 
Typically, regularization is accomplished by adding a positive matrix to MTM and replacing 
the singular inverse in (10) by the inverse of the modified matrix [Herman, 1980],

In nonlinear tomography, an iterative algorithm is generally needed to find an approximate 
solution s. The basic structure of such an algorithm is as follows:

1. Set s to a given initial model (a constant or the previously best-known geological model).

2. Compute the ray-path matrix M and traveltimes t for s and set At — t — t.

3. If At is sufficiently small, stop.

4. Find a model correction As as the solution to the linear tomography problem: MAs = At.

5. Update s to the new model obtained by adding the model correction As to the previous 
model s.

6. Go to Step 2.

This algorithm looks very reasonable and in fact sometimes it actually works! But not 
always. For models with low slowness contrasts, the algorithm will converge to a sensible 
result. When the method fails, the failure mode is usually a divergence to a highly oscillatory
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model. Ad hoc procedures to reduce the possible range of slowness values and to guarantee a 
high degree of smoothness in the reconstructed model have commonly been introduced to deal 
with this instability. Such smoothness constraints come from external considerations (like the 
class of models we want the solution to lie in), not from the data. But a really satisfactory 
method of stabilizing the iteration scheme based on information in the data itself has been 
lacking.

Analyzing the algorithm, we see that there are really only two significant calculations con­
tained in it. Step 2 is just the solution of the forward problem for s. This step should not 
introduce any instability, since it can be performed essentially as accurately as desired (if the 
computing budget is large enough). Step 4, on the other hand, is a linear tomography step 
imbedded in a nonlinear algorithm. We should be skeptical of this step. Linear inversion im­
plicitly assumes that the updated model (after adding the model correction) is not so different 
from the previous model that the ray path matrix M should change significantly from one 
iteration to the next. If this implicit assumption is violated, then this step is not justified, and 
steps 4 and/or 5 in the algorithm must be modified.

Feasibility analysis supplies a set of rigorous physical constraints on the reconstruction pro- 
ces. Experience has shown that smoothness constraints are not needed if feasibility constraints 
are applied. The next section introduces the concepts and a few of the results that follow from 
them in traveltime tomography.

2 Feasibility Analysis

The idea of using feasibility constraints in nonlinear programming problems is well established 
[Fiacco and McCormick, 1990]. However, it has only recently been realized that physical prin­
ciples such as Fermat’s principle actually lead to rigorous feasibility constraints for nonlinear 
inversion problems [Berryman, 1991]. The main practical difference between the standard anal­
ysis in nonlinear programming and the new analysis in nonlinear inversion is that, whereas the 
functions involved in nonlinear programming are often continuous, differentiable, and relatively 
easy to compute, the functionals in nonlinear inversion (e.g., the traveltime functional) need 
not be continuous or differentiable and furthermore are very often comparatively difficult to 
compute.

We present the rigorous analysis here in a general setting. This analysis is important because 
it will help to characterize the solution set for the inversion problem, and it will help to clarify 
the questions about local and global minima of the inverson problem.

2.1 Feasibility Constraints

Equation (5) assumed that P,- is a Fermat (least-time) path. Now let us suppose that Pt- is a 
trial ray path which may or may not be the least-time path. Fermat’s principle allows us to 
write

[ s(x)d/p' > ti. (11)
JPi

When we discretize (11) for block models, it becomes

Ms > t. (12)
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Equations (11) and (12) can be interpreted as a set of inequality constraints on the slowness 
model s. When s obeys these m constraints, we say that s is feasible. When any of the 
constraints is violated, we say s is infeasible. The set of inequalities collectively will be called 
the feasibility constraints.

2.2 Properties of Traveltime Functionals 

Lemma 2.1 tp is a linear functional.

The proof of this stems from the fact that integration is a linear functional of the integrand. 
Since it is linear, it also follows that rp is also convex, concave, and homogeneous.

Lemma 2.2 r* is a homogeneous functional.

Proof: Given 7 > 0 we have

r*(7s) pmin r 
P

(7s) (13)

Using the linearity of r ,

r*(7s) = min77"P(s) = 7min ^(s) = 77-*(s). I (14)

Lemma 2.3 r* is a concave functional.

