
ORNL/TM-11836

OAK RIDGE
NATIONAL
LABORATORY

A7>a#77vyv AT>l/7/

Supernodal Symbolic Cholesky
Factorization on a Local-Memory

Multiprocessor

Esmond Ng

DO i n.T: vi
* p.<onnr. iviiU'ioi

COVER

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY DISTRIBUTION OF THIS DOCUMENT IS UNLIMITPn

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni­
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product, or process dis­
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti­
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-11836

Engineering Physics and Mathematics Division

Mathematical Sciences Section

SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION
ON A LOCAL-MEMORY MULTIPROCESSOR

Esmond Ng

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2007, Bldg. 6012
Oak Ridge, TN 37831-6367

(esmond@msr.epm.ornl.gov)

DATE PUBLISHED: June 1991

Research was supported by the Applied Mathematical Sci­
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC-05-840R21400

master
5L

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Contents

1 Introduction... 1
2 A sequential symbolic factorization algorithm.. 1
3 A parallel symbolic factorization algorithm.. 4
4 An improvement to the parallel symbolic factorization algorithm................... 5
5 Numerical experiments and concluding remarks... 9
6 References... 10

- m -

SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION
ON A LOCAL-MEMORY MULTIPROCESSOR

Esmond Ng

Abstract

In this paper, we consider the symbolic factorization step in computing the
Cholesky factorization of a sparse symmetric positive definite matrix on distributed-
memory multiprocessor systems. By exploiting the supernodal structure in the
Cholesky factor, the performance of a previous parallel symbolic factorization al­
gorithm is improved. Empirical tests demonstrate that there can be drastic re­
duction in the execution time required by the new algorithm on an Intel iPSC/2
hypercube.

- v -

1. Introduction

Let A be a large sparse symmetric positive definite matrix of order n and b be an n-
vector. Consider the solution of the linear system Ax = b using Cholesky factorization.
Denote the Cholesky factor of A by Z. It is often desirable to determine the structure of
L before computing it numerically, since the information allows a data structure to be
set up prior to the numerical factorization. Then numerical factorization can proceed
with a fixed storage structure. The determination of the structure of L is often called
the symbolic factorization of A. In this note, we are concerned with computing the
structure of X on a multiprocessor system in which each processor has its own private
memory.

In [8], an algorithm was proposed for performing the symbolic factorization step on
a local-memory multiprocessor system. The goal of this paper is to describe an improve­
ment to that algorithm by exploiting the supernodal structure in the Cholesky factor.
Preliminary numerical experiments on a hypercube indicate that the improvement leads
to more than 50% reduction in the time required by the symbolic factorization step for
matrices of order greater than 5000 on 16 or more processors.

An outline of the paper is as follows. In Section 2, a symbolic factorization algorithm
for serial machines is presented. The parallel version of the sequential algorithm from
[8] and the improved algorithm are described in Sections 3 and 4, respectively. Some
numerical experiments and concluding remarks are provided in Section 5.

2. A sequential symbolic factorization algorithm

Throughout this paper, we will use Struct[M, fc] to denote the set of row indices of the
nonzeros in column k of the lower triangular part of the matrix M. That is,

Struct[M, &] = {?>£: ^ 0}.

Consider the Cholesky factor X of a symmetric and positive definite matrix A. When
Struct[L, k] ^ 0, we define /(&) to be the row index of the first off-diagonal nonzero in
column k of X. If Struct[L,k] = 0, we let f(k) = k. Using this notation, the structure
of column k ol L can be characterized as follows [22]:

/ \
[J Struct[L, i]
i<k

Struct[L, fc] = Struct[A, A;] U -{*}• (2.1)

- 2 -

That is, the structure of column fc of L is given by the structure of column k of
A (excluding the portion above the diagonal), together with the structures of those
columns of L whose first off-diagonal nonzeros are in row k. An example demonstrating
the result is provided in Figure 2.1. The structure of column 4 of Z is given by the
union of the structure of column 4 of >1 and the structures of columns 2 and 3 of L.

X X X X

X X X X

X X X X

X X X X L = X X X

©X X X X X X X

X X X X X

X X X 0 0 X

X X X X X X 0 © X © X _

Figure 2.1: The structure of a matrix and its Cholesky factor, (x denotes a nonzero
and 0 denotes a fill due to factorization.)

