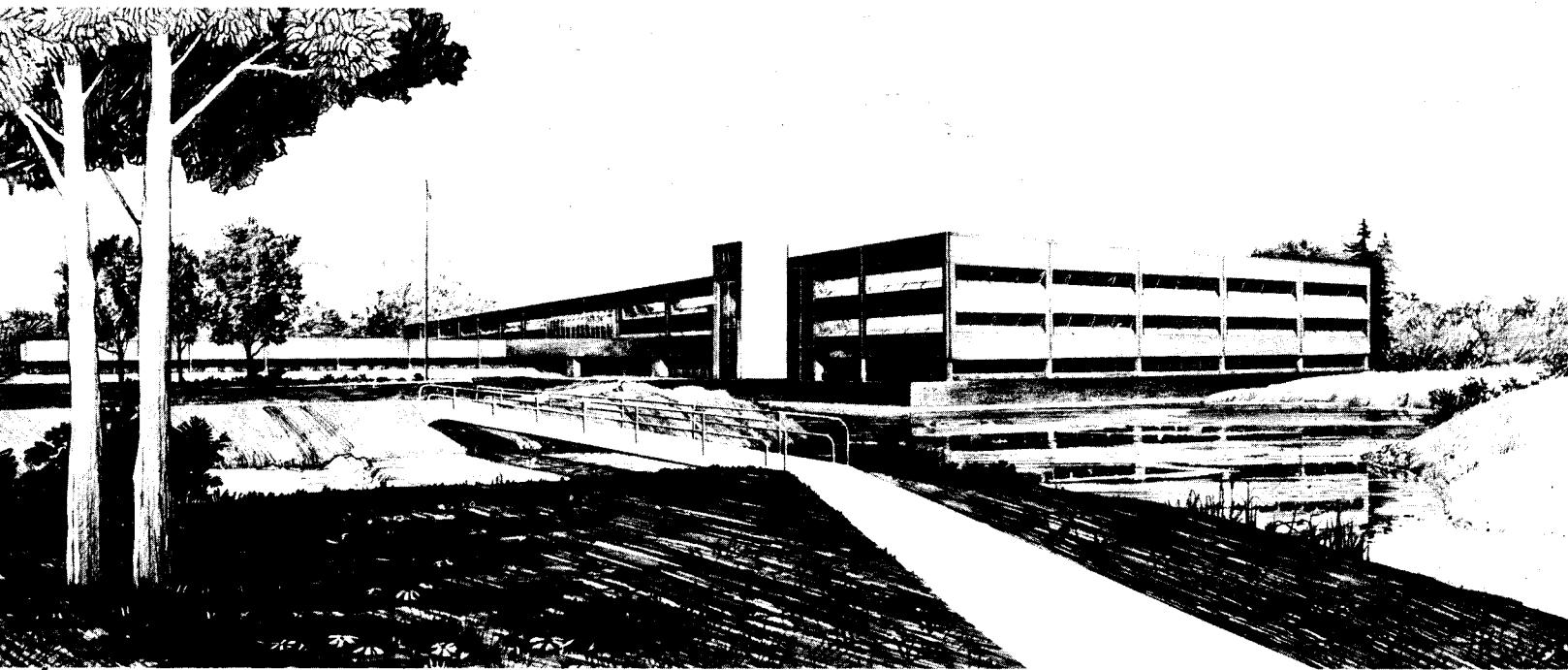


✓
EGG-IS-5101


February 1980

MAGNUM 1.0
AN ISDMS INTERACTIVE GRAPHICS PROCESSOR

Harry R. Bruestle

MASTER

U.S. Department of Energy
Idaho Operations Office • Idaho National Engineering Laboratory

This is an informal report intended for use as a preliminary or working document

Prepared for the
U.S. Department of Energy
Idaho Operations Office
Under DOE Contract No. DE-AC07-76ID01570

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MAGNUM 1.0
AN ISDMS INTERACTIVE GRAPHICS PROCESSOR

Harry R. Bruestle

Published February 1980

**EG&G Idaho, Inc.
Idaho Falls, Idaho 83415**

**Prepared for the
U.S. Department of Energy
Idaho Operations Office
Under DOE Contract No. DE-AC07-76ID01570**

rb
REPRODUCED BY THE GOVERNMENT OF THE UNITED STATES

Table of Contents

INTRODUCTION	2
FILES	3
FILE FORMATS	4
LIMITATIONS	5
COMMANDS	6
GENERAL COMMANDS	7
ATTACH (A) - Attach a data perm file	7
AUTO - Automatic command input	7
BAUD (BA) - Baud rate	8
BLABEL1 (BL1) - Bottom label number 1	8
BLABEL2 (BL2) - Bottom label number 2	8
CATALOG (C) - Catalog COPY command records	9
CHAN (CH) - CWAF locate by sequence numbers	9
COMMENT - Comment	9
COPY - Copy WA file records	10
CREATE (CR) - Input data directly from terminal	11
DASH (D) - Dashed lines	11
DASH2 (D2) - 2nd axes dashed lines	11
DISCARD (DI) - Reset the WA file	12
ECHO (EC) - Echo all user commands to a file	12
ENGLISH (E) - Metric to English conversion	12
FILES (F) - FILE TABLE listing	12
FILM - Generate a compressed film file	13
FIND (FI) - Locate and save perm file records	13
FINDC (FIC) - CWAF locate by sequence numbers	15
FLUSH (FL) - Reset attributes to default values	15
FRAME (FR) - Frame the plot	15
HBAR (HB) - Horizontal bar graphs	15
HBAR2 (HB2) - 2nd axes horizontal bar graphs	16
HCOPY (HC) - Automatic hard copy	16
HELP (H) - Command summary information	16
HWARE (HW) - Hardware character generation	16
IDS (I) - Generate a record IDENTIFIER header	17
KATALOG (K) - Catalog KEEP command records	17
KEEP (KE) - Copy WA file records	17
LAYOUT (LA) - Produce a curveless plot	18
LINE - Create a line segment	18
LINEAR (L) - Linear axes scales	19
LINEAR2 (L2) - 2nd axes linear scales	19
LOG - Logarithmic axes scales	19
LOG2 - 2nd axes logarithmic scales	19
LOGO - EG&G Idaho Inc logo	20
MACCAT - MACRO catalog	20
MACCPY - MACRO copy	20
MACDEF - MACRO definition	20
MACDEL - MACRO deletion	21

MACDIR - MACRO directory listing	21
MACGET - MACRO attach	21
MACLST - MACRO text listing	22
MACRUN - MACRO execution	22
METRIC (M) - English to metric conversion	22
NOGRIDS (NOGR) - Omit all grid lines	23
NOIDENT (NOID) - Omit plot identification	23
NOXLAB2 (NOXL) - Omit 2nd axes X-axis label	23
NOYLAB2 (NOYL) - Omit 2nd axes Y-axis label	23
PAUSE - Pause	24
PLOT (P) - Initiate basic plotting	24
PLOT1 (P1) - Initiate 1st axes plotting	25
PLOT2 (P2) - Initiate 2nd axes plotting	25
PLOT3 (P3) - Initiate bit pattern plotting	26
PLOTTER (PL) - Enable X/Y digital plotter	26
POINTS (PO) - Points only curves	27
POINTS2 (PO2) - 2nd axes points only curves	27
RANGE (RA) - CWAF time range	27
RETURN (R) - Return to MASTER	28
REVIEW (RE) - List attribute status	28
SIZE (SI) - Symbol sizes	28
SIZE2 (SI2) - 2nd axes symbol sizes	28
STAGGER (SG) - Symbol staggering	29
STAGGR2 (SG2) - 2nd axes symbol staggering	29
STATUS (ST) - FILE and RECORD TABLE listing	29
SUMMARY (SU) - File summary listing	30
SYMBOL (S) - Symbol definition	30
SYMBOL2 (S2) - 2nd axes symbol definition	31
TIME (TI) - CP and IO times	32
TITLE (T) - Plot title	32
TLABEL1 (TL1) - Top label number 1	32
TLABEL2 (TL2) - Top label number 2	33
UID - Default ATTACH userid	33
UNLOAD (U) - Return FILE TABLE resident files	33
VBAR (VB) - Vertical bar graphs	33
VBAR2 (VB2) - 2nd axes vertical bar graphs	34
WINDOW (WI) - Place text in plot window	34
XGRID (XG) - X-axis grid lines only	34
XLABEL (XL) - X-axis label	35
XLABEL2 (XL2) - 2nd axes X-axis label	35
XLOG - Semi-log scale with log X-axis	36
XLOG2 - 2nd axes semi-log scale with log X-axis	36
XMAX - X-axis maximum	36
XMAX2 - 2nd axes X-axis maximum	37
XMIN - X-axis minimum	37
XMIN2 - 2nd axes X-axis minimum	37
XRANGE (XR) - SIDU time range	37
XTICS (XT) - X-axis tic mark density	38
XTICS2 (XT2) - 2nd axes X-axis tic mark density	38
YGRID (YG) - Y-axis grid lines only	38

