
ORNL/TM-11836

OAK RIDGE
NATIONAL
LABORATORY

A7>a#77vyv AT>l/7/

Supernodal Symbolic Cholesky 
Factorization on a Local-Memory 

Multiprocessor

Esmond Ng

DO i n.T: vi
* p.<onnr. iviiU'ioi

COVER

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC. 
FOR THE UNITED STATES 
DEPARTMENT OF ENERGY DISTRIBUTION OF THIS DOCUMENT IS UNLIMITPn



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 
products. Images are produced from the best available 
original document.



This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni­
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. 
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product, or process dis­
closed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily consti­
tute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof.



ORNL/TM-11836

Engineering Physics and Mathematics Division 

Mathematical Sciences Section

SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION 
ON A LOCAL-MEMORY MULTIPROCESSOR

Esmond Ng

Mathematical Sciences Section 
Oak Ridge National Laboratory 

P.O. Box 2007, Bldg. 6012 
Oak Ridge, TN 37831-6367 

(esmond@msr.epm.ornl.gov)

DATE PUBLISHED: June 1991

Research was supported by the Applied Mathematical Sci­
ences Research Program of the Office of Energy Research, 
U.S. Department of Energy.

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
managed by

Martin Marietta Energy Systems, Inc. 
for the

U.S. DEPARTMENT OF ENERGY 
under Contract No. DE-AC-05-840R21400

master
5L

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED





Contents

1 Introduction................................................................................................................. 1
2 A sequential symbolic factorization algorithm...................................................... 1
3 A parallel symbolic factorization algorithm............................................................ 4
4 An improvement to the parallel symbolic factorization algorithm................... 5
5 Numerical experiments and concluding remarks................................................... 9
6 References..................................................................................................................... 10

- m -





SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION 
ON A LOCAL-MEMORY MULTIPROCESSOR

Esmond Ng

Abstract

In this paper, we consider the symbolic factorization step in computing the 
Cholesky factorization of a sparse symmetric positive definite matrix on distributed- 
memory multiprocessor systems. By exploiting the supernodal structure in the 
Cholesky factor, the performance of a previous parallel symbolic factorization al­
gorithm is improved. Empirical tests demonstrate that there can be drastic re­
duction in the execution time required by the new algorithm on an Intel iPSC/2 
hypercube.
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1. Introduction

Let A be a large sparse symmetric positive definite matrix of order n and b be an n- 
vector. Consider the solution of the linear system Ax = b using Cholesky factorization. 
Denote the Cholesky factor of A by Z. It is often desirable to determine the structure of 
L before computing it numerically, since the information allows a data structure to be 
set up prior to the numerical factorization. Then numerical factorization can proceed 
with a fixed storage structure. The determination of the structure of L is often called 
the symbolic factorization of A. In this note, we are concerned with computing the 
structure of X on a multiprocessor system in which each processor has its own private 
memory.

In [8], an algorithm was proposed for performing the symbolic factorization step on 
a local-memory multiprocessor system. The goal of this paper is to describe an improve­
ment to that algorithm by exploiting the supernodal structure in the Cholesky factor. 
Preliminary numerical experiments on a hypercube indicate that the improvement leads 
to more than 50% reduction in the time required by the symbolic factorization step for 
matrices of order greater than 5000 on 16 or more processors.

An outline of the paper is as follows. In Section 2, a symbolic factorization algorithm 
for serial machines is presented. The parallel version of the sequential algorithm from
[8] and the improved algorithm are described in Sections 3 and 4, respectively. Some 
numerical experiments and concluding remarks are provided in Section 5.

2. A sequential symbolic factorization algorithm

Throughout this paper, we will use Struct[M, fc] to denote the set of row indices of the 
nonzeros in column k of the lower triangular part of the matrix M. That is,

Struct[M, &] = {?>£: ^ 0}.

Consider the Cholesky factor X of a symmetric and positive definite matrix A. When 
Struct[L, k] ^ 0, we define /(&) to be the row index of the first off-diagonal nonzero in 
column k of X. If Struct[L,k] = 0, we let f(k) = k. Using this notation, the structure 
of column k ol L can be characterized as follows [22]:

/ \
[J Struct[L, i]
i<k

Struct[L, fc] = Struct[A, A;] U -{*}• (2.1)
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That is, the structure of column fc of L is given by the structure of column k of 
A (excluding the portion above the diagonal), together with the structures of those 
columns of L whose first off-diagonal nonzeros are in row k. An example demonstrating 
the result is provided in Figure 2.1. The structure of column 4 of Z is given by the 
union of the structure of column 4 of >1 and the structures of columns 2 and 3 of L.

