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Abstract

Mirnov coils have been used to study MHD osc. llations in PDX. We first
review the information that can be obtuined from M rnov coils concerning the
amplitude of these oscillations and their torc .dal and poloidal mode
numbers. The usual techniques for analyzing Mirnov coil data do not work well
on PDX because of the rectangular arrangement of the colls, substantial noise
levels, and poloidal amplitude asymmetries. A technique using digital Fourler
analysis to focus attention on the fundamental frequency component of the
signals has been successful in determining the m and n mode numbers of Mirnov

oscillations in the PDX tokamak.
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I. Introduction

A detailed understanding of MHD activity in a tokamak plagma is needed in
order to control major disruptions and obtain low g discharges. The control
of major disruptions is of utmost importance for the future of large tokamak
devices. Magnetic islands play a prominent role in the theory of

1(mg + ¢l nere

disruptions. Their structure is approximately of the form e
0 is the poloidal angle and ¢ is the toroidal angle, and they are located
radially on the g = m/n surface.

Mirnov first used Be loops to study MHD oscillations [1]. Mirnov coils
are simple loops of wire used to measure local magnetic fields. A typical
arrangement 1s shown in .ig. 1. They are mounted outside the plasma at
various poloidal and toroidal angles. Figure 2(a) shows a typical measurement
of the Mirnov colls at a single instant in time. The B-field perturbation is
plotted as a function of @.

one might assume that this field perturbation was caused by an mn=3
magnetic island. But the Mirnov coils are outside the plasma and do not
measure the field strength on the g = 3/n surface. Other than counting the
number of maxima in the fleld strength plot, it is not obvious what one can
say about internal current distribution based on external field
measurements. Section II derives a well~-known relation between the Fourier
transform of the external field and the moments of the internal current
distribution in cylindrical geometry. First order toroidal corrections to the
gimple cylindrical model are then discussed.

Standard techniques of analyzing Mirnov oscillations face sgeveral
problems on PDX (the Poloidal Divertor Experiment). Firast, the PDX tokamak
has a rectangular vacuum vessel, so the Mirnov coils are not mounted in a

circle. Second, the Mirnov colls are only located on the inside and outside



walls (¥ig. 3). We plan to add more coils above and below the plasma in the
future. Third, the Mirnov coils pickup a significant amount of noise. Much
of the noise is at mltiples of 720 Hz and comes from the PDX power
supplies. Finally, there is fregquently a large poloidal asymmetry in the
amplitude of Mirnov oscillaticna. Section III outlines a Fourler technique
which determines the m and n mode numbers of the oscillations by fitting the
phage shifts between Aifferent Mirnov coils. This technlgue has successfully
overcome the problems listed abova. Section IIT concludes with an example of

Mirnov oscillations in PDX.

II. Moments of the Current Distribution

If a current in the ; direction is distributed over a circle with density
proportional teo cos(me-eo), then the resulting poloidal Be field also varies
as cos(mg -~ 6o)i A proof of this is presented here. This is a well known
result and the present discussion in a cylindrical geometry is based on a
paper by Righettl (2]. To zeroth order in the aspect ratlio, we can consider
the cylindrical geometry of Pig. 2(a). A single, 1infinitely long 1line
carrying a current I out of the page is located at (r,eo). If r = 0,

the & fleld is {SI unite are used throughout):
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For r # 0, 8 1s written more generally as:

T a-rcos(d-g)
Be - Zt—‘ . 3 3 (1)
a” + r <« 2ar cos(9 - eo)




n I r sin(e - g )

B = = —— . (2)
ol 2n a2 + r2 - 2ar cos(f - eo)

The denominator can be factored into [a-re“e = 60)] [a-re'“6 = eo)]. Using
the method of partial fractionsg, we can expand By into:
u'OI [ 1 1 ]

1
- +
® 2l 16 - 6,  , -1(6-6)