YLABEL (YL) - Y-axis label	38
YLABEL2 (YL2) - 2nd axes Y-axis label	39
YLOG - Semi-log scale with log Y-axis	39
YLOG2 - 2nd axes semi-log scale with log Y-axis	40
YMAX - Y-axis maximum	40
YMAX2 - 2nd axes Y-axis maximum	40
YMIN - Y-axis minimum	40
YMIN2 - 2nd axes Y-axis minimum	40
YTICS (YT) - Y-axis tic mark density	41
YTICS2 (YT2) - 2nd axes Y-axis tic mark density	41
Z4027 - Model 4027 color CRT initialization	41
ZBGRND - Set background color	42
ZBLAB1 - Set bottom label number 1 color	42
ZBLAB2 - Set bottom label number 2 color	42
ZCRVS1 - Set 1st axes curves color	42
ZCRVS2 - Set 2nd axes curves color	43
ZGRIDS - Set grid color	43
ZIDENT - Set IDENTIFIER header color	43
ZLOGO - Set the EG&G Idaho Inc logo color	43
ZTITLE - Set title color	44
ZTLAB1 - Set top label number 1 color	44
ZTLAB2 - Set top label number 2 color	44
ZWINDO - Set window color	44
ZXLAB1 - Set X-axis label color	45
ZXLAB2 - Set 2nd axes X-axis label color	45
ZYLAB1 - Set Y-axis label color	46
ZYLAB2 - Set 2nd axes Y-axis label color	46
MATHEMATICAL COMMANDS	47
ABS - Absolute value	47
ADD - Add a record or constant	47
AVE - Average and replace	47
BUTT - Butt data	48
DEC - Decimate	48
DIF - Differentiate	48
DIV - Divide by a record or constant	49
EUNIT - Alter the engineering unit code	49
EXP - Raise to a power	49
FIT - Least squares polynomial curve fitting	49
FIT1 - Inverse exponential curve fit	50
FIX - Data correction	50
FLIP - Exchange X/Y	51
IDENT - Alter the identifier	52
INT - Integrate	52
INTRP - Linear interpolation	52
LIST - List (decimal)	52
LISTB - List (octal)	53
LOAD - Load the "working buffer"	53
MUL - Multiply by a record or constant	53
ORDER - Rearrange the "working buffer"	54
SAVE - Copy "working buffer" to WA file	54

SHIFT - X data offset	54
SLICE - Rearrange the "working buffer"	54
SUB - Subtract a record or constant	55
APPENDIX A	56
APPENDIX B	57
APPENDIX C	62
APPENDIX D	63

MAGNUM 1.0
(An Interactive Graphics Program)

Harry R. Bruestle

EG&G Idaho Inc.
Idaho National Engineering Laboratory
Idaho Falls, Idaho 83401

12/01/79

MAGNUM 1.0 12/01/79 1

12/01/79

INTRODUCTION

MAGNUM 1.0 is an interactive graphics program residing in the IDAHO NATIONAL ENGINEERING LABORATORY SCIENTIFIC DATA MANAGEMENT SYSTEM (ISDMS). It is designed to handle a number of file formats containing data to be either mathematically manipulated or plotted. The objectives in writing MAGNUM 1.0 were that it be fast, small, easy to use and versatile.

The code is currently implemented on a CDC CYBER 173 and CYBER 176 running under the NOS/BE operating system at the Idaho National Engineering Laboratory (INEL). The TEKTRONIX PLOT-10 product is utilized as the plotting software. TEKTRONIX Model 4006, 4014, 4025 and 4027 CRT keyboard terminals are supported, along with the Model 4662 digital plotter. A set of color commands is available to the user of the Model 4027 color CRT.

MAGNUM 1.0 is accessed by the user via MASTER in the following manner:

COMMAND- BEGIN,MASTER

COMMAND ... MAGNUM

FILES

The program utilizes certain local file names that are reserved for the various data formats. For the ISDMS CWAF format, files CWAF, CWAF1, CWAF2, CWAF3, CWAF4, CWAF5 and CWAF6 are used. Files TAPE71, TAPE72, TAPE73, TAPE74, TAPE75 and TAPE76 are reserved for the remaining data formats, such as INDP and SIDU.

The user typically allows the code to attach data perm files to the reserved local file names. However, it is possible for the user to attach data perm files to any of the reserved local file names prior to entering MAGNUM 1.0. This allows the user to attach data perm files that are password protected or residing on a device that is not in the perm file set. The program determines if any of the reserved local file names are resident at the user's control point at execution time and will prompt the user for the proper data organization for local files TAPE71-TAPE76.

All of the files (CWAF1-CWAF6, TAPE71-TAPE76) attached by the user are assigned ordinals and located in the FILE TABLE by these ordinals. The ordinals are assigned sequentially from 1 to 6. The local file CWAF is a special case for which the ordinal is always 6, and for which a zero (0) must be specified for reference purposes. A maximum of six data perm files may be attached by the user prior to entering MAGNUM 1.0. Also, the CWAFn and TAPE7n local file names must be used such that "n" varies between 1 and 6 and is not duplicated between the two types of local file names. A FILE TABLE conflict will result if, for example, CWAF2 and TAPE72 are attached. A value of 6 for "n" is not allowed if local file CWAF is attached since this is a special reserved local file name and always occupies the sixth location in the FILE TABLE.

At the end of a MAGNUM 1.0 session, all local files, with the exception of CWAF and CWAF1-CWAF6 are returned to the system. The CWAF files are retained so that they may be used in other ISDMS programs without having to be attached again.

FILE_EQRMAIS

The code is currently capable of accepting ten different file formats as input. These file formats may be summarized as follows:

- 01) CWAF ... ISDMS Common word Addressable.
- 02) INDP ... Standard INDP with fixed delta time.
- 03) SIDU ... Standard SIDU.
- 04) TYP1 ... X/Y data pairs.
- 05) TYP2 ... Standard INDP with a time record.
- 06) TYP3 ... Seq. binary created by CATALOG command.
- 07) TYP4 ... TYP2 with a 15 character record ident and a 20 character Y-axis label.
- 08) TYP5 ... TYP2 with logical (bit patterns) data.
- 09) TYP6 ... X,Y,DXL,DXR,DYL,DYU data point sets.
- 10) CRTE ... Modified TYP1 input directly from terminal.

LIMITATIONS

The code is currently limited in certain areas in order to preserve efficiency. Limitations of major impact to the user are as follows:

- 01) Maximum of 6 files may be "ATTACHED" simultaneously.
- 02) Maximum of 75 records may be accessed simultaneously.
- 03) Maximum of 2000 data points per record.
- 04) Maximum of 6 curves per axes per plot.
- 05) Maximum of 1 DATA/CTRL block for INDP, TYP2, TYP4 and TYP5 files.

COMMANDS

The code informs the user that it is ready and waiting for input by issuing "READY ...". The user may then type in any of the numerous commands available. At this time, the code analyzes the information input by the user and determines the proper action to be taken. Should the code detect an invalid input, an informational message is issued followed by "READY ...". MAGNUM 1.0 performs extensive error checking, and as such, the user need not worry about invalid inputs possibly aborting the session. Should a fatal error condition be detected by either the operating system or the code, MAGNUM 1.0 will intercept the system abort, issue an explanatory message, produce a dump to the local file DEBUG and then "gracefully" return to MASTER.

The code maintains a default table that minimizes the number of commands required to produce a basic plot. In general, the logical sequence of events in the generation of a plot is as follows:

- 01) "ATTACH" the data perm files.
- 02) "FIND" the required data residing on the perm files.
- 03) Set any of the plot attributes and/or perform a host of mathematical operations on the data.
- 04) "PLOT" the data of interest.

The available commands may be categorized as being either "general" or "mathematical". Commands that set specific attributes or actions, remain active throughout the session unless specifically "FLUSHed" or overridden.

GENERAL COMMANDS

ATTACH = Attach a data perm file

READY ... ATTACH FO PFN ID CY

FO

Allowable file formats or organizations. (CWAF, INDP, SIDU, TYP1, TYP2, TYP3, TYP4, TYP5, TYP6).

PFN

Perm file name. If the PFN begins with a numeric, then enclose the PFN in quotes.

ID

Userid. The default is HRBSEX unless previously overridden by the UID command.

CY

Cycle number. The highest cycle is the default.

The ATTACH command performs an internal attach of the user specified perm files residing on the mass storage devices on the perm file set only. The code is not capable of "ATTACHing" perm files that are password protected or residing on other than the perm file set.