An algorithm for computing the structure of L can be formulated using Equa­
tion (2.1) and is presented in Figure 2.2. In the algorithm, the set TZk is used to record

for A; = 1 to n do
Set TZk <— 0.

end for
for A; = 1 to n do

Set Struct[L,k\ <— Struct[A,k\.
for i G TZk, do

Set Struct[L, A:] <— Struct[L, A;] U Struct[L, i) — {A;},
end for
Determine f(k)
if f(k) > k, set TZfW <- TZf{k) U {A;}.

end for

Figure 2.2: A sequential symbolic factorization algorithm.

the columns of L whose first off-diagonal nonzeros are in row k. It is constructed during
the execution of the algorithm. When Struct[L, k] has been computed, k is added to
the set TZf(k) t° indicate that column A: of T is needed to compute the structure of f(k)
of L. This symbolic factorization algorithm can be implemented efficiently; see [12]

for a detailed discussion. Efficient implementations of the sequential algorithm can be
found in SPARSPAK [4,11] and the Yale Sparse Matrix Package [6].

It is worth noting that the set of indices {/(l), /(2), • • •, /(n)} plays an important
role in sparse matrix computations. Define the graph T as follows. Let {1,2, • • •, n} be
the vertex set of T, and let there be an edge between i and j in T if and only if j = /(i)
and j / i. It is easy to verify that T is a collection of trees, which is referred to as
the elimination tree or elimination forest of L [16,21]. The elimination tree associated
with the Cholesky factor in Figure 2.1 is depicted in Figure 2.3. There is exactly one

- 3 -

Figure 2.3: The elimination tree associated with the Cholesky factor in Figure 2.1.

tree in T if and only if the matrix A is irreducible. When A is reducible, it is possible
to permute the rows and columns of A symmetrically so that the permuted matrix
is block diagonal. In this case, each tree in T corresponds to a diagonal block in the
permuted matrix. Thus, without loss of generality, we will assume from now on that
the given matrix A is irreducible, so that T has exactly one tree.

In the elimination tree T, n is the only vertex such that f(n) = n and it is referred
to as the root. Moreover, given any vertex i in T, there is a unique path between i
and n. If is a vertex on the path joining i and n, then k is an ancestor of i and i
is a descendant of k. In particular, if = /(0> ^ t^ie Parent °f * an<i * is a child
of k. Thus, at step k of the symbolic factorization algorithm, the members of TZk are
exactly the children of vertex k in T. Finally, although the elimination tree is defined
in terms of the structure of L, it can in fact be computed from the structure of A. An
efficient algorithm is given in [16]. A parallel implementation of the algorithm on a

- 4 -

distributed-memory machine can be found in [23].

3. A parallel symbolic factorization algorithm

The solution of a sparse symmetric positive definite system typically involves several
stages, and it is often the case that the numerical factorization and the symbolic fac­
torization are, respectively, the most and the least expensive phases. Thus, much effort
has been spent on parallelizing the numerical factorization phase. There are, however,
reasons for parallelizing symbolic factorization, particularly on local-memory multi­
processor systems, even though the resulting parallel symbolic factorization algorithm
may not be much faster than its sequential counterpart. The most compelling reason
is that, on a distributed-memory machine and for large problems, there may not be
enough memory on a single processor to hold the entire problem to perform the sym­
bolic factorization sequentially. As the problem is partitioned and distributed among
the processors in a local-memory multiprocessor, it is natural to develop as efficient an
algorithm as possible to perform the symbolic factorization on such architectures.

In [8], a parallel version of the symbolic factorization algorithm described in the
previous section was developed for distributed-memory multiprocessor systems. It is
assumed that the columns of the matrix A and its Cholesky factor L are distributed
among the processors according to some predetermined mapping strategy. As the
numerical factorization tends to be the most time-consuming phase in the solution of
a sparse linear system, the mapping is often chosen in an attempt to minimize the
factorization time by reducing the amount of communication required and balancing
the load among the processors during numerical factorization. Detailed discussion of
the mapping issue can be found in [9]. In this paper, we will use map[k\ to denote
the processor to which column A; of X is assigned. Naturally, we assume that column
A: of A is also assigned to processor map[k\. In performing the symbolic factorization
on a local-memory multiprocessor, the structure of column k oi L has to be made
available to processor map[f(k)\ when it has been computed. If map[f(k)\ map[k],
this will result in a message (containing Struct[L, A;]) being sent from processor map[k]
to processor map[f(k)] on most of the local-memory multiprocessor systems available
today. In Figure 3.1, we summarize the parallel algorithm in [8]. The parallel algorithm
will be executed on each processor.

