
MASTER 

Analysis of Mimov Oscillations on_PD>£_ 

By 

G. Hammett and K. McGuire 

February 1982 

PLASMA 
PHYSICS 

LABORATORY 

PRINCETON UNIVERSITY 
PRINCETON, NEW JERSEY 



analysis of Mirnov Oscillations on PDX* 

G. Haamett and K. McGuire 

Princeton University, Plasma Physics Laboratory 

Princeton, New Jersey 08544 

Abstract 

Mirnov coils have been used to study MHO osc. llatlons in PDX. We first 

review the Information that can be obtained from M rnov colls concerning the 

amplitude of these oscillations and their tore dal and pololdal mode 

numbers. The usual techniques for analyzing Mirnov coil data do not work well 

on PDX because of the rectangular arrangement of the coils, substantial noise 

levels, and poloidal amplitude asymmetries. A technique using digital Fourier 

analysis to focus attention on the fundamental frequency component of the 

signals has been successful in determining the m and n mode numbers of Mirnov 

oscillations in the PDX tokamak. 
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I. Introduction 

A detailed understanding of MHD activity in * tokamak plasma is needed in 

order to control major disruptions and obtain low q discharges. The control 

of major disruptions is of utmost importance for the future of large tokamak 

devices. Magnetic islands play a prominent role in the theory of 

disruptions. Their structure is approximately of the form e ' m e + "•', where 

9 is the pololdal angle and $ la the toroidal angle, and they are located 

radially on the q = m/n surface. 

Mirncv first used BQ loops to study MHD oscillations [1]. Mirnov coils 

are simple loops of wire used to measure local magnetic fields. A typical 

arrangement is shown in tig. 1. They are mounted outside the plasma at 

various poloidal and toroidal angles. Figure 2(a) shows a typical measurement 

of the Miinov coils at a single instant in time. The B-field perturbation is 

plotted as a function of 6. 

One might assume that this field perturbation was caused by an m=3 

magnetic island. But the Mirnov coils are outside the plasma and do not 

measure the field strength on the q = 3/n surface. other than counting the 

number of maxima in the field strength plot, it is not obvious what one can 

say about internal current distribution based on external field 

measurements. Section II derives a well-known relation between the Fourier 

transform of the external field and the moments of the Internal current 

distribution in cylindrical geometry. First order toroidal corrections to the 

simple cylindrical model are then discussed. 

Standard techniques of analyzing Mirnov oscillations face several 

problems on PDX (the Poloidal Divertor Experiment). First, the PDX tokamak 

has a rectangular vacuum vessel, so the Mirnov coils are not mounted in a 

circle. Second, the Mirnov coils are only located on the inside and outside 
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walls (Vig. 3). We plan to add more coils above and below the plasma in the 

future- Third, the Mirnov coils pickup a significant amount of noise. Much 

of the noise is at multiples of 720 HE and comes from the PDX power 

supplies. Finally, there is frequently a large poloidal asymmetry in the 

amplitude of Mirnov oscillations. Section III outlines a Fourier technique 

which determines the ns and n mode numbers of the oscillations by fitting the 

phase shifts between different Kirnov colls. This technique has successfully 

overcome the problems listed above. Section III concludes with an example of 

Mirnov oscillations in PDX. 

II. Moments of the Current Distribution 

If a current in the z direction is distributed over a circle with density 

proportional to cos(m8-6 )» then the resulting poloidal B„ field also varies 
o y 

as coslme - e o); A proof of this 1B presented here. This is a well known 

result and the present discussion in a cylindrical geometry is based on a 

paper by Rlghetti [2J. To zeroth order in the aspect ratio, we can consider 

the cylindrical geometry of Fig. 2(a). * single, infinitely long line 

carrying a current I out of the page is located at (r,e ). if r = 0, 

the E field is (SI units are used throughout): 

H I -

For r j* 0, B is written more generally as: 

111 a - r cos(9 - 8 ) 
B - rf- • ~2 5 2 C »> 

0 * a + r - 2ar co«(9 - 9 ) 
o 
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u I r sin(e - 9 ) 
a + r - 2ar cos(9 - 9 ) o 