X X X X

X X X X

X X X X

X X X X L = X X X

©X X X X X X X

X X X X X

X X X 0 0 X

X X X X X X 0 © X © X _

Figure 2.1: The structure of a matrix and its Cholesky factor, (x denotes a nonzero 
and 0 denotes a fill due to factorization.)

An algorithm for computing the structure of L can be formulated using Equa­
tion (2.1) and is presented in Figure 2.2. In the algorithm, the set TZk is used to record

for A; = 1 to n do 
Set TZk <— 0. 

end for
for A; = 1 to n do

Set Struct[L,k\ <— Struct[A,k\. 
for i G TZk, do

Set Struct[L, A:] <— Struct[L, A;] U Struct[L, i) — {A;}, 
end for 
Determine f(k)
if f(k) > k, set TZfW <- TZf{k) U {A;}.

end for

Figure 2.2: A sequential symbolic factorization algorithm.

the columns of L whose first off-diagonal nonzeros are in row k. It is constructed during 
the execution of the algorithm. When Struct[L, k] has been computed, k is added to 
the set TZf(k) t° indicate that column A: of T is needed to compute the structure of f(k) 
of L. This symbolic factorization algorithm can be implemented efficiently; see [12]



for a detailed discussion. Efficient implementations of the sequential algorithm can be 
found in SPARSPAK [4,11] and the Yale Sparse Matrix Package [6].

It is worth noting that the set of indices {/(l), /(2), • • •, /(n)} plays an important 
role in sparse matrix computations. Define the graph T as follows. Let {1,2, • • •, n} be 
the vertex set of T, and let there be an edge between i and j in T if and only if j = /(i) 
and j / i. It is easy to verify that T is a collection of trees, which is referred to as 
the elimination tree or elimination forest of L [16,21]. The elimination tree associated 
with the Cholesky factor in Figure 2.1 is depicted in Figure 2.3. There is exactly one
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Figure 2.3: The elimination tree associated with the Cholesky factor in Figure 2.1.

tree in T if and only if the matrix A is irreducible. When A is reducible, it is possible 
to permute the rows and columns of A symmetrically so that the permuted matrix 
is block diagonal. In this case, each tree in T corresponds to a diagonal block in the 
permuted matrix. Thus, without loss of generality, we will assume from now on that 
the given matrix A is irreducible, so that T has exactly one tree.

In the elimination tree T, n is the only vertex such that f(n) = n and it is referred 
to as the root. Moreover, given any vertex i in T, there is a unique path between i 
and n. If is a vertex on the path joining i and n, then k is an ancestor of i and i 
is a descendant of k. In particular, if = /(0> ^ t^ie Parent °f * an<i * is a child 
of k. Thus, at step k of the symbolic factorization algorithm, the members of TZk are 
exactly the children of vertex k in T. Finally, although the elimination tree is defined 
in terms of the structure of L, it can in fact be computed from the structure of A. An 
efficient algorithm is given in [16]. A parallel implementation of the algorithm on a
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distributed-memory machine can be found in [23].

3. A parallel symbolic factorization algorithm

The solution of a sparse symmetric positive definite system typically involves several 
stages, and it is often the case that the numerical factorization and the symbolic fac­
torization are, respectively, the most and the least expensive phases. Thus, much effort 
has been spent on parallelizing the numerical factorization phase. There are, however, 
reasons for parallelizing symbolic factorization, particularly on local-memory multi­
processor systems, even though the resulting parallel symbolic factorization algorithm 
may not be much faster than its sequential counterpart. The most compelling reason 
is that, on a distributed-memory machine and for large problems, there may not be 
enough memory on a single processor to hold the entire problem to perform the sym­
bolic factorization sequentially. As the problem is partitioned and distributed among 
the processors in a local-memory multiprocessor, it is natural to develop as efficient an 
algorithm as possible to perform the symbolic factorization on such architectures.

In [8], a parallel version of the symbolic factorization algorithm described in the 
previous section was developed for distributed-memory multiprocessor systems. It is 
assumed that the columns of the matrix A and its Cholesky factor L are distributed 
among the processors according to some predetermined mapping strategy. As the 
numerical factorization tends to be the most time-consuming phase in the solution of 
a sparse linear system, the mapping is often chosen in an attempt to minimize the 
factorization time by reducing the amount of communication required and balancing 
the load among the processors during numerical factorization. Detailed discussion of 
the mapping issue can be found in [9]. In this paper, we will use map[k\ to denote 
the processor to which column A; of X is assigned. Naturally, we assume that column 
A: of A is also assigned to processor map[k\. In performing the symbolic factorization 
on a local-memory multiprocessor, the structure of column k oi L has to be made 
available to processor map[f(k)\ when it has been computed. If map[f(k)\ map[k], 
this will result in a message (containing Struct[L, A;]) being sent from processor map[k] 
to processor map[f(k)] on most of the local-memory multiprocessor systems available 
today. In Figure 3.1, we summarize the parallel algorithm in [8]. The parallel algorithm 
will be executed on each processor.

