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LONGITUDINAL DYNAMICS IN STORAGE RINGS

Eugene P. Colton

Lecs Alamos National Laboratory, Los Alamos, NM 87545

The single-particle equations of motion are derived for charged
particles in a storage ring. Longitudinal space charge is included in the
potential assuming an infinitely conducting circular beam pipe with a
distributed inductance. The framewcrk uses Hamilton’s equaticns with the
canonical variables ¢ and W. The Twiss parameters for longitudinal motion
are also defined for the small amplitude synchvotron oscillations. The
space -charge Hamiltonian is calculated for both parabolic bunches and
"matched" bunches. A Dbriet analysis 1including second-harmonic rf
contcibutions is also given, The final sections supply calculations of
dynamical quantities and pavticle simulations wi:h the space-charge effects

neglected,

1. Introduction
The goal of this vork is to acquaint the reader with operations in

loegltadinal  phase space. The approach taken is to assume a slnusoidal i

wavelorm  averaged over the  clireumnference. The treatment 1y two
dimensions 1. Ve develop the single pariicie equations of motion using
Hamilion’s equations tor synchirotion oneillatlons, Longitudinal  space

charge  offects are inciaded in the Hamiltonfan. Ve next develop a matnix
approach tor small amplitude  syncliotion oneillations thly  treatment
lead:s to the matched Twizns parameters o, and @, tor longitudinal motfon,
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After defining the bunch shapes, we develop the single-particle Hamiltonian
for different assumed charge distributions. This analysis is repeated
assuming the addition of a higher harmonic rf voltage to the fundamental.
We next derive the synchrotron quantities from the Hamiltonian. Finally ve
ptesent simulations of adiabatic capture, 90° phase rotation, and creation

of voids in continuous beams.

2. Equations of Motion

The single-particle dynamics uses the two canonically-conjugate
variables ¢ and V. These quantities are (i) ¢4 in units of rf phase and
(ii) V = AE/Q where AE is the departure from the ideal or central energy
and 2 = Bc/R 1s the synchronous particle revolution frequency in the
assumed machine of circumference 2nR. Ve define the equatic s for

synchrotron motion [1]) assuming a sinusoidal waveform

dé  hnaew

?
dt pcR (2

In these equation: Voin the maximom tf voltage, ¢, is  the phase of  the
synchronous particle aelative 1o the zero value of the (increasing) ol

voltage wave, hois the harmonie numbey | h :’n||.|/sz, wvher o g v the f

1 0]
froquency, N v y . whore y | i the transition gamma ot the machine

‘y
aned y B/me’ . 10 operation i in the storage ving mode then $,, 0 hoelow
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transition or ¢, =1 above transition. The momentum p is expressed in eV/c

units. For the remainder of this work, we assume ¢. = 0 and vy £ Yr-

Longitudinal space-charge effects influence the voltage seen by the

beam. The space--charge field is given by [2]

)Y 8o dL 2 2
E,6 = -e _—— - — B¢ (1)
z 3z [4u e, Yi dz

where the bunch has charge per unit length eA, dz = -Rd¢/h, and g =
1 + 2 in (b/a) vhere a is the beam radius and b is the beam-pipe radius.
We assume the beam pipe is a perfectly conducting cylinder but has a
distributed inductance dL/dz per unit length [2]. The voltage seen by a
particle per turn, V

= f E, dz, can be written

Q

Z
V. - eBcR N n [.9] (43
! 97 n
whoere
(7. g7
m | Y| -e. 00 (5)
n RBY)
and  the  impedanee  of free space 7 170 1t ohms. The resulting Hamllton
cquatfon (1) ix rewiitten
W :
‘ AT IS (1)

di I

whe o



_ eficR
Vsing

vithin the bunch

motion from Egs.

H  d¢
W di
We obtain

H($,W) = GW2

wvhere

and —

VA
N 1 [_E] (7)
9z n
and r = 0 outside. We can derive the Hamiltonian of the
(2) and (6) via
aq _ o dw
3¢  dt
¢
ev J(l . r) siny dy (8,
2n
0

G - hnQe/(2peR)

Lo Derivation of

The  goal
equivalent

vor ks for

whiv) o

IR A

.|

{

"i

is
to that

small angles,

] ()

the Matched Quaatities

to wiite the equations using a matrix approach that is

widely kuown for transverse phase space.  This procedure

Vo wizh to tianstorm the (¢,V) voeeter

N0 3, in0

(10)
cont)

dint L iint
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In Eq. (10) B8 5 and Yg are the so-called matched functions and ©

sl
represents the phuase shift for the cell. The functions repeat from cell to
cell. We take the approximation Uf = Vi + b¢i, and ¢f = ¢i + an. Then

referring to Eqs. (2) and (6) we obtain

a = hnQcat

b
pcR (11
and
eV
=—A 1—-' 12
2nt(x) (12)

wvhere A6t is the transit time through the cell and V is the rf voltage scen
by the particle through the cell.