Proof: Given slowness models Si and 83 and A € [0,1], let s = Asi + (1 — A)s2. Letting 
P*(s) be the Fermat ray path for s, we have

r*(s) = rp*(8)(s). (15)

The linearity of rp then implies

r*(s) = Arp*(8)(si) + (1 - A)rp»(s2). (16)

Since r* minimizes tp for any fixed model, it must be the case that rp*(8)(si) > r*(s1) and 
similarly for 33. Further, A and (1 - A) are non-negative. Therefore, (16) implies

r*(s) > Ar*(si) + (1 — A)r*(s2). | (17)

2.3 Feasibility Sets

Given the set of observed traveltimes, £,• for 1 = 1, ..., m, we define two sets of models.

Definition 2.1 (local feasibility set) The local feasibility set with respect to a set of trial 
ray paths P = {Pi > • •• > Pm} and observed traveltimes ti, ..., tm is

7P = {s\ rP(s) > for all i = 1,..., m}. (18)
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Definition 2.2 (global feasibility set) The global feasibility set with respect to the observed 
traveltimes ti, ..., tm is

J* = (s | t-/(s) > t,-, for all t = (19)

Now we show that the concavity of t? and rf implies the convexity of and T*. 

Theorem 2.1 Tp is a convex set.

Proof: Suppose Si,S2 G and let s> = Asi + (1 — A)s2 where 0 < A < 1. Since, for each 
t, r? is a concave (actually linear) functional, we have

rf (sA) > Arf (si) + (1 - (20)

(Although equality applies in the present case, the “greater than or equal to” is important in 
the next proof.) But rf ($2) > U and X and (1 — A) are non-negative. Therefore,

rf (sa) > XU + (1 - X)ti = ti. (21)

Thus, Sa € 7^. I

Theorem 2.2 7* is a convex set.

The proof proceeds in analogy with the previous proof, with rf replacing rf, but the 
inequalities come into play this time.

Theorem 2.3 Given any model s, there exists 7 > 0 such that 7s £ T*.

Proof: Let

7 = max tk
ke{l....m} (s) '

For any t, rf is homogeneous, implying

(22)

T-*(7S) = 7r,*(s) = 7-;(s) max
k

u
-;(s)

u. (23)

We see that 7s satisfies all the feasibility constraints, so it is in 7*.
We can decompose 7* into two parts: its boundary and its interior. The boundary of 

7*, denoted Bdy 7*, comprises feasible models s which satisfy some feasibility constraint with 
equality, i.e.,

Bdy 7* = (s £ 7* | r,*(s) = ti, for some 1}. (24)

Models in the interior of 7*, denoted Int 7*, satisfy all constraints with inequality:

Int 7* = (s £ 7* | 7V*(s) > ti, for all j}. (25)
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2.4 Convex Programming and Global Minima

We first define convex programming for first-arrival traveltime inversion, and then present some 
basic theorems about it.

Definition 2.3 Let <3>(s) be any convex function of s. Then the convex nonlinear programming 
problem associated with is to minimize ^>(s) subject to the global feasibility constraints r*(s) > 
ti, for i — 1,... ,m.

Definition 2.4 Let ^(s) = ]T^i ~ ^t]2 for some positive weights {w,} and some set
of ray paths P = {Pi,...,Pm}. Then, the convex linear programming problem associated with 

is to minimize (s) subject to the local feasibility constraints rf (s) > t,, for i = 1,... ,m.

Theorem 2.4 Every local minimum s* of the convex nonlinear programming problem associated 
with $(s) is a global minimum.

Theorem 2.5 Every local minimum s* of the convex linear programming problem associated 
with ^(s) is a global minimum.

Proof: This proof follows one given by Fiacco and McCormick [1990]. Let s* be a local 
minimum. Then, by definition, there is a compact set C such that s* is in the interior of C n /* 
and

4>(s*) = min <I>(s). v ' Cn7* v '
(26)

If s is any point in the feasible set 7* and 0 < A < 1 such that = As* + (1 — A)s is in C n 7*, 
then

$(s) > $(sa)-A3>(s*) ^ $(s*) - A$(s*) 
1 — A 1 — A

$(s*). (27)

The first step of (27) follows from the convexity of and the second from the fact that s* is 
a minimum in C n 7*. Convexity of 7* guarantees that the convex combination s)[ lies in the 
feasible set. This completes the proof of the first theorem.