Be=

N

We can expand this in powers of r/a or a/r, depending on whether the line

current I 18 inside or outslde the circle. Following these same steps for B,

we get:
£L.2 £.2.2
uoI s r\n IJ'OI 2 (anm
Be = 3 by (;) cos n(6 - eo) BG =" im (;) cos n( e—eo)
n=0 n=1
p,OI £y r.n u,ol @ an
= - = - = - 2= r= - .
B_ Y n=zo (3)" sin n(o - 9) B_ Ty n£1 (Z)" sin nlo - o))

We have now expanded E ar a Pourler series, and each coefficient is simply
related to the position t,ﬂo of the current I. In fact, the proper sum Jf
fourier coefficients allows us to look only at the current inside the

cylinder, while 4ignoring any currenit: outside the cylinder. Using the

orthogonality of fourier series we get:




r\m
af 2‘"Be<9) cos mp d¢ ~ af z“nr(e) sin mo 46 = | T (;) cosmg. If r < a
o o

0 If r > a

{3)

21 2 - X \m
ajo B,(6) sin mp do + ujo ™8, (0) cos mo 46 = Ju T ()" ein mg if r < a .
0 ifr>a

(4)

The straightforward way of proving Egs. (3) and (4) is to substitute for

B, and B, using BEgs. (1) and {2). The integrals could then be evaluated as

<]
contour integrals in the complex plane. However, it is much easier to use the
trick of expanding By and By in PFourier series and use their orthogonality
property.
If the Mirnov colls are mounted just inside a conducting shell, then
B, = 0 and the second terms in Eqs. (3) and (4) vanish. 1Instead of a sinqgle
line current I at (r,eo), consider a general toroidal current density j(r,9).
3 1s just a linear superposition of the B~fields produced by each of the
infinitesimal line currents j(r,0) rdrdo. We must replace the right hand side

of the Eqs. (3) and (4) with an integral over the current daistribution. Ueing

complex notation this yieids:

2
af a0 e™ ap =y [ ar (E)° [ *ra0 sir.00e™ . (5)
o o
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This relates the moments of the external B field with the moments of the

internal current density. Continuous sin mg and cos m@ colls have been used

by many researchers to measure the integral on the left hand side of Eg. (5}

for a few small values of m [3]. The coil winding density (number of turns

per cm) varles as sin m@ or cos mp (Fig. 2¢). In particular, for m=0, we have

a Rogowskl coll which measures the total current. For m=1, we measure the

average x and y position of the current distribution:

M
af 2n g (e)ej'e a9 = =2 [faxdy 3(x,y) (x + 1y) .
2] a
[o] r < a

At this point we can recognize the fundamental difficulty of analyzing

Mirnov oscillations. Without more assumptions, 1t 1is not possible to work

backwards from the measured external B field to find the internal current

distribution. This 18 becaugse the left hand side is an integral over g only,

while the right hand side integrates over r and 8.

The usual assumption is to expand the current distribution in normal
modes. The cylindrical (infinite aspect ratio) normal modes are:
- i(m@ + n ¢ - »_t)
j(r,8) jo(r) + T jmne mn” §(r - r ) (6)

m,n

where jolr) - equilibrium current distribution,




= amplitude of current perturbation localized at the

Imn
radius Ton’

Ton = radius of the g = m/n surface;

&lr - rmn) = delta function which limits the current perturbation
to the rational g surface (q = m/n).

[} = poloidal angle,

¢ = toroidal angle,

[, = frequency of the m,n mode.

The fluctuating poloidal B field, 89' produced by the 3mn current perturbation

is simply:

Bo(r,0.0) = u i r (-!-'-rmﬂ)m1 el(me * 24 = w B (fox r > r ).

We have changed notation here and in following equations: r 18 the radius
where Be iz measured; Ton is the radius of the current perturbation. r and p
are defined with respect to the center of the resonant surface q = m/n. This
is the fundamental equation used to analyze Mirnov oscillations. There are
corrrections to thls equation for a finite aspect ratio tokamak which will be
digcussed later. But the essential method is illustrated with this simple
cylindrical wodel.