AUTO = Automatic command input

READY ... AUTO

Having entered the above input, the user must enter the following form of the ATTACH command in order to initiate the automatic command input option:

READY ... ATTACH PFN ID CY

PFN

Perm file name of the file containing the commands to be executed.

ID

Userid. The default is HRBSEX.

CY

Cycle number. The highest cycle is the default.

The AUTO command allows a user to automatically execute a set of predefined commands. This is convenient in the case of required repetitive plots and/or mathematical operations. The AUTO command may only be initiated once per session and the user must be wary of the fact that any previous erroneous commands will perpetuate until either a "RETURN" is encountered or an "EOF" is reached on the command file.

The command file may be created in either "EDITOR" or "SENATOR" and it should contain the commands in the same order as if they were being entered in from the terminal. Note that the command file must be saved in either of the text editors with the "no-sequence" option.

BAUD_1BAL_--Baud_rate_

READY ... BAUD I

I

Baud rate (fixed pt).

As an example, a desired baud rate of 1200, which is the default value, is entered as 120 and not as 1200.

BLABEL1_1BL11_--Bottom_label_number_1_

READY ... BLABEL1 I

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

BLABEL2_1BL21_--Bottom_label_number_2_

READY ... BLABEL2 I

I

Any label, up to a maximum of 40 characters, that

must be enclosed in quotes if there are embedded blanks.

1

"TRAC - TYPE COMP CELL LEVEL/ROD". This label is automatically set whenever a TYP4 file is successfully "ATTACHED".

CATALOG_1C1==Catalog_COPY_command_records_

READY ... CATALOG PFN ID

PFN

Perm file name.

ID

Userid.

Any perm file created by the COPY and CATALOG commands may be "ATTACHED" at a later date by the code only if a file organization of TYP3 is specified. This command automatically prohibits any more COPY commands from being accepted during the current session. The "CATALOGed" perm file is set with a retention period of "infinity".

CHAN_1CH1==CWAF_locate_by_sequence_numbers_

READY ... CHAN I J1 J2 J3 J4 J5 J6

I

File number, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). A file number of zero (0) must be used to identify the special local file CWAF.

J1-6

Individual sequence numbers to be used to locate records on a CWAF structured perm file (fixed pt).

COMMENT==Comment_

READY ... COMMENT I

12/01/79

I

Any alphanumeric string, up to a maximum of 70 characters, that serves as a comment. This alphanumeric string is not processed by the code.

COPY--Copy_WA_file_records.

READY ... COPY I

I

WA file pointer of record to be copied (fixed pt).

Each copied record is written in a binary sequential manner. Although the format is designed for internal MAGNUM 1.0 use only, a user may access these records once the CATALOG command has created a perm file. The records are of the following form:

WORD#1-- DESCRIPTION-----

0001-2000	Y-axis data points.
2001-4000	X-axis data points.
4001	Physical record number.
4002	Engineering unit code.
4003	Record identification.
4004	Record identification.
4005	Number of valid data points.
4006	Xmin.
4007	Xmax.
4008	Ymin.
4009	Ymax.
4010	Physical record number.

The data point count (WORD 4005) specifies the number of legitimate Y-axis and X-axis data points that the record contains. The physical record number (WORDS 4001 and 4010) corresponds to the order in which each of the records was copied using the COPY command. This record number must also be used in a subsequent TYP3 FIND. Note that each record is always 4010 words in length, regardless of the number of valid points contained within.

CREATE_IQBL--Input_data_directly_from_terminal.

READY ... CREATE

The CREATE command allows a user to input data in the form of X/Y pairs directly from the terminal. The code prompts the user with "*** ENTER X AND Y :". In order to terminate inputs, the user must enter END in response to the prompt.

All X and Y data points must be entered in floating point format with at least one blank or a comma separating the two inputs per line.

DASH_IQI--Dashed_lines.

READY ... DASH I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Dash style, 1-6, corresponding to each of the curve numbers (fixed pt).

The curve numbers and dash styles must be in the range of 1-6. In the case of the dash styles, a 1 indicates very short line segments. The dash segments increase with increasing dash style numbers.

DASH2_IQ2--2nd_axes_dashed_lines.

READY ... DASH2 I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Dash style, 1-6, corresponding to each of the curve numbers (fixed pt).

The curve numbers and dash styles must be in the range of 1-6. In the case of the dash styles, a 1 indicates very short line

segments. The dash segments increase with increasing dash style numbers.

DISCARD_1011--Reset_the_WA_file.

READY ... DISCARD

This command will reset the WA file by destroying all "pointers" and unloading the file.

ECHO_1EC1--Echo_all_user_commands_to_a_file.

READY ... ECHO

This command "echos" each of the user commands encountered to local file TAPE7. This provides the user with an audit trail. Once invoked, the command remains in effect for the duration of the session. Also, the AUTO command may not be invoked while the ECHO command is in effect and vice versa.

ENGLISH_1E1--Metric_to_English_conversion.

READY ... ENGLISH I1 I2 I3 I4 I5 I6

I1-6

WA file pointers of records to be converted (fixed pt).

This automatic conversion keys off of an engineering unit code supplied with the data record. If the engineering unit code is missing or invalid, the conversion attempt will be rejected and an informational message will be issued.

FILES_1E1--FILE_TABLE_listing.

READY ... FILES

This command lists the currently active files by ordinal. A

file is active after a successful "ATTACH".

EILM--Generate_a_compressed_film_file.

READY ... FILM

This command allows a user to save plots on an intermediate file to be later processed by the FR80 command in MASTER. The FILM command must be issued by the user before any plots have been made on the terminal and this command is valid only once per session. Note that while this command is in effect, all plotting is diverted from the terminal screen.

The FR80 command when issued immediately following the "RETURN" from MAGNUM 1.0, will allow the user to either view or reformat and route the plots automatically to microfilm.

FIND_IEI--Locate_and_save_perm_file_records.

The following form of the FIND command must be used for perm files with organization of either INDP, SIDU, TYP1, TYP3 or TYP6:

READY ... FIND I J1 J2 J3 J4 J5 J6

I

File number, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). The FILE TABLE consists of six locations that are sequentially updated as reserved local files are encountered. A file number of zero (0) must be used to identify the special local file CWAF.

J1-6

Individual record numbers to be located on a perm file (fixed pt). These record numbers will be sorted in ascending order by the code if the file organization is INDP. In the case of TYP1 and TYP6 perm files, all records contained within the file are automatically located and saved each time a FIND is performed. Note that a maximum of 75 records may be located and saved on the intermediate WA file during any one session.

For TYP2, TYP4 and TYP5 perm files, the following form of the FIND command must be used:

READY ... FIND I J K1 K2 K3 K4 K5 K6

I

File number, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). A file number of zero (0) must be used to identify the special local file CWAF.

J

Record number corresponding to the time record (fixed pt).

K1-6

Individual record numbers to be located on a perm file (fixed pt). These record numbers will be sorted in ascending order by the code.

For CWAF perm files, the following form of the FIND command must be used:

READY ... FIND I J1 J2 J3 J4 J5 J6

I

File number, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). A file number of zero (0) must be used to identify the special local file CWAF.

J1-6

Individual record identifiers or numbers to be located on a perm file (alphanumeric or fixed pt). If record identifiers are specified, a maximum of 16 characters may be entered per identifier.

All records located with the FIND command are copied to an intermediate word addressable (WA) file and assigned a "pointer" for data location purposes. This WA "pointer" and not the original data record identifier or number must be referenced by the user in all subsequent work in the code with respect to the data.

FINDC_IEIC1==CWAF_locate_by_sequence_numbers_

READY ... FINDC I J1 J2 J3 J4 J5 J6

I

File number, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). A file number of zero (0) must be used to identify the special local file CWAF.

J1-6

Individual sequence numbers to be used to locate records on a CWAF structured perm file (fixed pt).

FLUSH_IEI1==Reset_attributes_to_default_values_

READY ... FLUSH I1 I2 I3 I4 I5 I6

I1-6

Command names whose effects are to be deleted or reset to default values.

Note that the command names must be fully spelled out. Abbreviations of commands are not allowed.

FRAME_IEI1==Frame_the_plot_

READY ... FRAME

This command simply places a frame around the plot.

HBAR_IHBL==Horizontal_bar_graphs_

READY ... HBAR

Note that all curves plotted while this command is in effect will be horizontal bar graphs.

HBAR2_IHB21--2nd_axes_horizontal_bar_graphs.

READY ... HBAR2

Note that all curves plotted while this command is in effect will be horizontal bar graphs.

HCOPY_IHC1--Automatic_hard_copy.

READY ... HCOPY

This command initiates an automatic hard copy of a plot if a TEKTRONIX Model 4631 hard copy device is available. Note that this option is automatically selected while the AUTO command is in effect.