The proof of the second theorem follows that of the first once we have shown that the 
function is convex. Consider a term of 'I’jP

[>f (As, + (1 - A)s2) - I,]2 = [Aif (s,) + (1 - A)rf (s2) - I,]2
= A [if (si) - i,]2 + (1 - A)Vf (s,) - u]2 

— A(1 — A)[rf (si) — rf (s,)]2 
< A[rf(Sl)-t(]2 + (l-A)[rf(S2)-tj]2.

Then, if sa = Asi + (1 — A)s2,

^^(3a)< A^(s1) + (1-A)^(s2), (28)

so is a convex function. I
Although Theorem 2.4 provides a powerful result, it still requires ingenuity to find a convex 

functional appropriate for the nonlinear inversion problem.
Several methods of stabilizing the nonlinear inversion problem based on the feasibility con­

straints will now be discussed.
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3 Nonlinear Reconstruction Algorithms

The introduction of feasibility constraints into the traveltime tomography problem [Berryman, 
1989b; 1990; 1991; Lu and Berryman, 1990] offers a unique opportunity to develop a variety of 
new reconstruction algorithms. A few of the ones that have been explored will be discussed.

3.1 Linear and Nonlinear Programming

For our point of view, linear tomography maps easily into linear programming, and nonlinear 
tomography into nonlinear programming [Strang, 1986; Fiacco and McCormick, 1990].

If u7 = (1,..., 1) is an m-vector of ones and vT = (1,..., 1) is an n-vector of ones, then

uTM = vrC, (29)

where C is the coverage matrix, i.e., the diagonal matrix whose diagonal elements are the 
column sums of the ray-path matrix. We will now define the coverage vector as

c = Cv. (30)

3.1.1 Duality

The concept of duality in linear programming leads to some useful ideas both for linear and 
nonlinear traveltime tomography. We will first define the following:

Definition 3.1 The primal problem for traveltime tomography is to find the minimum of cTs 
subject to Ms > t and s > 0.

Definition 3.2 The dual problem associated with the primal is to maximize wTt subject to 
wtM < cT and w > 0.

The m-vector w has no physical significance, but plays the role of a nonnegative weight 
vector. One of the first consequences of this formulation is that, if we multiply the primal 
inequality on the right by wr and the dual inequality on the left by s for feasible s and w, then

cTs > wtMs > wTt. (31)

We introduce a Lagrangian functional

£(s, w) = cTs + wT(t — Ms) (32)
= (cT - wTM)s + wTt. (33)

An admissible (feasible) weight vector is w = u. In fact, this is the only weight vector we 
need to consider because it saturates the dual inequality, producing equality in all components 
following (29) and (30). Thus, the dual problem in traveltime tomography is really trivial. We 
introduced it here because, despite its apparent triviality, there is one interesting feature.

In problems with nontrivial duality structure, it is possible to obtain useful bounds with 
inequalities equivalent to (31). Here we are left with only the condition

cTs > uTt = T, (34)

which we could have derived directly from the feasibility conditions Ms > t for s. Equation 
(34) is not trivial however, and can play an important role in linear and nonlinear programming 
algorithms for traveltime tomography.
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3.1.2 Relaxed feasibility constraints

Given the set of observed traveltimes, ti for » = 1,..., m, we define two more types of feasibility 
sets.

Definition 3.3 (relaxed local feasibility set) The relaxed local feasibility set with respect 
to a set of trial ray paths P = {Pi,... ,Pm} and observed traveltimes t\,... ,tm is

ZP = {s
m m
J2 ^ (s) ^ (35)

Definition 3.4 (relaxed global feasibility set) The relaxed global feasibility set with respect 
to a set of observed traveltimes ti,... ,tm is

r = {s E’■/M
i=l i=i

(36)

Theorem 3.1 Pp is a convex set.

Theorem 3.2 P.* is a convex set.

Proof: Both theorems follow from the fact that a (nonnegatively) weighted sum of concave 
functionals is concave and the fact that the unit-weighted sums in the definitions of the sets 
Zp and P* are respectively sums of the concave functions ^(s) and tV'(s). |

Theorem 3.3 Any point s* that lies simultaneously on the boundary of both 7P and Pp solves 
the inversion problem.