In the algorithm, smod[k] is the number of structure modifications that have to 
be applied to column k. Since smod[k] is the same as the number of children of 
vertex k in the elimination tree, it can be computed by traversing T once before the 
symbolic factorization proceeds. Here we assume that T is computed before the start of 
symbolic factorization, for example, using the algorithm from [23]. Two communication
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primitives are used: send for sending a message from one processor to another processor 
and recv for receiving a message. The algorithm in Figure 3.1 is data-driven, since 
the data is made available to another processor once the data is generated. A detailed 
description of the parallel algorithm can be found in [8].

for each column, say column k, of A assigned to this processor do 
Set Struct[L,k\ <— Struct[A,k\. 
if smod[k\ = 0 then

if \Struct[L,k\\ > 1 then 
Determine f{k).
send Struct[L,k\ to processor map[f(k)].

end if 
end if 

end for
while there are columns of L to be computed in this processor do 

recv Struct[L,i], for some i (defined in the message). 
Determine /(*).
Set Struct[L, f(i)] <— Struct[L, f(i)] U Struct[L, i] — {/(01- 
Decrement smod[f(i)] by 1. 
if smod[f(i)] = 0 then

if \Struct[L, f(i)]\ > 1 then 
Determine f(f(i)).
send Struct[L, f(i)] to processor map[f(f(i))].

end if 
end if 

end while

Figure 3.1: A parallel symbolic factorization algorithm for distributed-memory multi­
processor systems.

4. An improvement to the parallel symbolic factorization algorithm

It is often the case that multiple columns in the Cholesky factor L share the same 
sparsity structure. Such a grouping of columns is referred to as a supernode. To be 
more precise, K = {si,S2, • • •,Sm}» with 3i < S2 < • • • < is a supernode if and only 
if Struct[L, si\ = Struct[L,sm\ U {s,+i, • • •, sm}, for 1 < i < m — 1. As an example, 
columns 5-8 of the Cholesky factor L in Figure 2.1 form a supernode and each of the 
first four columns of Z is in a supernode of size one. The notion of supernodes (and 
its variants) has been used extensively in sparse matrix computations [1,3,5,13,15,19,



20,22]. The set of supernodes can sometimes be identified in the reordering phase. For 
example, the set of indistinguishable nodes in the minimum degree algorithm [13] or 
a minimal separator in the nested dissection algorithm [10] forms a supernode in L. 
Alternatively, the algorithm in [18] can be used to compute the supernode partitioning.

Without loss of generality and for convenience, we assume that columns in the 
same supernode are numbered consecutively. Such supernodes can be obtained by 
computing a postordering of the elimination tree [17]. (See [18] for more discussion on 
the numbering of columns in a supernode.) Moreover, we assume that the supernodes 
in L are fundamental supernodes [2]. Let K — {j,j + 1, •••,.; + r — 1} be a supernode. 
Then A is a fundamental supernode if it is a maximal contiguous column subset such 
that j + i — 1 is the only child of j + i in the elimination tree, for 1 < i < r — 1.

The improvement to the parallel symbolic factorization algorithm in Figure 3.1 
is obtained by exploiting the supernodal structure of the Cholesky factor. Since the 
columns in the same supernode share basically the same structure, it is sufficient to 
compute the structure of the first column in each supernode. This observation is 
actually exploited in existing sequential symbolic factorization algorithms [12,22].

We can exploit the observation made above in the parallel setting as well. Let 
K — {i, J + 1, • • •, J + r — 1} be a fundamental supernode in L. We use the notation 
f(K) to stand for f{j + r — 1). Suppose Struct[L,j] has been computed by processor 
map[j]. For the parallel algorithm in Figure 3.1, Struct[L,j] will be sent to processor 
maP[f{j)\ — map[j + 1] (due to the way in which columns in a supernode are numbered 
and the fact that columns j and j + 1 are in the same supernode) so that processor 
map[j + l] can compute Struct[L,j+l]. In particular, processor map[f(j+r — l)] would 
not be able to finish computing Struct[L, f(j + r — 1)] until Struct[L, j + r — 1] has 
been computed by processor map[j + r — 1], However, since columns J + 1, • • •, j + r — 1 
are in the supernode containing column j, there is no need to compute Struct[L, j + i], 
for 1 < i < r — 1; Struct[L,j + i] is simply given by Struct[L,j] — (j + 1, • • •, j + *}. 
Thus, processor map[f(j + r — 1)] does not have to wait for Struct[L, j + r — 1]; it 
really needs Struct[L,j]. However, as the columns belonging to the same supernode 
are generally assigned to different processors, processor map[j + i] still needs to receive 
Struct[L, j] from processor map[j], even though no structure computation is required 
for column j + i, for 1 < j < r — 1. Because of this observation, we will distinguish 
between two types of messages: primary and secondary.