HELP_IHL--Command_summary_information.

READY ... HELP I

I

Full command name for which summary information is desired. Abbreviations are not allowed.

In order to secure a listing of all currently available commands, simply enter HELP. This listing is always up to date.

HWARE_IHW1--Hardware_character_generation.

READY ... HWARE

This command inhibits the default software generation of characters in all titles and labels with the exception of Y-axis labels. Characters generated while this command is in effect will be generated at a faster rate but the ability to output subscripts and superscripts is lost.

IDS_III--Generate_a_record_IDENTIFIER_header_

READY ... IDS

The record identifier for each plotted curve is located on the top portion of the plot. Note that only the first 15 characters of an identifier are displayed. Both the TLABEL1 and TLABEL2 commands automatically override this command. This option is automatically set after each successful "ATTACH" of a TYP4 perm file. The PLOT2 command inhibits this command unless the NOXLAB2 command is also specified; then the record identifiers for the first 6 curves of the first axes are displayed only.

KATALOG_1K1--Catalog_KEEP_command_records_

READY ... KATALOG PFN ID

PFN
Perm file name.ID
Userid.

Any perm file created by the KEEP and KATALOG commands may be "ATTACHED" at a later date by the code only if a file organization of CWAF is specified. This command allows a subsequent KEEP command to be executed. The "KATALOGed" perm file is set with a retention period of "infinity".

KEEP_1K1--Copy_WA_file_records_

READY ... KEEP I1 I2 I3 I4 I5 I6

READY ... KEEP IL TO IU

READY ... KEEP ALL

I1-6

WA file pointers of records to be copied (fixed pt).

IL

Lower limit WA file pointer (fixed pt).

IU

Upper limit WA file pointer (fixed pt).

Each copied record is written in the CWAF file structure. The KATALOG command must be executed prior to session termination in order to catalog the copied records. The KEEP/KATALOG command sequence may be repeated as often as necessary during the session.

The "TO" parameter is positional dependent and signifies an inclusive copy from "IL" to "IU". By specifying "ALL", the code will copy all of the WA file records.

LAYQUI_(LA)_--Produce_a_curveless_plot.

READY ... LAYOUT

This command allows a user to view a plot with all attributes set in order to ascertain if the plot appearance is correct. By not plotting the curves along with everything else, faster throughput is achieved while the user is "fine-tuning" the plot appearance. Note that this command must be "FLUSHed" before a final plot can be produced.

LINE--Create_a_line_segment.

READY ... LINE I R S1 S2

I

H

Horizontal line.

V

Vertical line.

R

X or Y value (floating pt).

S1

Lower X or Y limit (floating pt).

S2

Upper X or Y limit (floating pt).

This command generates either a two point horizontal or a two point vertical line segment. A WA file pointer is automatically assigned to the generated "line". This "line" must be "PLOTted" in the same fashion as any other data residing on the intermediate WA file.

LINEAR_1L1==Linear_axes_scales.

READY ... LINEAR

This command sets both the X-axis and Y-axis for linear scaling. This is also the default option.

LINEAR2_1L2==2nd_axes_linear_scales.

READY ... LINEAR2

This command sets both the 2nd X-axis and Y-axis for linear scaling. This is also the default option for the 2nd set of axes.

LOG==Logarithmic_axes_scales.

READY ... LOG

Both the X-axis and Y-axis are set for logarithmic scaling.

LOG2==2nd_axes_logarithmic_scales.

READY ... LOG2

Both the 2nd X-axis and Y-axis are set for logarithmic scaling.

LOGO--EG&G_Idaho_Inc_logo_

READY ... LOGO

This command produces the EG&G Idaho Inc logo on the top left portion of a plot. This command is overridden by the PLOT2 command unless the NOXLAB2 command is in effect also.

MACCAT--MACRO_catalog_

READY ... MACCAT PFN ID

PFN
Perm file name.

ID
User id.

This command catalogs the MACROSC file with a retention period of "infinity". The file is also returned, thereby allowing the user to repeat the MACDEF/MACCAT command sequence as many times as required.

MACCPY--MACRO_copy_

READY ... MACCPY I

I
MACRO name, 1-7 characters.

This command copies a MACRO residing on the MACROPF file to the MACROSC file.

MACDEF--MACRO_definition_

READY ... MACDEF I

I
MACRO name, 1-7 characters.

This command allows a user to define a MACRO that will reside in the MACROSC file. Up to a maximum of 100 MACRO names may be defined. The length of an individual MACRO is not bounded.

The code prompts the user with "*** ENTER MACRO :". In order to terminate input, the user must enter END in response to the prompt.

MACDEL--MACRO_deletion--

READY ... MACDEL I

I
MACRO name, 1-7 characters.

This command deletes a MACRO residing on the MACROSC file.

MACDIR--MACRO_directory_listing--

READY ... MACDIR I

I
PF
MACROPF residence.
SC
MACROSC residence.

This command lists either the MACROPF or MACROSC directory.

MACGET--MACRO_attach--

READY ... MACGET PFN ID CY

PFN
Perm file name.
ID
User id.

CY

Cycle number. The highest cycle is the default.

This command attaches the MACROPF file.

MACLST--MACRO_text_listing.

READY ... MACLST I J

I

MACRO name, 1-7 characters.

J

PF

MACROPF residence.

SC

MACROSC residence.

This command allows the user to list any MACRO residing on either the MACROPF or MACROSC file.

MACRUN--MACRO_execution.

READY ... MACRUN I

I

MACRO name, 1-7 characters.

This command initiates the execution of a MACRO. The MACROSC file, if available, is searched first for the specified MACRO name, followed by a search of the MACROPF file.

METRIC_IML--English_to_metric_conversion.

READY ... METRIC I1 I2 I3 I4 I5 I6

I1-6

WA file pointers of records to be converted (fixed pt).

This automatic conversion keys off of an engineering unit code supplied with the data record. If the engineering unit code is missing or invalid, the conversion attempt will be rejected and an informational message will be issued.

NOGRIDS_(NOGR1_=_Omit_all_grid_lines_

READY ... NOGRIDS

This command omits all grid lines on both the X-axis and the Y-axis. Note that the PLOT2 command automatically invokes this option.

NOIDENT_(NOID1_=_Omit_elst_identification_

READY ... NOIDENT

This command omits the code version and modification level and the time and date of the start of the session from the bottom of a plot.

NOXLAB2_(NOXLL_=_Omit_2nd_axes_X-axis_label_

READY ... NOXLAB2

This command omits the 2nd X-axis label and numbering while in effect.

NOYLAB2_(NOYLL_=_Omit_2nd_axes_Y-axis_label_

READY ... NOYLAB2

This command omits the 2nd Y-axis label and numbering while in effect.

PAUSE--Pause..

READY ... PAUSE I

I

Pausing factor, 1-1000 (fixed pt).

This command will issue (10 * pausing factor) SYNCs at the time it is encountered in the input stream.

PLQI-IP1--Initiate-basic-plotting..

For other than parameter versus parameter plots, use the following form of the PLOT command:

READY ... PLOT I1 I2 I3 I4 I5 I6

I1-6

WA file pointers of records to be plotted (fixed pt).

In the case of parameter versus parameter plots, use the following form of the PLOT command:

READY ... PLOT I VS J1 J2 J3 J4 J5 J6

I

X-axis WA file pointer (fixed pt).

J1-6

Y-axis WA file pointers (fixed pt).

Note that the "VS" parameter is positional dependent. After completion of a plot, 3 "bells" will sound, and the code will pause until the user enters any character from the terminal keyboard. If the AUTO command is in effect, the code will produce a hard copy of the plot automatically and not pause for user intervention.

PLQI1_IPL1--Initiate_1st_axes_plotting.

For other than parameter versus parameter plots, use the following form of the PLOT1 command:

READY ... PLOT1 I1 I2 I3 I4 I5 I6

I1-6

WA file pointers of records to be plotted (fixed pt).

In the case of parameter versus parameter plots, use the following form of the PLOT1 command:

READY ... PLOT1 I VS J1 J2 J3 J4 J5 J6

I

X-axis WA file pointer (fixed pt).

J1-6

Y-axis WA file pointers (fixed pt).

Note that the "VS" parameter is positional dependent. This command will set the required internal logic and then return to the user without plot initiation. A PLOT2 command must follow in order to produce a plot consisting of two axes.

PLQI2_IPL2--Initiate_2nd_axes_plotting.

For other than parameter versus parameter plots, use the following form of the PLOT2 command:

READY ... PLOT2 I1 I2 I3 I4 I5 I6

I1-6

WA file pointers of records to be plotted (fixed pt).

In the case of parameter versus parameter plots, use the following form of the PLOT2 command:

READY ... PLOT2 I VS J1 J2 J3 J4 J5 J6

I

X-axis WA file pointer (fixed pt).