In the algorithm, smod[k] is the number of structure modifications that have to
be applied to column k. Since smod[k] is the same as the number of children of
vertex k in the elimination tree, it can be computed by traversing T once before the
symbolic factorization proceeds. Here we assume that T is computed before the start of
symbolic factorization, for example, using the algorithm from [23]. Two communication

- 5 -

primitives are used: send for sending a message from one processor to another processor
and recv for receiving a message. The algorithm in Figure 3.1 is data-driven, since
the data is made available to another processor once the data is generated. A detailed
description of the parallel algorithm can be found in [8].

for each column, say column k, of A assigned to this processor do
Set Struct[L,k\ <— Struct[A,k\.
if smod[k\ = 0 then

if \Struct[L,k\\ > 1 then
Determine f{k).
send Struct[L,k\ to processor map[f(k)].

end if
end if

end for
while there are columns of L to be computed in this processor do

recv Struct[L,i], for some i (defined in the message).
Determine /(*).
Set Struct[L, f(i)] <— Struct[L, f(i)] U Struct[L, i] — {/(01-
Decrement smod[f(i)] by 1.
if smod[f(i)] = 0 then

if \Struct[L, f(i)]\ > 1 then
Determine f(f(i)).
send Struct[L, f(i)] to processor map[f(f(i))].

end if
end if

end while

Figure 3.1: A parallel symbolic factorization algorithm for distributed-memory multi­
processor systems.

4. An improvement to the parallel symbolic factorization algorithm

It is often the case that multiple columns in the Cholesky factor L share the same
sparsity structure. Such a grouping of columns is referred to as a supernode. To be
more precise, K = {si,S2, • • •,Sm}» with 3i < S2 < • • • < is a supernode if and only
if Struct[L, si\ = Struct[L,sm\ U {s,+i, • • •, sm}, for 1 < i < m — 1. As an example,
columns 5-8 of the Cholesky factor L in Figure 2.1 form a supernode and each of the
first four columns of Z is in a supernode of size one. The notion of supernodes (and
its variants) has been used extensively in sparse matrix computations [1,3,5,13,15,19,

20,22]. The set of supernodes can sometimes be identified in the reordering phase. For
example, the set of indistinguishable nodes in the minimum degree algorithm [13] or
a minimal separator in the nested dissection algorithm [10] forms a supernode in L.
Alternatively, the algorithm in [18] can be used to compute the supernode partitioning.

Without loss of generality and for convenience, we assume that columns in the
same supernode are numbered consecutively. Such supernodes can be obtained by
computing a postordering of the elimination tree [17]. (See [18] for more discussion on
the numbering of columns in a supernode.) Moreover, we assume that the supernodes
in L are fundamental supernodes [2]. Let K — {j,j + 1, •••,.; + r — 1} be a supernode.
Then A is a fundamental supernode if it is a maximal contiguous column subset such
that j + i — 1 is the only child of j + i in the elimination tree, for 1 < i < r — 1.

The improvement to the parallel symbolic factorization algorithm in Figure 3.1
is obtained by exploiting the supernodal structure of the Cholesky factor. Since the
columns in the same supernode share basically the same structure, it is sufficient to
compute the structure of the first column in each supernode. This observation is
actually exploited in existing sequential symbolic factorization algorithms [12,22].