The denominator can be factored into [a-re 1' 6 " 9o'] [a-re - i' e " e o * ] . Using 
the method of partial fractions, we can expand B . into: 

B - ^ I r ! + L _ i . 
9 2 l t 2 a - r e 1 < 9 - 9 o ' a-re" 1' 9"V J 

We can expand this in powers of r/a or a/r, depending on whether the line 
current 1 is inside or outside the circle. Following these same st'sps for B r, 
we get: 

r > a 

B9=^I = (f)" C O S n ( 9 " V B9 = " A \ f >" c o s n ( 9-V n=0 n=1 

Br " " i £ \ fr" 9 i n "< 9 " V B r = " i ^ \ £ ) " S i" " ( 9 " 9o> n=0 n=1 

We have now expanded B at' a Fourier series, and each coefficient is simply 
related to the position r,0 of the current I. In fact, the proper sum ~5 
fourier coefficients allows us to look only at the current inside the 
cylinder, while ignoring any current outside the cylinder. Using the 
orthogonality of fourier series we get: 
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a/ 2 " B (6) cos me de - a/ ^ ( 6 ) sin m9 de = i n QI (j)"1 cosme. If r < a 

If r > a 

(3) 

a/ B (9) sin m9 de + a/ ^ ( 6 ) cos me de - iu 0I (-) sin me Q if r < a 
o o 1 

I 0 if r > a 

(4) 

The straightforward way of proving Eqs. (3) and (4) is to substitute for 

B n and B using Eqs. (1) and (2). The integrals could then be evaluated as 

contour integrals in the complex plane. However, it Is much easier to use the 

trick of expanding Bg and B In Fourier series and use their orthogonality 

property. 

If the Mirnov coils are mounted just inside a conducting shell, then 

B r = o and the second terms in Eqs. (3) and (4) vanish, instead of a single 

line current I at (r,e o), consider a general toroidal current density j(r,9)» 

B is just a linear superposition of the B~fields produced by each of the 

infinitesimal line currents j(r,6) rdrde. We must replace the right hand side 

of the Eqs. (3) and (4) with an integral over the cmrrent distribution. Using 

complex notation this yields: 

a/ 2 n B (9) e i n e de - u o /* dr (|f / a " w e jfr.eje 1" 6 . (5) 
o o o 



This relates the moments of the external 2 field with the moments of the 

internal current density. Continuous sin me and cos me coils have been used 

by many researchers to measure the integral on the left hand side of Eq. (5) 

for a few small values of m [3] . The coil winding density (number of turns 

per cm) varies as sin m9 or cos m9 (Pig. 2c). In particular, for m=0, we have 

a Rogowski coil which measures the total current. For m=1, we measure the 

average x and y position of the current distribution: 

a/ 2 l t B <e>e l e 3 9 = - ^ /Jdxdy j(x,y) (x + iy) 
o r < a 

At this point we can recognize the fundamental difficulty of analyzing 

Mirnov oscillations. Without more assumptions, it is not possible to work 

backwards from the measured external B field to find the internal current 

distribution. This is because the left hand side is an integral over 9 only, 

while the right hand side integrates over r and 9. 

The usual assumption is to expand the current distribution in normal 

modes. The cylindrical (infinite aspect ratio) normal modes are: 

j(r.O) - i (r) + E 1 e i ( n , e + n * " % n t )
 6(r - r ) (6) o mn mn m,n 

where J 0 ' r ' " equilibrium current distribution. 
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•j = amplitude of current perturbation localized at the 
Jinn 

radius r_„, mn 
r = radius of the a = m/n surface; 
mn 
5(r - r ) = delta function which limits the current perturbation 

mn 
to the rational q surface (q = m/n). 

9 = pololdal angle, 

<j> = toroidal angle, 

OJ^ = frequency of the m,n mode. 

The fluctuating poloidal B field, B , produced by the j m n current perturbation 

is Simply: 

~ , „ . . r mn-,ro+1 i(m9 + n* - u t) r . . •, 
B„(r,e,*) = u 3 r ( J e v ;.>n [for r > r 1. 