J1-6

Y-axis WA file pointers (fixed pt).

Note that the "VS" parameter is positional dependent. This command will check to make sure that the PLOT1 command has already been issued by the user and if all conditions are satisfied, plotting of both set of axes will commence. After completion of the plot, 3 "bells" will sound, and the code will pause until the user enters any character from the terminal keyboard. If the AUTO command is in effect, the code will produce a hard copy of the plot automatically and not pause for user intervention.

PLQI3_1P31--Initiate_bit_pattern_plotting.

READY ... PLOT3 I J K

I

WA file pointer (fixed pt).

J

Lower bit limit to be plotted (fixed pt).

K

Upper bit limit to be plotted (fixed pt).

WARNING: This command applies only to data "ATTACHED" with the TYP5 file organization and it is costly in both clock and CPU times.

After completion of a plot, 3 "bells" will sound, and the code will pause until the user enters any character from the terminal keyboard. If the AUTO command is in effect, the code will produce a hard copy of the plot automatically and not pause for user intervention.

PLQIIE_1PL1--Enable_X/Y_digital_plotter.

READY ... PLOTTER

This command informs the code that a TEKTRONIX Model 4662 digital plotter is available and all ensuing plots are output to both the screen and the plotter. Note that this command is overridden by the FILM command.

POINIS_1P01==Points_only_curves_

READY ... POINTS I1 I2 I3 I4 I5 I6

I1-6

Curve numbers to be represented by points only (fixed pt).

Note that the curve numbers refer to the sequence of curves to be plotted and not to the WA file pointers.

POINIS2_1P021==2nd_axes_points_only_curves_

READY ... POINTS2 I1 I2 I3 I4 I5 I6

I1-6

Curve numbers to be represented on the 2nd axes by points only (fixed pt).

Note that the curve numbers refer to the sequence of curves to be plotted on the 2nd axes only.

RANGE_1R01==CWAE_time_range_

READY ... RANGE R1 R2 I

R1

Lower time limit (floating pt).

R2

Upper time limit (floating pt).

I

Decimation factor if positive, averaging factor if negative (fixed pt).

This command, when used in conjunction with the FIND, FINDC or CHAN commands for CWAF structured perm files, allows a user to locate and save up to 2000 data points from a perm file containing any number of data points.

REIURN_IR1**=**Return_to_MASTER

READY ... RETURN

This command initiates the necessary "housekeeping" in order for MAGNUM 1.0 to "RETURN" control to MASTER.

REVIEW_IR1**=**List_attribute_status

READY ... REVIEW I

I

Optional starting page number, 1-5 (fixed pt).

This command provides the user with a current status of all of the plotting attributes.

SIZE_IS1**=**Symbol_sizes

READY ... SIZE I1 R1 I2 R2 I3 R3 I4 R4 I5 R5 I6 R6

I1-6

Curve numbers, 1-6 (fixed pt).

R1-6

Symbol size for each of the preceding curve numbers (floating pt).

The default symbol size is set at 1.0.

SIZE2_IS2**=**2nd_axes_symbol_sizes

READY ... SIZE2 I1 R1 I2 R2 I3 R3 I4 R4 I5 R5 I6 R6

I1-6

Curve numbers, 1-6 (fixed pt).

R1-6

Symbol size for each of the preceding curve numbers (floating pt).

The default symbol size is set at 1.0.

STAGGER_1SG1--Symbol_staggering_

READY ... STAGGER I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Output a symbol every "J" th data point for each of the preceding curve numbers (fixed pt).

The default staggering factor is set at 30 per curve.

STAGGR2_1SG21--2nd_axes_symbol_staggering_

READY ... STAGGR2 I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Output a symbol every "J" th data point for each of the preceding curve numbers (fixed pt).

The default staggering factor is set at 30 per curve.

SIAIUS_1SII--FILE_and_RECORD_TABLE_listing_

READY ... STATUS I

I

ALL File and record tables listed.
F File table listed only.
R Record table listed only.

Note that the RECORD TABLE lists the correspondence between the record numbers off of the data perm files and the WA file pointers.

SUMMARY_ISU1--File_summary_listing.

READY ... SUMMARY I

I File numbers, 1-6, corresponding to the FILE TABLE ordinal (fixed pt). A file number of zero (0) must be used to identify the special local file CWAF.

This command produces a summary listing consisting of the channel number, the identifier, the engineering unit code and the number of data points for all of the records on the file being processed. SIDU, TYP1 and TYP6 structured perm files are not supported by this command.

SYMBOL_ISI--Symbol_definition.

READY ... SYMBOL I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6 Curve numbers, 1-6 (fixed pt).

J1-6 Symbol definitions for each of the preceding curve numbers as follows:

0 - no symbol
1 - 1
2 - 2

```
3 - 3
4 - 4
5 - 5
6 - 6
7 - circle
8 - x
9 - triangle
10 - square
11 - asterisk
12 - diamond
13 - confidence interval
14 - confidence interval, dx only
15 - confidence interval, dy only
```

Note that the first six symbols (1-6) are hardware generated, while the remaining symbols are software generated. The SIZE command is only applicable for software generated symbols (7-12).

SYMBOL2_IS21--2nd_axes_symbol_definition-

READY ... SYMBOL2 I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6
Curve numbers, 1-6 (fixed pt).

J1-6
Symbol definitions for each of the preceding
curve numbers as follows:

```
0 - no symbol
1 - 1
2 - 2
3 - 3
4 - 4
5 - 5
6 - 6
7 - circle
8 - x
9 - triangle
10 - square
11 - asterisk
12 - diamond
13 - confidence interval
14 - confidence interval, dx only
15 - confidence interval, dy only
```

Note that the first six symbols (1-6) are hardware generated, while the remaining symbols are software generated. The SIZE2 command is only applicable for software generated symbols (7-12).

TIME-(II)-CP_and_IO-times-

READY ... TIME I

I

ALL
List CP and IO times.

CP
List CP time only.

IO
List IO time only.

If a second entry is not entered along with the TIME command, then both the CP and IO times will be listed.

TITLE-(II)-Plot_title-

READY ... TITLE I

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

TLABEL1-(II1)-Label_number_1-

READY ... TLABEL1 I

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

Note that this command automatically overrides the IDS

command.

TLABEL2_I -- Label_number_2

READY ... TLABEL2 I

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

Note that this command automatically overrides the IDS command.

UID -- Default_ATTACH_userid

READY ... UID

This command will alter the default "ATTACH" userid of HRBSEX to that specified at "LOGIN".

UNLOAD_I -- Return_EFILE_TABLE_resident_files

READY ... UNLOAD I1 I2 I3 I4 I5 I6

I1-6

File numbers, 1-6, corresponding to the FILE TABLE ordinals (fixed pt). A file number of zero (0) must be used to identify the special local file CWA.F.

VBAR -- Vertical_bar_graphs

READY ... VBAR

Note that all curves plotted while this command is in effect will be vertical bar graphs.

VBAR2_(VB21)_--2nd_axes_vertical_bar_graphs.

READY ... VBAR2

Note that all curves plotted while this command is in effect will be vertical bar graphs.

WINDOW_(W11)_--Place_text_in_plot_window.

READY ... WINDOW R1 R2 I J K L

R1

Starting X coordinate, in the range from 0.0 to 1.0 (floating pt).

R2

Starting Y coordinate, in the range from 0.0 to 1.0 (floating pt).

I

Number of lines of text, 1-6 (fixed pt).

J

Maximum number of characters of text on any of the text lines, 1-40 (fixed pt).

K

Optional background color, 0-7 (fixed pt).

L

Optional text color, 0-7 (fixed pt).

The code will generate a "window" inside the plot using the starting X and Y coordinates as the lower left intersection and the number of lines and characters as the height and width. The code will ignore this command if the user specifies a "window" that will lie outside of the plot itself.

XGRID_(XGL)_--X-axis_grid_lines_only.

READY ... XGRID

This command will create grid lines on the X-axis only.

XLABEL_1X1X-axis_label

READY ... **XLABEL 1**

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

1

"TIME (SEC)".

2

"TIME AFTER RUPTURE (SEC)".

3

"TIME AFTER REFLOOD INITIATION (SEC)".

4

"TIME (S)".

5

"TIME AFTER RUPTURE (S)".

6

"TIME AFTER REFLOOD INITIATION (S)".

7

"REACTOR TIME (S)".

Note that a successful "ATTACH" of a TYP4 perm file automatically sets the "REACTOR TIME (S)" label.

XLABEL2_1X22nd_axis_label

READY ... **XLABEL2 1**

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

1

"TIME (SEC)".
2 "TIME AFTER RUPTURE (SEC)".
3 "TIME AFTER REFLOOD INITIATION (SEC)".
4 "TIME (S)".
5 "TIME AFTER RUPTURE (S)".
6 "TIME AFTER REFLOOD INITIATION (S)".
7 "REACTOR TIME (S)".