We can exploit the observation made above in the parallel setting as well. Let
K — {i, J + 1, • • •, J + r — 1} be a fundamental supernode in L. We use the notation
f(K) to stand for f{j + r — 1). Suppose Struct[L,j] has been computed by processor
map[j]. For the parallel algorithm in Figure 3.1, Struct[L,j] will be sent to processor
maP[f{j)\ — map[j + 1] (due to the way in which columns in a supernode are numbered
and the fact that columns j and j + 1 are in the same supernode) so that processor
map[j + l] can compute Struct[L,j+l]. In particular, processor map[f(j+r — l)] would
not be able to finish computing Struct[L, f(j + r — 1)] until Struct[L, j + r — 1] has
been computed by processor map[j + r — 1], However, since columns J + 1, • • •, j + r — 1
are in the supernode containing column j, there is no need to compute Struct[L, j + i],
for 1 < i < r — 1; Struct[L,j + i] is simply given by Struct[L,j] — (j + 1, • • •, j + *}.
Thus, processor map[f(j + r — 1)] does not have to wait for Struct[L, j + r — 1]; it
really needs Struct[L,j]. However, as the columns belonging to the same supernode
are generally assigned to different processors, processor map[j + i] still needs to receive
Struct[L, j] from processor map[j], even though no structure computation is required
for column j + i, for 1 < j < r — 1. Because of this observation, we will distinguish
between two types of messages: primary and secondary.

When Struct[L, j] has been computed by processor map[j], it is clearly desirable to
send the structure to processor map[/(y+ r — 1)] first, so that processor map[/(j + r —1)]
can proceed with the computation of Struct[L, f(j + r — 1)]. From the definition of
fundamental supernodes, it should be clear that column f(j + r — 1) (i.e., f(K)) must
be the first column of some fundamental supernode K' in L. The message sent from

- 6 -

- 7 -

the first column of a supernode to the first column of another supernode is referred to
as a primary message.

After sending the structure of column j to processor map[f(j + r — 1)], processor
map[j] sends Struct[L,j\ to processors map[j + i], where 1 < i < r — 1, with the
understanding that only one copy of Struct[L,j\ should be sent to a processor even if
several columns from the same supernode are assigned to it. Messages sent from the
first column of a supernode to other columns in the same supernode are referred to as
secondary messages.

It is important for a processor to consume as many primary messages as it can
before considering any secondary messages, since this will allow the structure of the
Cholesky factor to be computed as soon as possible. A processor will consume the
secondary messages only when no primary messages are available in the message queue.
An improved parallel symbolic factorization algorithm that exploits the supernodal
structure is given in Figures 4.1 and 4.2. In the algorithm, we make use of an additional
communication primitive iprobe(type), which is used to check if there is any message
of type type waiting in the message queue.

In the description of the algorithm, the notation smod[K] denotes the number of
children of vertex j in the elimination tree, where j is the first column in K. Thus,
smod[K] is the number of structure updates that supernode K will expect. The number
of fundamental supernodes in L is denoted by N. Moreover, the set TZk records the
supernodes J such that kj and jj are assigned to the same processor, where kf and
jf denote, respectively, the first columns of K and J. That is, TZk keeps track of local
structure modifications that supernode K expects to receive. The variable myid refers
to the processor number of the processor executing the algorithm.

Finally, the variable ktrol in Figure 4.2 is used to control the maximum number of
secondary messages a processor will process before looking for primary messages again;
it is set to 3 in Figure 4.2. Intuitively, a large value for ktrol impbes that a processor
may process more secondary messages between the processing of two primary messages.
This may cause delay in computing the structures of the first columns of the supernodes.
On the other hand, a small value for ktrol means that each processor will give priority
to the primary messages. However, for the problems in our numerical experiments,
we have found that the performance of the improved parallel symbolic factorization
algorithm is not very sensitive to the choice of ktrol. This suggests that the queues for
the primary messages tend to be non-empty, so that the processors will handle them
first before examining the secondary message queues. In any case, in the experiments
reported in Section 5, ktrol was set to 3.

- 8 -

{The following algorithm is to be executed on each processor.}
for each supernode if = 1 to iV do

Set TZk 0-
end for
for each supernode if = 1 to iV do

Let kj and ki be the first and the last columns in supernode if, respectively,
if map[kj] = myid then

Struct[L, K] *— Struct[A,K].
for / € TZk d°

Struct[L, if] +— Struct[L, I] — {1,2,
Decrement smod[K].

end for
if smod[K] ^ 0 then

perform external updates (see Figure 4.2).
end if
if k[is not the root of the elimination tree then

Let yj be the parent of k[in the elimination tree.
Suppose j j is in supernode J.
if map[jj] ^ map[kj] then

send primary message of type J to map[jj] containing Struct[L, K\.
else

1Zj+-TZjU {if}
end if
for i £ if and i ^ kj do

if map[i\ ^ map[kj] then
send secondary message to map[i] containing Struct[L, K].

end if
end for
for i G if and i ^ kj do

if map[i] = map[kj] then
Set up pointer information for the structure of column i

end if
end for

end if
end if

end for
while there are more secondary messages to arrive do

recv secondary message from supernode if
Set up pointer information for columns in if

end while

Figure 4.1: An improved parallel symbolic factorization algorithm for distributed-
memory multiprocessor systems that exploits the supernodal structure.