The simplest exaaple Is to assume one rf cavity in a machine; then wve
evaluate the matched functions in the cavity center. The cell (or machine)
consists of one-half cavity, a drift, and one-half cavity, respectively.

Written in matrix form

1 0 1 a 1 O~
(L S N
b/? | 0 1 bh/? IJ

Ol

Retevving to Bg. (10), the aatehed fucctions e glven in terms of a and b

conl 1 v oabt, B a/sin0, and «, O, Since 0 Is small, wo obtain O
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-~ Y ab and B = Y_a/b. The small-angle synchrotron tune Vg = 6/(2n) with

Vg = Vgq 1-r vhere

1 eVnh 1/2
Vso * g [ﬁ};—] (15)

where B is the usual v/c (vg is the number of synchrotron oscillations per
revolution). The units of B, are in (eVs)“l; it is defined by By =

qu/{f:? wvhere

_nfrfc 1/2
= 2n 16
Bso [pcR aV (16)
4. Beam Sizes
Siuve:r  the marched og = 0, che longitudinal phase space is that of an
upright ellipse with semi-axes (¢H'UH)' The semi-axes are given by
1/2
'BSh F:Q
S I 17)
o g (17)
and
'ICQ 177
We - 14
M [HBH] ( )

where € is the Tongitudinal phase space area of & single bunch  in oV,

£y gWdds/h.  The peak dp/p is obtained from Bqg. (18)



W,
[92] M (19)
M

The full bunch length 1 (in meters) is given by

2Réy

JERNLI (20)

The Dbunch length Qo in the absence of space-charge effec's is defined by

Q/Qo = (BS/BSO)I/2 = (l—r)‘l/4 so the bunch lengthens as r is decreased.

If the bunches are taken to have a parabolic density dis*tribution then

2
az) = &N [&_ - z2] and 22 . _ 12N (21)

vhere N is the number of particles in the bunch. We can rewrite Eq. (7) in

the short bunch approximation as

2 Z
roa _12.__“_33&2 Im [9] (22)
Q- hV

and the equation for the bunch length becomes

o enge (e
gh , PRTelBe el g g 4y (23)
hv )

Vo obtain the correspondivg Hamiltonian from Eq. ¢/), (8), and (21)
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H($,W) = GW2 + 3% cosé - 1 4+ SePeRN o [ ‘J ¢2] . (24)

This equation is valid for |¢| < ¢y- The space-charge term in Eq. (:4) is
zero for |¢] > éy.
If the beam is "matched to the bucket" then

3 2
and Eﬁ = Nh

9z anz

Nh 2

A2Z) = T cos siné (25)

~a| -9~

and the Hamiltonian [Eq. (8)) becomes

H($,W) = QW2 + ;% (cosé - 1) (1 - r) (26)

where

2 Z
e®Nh e
= - Im |- 27
2nv [l]] @n
5. Superposition of Harmonic Voltages
lligher harmonic voltages ave somelimes used o conlrol v and to

SO

increase the spread in synchrotron frequencies in a bunch in order to
provide Landau damping against longitudinal coupled-bunch instabilities in
a  synchrotron. In Fig. 1, 1 show an example of a fandamental with v - 1,
plus 4°% (d = 0.4) second harmonic (P - 2); the superposition (dorted)

flattens out npear the origin. The synchrotron tune Voo is related to the
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slope of the voltage dV/d¢ at the origin - in the 1liustrated case we see
Voo is reduced with this polarity of the second harmonic.

Analytically vwe rewrite Eq. (1) in a form analogous to Eq. (6)

dv eV
It = 7n sin¢ (1l-a) (28)

with sin¢s = 0 where

o - dsinPe (29)
siné¢

In small-angle approximation o - 1 - dP. The treatment above is still

valid, i.e., Vg = vso41—a and Bs = 550/41-a. For positive «, the

synchrotron ‘tune is reduced and the bunch length is increased. It is
understood that for stability « < + 1.

Ve obtain the Hamiltonian from Eq. (2), (24), and (28)

2(e,W) = aw? 4 ;% [cos¢ -1 - g [cosP¢—1]l . (30)

If we also consider a parabolic bunch (i.e., space-charge effects), the

Hamiltonian becomes

2 2
, OeBeRTN o (Te) o2 4 espe - 1) .(31)
VQ"h ! p

TR DI M [ct()sda 1
n 1

More information on this subject is contained in an canlier report [4]; the

treatment ineludes acceivcration.
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6. Synchrotron Quantities for a Fundamental RF System

A given particle travels on a trajectory in (¢,W) phase space with
extrema * ¢, and * W, . The Hamiltonian is constant along the trajectory.