Note that a successful "ATTACH" of a TYP4 perm file automatically sets the "REACTOR TIME (S)" label.

XLOG--Semi-log scale with log X-axis.

READY ... XLOG

The X-axis is scaled logarithmically, while the Y-axis is linearly scaled.

XLOG2--2nd axes semi-log scale with log X-axis.

READY ... XLOG2

The X-axis is scaled logarithmically, while the Y-axis is linearly scaled.

XMAX--X-axis maximum.

READY ... XMAX R

R

X-axis maximum for plotting purposes (floating pt).

XMAX2--2nd_axes_X-axis_maximum--

READY ... XMAX2 R

R

X-axis maximum for plotting purposes (floating pt).

XMIN--X-axis_minimum--

READY ... XMIN R

R

X-axis minimum for plotting purposes (floating pt).

XMIN2--2nd_axes_X-axis_minimum--

READY ... XMIN2 R

R

X-axis minimum for plotting purposes (floating pt).

XRANGE_IXR1--SIDU_time_range--

READY ... XRANGE R1 R2

R1

Lower time limit (floating pt).

R2

Upper time limit (floating pt).

This command, when used in conjunction with the FIND command for SIDU structured perm files, allows a user to locate and save any contiguous set of data points within a collection of more

than 2000 data points. Note that this command applies only to SIDU structured perm files and that the time range may not exceed 2000 data points.

XTICS_1X11--X-axis-tic-mark-density

READY ... XTICS 1

I

Tic mark density code, 1-10 (fixed pt).

A tic mark density code of 1 is the default value. A code of 1 indicates a minimum density, while a code of 10 indicates a maximum density.

XTICS2_1X121--2nd-axes-X-axis-tic-mark-density

READY ... XTICS2 1

I

Tic mark density code, 1-10 (fixed pt).

A tic mark density code of 1 is the default value. A code of 1 indicates a minimum density, while a code of 10 indicates a maximum density.

YGRID_1YGL--Y-axis-grid-lines-only

READY ... YGRID

This command will create grid lines on the Y-axis only.

YLABEL_1YLL--Y-axis-label

READY ... YLABEL 1

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded

blanks.

1

The engineering unit code equivalent label will be generated automatically by the code. No label will be generated if the engineering unit code is missing.

2

The record supplied label is used. This label, with a 20 character maximum, is currently obtained from TYP4 perm files only. Note that a successful "ATTACH" of a TYP4 perm file automatically sets "YLABEL2".

YLABEL2-(YL2)--2nd_axis_Y-axis_label.

READY ... YLABEL2 I

I

Any label, up to a maximum of 40 characters, that must be enclosed in quotes if there are embedded blanks.

1

The engineering unit code equivalent label will be generated automatically by the code. No label will be generated if the engineering unit code is missing.

2

The record supplied label is used. This label, with a 20 character maximum, is currently obtained from TYP4 perm files only. Note that a successful "ATTACH" of a TYP4 perm file automatically sets "YLABEL2".

YLOG--Semi-log_scale_with_log_Y-axis.

READY ... YLOG

The Y-axis is scaled logarithmically, while the X-axis is linearly scaled.

YLOG2--2nd_axes_semi-log_scale_with_log_Y-axis-

READY ... YLOG2

The Y-axis is scaled logarithmically, while the X-axis is linearly scaled.

YMAX--Y-axis_maximum-

READY ... YMAX R

R

Y-axis maximum for plotting purposes (floating pt).

YMAX2--2nd_axes_Y-axis_maximum-

READY ... YMAX2 R

R

Y-axis maximum for plotting purposes (floating pt).

YMIN--Y-axis_minimum-

READY ... YMIN R

R

Y-axis minimum for plotting purposes (floating pt).

YMIN2--2nd_axes_Y-axis_minimum-

READY ... YMIN2 R

R

Y-axis minimum for plotting purposes (floating pt).

YTICS_1YI1--Y-axis_tic_mark_density_

READY ... YTICS 1

I

Tic mark density code, 1-10 (fixed pt).

A tic mark density code of 1 is the default value. A code of 1 indicates a minimum density, while a code of 10 indicates a maximum density.

YTICS2_1YI21--2nd_axes_Y-axis_tic_mark_density_

READY ... YTICS2 1

I

Tic mark density code, 1-10 (fixed pt).

A tic mark density code of 1 is the default value. A code of 1 indicates a minimum density, while a code of 10 indicates a maximum density.

Z4027--Model_4027_color_C&I_initialization_

READY ... Z4027

This command must be the first color command entered by the user of a Model 4027 color CRT in order to initialize the terminal for graphics. The color codes used with the various color commands are as follows:

0	...	white
1	...	red
2	...	green
3	...	blue
4	...	yellow
5	...	cyan
6	...	magenta
7	...	black

ZBGRND--Set_background_color--

READY ... ZBGRND I

I

Color code, 0-7 (fixed pt).

This command will set the background color within the boundary of the plot.

ZBLAB1--Set_bottom_label_number_1_color--

READY ... ZBLAB1 I

I

Color code, 0-7 (fixed pt).

This command will set the color of the bottom label number 1 text.

ZBLAB2--Set_bottom_label_number_2_color--

READY ... ZBLAB2 I

I

Color code, 0-7 (fixed pt).

This command will set the color of the bottom label number 2 text.

ZCRVS1--Set_1st_axes_curves_color--

READY ... ZCRVS1 I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Color codes, 0-7 (fixed pt).

This command sets the colors of the 1st axes curves.

ZCRVS2--Set_2nd_axes_curves_color--

READY ... ZCRVS2 I1 J1 I2 J2 I3 J3 I4 J4 I5 J5 I6 J6

I1-6

Curve numbers, 1-6 (fixed pt).

J1-6

Color codes, 0-7 (fixed pt).

This command sets the colors of the 2nd axes curves.

ZGRIDS--Set_grid_color--

READY ... ZGRIDS I

I

Color code, 0-7 (fixed pt).

This command sets the color of the grid lines.

ZIDENI--Set_IDENTIFIER_header_color--

READY ... ZIDENT I

I

Color code, 0-7 (fixed pt).

This command sets the color of the IDENTIFIER header text.

ZLOGO--Set_the_EGG_Idaho_Logo_color--

READY ... ZLOGO I

I

Color code, 0-7 (fixed pt).

This command sets the color of the EG&G Idaho Inc logo.

ZTITLE--Set_title_color--

READY ... ZTITLE I

I
Color code, 0-7 (fixed pt).

This command sets the color of the title text.

ZTLAB1--Set_top_label_number_1_color--

READY ... ZTLAB1 I

I
Color code, 0-7 (fixed pt).

This command sets the color of the top label number 1 text.

ZTLAB2--Set_top_label_number_2_color--

READY ... ZTLAB2 I

I
Color code, 0-7 (fixed pt).

This command sets the color of the top label number 2 text.

ZWINDO--Set_window_color--

READY ... ZWINDO I R1 R2 R3 R4 R5 R6 R7 R8

I
Color code, 0-7 (fixed pt).

R1
Lower left X coordinate (floating pt).

R2 Lower left Y coordinate (floating pt).
R3 Lower right X coordinate (floating pt).
R4 Lower right Y coordinate (floating pt).
R5 Upper right X coordinate (floating pt).
R6 Upper right Y coordinate (floating pt).
R7 Upper left X coordinate (floating pt).
R8 Upper left Y coordinate (floating pt).

This command defines a secondary color background. All of the R1-R8 values must be in the range from 0.0 to 1.0.

ZXLAB1--Set_X-axis_label_color

READY ... ZXLAB1 I
I
Color code, 0-7 (fixed pt).

This command sets the color of the X-axis label text.

ZXLAB2--Set_2nd_axes_X-axis_label_color

READY ... ZXLAB2 I
I
Color code, 0-7 (fixed pt).

This command sets the color of the 2nd axes X-axis label text.

ZYLAB1--Set_Y-axis_label_color_

READY ... ZYLAB1 I

I

Color code, 0-7 (fixed pt).

This command sets the color of the Y-axis label text.

ZYLAB2--Set_2nd_axes_Y-axis_label_color_

READY ... ZYLAB2 I

I

Color code, 0-7 (fixed pt).

This command sets the color of the 2nd axes Y-axis label text.

MATHEMATICAL COMMANDS

The commands described in the following discussion provide the user with the capability of performing an assortment of mathematical operations on data to be plotted. All operations are performed in a "working buffer", which must first be filled with the LOAD command and must then be "SAVEed". The order of events may be summarized as follows:

- 01) "LOAD" a data record.
- 02) Perform any number of mathematical operations.
- 03) "SAVE" the resultant data record.