We have changed notation here and In following equations: r is the radius 

where B„ is measured; r is the radius of the current perturbation, r and 9 w inn 
are defined with respect to the center of the resonant surface q = m/n. This 

is the fundamental equation used to analyze Mirnov oscillations. There are 

corrrections to this equation for a finite aspect ratio tokamak which will be 

discussed later. But the essential method Is illustrated with this simple 

cylindrical itiodel. 

Before moving to the toroidal corrections to the simple cylinder, we will 

write the equation for B which is appropriate for the square vacuum vessel of 

PDX. The positions of some of the coils on PDX are shown in Fig. 3. All 

coils measure if and are located not only at various 8 and $, but also at 

different radii (r) from the center of the plasma. Ignoring eddy currents 

induced In the vacuus vessel wall, a current perturbation of the form 



a 

j cos[n(e - 6 )] 8fr - r ) ran L l oJ' k ran' 

where 6 o = (-ni|) - ojt)/tn represents the arbitrary phase of the perturbation, 
will produce the field 

~ "o inn mn , ran >m+1 
9 2 [ 1 cos m(e - 9 ) (for r > r ) 

^ r ' o * mn J 

ii] r r . ~ *o mn mn , mn-im+1 . ,. „ , B r = (—) sin m(e - 9 o) 

B is founa by simply adding components and using a trigonometric identity: 

mn >m-H B = B. cos9 - B sine = ji j f ) cos (m9 + 8 - me ] (for r > r 
y 9 r 'TsJmn l r ; o v | mn' 

(8) 

Note that the phase of B v a r i e s as (m+1)9 while the phase of §\ var ie s l i k e 
y 6 

m6-

While a cylindrical model is adequate for a qualitative understanding of 
Hirnov oscillations, a more realistic model of a toleamak is sometimes useful 
for analyzing experimental data. The field perturbations B due to the j _ n 

mn **ui 
node are different from a cylinder because of three toroidal effects 
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(Fig. 4). First, the perturbation j,^ will produce a stronger field on the 

Inside of the torus than on the outside because the transformation which maps 

a cylinder Into a torus does not conserve area and V • B = 0. second, the 

perturbation la no longer centered on R , but Is shifted outward by the Grad-

Shafranov shift, &^(r). This places the mode closer to the outside Mirnov 

coils. Finally, the compression of flux surfaces on the outside makes the 

pitch of the field larger there, so that the mode no longer has a simple cosing 

dependence. Fussman [4] has derived an analytic expression for the B-field of 

current perturbations in a torus. To first order in Inverse aspect ratio: 

u 1 r r 

~ o m n m n , mn -.m+1 , * ,_, ,_ , ,„, 
B. = f 1 cosTme + n* - ut] [for r > r ). (9) 
0 ~ T ' ^ *• ran-' 

where 8 = 8 - X. sin8, 

»• = r m n / R o ( 1 + V 2 + ty' 
A^ = internal inductance, at the resonant flux surface of radius 

rmn 

P0 = poloidal beta at the resonant flux surface 

r = distance from center of resonant surface at R + A_ (r ) 
o "p inn 

to the Mirnov coil at (r,8,$). 

R Q = major radius of plasma 

The formula for B la exactly the same axcept that m8 ia replaced by 

(me + 9 ) . A similar formula is derived by Merazhkin [5] and compared with 
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experimental measurements on the T-6 tokamak. He found that the 

transformation 9 •* 9 fits the measured phase data fairly well. He also 

measures a poloidal asymmetry Be(9=0)/Bg(9=it) which ranges from .7 to 1.8 but 

he does not discuss possible causes of this asymmetry. 

Potentially significant errors may develop if one analyzes real Mirnov 

oscillations from a tokamak with the cylindrical model (Eq. 7) instead of the 

toroidal model {Eq. 9). deKock [3] has discussed the magnitude of these 

errors. For example, if a single m = 2, n = 1 current perturbation existed at 

the q = 2 surface, the resulting B field would appear to have components of 
9 

other m, n values also, unless the \ and A- corrections are properly 

included. Figure 5 shows how the transformation 9 + 9 corrects thi.8 

situation. 