Before moving to the toroildal corrections to the gimple cylinder, we will
write the equation for Ey which is appropriate for the square vacuum vessel of
PDX. The positions of some of the coils on PDX are shown in Fig. 3. All
colls measure Sy and are located not only at various § and ¢, but also at

different radil (r) from the center ¢f the plasma. Ignoring eddy currents

induced in the vacuum vessel wall, a current perturbation of the form



3un co8[m(® - 0, }] 8(x - r )

where 6 = (-n¢$ ~ wt)/m represents the arbitrary phase of the perturbation,

will produce the field

b 4 4

~ “ojmn mn mn m+1

BO = 3 ( - ) cos m(g - g ) {for r » rmn)
o~ l‘lojrm rm.n Tmn \m+1

Br = (-—-——r } gin m{g - 901

Ey is found by simply adding components and using a trigonometric identity:

“nn 1

T cos [mg + @ ~mg ] (forr>r ).

B, = By cose - B sing = p 3 {

(8)

Note that the phase of 'fy varies as (m+1)0 while the phase of ﬁe varies like

mo.

While a cylindrical model is adequate for a qualitative understanding of
Mirnov oscillations, a more realistic model of a tokamak is sometimes useful
for analyzing experimental Adata. The fileld perturbations Emn due to the j,.

mode are different from a cylinder because of three toroidal effects



{Pig. 4). First, the perturbation j,, will produce a stronger field on the
inside of the torus than on the outside becauwse the transformation which maps
a cylinder into a torus does not conserve area and V « B = D. Second, the
perturbation is no longer centered on Ry but is shifted outward by the Grad-~
shafranov shift, Ap(r). This places the mode closer to the outside Mirnov
coils. Flnally, the compreassion of flux surfaces on the ocutslde makes the
pitch of the field larger there, so that the mode no longer has a simple cosmg
dependence. Fussman [4] has derived an analytic expression for the B-field of

current perturbations in a torus. To first order in inverse aspect ratlio:

B3 ox ¥
&~ _ 0 "mn mn . mn_m+1 *
B, = ————;——~—- (<) cos(mg + n¢ - wtl (for £ > r_ }. (9)
L 4
where 2] = § - A sing,
A = rmn/Ro (1 + 11/2 + Be)p
Ry = internal inductance, at the resonant flux surface of radlus
Ton
Be = poloidal beta at the resonant flux surface
r = distance from center of resonant surface at R, + Ap (rmn)

to the Mirnov coil at (r,0,4).

R = major radius of plasma

The formula for B is exactly the same oxcept that me' is replaced by

(me' + 08). A similar formula is derived by Merezhkin [5] and compared with
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experimental measurements on the T-6 tokamak. He found that the
transformation @ » e’ fits the measured phase data fairly well. He also
measures a pololidal asymmetry Be(e=0)/39(e=1:) which ranges from .7 to 1.8 but
he does not discusa possible causes of this asymmetry.

Potentially significant errors may develop if one analyzes real Mirnov
oscillations from a tokamak with the cylindrical model (Eg. 7) instead of the
toroidal model (Eq. 9). deRock [3] has discussed the magnitude of these
errors. For example, if a single m = 2, n = 1 current perturbation existed at
the g = 2 surface, the resulting EO field would appear to have components of
other m, n values also, unless the A and Ap corrections are properly
included. Figure 5 8hows how the transformation 9 » 9’ corrects this

situation.
ITI. A Fourier Transform Method for Analyzing Mirnov Oscillations

Ijdeally, Mirnov coils ghould tell us the amplitudes, phases, and rotation
frequencies of all modes present in the plasma as a functilon of time. For a
large aspect ratio tokamak with low (3 this can easily be done with the
cylindrical model of the last section. With & set of Mirnov coils spanning a
poloidal cross-section, one takes the Fourler transform in_ g to yleld the
amplitudies of each component cos(m[8 ~ 6,]) as a function of time. An
ingenious technique for doing this by analog multipexing has been developed
and used on many tokamaks [6].