- 9 -

External updates for supernode K:
while true do

while iprobe(fir) > 0 do
{ Process primary messages. }
recv Struct(L, I), for some supernode I (defined in the message).
Struct(L, K) <— Struct(L, K) U Struct(L, I) — {1,2, •••,&/}.
Decrement smod[K].
if smod[K] = 0 then exit from external updates,

end while
ktrol <— 3.
while ktrol > 0 and iprobe(secondary) > 0 do

{ Process secondary messages. }
recv Struct(L, I), for some supernode / (defined in the message).
Set up pointer information for columns in /
ktrol *— ktrol — 1.

end while
end while

Figure 4.2: Procedure “External updates”.

5. Numerical experiments and concluding remarks

In this section, we present the results of some preliminary numerical experiments com­
paring the improved algorithm described in this section with the parallel algorithm in
[8]; these two algorithms are referred to as the new and old algorithms, respectively,
in the tables. All experiments were performed on an Intel iPSC/2. The programs were
written in Fortran and compiled with optimization turned on.

There were two sets of test problems. The first set contains a sequence of matrices,
each of which is obtained by applying a nine-point operator to a k x k grid ordered by
the nested dissection algorithm [7]. That is, n = k2. The second set contains matrices
obtained from triangulations of an L-shaped domain as illustrated in [10]. The mesh
points were ordered using a parallel version of an automatic nested dissection algorithm
[9,10] The columns of A and L are assigned to the processors using the subtree-to-
subcube mapping [14], which is known to reduce communication and balance the load,
particularly for the numerical factorization phase. See [8,14] for details.

The timing statistics are provided in Tables 5.1 and 5.2. The improvement due to
the exploitation of the supernodal structure in the Cholesky factor is obvious. The
large reduction in the time required to perform symbolic factorization using the new
algorithm comes from two sources. First, by processing the primary messages first, the

- 10 -

n \A\ - n method p = 8 p = 16 p = 32 p = 64
900 6844 new .036 .038 .050 .038

old .055 .052 .056 .056
1225 9384 new .044 .039 .045 .050

old .070 .066 .070 .070
1600 12324 new .055 .047 .053 .053

old .088 .081 .083 .084
2025 15664 new .071 .054 .058 .061

old .112 .103 .101 .102
2500 19404 new .085 .063 .064 .073

old .137 .120 .121 .121
3025 23544 new .099 .074 .068 .079

old .158 .138 .136 .134
3600 28084 new .115 .080 .075 .084

old .183 .156 .155 .153
4225 33024 new .134 .099 .095 .122

old .216 .185 .179 .177
4900 38364 new .148 .103 .091 .097

old .246 .208 .200 .197
5625 44104 new .170 .115 .096 .107

old .277 .234 .223 .219

Table 5.1: Time in seconds for new and old parallel symbolic factorization algorithms
for k x k grid problems.

new algorithm attempts to compute the structures of the first columns of the supernodes
as soon as possible. Second, since the structures of the columns in a supernode are given
essentially by the structure of the first column in the same supernode, there is no need
to compute the structure of every column in a supernode. Thus, the new algorithm
has avoided some redundant computation by exploiting the supernodal structure and
consequently it further reduces the time required to compute the structure of a Cholesky
factor.