Theorem 3.4 Any point s* that lies simultaneously on the boundary of both T* and P* solves 
the inversion problem.

Proof: The boundary of ^ is determined by the single equality constraint

m m
Ylr?{s) = 'jrti = T. (37)
t=l i=l

The boundary of 7P is determined by the set of inequality constraints

rf (s.) > ti, for all i = 1,..., m, (38)

with equality holding for at least one of the constraints. Summing (38) gives

m
Y^rtP(s)>T, (39)
i=l

where the equality applies if and only if rf (s) = f,- for all i. Therefore, any model s* that 
satisfies both (37) and (38) must solve the inversion problem.
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The proof of the second theorem follows the proof of the first, with r*(s) replacing rp(s) 
everywhere. |

If we have found the correct ray-path matrix for the inversion problem and the data are 
noise free, then we expect that the hyperplane defined by cTs = T will intersect the feasibility 
boundary exactly at the point or points that solve the inversion problem. If we have not found 
the correct ray-path matrix or there is uncorrelated noise in our data t, then there will be a 
splitting between the hyperplane of constant total traveltime and the feasible region. The point 
(or points) of closest approach between the convex feasible set and the hyperplane may then be 
defined as the set of points solving the linear programming problem for fixed M. An iterative 
nonlinear programming algorithm may then be constructed wherein the updated M is deter­
mined based on the solution of the last linear programming problem. This procedure converges 
if the degree of splitting (Euclidean distance) between the feasible set and the hyperplane of 
constant traveltime tends to zero from one iteration to the next.

3.2 Weighted Least-Squares

A good set of weights to use for weighted least-squares has been shown [Berryman, 1989a] to be 
L_1 (the inverse of the diagonal ray-length matrix) for the traveltime errors and C (the diag­
onal cell-coverage matrix) for the smoothing or regularization term in a damped least-squares 
method. The arguments were based on assumptions of small deviations from a constant back­
ground or on the desire to precondition the ray-path matrix so its eigenvalues were normalized 
to the range — 1 < A < 1.

The methods used to choose these weights were based on linear tomography ideas. We should 
now try to see if these ideas need modification for nonlinear tomography. Let s be the latest 
estimate of the slowness model vector in an iterative inversion scheme. Then, if ur = (1,..., 1) 
is an m-vector of ones and = (1,..., 1) is an n-vector of ones,

Ms = Tu, (40)
Mru = Cv = Ds, (41)

where C is the coverage matrix (diagonal matrix containing the column sums of M) defined 
previously and the two new matrices (T and D) are diagonal matrices whose diagonal elements 
are T,-,-, the estimated traveltime for the ith ray path through the model s,

n
= ^ ] igsj, (^2)

j=i

and D,-,- where

Djj — Cjj/sj — Y, Ig /sj. (43)
t=i

For the sake of argument, let the inverse of the diagonal traveltime matrix T-1 be the 
weight matrix, and compute the scaled least-squares point. The least-squares functional takes 
the form

t/>(7) = (t - M7s)rT 1(t - M7S), (44)
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which has its minimum at

sTMTT-1t
7 “ stMtT_1Ms

Equation (45) can be rewritten using (40) as

uTt 
7_ urTu

(45)

(46)

The factor 7 that minimizes the least-squares error is therefore the one that either increases or 
decreases the total traveltime of the model s so it equals that of the data. If we assume that the 
measurement errors in the traveltime data t are unbiased, then it is very reasonable to choose 
models that have this property, because the total traveltime uTt = T will tend to have smaller 
error (by a factor of m-2) than the individual measurements.

We see that requiring the models s to have the same total traveltime as the data is equivalent 
to requiring that the models all lie in the hyperplane defined by

utMs = vr Cs = cTs = T. (47)

But this is precisely the same hyperplane (34) that arose naturally in the earlier discussion of 
linear and nonlinear programming.