When Struct[L, j] has been computed by processor map[j], it is clearly desirable to 
send the structure to processor map[/(y+ r — 1)] first, so that processor map[/(j + r —1)] 
can proceed with the computation of Struct[L, f(j + r — 1)]. From the definition of 
fundamental supernodes, it should be clear that column f(j + r — 1) (i.e., f(K)) must 
be the first column of some fundamental supernode K' in L. The message sent from
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the first column of a supernode to the first column of another supernode is referred to 
as a primary message.

After sending the structure of column j to processor map[f(j + r — 1)], processor 
map[j] sends Struct[L,j\ to processors map[j + i], where 1 < i < r — 1, with the 
understanding that only one copy of Struct[L,j\ should be sent to a processor even if 
several columns from the same supernode are assigned to it. Messages sent from the 
first column of a supernode to other columns in the same supernode are referred to as 
secondary messages.

It is important for a processor to consume as many primary messages as it can 
before considering any secondary messages, since this will allow the structure of the 
Cholesky factor to be computed as soon as possible. A processor will consume the 
secondary messages only when no primary messages are available in the message queue. 
An improved parallel symbolic factorization algorithm that exploits the supernodal 
structure is given in Figures 4.1 and 4.2. In the algorithm, we make use of an additional 
communication primitive iprobe(type), which is used to check if there is any message 
of type type waiting in the message queue.

In the description of the algorithm, the notation smod[K] denotes the number of 
children of vertex j in the elimination tree, where j is the first column in K. Thus, 
smod[K] is the number of structure updates that supernode K will expect. The number 
of fundamental supernodes in L is denoted by N. Moreover, the set TZk records the 
supernodes J such that kj and jj are assigned to the same processor, where kf and 
jf denote, respectively, the first columns of K and J. That is, TZk keeps track of local 
structure modifications that supernode K expects to receive. The variable myid refers 
to the processor number of the processor executing the algorithm.

Finally, the variable ktrol in Figure 4.2 is used to control the maximum number of 
secondary messages a processor will process before looking for primary messages again; 
it is set to 3 in Figure 4.2. Intuitively, a large value for ktrol impbes that a processor 
may process more secondary messages between the processing of two primary messages. 
This may cause delay in computing the structures of the first columns of the supernodes. 
On the other hand, a small value for ktrol means that each processor will give priority 
to the primary messages. However, for the problems in our numerical experiments, 
we have found that the performance of the improved parallel symbolic factorization 
algorithm is not very sensitive to the choice of ktrol. This suggests that the queues for 
the primary messages tend to be non-empty, so that the processors will handle them 
first before examining the secondary message queues. In any case, in the experiments 
reported in Section 5, ktrol was set to 3.
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{The following algorithm is to be executed on each processor.} 
for each supernode if = 1 to iV do

Set TZk 0-
end for
for each supernode if = 1 to iV do

Let kj and ki be the first and the last columns in supernode if, respectively, 
if map[kj] = myid then

Struct[L, K] *— Struct[A,K]. 
for / € TZk d°

Struct[L, if] +— Struct[L, I] — {1,2,
Decrement smod[K].

end for
if smod[K] ^ 0 then

perform external updates (see Figure 4.2).
end if
if k[ is not the root of the elimination tree then

Let yj be the parent of k[ in the elimination tree.
Suppose j j is in supernode J. 
if map[jj] ^ map[kj] then

send primary message of type J to map[jj] containing Struct[L, K\.
else

1Zj+-TZjU {if}
end if
for i £ if and i ^ kj do

if map[i\ ^ map[kj] then
send secondary message to map[i] containing Struct[L, K].