The Pouriler-transform-in-0 technique has not been feasible on PDX for
many reasons. The rectangular geometry of the vacuum vessel and the use of
poloidal divertors prevented %the usual placement of Mirnov coils to measure

EG as a function of 06 which is needed to estimate Be's Fourier transform



11

in 8. 720 Hertz ripple in the ohmic and equilibrium fields show up as noige
on the Mirnov coils. BAn amplitude asymmetry which is not yet understcod would
make a naive attempt at Fourier transforming in @ prone to significant

errors. On PDX, the ratio of perturbation amplitudes at 8 = 0 and 9 =

o~

T Bout

/ﬁin, varies from .5 to 6, and is typically around 3. To 1llustrate
the type of analysis error this produces, assume that the amplitude asymmetry

in B 0 can be parameterized by:

ﬁ'e = B1 (1 + y cos@) cos(mo - wt) .

/B

in Using a trig

Where (1 + y)/(1=-y) is the size of the asymmetry ﬁ'out

identity this can be rewritten as:

By = B,[cos(me - ut) + 7 cos((m=1)8 - wt) +I= cos((m+1)g - ut)] .
The transform-in-g technique would interpret this as three different modes (m,
m+3, m=1) which just happen to be rotating at exactly the same frequency. The
transform-in~time technique to be discussed next would interpret this as a
single mode because the phase varies only as mo. We prefer this
interpretation, which ignores the amplitude asymmetry, because the asymmetry
seems to be much larger than predicted by the Grad-Shafranov shift and other
toroidal corrections.

It is easy to make erroneous conclusions if the subtlety of the situation
is not appreciated. The moments of Be yleld the moments of j,+ To say that a
single mode is measured means that a current perturbation of the approximate
form cos (m6 + ng - wt) on the g ~ m/n surface exists. This does not imply

that the only magnetic islands are on the ¢ = m/n surface. Toroidal
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elgenmodes and cylindrical eigenmodes do not have exactly the same form,
although each toroldal eigenmode can can be 1identified as a perturbed
cylindrical eigenmode. In particular, Fussnran (4] has shown that in a
toroidal tokamak geometry, a current perturbation on the @ = m/n surface
generates islands nnt only at the g = m/n surface, but also generates other
i1slands of different helicities at other flux surfaces, although these islands
are smaller.

In order to deal with these problems, we have developed a technique based
on taking the Fourier tranaform in of each Mirnov signal during a selected
time window. The relationship between the phases of different Mirnov signals
identifies m and n without 1looking at the amplitudes of the signals. By
looking at the signals in the frequency domain we are able to reject noise and
other modes &t frequenciee other than mn and we are able to accurately
measure the relative phages of signals. A similar technique has been used at
Oak Ridge [7].

The besf way to explain the technique 1is with an example. Fiqure & shows
the experimental setup of Mirnov coils on PDX. Figure 7 shows the plasma
current and 14 Mirnov signals as a function of time (only ~ 300 msecs of
Mirnov data 1s diglitized). The Mirnov oscillations slow down and stop
alto,sther at 420 msecs. The signals after that represent the noise level.
An expancion of 10 msecs 1a shown in Fig. 8. A peak appears first on coil 1
and progresses to coil 5 (see Fig. 5 for the position of these 5 colls. This
mode 1is rotating in the electron diamagnetic direction. Coils 12 and 13 are
at the same toroidal angle, but coll 12 is at 6=C while coil 13 is at ¢@=qx.
They both measure B, (note that for coil 13, By = - By). They are in phase

&}
and we can conclude that m is an even integer. The amplitude aaymmetry isa

1312/1313 = 2.
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The power spectrum (Fig. 9) for these 14 signals shows that the
fundamental component has a frequency of 1.3 kHZ. The fundamental component

of the ﬁy signal measured by the i°th coil can be written as

S, =A

N 1 cos(2x(1300)t - 61)

where §; 1s the phase lag of the 1'th signal.
*
According to the last section the predicted phase shift 61 for the m,n

mode 1is:

5: = m(e1 - Lsinei) + e1 +n °1 + 60 + k1 2 (k1 = integer)
where (91’01) gives the location of the i'th Mirnov coil, and By + kizn
expresses the multi-valued property of phage. Figure 10a plote the
experimental 6i data points and the best fit of 6: through them. (Strictly
speaking, the data points which are plotted are 51 = ngy, 80 that the torolidal
dependence 1s removed.) A line with slope 3 fits the data fairly well, smo
m=2,n= 1. In generating this plot, 50 and the k1 were chosen to make the
data fit the line as well as possible.

Figrre 10{b) plots the data with the best choice of 50 and ki for
(m,n) = (2,0). The three colls at a different toroidal location obviously do
not fit. Therefore n is determined to be 1 and not 0. This is made

quantitarive by the reduced Chi-square statistic, defined as:

N

*,.2
r (5, - 5,)
2 gmr 1

L
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where 61 = the dependent variable,

8gs0y = the independent variables,
- L ]
6i = the predicted phase shift 6i = me'l + 91 + negy * 50 + kizn,
v = number of parameters in the fittine function (3),
N = number of data points (14).
oz = expected variance of data (assuming uniform distribution on

[=%,m). 02 = n2/37-

If the 6y are random, then any attempt fit will yield a er ~ 1. 1f one
particular m,n mode fits the data well then XZ + 0 as the fit gets better.
For (m,n) = (2,1), er = .017 which is very good. The probability that this
was not a random accident 1s greater that .9995. The (m,n) = (2,0) fit is not
as good, er = .440 (vig. 13). To see that this 1s significantly worse in a
statistical sense, we foria the F statistic F = (.440)/(.017) with 11 and 11
degrees of freedom. Loocking in a table of the F-statistic distribution, we
find that it is a highly improbable wvalue. Thus it is safe to assume that the
mode numbers (m,n) are {(z,1) and not (2,0).

Attempted (3,1) and (4,1) fits are i{llustrated in Figs. 10(c) and
19(d). The (3,1) falls miserably because the real mode has even m. The (4,1)
isn't quite as bad but it 1is still obvicusly wrong. The analysis program
automatically checks mary possible (m,n) values for possible fits and tells
the program user which modes fit best.

We turn to another example to examine the robust qualities of this
analysis procedure. Figure 11 shows plasma current and 16 Mirnov signals.
Fiqure 12 is a 5 millisecond expansion of these signals. The signal-to-noise
ratio is worse, while the amplitude asymmetry 1is leas, than the signals in

Fig. 8. The jagged appearance of the waveforms 1s because the sampling
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frequency of the digitizers was 20 kHz, giving ~8 data points per cycle. Note
that the mode appears to be rotating in the opposite direction from the last
example. Indeed the mode numbers are identified s m=-2,n=-1 signifying
rotation in the ion cyclotron direction. These oscillations occured during
neutral injection which spins the plasma in the toroidal direction thus
shifting the frequency of rotation. (A helical island is a bit like a barber
shop pole, toroidal motion can appear to be poloidal rotation, or vice
versga). The power spectrum (Fig. 13} no longer shows a nice peak at the
fundamental frequency, in part because the mode was speeding up during the
perfod 230-240 msecs. Nevertheless, the oscillations are positively
ldentifiea as m=-2, n=-1 (Fig. 19). 1In fact, no matter which freguency the
user selects From the interval 2.4 KHz to 2.8 KHz, the relative phases of that
frequency component will still reveal the m=2, n=1 mode.