To carry this analysis one step further, consider the weighted least-squares problem

^(s) = (t - Ms)TT_1(t - Ms) + ^(s - s0)tD(s - Sq), (48)

where we assume that the starting model Sq satisfies c^sq = T. Then, the minimum of (48) 
occurs for s^ satisfying

(MrT-1M + /rD)(S/1 — s0) = MTT-1(t — Ms0). (49)

Multiplying (49) on the left by Sq , we find that

(1 +/i)cT(sM - s0) = uT(t - Ms0) = 0, (50)

so the solution of the weighted least-squares problem (49) also has the property that its esti­
mated total traveltime for all rays is equal to that of the data

cTs,, = cTs0 = T. (51)

Our conclusion is that the particular choice of weighted least-squares problem (49) has the 
unique property of holding the total estimated traveltime equal to the total of the measured 
traveltimes, i.e., it constrains the least-squares solution to lie in the hyperplane cTs = T. 
Assuming that the traveltime data are themselves unbiased (i.e., uTAt = 0 where At is the 
measurement error vector), the result s is an unbiased estimator of the slowness. Moreover, 
this property is maintained for any value of the damping parameter //. This result provides a 
connection between the linear programming approach and weighted linear least-squares. We 
can now use weighted least-squares and the formula (49) in a linear program if we like as a 
means of moving around in the hyperplane c^s = T.
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(52)

A general analysis of the eigenvalue structure of weighted least-squares shows that

LiiCjj 2
T-D - ~ ’

which must hold true for all values of i,j. From (43), we have Cjj/Djj — Sj so

LgSj ^ LjjSmin ^ ^2
T-. ~ T- ~ ’-Ltt

(53)

and from the definition of Tu we have

Tu — lijSj > Ly (54)

We find that this choice of weight matrices constrains the eigenvalues to be bounded above by 
unity 1 > A2.

If the matrix M is very large, it may be impractical to solve (49) by inverting the matrix 
(MtT-1M + /xD). Instead, we may choose to use a method we call “simple iteration.” For 
example, suppose that the fcth iteration yields the model vector s^. Then, one choice of 
iteration scheme for finding the next iterate is

Dsf+1) = DsW + MTT-1(t - Ms0) - (MrT-1M + /rD)(sW - s0). (55)

It is not hard to show that this iteration scheme converges as long as the damping parameter 
is chosen so that 0 < /j < 1. Furthermore, if we multiply (55) on the left by Sq , we find that

cT(s^+1) - sW) = (1 + /i)cr(s0 - sW). (56)

It follows from (56) that, if cTSo = T and if — Sq, then

cTsp = T (57)

for all k. Thus, all the iterates stay in the hyperplane of constant total traveltime. If we choose
not to iterate to convergence, then this desirable feature of the exact solution proven in (51)

(k) ■

is still shared by every iterate s)* obtained using this scheme.

3.3 Stable Algorithm for Traveltime Tomography

Now we combine several ideas into an algorithm for nonlinear traveltime tomography. We recall 
that such algorithms are inherently iterative. In the general iterative algorithm posed earlier, 
the questionable step was how to update the current model s to obtain a new model. Here we 
propose a method for choosing this step [Berryman, 1989b; 1990].

Let be the current model. An algorithm for generating the updated model is as
follows:

1. Set Sx to the scaled least-squares model:

S1 = Sls[sW]-
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Figure 2: Snapshot of one iteration in a nonlinear tomography algorithm based on feasibility 
constraints.

2. Set S2 to the damped least-squares model with respect to Si:

s2 = SLSjsi,^]-

3. Define the family of models

s(A) = (1 - Ajsx + As2,

where A E [0, l],

4. Solve for A’, defined so that s(A*) yields the fewest number of feasibility violations. The 
number of feasibility violations is defined as the number of ray paths for which t, > 
r’(s(A)).

5. If A* is less than some preset threshold (say 0.05 or 0.1), reset it to the threshold value.

6. Set s^1) = s(A*).

The algorithm is illustrated in Fig. 2. The model labeled S3 is a scaled version of s(A*), 
scaled so that S3 is on the boundary of the feasible region (J*). The iteration sequence stops 
when the perimeter of the triangle formed by Si, s2 and S3 drops below a prescribed threshold.

This algorithm has been tested on several problems both with real and with synthetic data 
and also compared with a traditional damped least-squares algorithm (i.e., setting A* = 1 on 
each iteration). The new algorithm was found to be very stable and avoids the large oscillations 
in slowness often found in traditional least-squares methods.
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3.4 Earthquake Sources

When we do not have control over the seismic source location and timing as in the case of 
earthquakes, the absolute traveltimes are not accurately known and it is important to under­
stand how relative traveltimes may be used in seismic tomography [Aki, Christoffersson, and 
Husebye, 1977].