Note that the SAVE command will copy the contents of the "working buffer" to the WA file and that the limit of 75 records for that file applies. Also, all records that are to be manipulated, must previously have been located and saved using the FIND, FINDC or CHAN commands and therefore already residing in the WA file.

ABS--Absolute_value--

READY ... ABS

The absolute value of the "working buffer" contents is taken and retained in the "working buffer".

ADD--Add_a_record_to_a_constant--

READY ... ADD I

I

WA file pointer if fixed point or an arbitrary constant value if floating point.

AVE--Average_and_Replace--

READY ... AVE I

I

Every "I" set of data points are averaged and the result placed at the mid point of the "I" data point interval (fixed pt).

BUTT--Butt_data.

READY ... BUTT I

I

WA file pointer (fixed pt).

This command will "butt" the data points found in WA file pointer "I" to the end of the data points currently "LOADED" in the "working buffer". Note that any number of "BUTTs" may be performed as long as the 2000 data point limit in the "working buffer" is not exceeded.

DEC--Decimate.

READY ... DEC I

I

Decimation count (fixed pt).

The contents of the "working buffer" are decimated according to "I" and only every "I" th data point is retained.

DIF--Differentiate.

READY ... DIF

The contents of the "working buffer" are differentiated using a second degree Lagrangian interpolating polynomial technique. **WARNING:** This scheme breaks down rapidly at the end points of the tabulated function for 2nd, 3rd, etc differentiations.

DIV--Divide_by_a_record_or_constant_

READY ... DIV I

I

WA file pointer if fixed point or an arbitrary constant value if floating point.

Note that the code will attempt to correct a divide by zero condition by using the next non-zero data point and an informational message will be issued should such action be required.

EUNIT--Alter_the_engineering_unit_code_

READY ... EUNIT I

I

Engineering unit code (fixed pt).

EXP--Raise_to_a_power_

READY ... EXP R

R

Power to which "working buffer" contents are to be raised to (floating pt).

Note that all negative quantities are first made positive, then raised to the desired power, and then negated.

FIT--Least_squares_polynomial_curve_fitting_

READY ... FIT I

I

Polynomial order, 1-7 (fixed pt).

The contents of the "working buffer" are curve fit using a least squares polynomial fitting technique. The coefficients of

the polynomial are first returned to the user and then used to build new "working buffer" contents utilizing the given independent variable.

EIII--Inverse_exponential_curve_fit--

READY ... FIT1 I1 R1 I2 R2 I3 R3 I4 R4

I1-4

A
A coefficient.

B
B coefficient.

C
C coefficient.

D
D coefficient.

R1-4

Coefficient values corresponding to A, B, C or D (floating pt).

Any or all of the coefficients (A, B, C or D) and their respective values may be entered in any order. All of the coefficient values default to 1.0.

The inverse exponential curve fit utilizes the currently "LOADed" independent variable and the input coefficients to calculate new "working buffer" contents according to the following form:

$$F(X) = A / (B + C * EXP(D * X))$$

EIX--Data_correction--

READY ... FIX I J R1 R2

I
Data point number (fixed pt).

J

X

Signifies X data point portion.

Y

Signifies Y data point portion.

XY

Signifies X and Y data point portions.

R1

X or Y data point portion value (floating pt).

R2

Y data point portion value if XY specified
(floating pt).

This command allows the user to selectively "FIX" the X and/or Y portions of a data point currently residing in the "working buffer".

FLIP--Exchange_X/Y--

READY ... FLIP

In the above form, the X data points are interchanged with the Y data points on a one to one basis in the "working buffer".

READY ... FLIP I J K

I

WA file pointer (fixed pt).

J

X ... from X

Y ... from Y

K

X ... to X

Y ... to Y

This form of the FLIP command allows a user to interchange both the X and Y data points in the "working buffer" by

substituting from a second data record. The "from" indicates either the X or Y data points from the second data record and the "to" indicates either the X or Y data points in the "working buffer".

IDENI--Alter_the_identifier.

READY ... IDENT I

I

Record identifier, 16 character maximum.

INI--Integrate.

READY ... INT

This command performs an integration of a monotonically tabulated function by the Trapezoidal Rule. The integration is performed on the contents of the "working buffer" and the integrated results are saved in the "working buffer".

INTRP--Linear_interpolation.

READY ... INTRP R1 R2

R1

Delta-x to be used in the linear interpolation of the "working buffer" contents (floating pt).

R2

Optional X0 to be used as the starting location of the linear interpolation of the "working buffer" contents (floating pt).

LISI--List_Idecimal.

READY ... LIST R1 R2

R1

Lower X limit (floating pt).

R2

Upper X limit (floating pt).

The contents of the "working buffer" within the user specified limits are listed on the terminal screen. All of the "working buffer" is listed if the lower and upper limits are not specified.

LISB--List_octall--

READY ... LISTB R1 R2

R1

Lower X limit (floating pt).

R2

Upper X limit (floating pt).

The contents of the "working buffer" within the user specified limits are listed in an octal format on the terminal screen. This command is useful for listing TYP5 structured data (bit patterns).

LOAD--Load_the--"working_buffer"--

READY ... LOAD I

I

WA file pointer (fixed pt).

This command "LOADs" the "working buffer". This command must be executed before any other "mathematical" commands will be accepted by the code.

MUL--Multiply_by_a_record_or_constant--

READY ... MUL I

I

WA file pointer if fixed point or an arbitrary constant value if floating point.

ORDER--Rearrange the "Working buffer".

READY ... ORDER I1 I2

I1

Lower data point number limit (fixed pt).

I2

Upper data point number limit (fixed pt).

This command allows a user to selectively choose, within a data point number range, desired data points residing in the "working buffer".

SAVE--Copy "Working buffer" to WA file.

READY ... SAVE

This command must be executed by the user whenever the "working buffer" contents are to be "SAVEed" in the WA file.

SHIEI--X_data_offset.

READY ... SHIFT R

R

Arbitrary constant to be added to each of the X data points in the "working buffer" (floating pt).

SLICE--Rearrange the "Working buffer".

READY ... SLICE R1 R2

R1

Lower X limit (floating pt).

R2

Upper X limit (floating pt).

This command allows a user to selectively choose, within an X range, desired data points residing in the "working buffer".

SUB--Subtract_a_record_or_constant_

READY ... SUB I

I

WA file pointer if fixed point or an arbitrary constant value if floating point.

APPENDIX-A

MAGNUM 1.0 is capable of generating plot titles and labels in both upper and lower case with subscripts and superscripts. This extended capability is only valid for software generated characters. The HWARE command will negate the ability to use subscripts and superscripts and lower case characters will not be allowed unless the user is using a TEKTRONIX Model 4014, 4025 or 4027 CRT terminal.

In order to inform the code that lower case characters or subscripts and superscripts are to be used, certain characters are reserved and therefore not available to the user as title or label information. These reserved characters and their use are illustrated in the following:

!...label...!	Lower case.
#...label...#	Superscripted lower case.
%...label...%	Subscripted lower case.
>...label...>	Superscripted upper case.
<...label...<	Subscripted upper case.

APPENDIX_B

The following table lists the currently available engineering unit codes and their respective labels:

CODE	LABEL
0001	Core Heater Temperature (F)
0002	Fluid Temperature (F)
0003	Pressure (psig)
0004	Strain (Microin/in)
0005	Volumetric Flow (gpm)
0006	Fluid Velocity (ft/sec)
0007	Force (lb)
0008	Length (in)
0009	Voltage (V)
0010	Material Temperature (F)
0011	Current (A)
0012	Specific Volume (ft ³ /lbm)
0013	Decibels (db)
0014	Pressure (psi)
0015	Pressure (psia)
0016	Differential Pressure (psid)
0017	Density (lbm/ft ³)
0018	Power (kW)
0019	Heat Flux (Btu/hr-ft ²)
0020	H. T. Coeff. (Btu/hr-ft ² -F)
0021	Surface Temperature (F)
0022	Saturation Temperature (F)
0023	Enthalpy (Btu/lbm)
0024	Mass Flux (lbm/sec-ft ²)
0025	Mass Flow (lbm/sec)
0026	Integrated Mass Flow (lbm)
0027	Momentum Flux (lbm/ft-sec ²)
0028	Fluid Velocity (in/sec)
0029	Pump Speed (rpm)
0030	Elevation (ft)
0031	Quality
0032	Normalized Power
0033	Mass Flux (10 ⁶ lbm/hr-ft ²)
0034	Temperature (F)
0035	Time After Rupture (sec)
0036	Time (sec)
0037	Total Energy (Btu)
0038	Reactivity (\$)
0039	Stored Energy (Btu)
0040	Energy (Btu)
0041	Mass Balance (lbm)