-11 -

n \A\~n method p = 8 p = 16 p = 32 p = 64
1009 5856 new .038 .037 .047 .066

old .073 .075 .079 .081
1270 7398 new .045 .039 .048 .050

old .089 .090 .096 .097
1561 9120 new .053 .047 .051 .055

old .106 .105 .108 .110
1882 11022 new .062 .051 .055 .067

old .124 .122 .124 .126
2233 13104 new .071 .055 .068 .066

old .145 .140 .144 .145
2614 15366 new .084 .064 .065 .076

old .201 .192 .193 .195
3025 17808 new .093 .075 .069 .079

old .228 .218 .218 .222
3466 20430 new .107 .080 .078 .088

old .257 .238 .234 .238
3937 23232 new .118 .087 .080 .093

old .286 .266 .266 .265
4438 26214 new .131 .096 .084 .099

old .326 .304 .298 .301
4969 29376 new .149 .104 .090 .106

old .358 .325 .320 .325
5530 32718 new .164 .119 .105 .108

old .390 .368 .356 .357
6121 36240 new .178 .122 .111 .115

old .430 .384 .375 .376

Table 5.2: Time in seconds for new and old parallel symbolic factorization algorithms
for a sequence of L-shaped problems.

- 12 -

6. References

[1] C. Ashcraft, S.C. Eisenstat, J.W.H. Liu, B.W. Peyton, and A.H. Sherman.
A compute-ahead implementation of the fan-in sparse distributed factorization
scheme. Technical Report ORNL/TM-11496, Oak Ridge National Laboratory,
Oak Ridge, TN, 1990.

[2] C. Ashcraft and R. Grimes. The influence of relaxed supernode partitions on the
multifrontal method. ACM Trans. Math. Software, 15:291-309, 1989.

[3] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon. Progress
in sparse matrix methods for large linear systems on vector supercomputers. In-
ternat. J. Supercomp. Appl, 1:10-30, 1987.

[4] E.C.H. Chu, A. George, J. W-H. Liu, and E. G-Y. Ng. User’s guide for
SPARSPAK-A: Waterloo sparse linear equations package. Technical Report CS-
84-36, University of Waterloo, Waterloo, Ontario, 1984.

[5] I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Trans. Math. Software, 9:302-325, 1983.

[6] S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A. H. Sherman. The Yale
sparse matrix package I. the symmetric codes. Internat. J. Numer. Meth. En-
grg., 18:1145-1151, 1982.

[7] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal, 10:345-363, 1973.

[8] A. George, M.T. Heath, J. W-H. Liu, and E. G-Y. Ng. Symbolic Cholesky factor­
ization on a local-memory multiprocessor. Parallel Computing, 5:85-95, 1987.

[9] A. George, M.T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse positive
definite systems on a hypercube. J. Comp. Appl. Math., 27:129-156, 1989.

[10] A. George and J. W-H. Liu. An automatic nested dissection algorithm for irregular
finite element problems. SIAM J. Numer. Anal, 15:1053-1069, 1978.

[11] A. George and J. W-H. Liu. The design of a user interface for a sparse matrix
package. ACM Trans. Math. Software, 5:134-162, 1979.

[12] A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

- 13 -

[13] A. George and J. W-H. Liu. The evolution of the minimum degree ordering algo­
rithm. SIAM Review, 31:1-19, 1989.

[14] A. George, J. W-H. Liu, and E. G-Y. Ng. Communication results for parallel
sparse Cholesky factorization on a hypercube. Parallel Computing, 10:287-298,
1989.

[15] J.G. Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10:1156-1173,
1989.

[16] J. W-H. Liu. A compact row storage scheme for Cholesky factors using elimination
trees. ACM Trans. Math. Software, 12:127-148, 1986.

[17] J. W-H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix
Anal. Appl, 11:134-172, 1990.

[18] J.W.H. Liu, E. Ng, and B.W. Peyton. On finding supernodes for sparse matrix
computations. Technical Report ORNL/TM-11563, Oak Ridge National Labora­
tory, Oak Ridge, TN, 1990.

[19] E. Ng and B. Peyton. A supernodal Cholesky factorization algorithm for shared-
memory multiprocessors. Technical Report ORNL/TM-11814, Oak Ridge Na­
tional Laboratory, Oak Ridge, TN, 1991.

[20] E. Rothberg and A. Gupta. Fast sparse matrix factorization on modern worksta­
tions. Technical Report STAN-CS-89-1286, Stanford University, Stanford, Cali­
fornia, 1989.

[21] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans.
Math. Software, 8:256-276, 1982.

[22] A.H. Sherman. On the efficient solution of sparse systems of linear and nonlinear
equations. Technical Report 46, Dept, of Computer Science, Yale University, 1975.

[23] E. Zmijewski and J.R. Gilbert. A parallel algorithm for sparse symbolic Cholesky
factorization on a multiprocessor. Parallel Computing, 7:199-210, 1988.