The toroidal correection to the phase (9. = @=As8inpg) usually gives a
slightly better fit than the cylindrical model. Figure 14(a) assumed A = 1.6
* (20/144) = .22, In Pig. 14(b), the toroidal correction is ignored by
setting the radius of the g=2 surface to zero. The fit is still pretty good

2 1s 50% worse than the case where the toroidal correction is included.

but y

The computer program which performed the above analysis 1ig fairly
stralghtforward. It first performs a fast Fourler transform. The program
user then types in a desired frequency component to be analyzed. The phaces
of the =signals at that frequency are fit using a non-linear grid search
algorithm ([81. A non-linear fit must be used instead of a standard
least-squares regression because 9. = § = )\ 8ind 1is non-linear, the squared

residual [&; - £(8,., @1)]2 lies on the interval {0,7°!, and k; i8 restricted

to integer valuesg.
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Iv. Summary

The Fourier-~-transform-in-time technique has been successful on PDX in
identifying the m and n mode numbers of Mirnov oscillations. It is able to
accurately measure phase shifts between signals by rejecting noise at
frequencies other than .. This also has the theoretical capability of
analyzing many modes at once as 1long as they rotate at different
frequencies. Predicted toroidal corrections to the simple el{M8*n¢) jg51ana
structure are accurate in explaining experimental data. The transform-in-time
technique utilizes phase information only. It 1is therefore able to ignore
amplitude agymmetries, which the transform—in-g technique can not do.
However, the transform~-in-g technique is more useful in analyzing the time

development of various modes.
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FIGURES

An example of the placement of Mirnov coils.

(a) Hypothetical picture of Be, the fluctuating part of BG' as a

function of § at a single instant in time.

{b) Cylindrical geometry of Egs. (1) - (4).

(c) "cos 6" coil which measures the average x position of the plasma

current.
Pogitions of some of the Mirnov coils in PDX. The vacuum vessel is the
racetrack shape which encircles the Mirnov coils. The flux snrfaces are
denoted by nested dntted lines in the plasma region and by solid lines
in the scrapeoff region.

Toroidal distortions of the cylindrical model:

(a) Bending a straight wire into a loop creates a stronger magnetic

field inside the loop than outside the loop. i

(b) The Grad-Shafranov shift, Ap(r), moves the perturbation outward.

(c) Distortion of cos(mf) dependence of the island caused by greater

field line pitch at the outside (9 = 0) edge of the torus.
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Toroidal correction to ‘he phase. The top graph shows Be(e) in a
tokamak with a/R = .3, 112 + B9 = 1, and an m=2 current perturbation.
Mapping 06 » 9' in the second graph reveals the coa(28) current
perturbation, while the first graph mistakenly identifies m=1 and n=3
components existing in addition to the dominant m=2 contribution.

Experimental setup of Mirnov coils in PDX.

Mirnov signals measured at 14 pos=itions in PDX. (Circular Plasma,

R=143 cm, a = 44 cm).
Expansion of the time axis of Fig. 7.

2
Power gpectrum for the signals for Fig. B. Power is ‘ﬁei in arbitrary

units on a linear scale.

Phase plots to determine m and n, for Fig. 8. Phase of the 1.3 kiz
component of each signal is plotted versus the poloidal angle g where
the signal ﬂy was measgured.

fa) m=2, n=1, y, = 0.17, probability of being a non random fit > .995.
(b) m=2, n=0, y, = .440, probability of being a mon random fit = .938.

{c) m=3, n=1, Xe = 1.106, probability = .351.

(d) m=4, n=1, X ™ +249, probability = .994.
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20
Mirnov signals measured at 6 positions in PDX. (Discharge parameters:
square plasma, R= 143 cm, a = 42 cm.)
Expansion of the time axis of Fig. 11.
Power spectrum (592) for the signals of Fig. 12.
Phase plots to determine m and n, for Fig. 12. Phase of the 2.6 kHz

component of each signal is plotted versus the poloidal angle where the

signal (ﬂy) was measured.

(a) m=-2, n=-1, xr = .020, probability > .9935. Model parameters: R =

144 cm, rm = 20 cm, 11/2 + Be = .6

(b) =-2, n=-1, e = .031, probability > .995. Model parameters: R =

144 cm, rm = 0, 11/2 + Be = 0.
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