III. ft Fourier Transform Method for analyzing Mirnov Oscillations 

Ideally, Mirnov coils should tell us the amplitudes, phases, and rotation 

frequencies of all modes present in the plasma as a function of time. For a 

large aspect ratio tokamak with low 0. this can easily be done with the 

cylindrical model of the last section. With a set of Mirnov coils spanning a 

poloidal cross-section, one takes the Fourier transform in 9 to yield tho 

amplitudies of each component cos(m[9 - 9Q] ) as a function of time. An 

ingenious technique for doinq this by analog multipexing has been developed 

and used on many tokamaks [6] . 

The Fourier-transfora-in-9 technique has not been feasible on PDX for 

many reasons. The rectangular geometry of the vacuum vessel and the use of 

poloidal divertors prevented the usual placement of Mirnov coils to measure 

B as a function of 9 which is needed to estimate B„'s Fourier transform 
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in 9. 720 Hertz ripple in the ohmic and equilibrium fields show up as noise 

on the Mirnov coils. An amplitude asymmetry which is not yet understood would 

make a naive attempt at Fourier transforming in 9 prone to significant 

errors. On PDX, the ratio of perturbation amplitudes at 9 = 0 and 9 -

it, B ,/Bj , varies from .5 to 6, and is typically around 3. To illustrate out in 
the type of analysis error this produces, assume that the amplitude asymmetry 

in B can be parameterized by: 
9 

B = B (1 + v cos9) cos(mQ - ot) . 9 1 

Where (1 + v)/(1-v) is the size of the asymmetry B /B. , Using a trig 
out in 

identity this can be rewritten as: 

B = B^cosfmg - cot) + ̂  cos((m-1)9 - ut) +J- cos((m+1)9 - tot)] . 

The transform-in-8 technique would interpret this as three different modes (m, 

ra+", m-1) which just happen to be rotating at exactly the same frequency. The 

transform-in-time technique to be discussed next would interpret this as a 

single mode because the phase varies only as tnQ. We prefer this 

interpretation, which ignores the amplitude asymmetry, because the asymmetry 

seems to be much larger than predicted by the Grad-Shafranov shift and other 

toroidal corrections. 

It is easy to make erroneous conclusions if the subtlety of the situation 

is not appreciated. The moments of B. yield the moments of j . To say that a 

single mode is measured means that a current perturbation of the approximate 

form cos (m9 + n$ - ojt) on the q = m/n surface exists. This does not imply 

that the only magnetic islands are on the q = m/n surface. Toroidal 
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eigenmodes and cylindrical eigenmodes do not have exactly the same form, 

although each toroidal eigenmode can can be identified as a perturbed 

cylindrical eigenmode. In particular, Fsissman [4] has shown that in a 

toroidal tokamak geometry, a current perturbation on the q - m/n surface 

generates islands not only at the q = m/n surface, but also generates other 

islands of different helicities at other flux surfaces, although these islands 

are smaller. 

In order to deal with these problems, we have developed a technique based 

on taking the Fourier transform in of each Mirnov signal during a selected 

time window. The relationship between the phases of different Mirnov signals 

identifies m and n without looking at the amplitudes of the signals. By 

looking at the signals in the frequency domain we are able to reject noise and 

other modes at frequencies other than M and we are able to accurately 

measure the relative phases of signals. A similar technique has been used at 

Oak Ridge [7]. 

The best way to explain the technique is with an example. Figure 6 shows 

the experimental setup of Mirnov coils on PDX. Figure 7 shows the plasma 

current and 14 Mirnov signals as a function of time (only ~ 300 msecs of 

Mirnov data is digitized). The Mirnov oscillations slow down and stop 

altc^.ther at 420 msecs. The signals after that represent the noise level. 

An expansion of 10 msecs is shown in Fig. 8. A peak appears first on coil 1 

and progresses to coil 5 (see Fig. 5 for the position of these 5 coils. This 

mode is rotating in the electron diamagnetic direction. Coils 12 and 13 are 

at the same toroidal angle, but coll 12 is at 9*0 while coil 13 is at 9—n-

They both measure B (note that for coil 13, Bfl » - B ). They are in phase 

and we can conclude that m is an even integer. The amplitude asymmetry is 

B12 / B13 ~ 2' 
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The power spectrum (Fig. 9) for these 14 signals shows that the 

fundamental component has a frequency of 1.3 kHZ. The fundamental component 

of the B signal measured by the i'th coll can be written as 

S = A t cos(2n(1300)t - 6L) 

where 6., is the phase lag of the l'th signal. 