Rigorous application of the feasibility constraints Ms > t requires knowledge of the ab­
solute traveltimes. When such information is sparse or unavailable, we can use the known 
gross geological structure of the region to estimate the mean traveltime. Then we remove the 
meaningless mean of the relative data T/m and add back in the geological mean tq.

The remove-the-mean operator R for an m-dimensional vector space is defined as

R = I — u—uT, (58)
m

where ur = (1,..., 1) is an m-vector of ones. Note that RR = R so R is a projection operator. 
Then, we see that R applied to the traveltime vector t gives

TRt = t-----u, (59)
m

where T/m = uTt/m is the mean traveltime of the data set. Applying R to the ray-path 
matrix, we have

RM = M - u—vTC = M — u—cT. (60)
m m

The standard procedure for this problem is to solve the equation

M's = t', * (61)

where M' = RM and t' = Rt. To apply the feasibility constraints, we must modify the problem 
to

Ms > Rt + r0Im. (62)

Hidden in this analysis is the fact that the earthquake sources are often far from the region to 
be imaged, so the “effective” source locations may be placed at the boundaries of the region to 
be imaged.

If we have predetermined the mean for the traveltime data, then it is clearly desirable to 
use an inversion procedure that preserves this mean, i.e., choosing As so that

utM(s + As)
------------------- = tom

for all As. Preserving the mean is equivalent to preserving the total traveltime along all ray 
paths, so

cT(s + As) = mro- (64)

In other words, vary s so it stays in the hyperplane determined by (64). But we have studied 
just this problem using linear programming (34) and also using weighted least-squares (51). So 
we do not need to develop any new inversion methods for this special case.
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3.5 Parallel Computation
Traveltime tomography algorithms tend to be parallelizable in a variety of ways. The use of 
the feasibility constraints only increases the degree of parallelism that is achievable by these 
algorithms.

First, the forward modeling may be parallelized. If the forward problem is solved using 
either shooting or bending methods [Prothero et al., 1988; Nelder and Mead, 1965], then it 
is straightforward to parallelize the code because each ray may be computed independently of 
the others, and therefore in parallel. If the forward problem is solved using a finite difference 
algorithm or a full wave equation method, then whether the algorithm is parallelizable or not 
depends on the details of the particular algorithm. For example, Vidale’s method [Vidale, 1988; 
1990] is not directly parallelizable, but a recent related method by von Trier and Symes [1991] 
is.

Second, the use of the feasibility constraints in inversion algorithms suggests that it might be 
advantageous to map out the feasibility boundary and then use the information gained to search 
for improved agreement between the model and the data. Mapping the feasibility boundary 
can be done completely in parallel. Each model s may be treated in isolation, computing the 
best ray-path matrix for the model, and then finding the scaled model in the direction of s that 
intersects the feasibility boundary. The difficulty with this method is that it requires a figure 
of merit (in real problems) to help us determine whether one point on the feasibility is better 
than another. In ideal circumstances (no data error and infinite precision in our computers), 
the figure of merit would be the number of ray paths that achieve equality while satisfying the 
feasibility constraints

Ms > t. (65)

When that number equals the number of ray paths, we have found an exact solution and, as the 
number increases towards this maximum value during an iterative procedure, the trial models 
s must be converging towards this solution. But in real problems, a figure of merit based on 
the number of equalities in (65) is not useful.

In a series of numerical experiments [joint work with A. J. DeGroot], we have found that a 
useful figure of merit for real problems is the nonlinear least-squares functional

'F(s) = ^u;t-[r;(s) - t,-]2. (66)

*=i

If we have found an exact solution s’ to the inversion problem, (66) will vanish at that point 
on the feasibility boundary — the global minimum. As we approach this minimum, (66) is 
evaluated at an arbitrary point on the feasibility boundary and the values in a cluster of such 
points are compared, our analysis of convex programming [Berryman, 1991] shows that the 
points with the smallest values of (66) form a convex set. The smallest value we find may 
not be zero, in which case no exact solution to our inversion problem has been found. This 
procedure has been implemented on a parallel processing machine, and the results obtained 
using this algorithm with the figure of merit (66) are comparable to those of the stable algorithm 
discussed earlier.
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