- 15 -

ORNL/TM-11836

INTERNAL DISTRIBUTION

1. B. R. Appleton 22. T. H. Rowan
23-27. R. F. Sincovec
28-32. R. C. Ward

2-3. T. S. Darland
4. E. F. D’Azevedo
5. J. J. Dongarra
6. G. A. Geist
7. E. R. Jessup
8. M. R. Leuze

33. P. H. Worley
34. Central Research Library
35. ORNL Patent Office
36. K-25 Plant Library
37. Y-12 Technical Library /9-13. E. G. Ng

14. C. E. Oliver
15. B. W. Peyton

Document Reference Station
38. Laboratory Records - RC

39-40. Laboratory Records Department16-20. S. A. Raby
21. C. H. Romine

EXTERNAL DISTRIBUTION

41. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

42. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

43. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

44. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous­
ton, TX 77252-2189

45. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

46. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

47. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

48. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

49. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

50. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci­
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

51. James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

52. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, C

- 16 -

53. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer­
sity of Michigan, Ann Arbor, MI 48109

54. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

55. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

56. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

57. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

58. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

59. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

60. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

61. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke­
ley, CA 94720

62. Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

63. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

64. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

65. George Cybenko, Center for Supercomputing Research and Development, Univer­
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

66. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

67. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni­
versity of Florida, Gainesville, Florida 32611-2024

68. John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

69. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen­
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

70. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

71. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

72. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,

- 17 -

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.
83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Howard C. Elman, Computer Science Department, University of Maryland, Col­
lege Park, MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat­
tle, WA 98124-0346
Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra­
cuse Universitiy, Syracuse, NY 13244-4100
Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffett
Field, CA 94035
Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550
Robert E. Funderlic, Department of Computer Science, North Carolina State Uni­
versity, Raleigh, NC 27650
K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801
Dennis B. Gannon, Computer Science Department, Indiana University, Blooming­
ton, IN 47405

Feng Gao, Department of Computer Science, University of British Columbia, Van­
couver, British Columbia V6T 1W5, Canada

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A 0R8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305
Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550
John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den­
mark, DK-2800 Lyngby, Denmark
Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL
61801-2932

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

Ti
■ j t C‘
nO

n"/r
l H

- 18 -

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England
Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332
Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550
Use Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520
Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214
Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309
Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada
Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden
Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901
Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab­
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585
Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Jing Li, IMSL Inc., 2500 Park West Tower One. 2500 City West Blvd., Houston,
tx nVV&W M

- 19 -

116. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London El 4NS, England

117. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer­
land

118. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

119. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

120. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

121. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

122. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

123. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

124. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

125. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

126. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

127. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col­
lege Park, MD 20742

128. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

129. Chris Paige, McGill University, School of Computer Science, McConnell Engineer­
ing Building, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

130. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

131. Beresford N. Parlett, Department of Mathematics, University of California, Berke­
ley, CA 94720

132. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

133. Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

134. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten­
nessee, Knoxville, TN 37996-1301

135. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

136. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

- 20 -

137. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput­
ing, via del Giorgione 159, 1-00147 Roma, Italy

138. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon 0X11 OQX, England

139. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

140. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

141. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

142. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

143. Edward Rothberg, Department of Computer Science, Stanford University, Stan­
ford, CA 94305

144. Axel Ruhe, Dept, of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

145. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

146. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

147. Michael Saunders, Systems Optimization Laboratory, Operations Research De­
partment, Stanford University, Stanford, CA 94305

148. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

149. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

150. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver­
ton, OR 97006

151. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

152. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

153. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

154. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

155. Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

156. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

157. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

- 21 -

158. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

159. Philippe Toint, Dept, of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

160. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

161. Hank Van der Vorst, Dept, of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

162. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

163. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

164. Udaya B. Vemulapati, Dept, of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

165. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

166. Phuong Vu, Cray Research, Inc., 655F Lone Oak Drive, Eagan, MN 55121

167. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

168. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

169. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663, MS-265, Los Alamos, NM 87545

170. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

171. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

172. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

173. Office of Assistant Manager for Energy Research and Development, U.S. Depart­
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

Office of Scientific Sz Technical Information, P.O. Box 62, Oak Ridge, TN 37831

DO NOT MICROFILM
PAGE

174-183.