According to the last section the predicted phase shift 6 for the m,n 

mode is: 

* 
6. = m<9, - \sine. ) + 9. + n A. + 6 * k. 2u <k, = integer) 1 1 l l i o l l 

where (Si,^) gives the location of the i'th Mirnov coil, and 5 + k,27i 

f.xpre&ses the multi—valued property of phase. Figure 10a plotu the 

experimental 6 A data points and the best fit of 6, through them. (Strictly 

speaking, the data points which are plotted are 6, - n*,, so that the toroidal 

dependence is removed.) A line with slope 3 fits the data fairly well, so 

m = 2, n = 1. In generating this plot, 6 and the k^ were chosen to make the 

data fit the line as well as possible-

Figure 10(b) plots the data with the best choice of 6 0 and ft^ for 

(ra,n) = (2,0). The three coils at a different toroidal location obviously do 

not fit. Therefore n is determined to be 1 and not 0. This is made 

quantitative by the reduced Oil-square statistic, defined as: 

N * 2 
E (6 - 6 ) 

2 i-1 * X 

file:///sine


14 

where 6j - the dependent variable, 
el'*l * t n e independent variables, 
* * * 

6. = the predicted phase shift 6. " me , + 9, + nip. + 6 + kj2u, 

v = number of parameters in the fitting function (3), 

N = number of data points (14). 
2 

a = expected variance of data (assuming uniform distribution on 
[-7i, TI] , a » it / 3 ) . 

If the 6̂  are random, then any attempt fit will yield a f2 ~ 1. If one 

particular m,n mode fits the data well then y •» 0 as the fit gets better. 

For (m,n) = (2,1), x 2
r = - n 1 7 which is very good. The probability that this 

was not a random accident is greater that .9995. The (m,n) = (2,0) fit is not 

as good, x T ~ ' 4 4 ° < ? i9- 13). To see that this is significantly worse in a 

statistical sense, WP form the F statistic F = (.440)/( .017) with 11 and 11 

degrees of freedom. Looking in a table of the F-statlstic distribution, we 

find that it is a highly Improbable value. Thus it is safe to assume that the 

mode numbers (ra,n) are (2,1) and not (2,0). 

Attempted (3,1) and (4,1) fits are Illustrated in Figs. 10(c) and 

10(d). The (3,1) fails miserably because the real mode has even m. The (4,1) 

isn't quite as bad but it is still obviously wrong. The analysis program 

automatically checks many possible (m,n) values for possible fits and tells 

the program user which modes fit best. 

We turn to another example to examine the robust qualities of this 

analysis procedure. Figure 11 shows plasma current and 16 Mirnov signals. 

Figure 12 is a 5 millisecond expansion of these signals. The signal-to-noise 

ratio is worse, while the amplitude asymmetry is less, than the signals in 

Fig. S. The jagged appearance of the waveforms is because the sampling 
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frequency of the digitizers was 20 kHz, giving ~8 data points per cycle. Note 

that the mode appears to be rotating in the opposite direction from the last 

example. Indeed the mode numbers are identified ...s m=-2,n=-1 signifying 

rotation in the ion cyclotron direction. These oscillations occured during 

neutral injection which spins the plasma in the toroidal direction thus 

shifting the frequency of rotation. (A helical island is a bit like a barber 

shop pole, toroidal motion can appear to be poloidal rotation, or vice 

versa). The power spectrum (Fig. 13) no longer shows a nice peak at the 

fundamental frequency, in part because the mode was speeding up during the 

period 230-240 raseca. Nevertheless, the oscillations are positively 

identified as m=-2, n=-1 (Fig. 19). In fact, no matter which frequency the 

user selects from the interval 2.4 KHz to 2.8 KHz, the relative phases of that 

frequency component will still reveal the m=2, n=1 mode. 

The toroidal correction to the phase (8 = 0-Xsin9) usually gives a 

slightly better fit than the cylindrical model. Figure 14(a) assumed \ = 1.6 

* (20/144) = .22. In Fig. 14(b), the toroidal correction is ignored by 

setting the radius of the q=2 surface to zero. The fit is still p» etty good 

but x is 50% worse than the case where the toroidal correction is Included. 