0042 Power (MW)
0043 Total Heat Removed (Btu/hr)
0044 Period (sec)
0045 Heat Transfer Rate (Btu/hr)
0046 Mass (lbm)
0047 Saturation Pressure (psia)
0048 Normalized Pump Torque
0049 Volumetric Flow (ft³/sec)
0050 Choking Index
0051 Heat Transfer Mode
0052 Time After Reflood (sec)
0053 Thermal Conductivity (Btu/hr-ft-F)
0054 Internal Rod Temperature (F)
0055 Liquid Level (in)
0056 Percent
0057 Frequency (Hz)
0058 Total Volume (ft³)
0059 Acceleration (ft/sec²)
0060 Core Heater Temperature (K)
0061 Fluid Temperature (K)
0062 Pressure (kPa)
0063 Strain (mm/m)
0064 Volumetric Flow (l/s)
0065 Fluid Velocity (m/s)
0066 Force (N)
0067 Length (cm)
0068 Material Temperature (K)
0069 Specific Volume (m³/kg)
0070 Differential Pressure (kPa)
0071 Density (kg/m³)
0072 Heat Flux (kW/m²)
0073 H. T. Coeff. (kW/m²-K)
0074 Surface Temperature (K)
0075 Saturation Temperature (K)
0076 Enthalpy (kJ/kg)
0077
0078 Mass Flux (kg/s-m²)
0079 Mass Flow (kg/s)
0080 Integrated Mass Flow (kg)
0081 Momentum Flux (kg/m-s²)
0082 Fluid Velocity (cm/s)
0083 Elevation (m)
0084 Temperature (K)
0085 Time After Rupture (s)
0086 Time (s)
0087 Pressure (MPa)
0088 Time After Reflood (s)
0089 Angular Velocity (rad/s)
0090 Pump Torque (N-m)
0091 Liquid Level (cm)

0092 Thermal Conductivity (kW/m-K)
0093 Internal Rod Temperature (K)
0094 Volumetric Flow (ml/s)
0095 Void Fraction
0096 Temperature Difference (F)
0097 Photo Tube Temperature (F)
0098 Average Velocity (ft/sec)
0099 Liquid Phase Velocity (ft/sec)
0100 Vapor Phase Velocity (ft/sec)
0101 Horsepower (kW)
0102 Mass Flow/Vol (lbm/ft³-sec)
0103 Slip Ratio
0104 Flow Quality
0105 Thermodynamic Quality
0106 Steam Quality
0107 Neutron Detectors (Percent PWR)
0108 Valve Position (Percent Open)
0109 Valve Position (Percent Closed)
0110 Guide Tube Temperature (F)
0111 Fuel Rod Temperature (F)
0112 Reactor Power (MW)
0113 Fuel Rod Peak Power (kW/m)
0114 Fuel Rod Ave Power (kW/m)
0115 S-P Neutron Detector Curr (nA)
0116 Neutron Flux (n/cm²-s)
0117 Fuel Off-Center Temperature (K)
0118 Fuel Centerline Temperature (K)
0119 Outlet Temperature (K)
0120 Inlet Temperature (K)
0121 Cladding Elongation (mm)
0122 Cladding Elongation (Percent)
0123 Rod Internal Pressure (MPa)
0124 Peak Flux (n/cm²-s)
0125 Cladding Surface Temperature (K)
0126 Momentum Flux (10x3 lbm/ft²-sec²)
0127 Total Density (kg/m³)
0128 Liquid Density (kg/m³)
0129 Vapor Density (kg/m³)
0130 Specific Int Energy (J/kg)
0131 Specific Liq Int Energy (J/kg)
0132 Specific Vap Int Energy (J/kg)
0133 Liquid Void Fraction
0134 Vapor Void Fraction
0135 Volume Liquid Velocity (m/s)
0136 Volume Vapor Velocity (m/s)
0137 Volume Pressure (Pa)
0138 Volume Static Quality
0139 Volume Equilibrium Quality
0140 Volume Heat Source (W)
0141 Volume Liquid Temperature (K)

0142 Volume Vapor Temperature (K)
0143 Volume Equil Temperature (K)
0144 Volume Sonic Velocity (m/s)
0145 Junction Liq Velocity (m/s)
0146 Junction Vap Velocity (m/s)
0147 Interface Velocity (m/s)
0148 Junction Liq Density (kg/m³)
0149 Junction Vap Density (kg/m³)
0150 Junction L/I Energy (J/kg)
0151 Junction V/I Energy (J/kg)
0152 Power Input (W)
0153 Heat Transfer Rate (W)
0154 Critical Heat Flux (W/m²)
0155 Heat Transfer Coeff (W/m²-K)
0156 Mesh Point Temperature (K)
0157 Mass Flow Rate (kg/s)
0158 Viscosity (lbm/ft-hr)
0159 Viscosity (cp)
0160 Liquid Viscosity (lbm/ft-hr)
0161 Liquid Viscosity (cp)
0162 Vapor Viscosity (lbm/ft-hr)
0163 Vapor Viscosity (cp)
0164 Surface Tension (lbf/ft)
0165 Surface Tension (N/m)
0166 Specific Heat (Btu/lbm-F)
0167 Specific Heat (J/kg-K)
0168 Liquid Specific Heat (Btu/lbm-F)
0169 Liquid Specific Heat (J/kg-K)
0170 Vapor Specific Heat (Btu/lbm-F)
0171 Vapor Specific Heat (J/kg-K)
0172 Heat of Vaporization (Btu/lbm)
0173 Heat of Vaporization (kJ/kg)
0174 Thermal Diffusivity (ft²/sec)
0175 Thermal Diffusivity (m²/s)
0176 Time (hr)
0177 Time After Rupture (hr)
0178 Time To CHF (s)
0179 Crit. Heat Flux (Btu/hr-ft²)
0180 Crit. Heat Flux (kW/m²)
0181 Power (Btu/hr)
0182 Vapor Velocity (ft/sec)
0183 Vapor Velocity (m/s)
0184 Flooding Rate (ft/sec)
0185 Flooding Rate (m/s)
0186 LEIDENFROST Temperature (F)
0187 LEIDENFROST Temperature (K)
0188 T(wall) - T(sat) (F)
0189 T(wall) - T(sat) (K)
0190 Distance (ft)
0191 Distance (m)

0192 Area (ft²)
0193 Area (m²)
0194 Area (in²)
0195 Area (cm²)
0196 Diameter (ft)
0197 Diameter (m)
0198 Diameter (in)
0199 Diameter (cm)
0200 Radius (ft)
0201 Radius (m)
0202 Radius (in)
0203 Radius (cm)
0204 Volume (ft³)
0205 Volume (m³)
0206 Discharge Coefficient
0207 Flow Regime
0208 Friction Factor
0209 REYNOLDS NUMBER
0210 WEBER NUMBER
0211 LEWIS NUMBER
0212 FROUDE NUMBER
0213 KNUDSEN NUMBER
0214 STABILITY NUMBER
0215 NUSSELT NUMBER
0216 PRANDTL NUMBER
0217 MARTINELLI NUMBER
0218 BOILING NUMBER
0219 MACH NUMBER
0220 GRASHOF NUMBER
0221 RALEIGH NUMBER
0222 STANTON NUMBER
0223 ECKERT NUMBER
0224 EULER NUMBER
0225 STROUDAL NUMBER
0226 Liquid Density (lbm/ft³)
0227 Vapor Density (lbm/ft³)

APPENDIX C

A TYP1 perm file may be created in either "EDITOR" or "SENATOR" and it must be saved with the "no-sequence" option. The TYP1 perm file structure is as follows:

```
1
X Y
X Y
.
.
.
.
X Y
2
X Y
X Y
.
.
.
.
X Y
n
X Y
X Y
.
.
.
.
X Y
END
```

The first entry must always be a unique fixed point curve number. As many as 2000 floating point X/Y data pairs may follow each of the curve numbers. The final set of X/Y data pairs must be followed by END.

APPENDIX-D

A TYP6 perm file may be created in either "EDITOR" or "SENATOR" and it must be saved with the "no-sequence" option. The TYP6 perm file structure is as follows:

```
1
X Y DxI Dxr Dyl Dyu
X Y DxI Dxr Dyl Dyu
••••••••••••••••••••••
••••••••••••••••••••••
••••••••••••••••••••••
X Y DxI Dxr Dyl Dyu
n
X Y DxI Dxr Dyl Dyu
X Y DxI Dxr Dyl Dyu
••••••••••••••••••••••
••••••••••••••••••••••
••••••••••••••••••••••
X Y DxI Dxr Dyl Dyu
END
```

The first entry must always be a unique fixed point curve number. As many as 400 floating point sets of data points may follow each of the curve numbers. The final set of data points must be followed by END.