end if 
end for
for i G if and i ^ kj do

if map[i] = map[kj] then
Set up pointer information for the structure of column i

end if 
end for 

end if 
end if 

end for
while there are more secondary messages to arrive do 

recv secondary message from supernode if 
Set up pointer information for columns in if 

end while

Figure 4.1: An improved parallel symbolic factorization algorithm for distributed- 
memory multiprocessor systems that exploits the supernodal structure.
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External updates for supernode K: 
while true do

while iprobe(fir) > 0 do
{ Process primary messages. }
recv Struct(L, I), for some supernode I (defined in the message). 
Struct(L, K) <— Struct(L, K) U Struct(L, I) — {1,2, •••,&/}. 
Decrement smod[K].
if smod[K] = 0 then exit from external updates, 

end while 
ktrol <— 3.
while ktrol > 0 and iprobe(secondary) > 0 do 

{ Process secondary messages. }
recv Struct(L, I), for some supernode / (defined in the message). 
Set up pointer information for columns in / 
ktrol *— ktrol — 1. 

end while 
end while

Figure 4.2: Procedure “External updates”.

5. Numerical experiments and concluding remarks

In this section, we present the results of some preliminary numerical experiments com­
paring the improved algorithm described in this section with the parallel algorithm in 
[8]; these two algorithms are referred to as the new and old algorithms, respectively, 
in the tables. All experiments were performed on an Intel iPSC/2. The programs were 
written in Fortran and compiled with optimization turned on.

There were two sets of test problems. The first set contains a sequence of matrices, 
each of which is obtained by applying a nine-point operator to a k x k grid ordered by 
the nested dissection algorithm [7]. That is, n = k2. The second set contains matrices 
obtained from triangulations of an L-shaped domain as illustrated in [10]. The mesh 
points were ordered using a parallel version of an automatic nested dissection algorithm 
[9,10] The columns of A and L are assigned to the processors using the subtree-to- 
subcube mapping [14], which is known to reduce communication and balance the load, 
particularly for the numerical factorization phase. See [8,14] for details.

The timing statistics are provided in Tables 5.1 and 5.2. The improvement due to 
the exploitation of the supernodal structure in the Cholesky factor is obvious. The 
large reduction in the time required to perform symbolic factorization using the new 
algorithm comes from two sources. First, by processing the primary messages first, the
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n \A\ - n method p = 8 p = 16 p = 32 p = 64
900 6844 new .036 .038 .050 .038

old .055 .052 .056 .056
1225 9384 new .044 .039 .045 .050

old .070 .066 .070 .070
1600 12324 new .055 .047 .053 .053

old .088 .081 .083 .084
2025 15664 new .071 .054 .058 .061

old .112 .103 .101 .102
2500 19404 new .085 .063 .064 .073

old .137 .120 .121 .121
3025 23544 new .099 .074 .068 .079

old .158 .138 .136 .134
3600 28084 new .115 .080 .075 .084

old .183 .156 .155 .153
4225 33024 new .134 .099 .095 .122

old .216 .185 .179 .177
4900 38364 new .148 .103 .091 .097

old .246 .208 .200 .197
5625 44104 new .170 .115 .096 .107

old .277 .234 .223 .219

Table 5.1: Time in seconds for new and old parallel symbolic factorization algorithms 
for k x k grid problems.

new algorithm attempts to compute the structures of the first columns of the supernodes 
as soon as possible. Second, since the structures of the columns in a supernode are given 
essentially by the structure of the first column in the same supernode, there is no need 
to compute the structure of every column in a supernode. Thus, the new algorithm 
has avoided some redundant computation by exploiting the supernodal structure and 
consequently it further reduces the time required to compute the structure of a Cholesky 
factor.
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n \A\~n method p = 8 p = 16 p = 32 p = 64
1009 5856 new .038 .037 .047 .066

old .073 .075 .079 .081
1270 7398 new .045 .039 .048 .050

old .089 .090 .096 .097
1561 9120 new .053 .047 .051 .055

old .106 .105 .108 .110
1882 11022 new .062 .051 .055 .067

old .124 .122 .124 .126
2233 13104 new .071 .055 .068 .066

old .145 .140 .144 .145
2614 15366 new .084 .064 .065 .076

old .201 .192 .193 .195
3025 17808 new .093 .075 .069 .079

old .228 .218 .218 .222
3466 20430 new .107 .080 .078 .088

old .257 .238 .234 .238
3937 23232 new .118 .087 .080 .093

old .286 .266 .266 .265
4438 26214 new .131 .096 .084 .099

old .326 .304 .298 .301
4969 29376 new .149 .104 .090 .106

old .358 .325 .320 .325
5530 32718 new .164 .119 .105 .108

old .390 .368 .356 .357
6121 36240 new .178 .122 .111 .115

old .430 .384 .375 .376

Table 5.2: Time in seconds for new and old parallel symbolic factorization algorithms 
for a sequence of L-shaped problems.
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