The computer program which performed the above analysis is fairly 

straightforward. It first performs a fast Fourier transform. The program 

user then types in a desired frequency component to be analyzed. The phages 

of the signals at that frequency are fit using a non-linear grid search 

algorithm (8]. A non-linear fit must be uaed instead of a standard 
* least-squares regression because 8 = 9 - \ sin9 is non-linear, the squared 

residual 16& - f(6 1 ( • 1 ) ] 2 lies on the Interval [0,n2l, and kj is restricted 

to integer values. 
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IV. Summary 

The Fourier-transforra-in-time technique has been successful on PDX in 

identifying the m and n mode numbers of Hirnov oscillations. It is able to 

accurately measure phase shifts between signals by rejecting noise at 

frequencies other than IA--. This also has the theoretical capability of 

analyzing many .nodes at once as long as they rotate at different 

frequencies. Predicted toroidal corrections to the simple ei(m9+ni)>) i si a n <j 

structure are accurate in explaining experimental data. The transform-in-time 

technique utilizes phase information only. It is therefore able to ignore 

amplitude asymmetries, which the transform-in-0 technique can not do. 

However, the transform-in-9 technique is more useful in analyzing the time 

development of various modes. 
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FIGURES 

An example of the placement of Hirnov coils. 

(a) Hypothetical picture of Ef„, the fluctuating part of B„, as a 

function of 6 at a single instant in time. 

(b) Cylindrical geometry of Eqs. (1) - (4). 

(c) "cos 9" coll which measures the average x position of the plasma 

current. 

Positions of some of the Mirnov coils in PDX. The vacuum vessel is the 

racetrack shape which encircles the Hirnov coils. The flux surfaces are 

denoted by nested dratted lines in the plasma region and by solid lines 

in the scrapeoff region. 

Toroidal distortions of the cylindrical model: 

(a) Bending a straight wire into a loop creates a stronger magnetic 

field inside the loop than outside the loop. 

(b) The Grad-Shafranov shift, Ap(r), moves the perturbation outward. 

(c) Distortion of cos(m9) dependence of the island caused by greater 

field line pitch at the outside (6=0) edge of the torus. 
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Toroidal correction to ;he phase. The top graph shows B.(e) in a 

tokamak with a/R = .3, lt2 + B. = 1, and an m=2 current perturbation. 

Happing 9 + 9 in the second graph reveals the cost 29) current 

perturbation, while the first graph mistakenly identifies ra=1 and m=3 

components existing in addition to the dominant m=2 contribution. 

Experimental setup of Mirnov coils in PDX. 

Mirnov signals measured at 14 positions in PDX. (Circular Plasma, 

R = 143 cm, a = 44 cm) • 

Expansion of the time axis of Fig. 7. 

Power spectrum for the signals for Fig. B. Po%ier is IB I in arbitrary 

units on a linear scale. 

Phase plots to determine m and n, for Pig. 8. Phase of the 1.3 kHz 

component of each signal is plotted versus the poloidal angle g where 

the signal fi was measured. 

(a) nt*2, n=1, x r
 = 0.11, probability of being a non random fit > .995. 

(b) m*2, n-0, x r " .440, probability of being a non random fit = .938. 

(c) ra«3, n»1, Xr = 1 # 1 0 6 ' probability « .351. 

(d) »»4, n»1, x r - -249, probability - .994. 
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11. Mirnov signals measured at 16 positions in PDX. (Discharge parameters: 

square plasma, R- 143 cm, a » 42 cm.) 

12. Expansion of the time axis of Fig. 11. 

13. Power spectrum (B ) for the signals of Fig. 12. 

14. Phase plots to determine m and n, for Fig. 12. Phase of the 2.6 kHz 

component of each signal is plotted versus the poloidal angle where the 

signal (fly) w a g ^ g ^ , ^ . 

(a) m=-2, n—1, xr " * 0 2 0 ' probability > .9995. Model parameters: R = 

144 cm, r =20 cm, 1./2 + B a = .6. 
mn 1 u 

(b) M=-2, n=-1, v- - .031, probability > .995. Model parameters: R = 

144 cm, r " 0 , 1./2 + B„ = 0. mn x y 
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