Thus we obtain from Eq. (8)

$a
2 eV
W = - —— -
a 21G [ (1-r) siny dy (32)
o
and
¢
z eV [
= 35 (1-r) siny dy . (33)
¢J
a

The area traced out by the trajectory in (¢,W) phase space is simply

A =4 [ Vae . (34)

For ¢a - n, we refer to the result as the bucket area; the trajectory |is
called the separatrix. In Fig. 2 we show trajectories in (¢,W) space for
¢, = n/2 and ¢, = n; the space-charge term r is sat to zero in these cases.

It 1s of interest to calculate relative quantitles; still assume no
space-charge effects are present. First ve wish to know the relative areas

for a particle with maximum ¢a to that of the separatrix (¢a = n) - this is

given hy

”I¢"(cus¢ von¢n)1/2 dé

o (35)
21y

RA(¢n) N
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Next we wish to kno- the ratio of the corresponding W, (or dp/i). This is

given as

¢
Ry($,) = sin ['ia‘] . (36)

Finally ve wish to understand the dependence of synchrotron tune Vg

upon ¢_. Wa know v from Eq. (15) so wa write this in the form of a ratio
a so

-1

¢ d¢

ja : (37)
[O (cos¢ - 172

. cos¢a)

S
Y

Ry ($g) =

N A

Y
SO

I have carvied out the calculations of the above ratios Egs. (35)-(37) and
they are listed in Table 1 vs ¢a; they are also plotted in Fig. 3 vs ¢n'

Tte ratios (35) and (37) wvere carried out with a program. They can be

approximated for ¢a < n/2 by [31
R . in .2 38
A(¢a) i 8 ¢¢1 sin vl ( )

and

2 1
' ¢a ' 1 ¢4
AR 16 3077

R L
a . (19)
The bucket areca reduction due to space charge forces Is particularly simple
it the charge distribution ix matched to the potential [Eq. (29%)]; then

AAG 0) (1 O wiih v given by Eq. (27).
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7. Operations

There are a number of procedures that are commonplace in storage rings
and accelerators. Basically they involve changing the shape of the
phase-space contour that encloses the particles in the longitudinal plane.
Generally, 1if one raises the rf voltage, the result is tc bunch the beam -
similarly the beam debunches as the rf voltage is decreased. If the bunch
does not have the proper Bg value |[see Eq. (16)] then it is not matched -
the shape changes with time as it rotates like a rigid body in the phase
plane. For constant voltage, a matched bunch maintains its shape as long
as i1ts length occupies no m e than 120° of rf phase. Another phenomenon
is the filamentation of phase space: as 1is evident from Fig. 3, the
syuchrotron frequency changes with ¢, amplitude. Small amplitude part.cles
spiral faster than those at large amplitudes.

Some gymnastics have been developed, especially ior injection,
extraction, and matching between rings. One is adiabatic capture of a beam
injected from a linac. In this case the rf is off during the injection
period; then the 1f is raised slowly to capture the Leam. In Fig. 4 I show
an example of five turn B injJection into the so-called SSC bottom-energy
booster. The machine cousidered had a ¢lrcumterence of 250 m, transition
gamma  of  10.4, and the harmonic number was 48. The injection was studied
at a kinetic energy of 500 MoV, To study the injectlon, we wrote a program
that directly integrated the synchirotron equations of motton [Eqs. (1) and
(7)1 turn-by turn. A sccond order Runge Kutta fntegrator was used tor the
trackling. Longiwudinal  space chinge  was not Included because it 1n oot
gigniflcant at these levels, Figuwre 4(a) shows the Hnae  pulses ftor one
period of the ring vl period. We inject ten micirobunches, cach assamed to

be a unilormly 1illed  ellipze  of  hall widths A 00 and  AGdp/p)
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.88 x 1073. The coordinate ¢ represents phase relative to the synchronous
particle. The bunches were centered at =* n, #* 0.777 =, + 0.357 n,
+ 0.33 nr, and + 0.111 n in ¢ assurming a 440/9 Mliz rf system. The rf
voltage is zero during the process, which we continue for five turns.
Figure 4(a) shows the injected phase spazce after five turns with 50
particles per microbunch (2500 total particles). Next, we raised the rf
voltage slowly; for 200 turns the voltage was raised linearly at 1 kV/turn
to a final value of 200 kV. Figure 4(b) shows the beam phase space along
with the separatrix. The beam has been captured and is now ready for
acceleration.

Another trick is the 90° phase-rotation. Suppose it is desired to
extract a very short bunch from an accelerator. First you reduce the rf
voltage to a very small value; then the bunch lengthens to a flat pencil in
phase space. The voltage is then raised abruptly to a very large value.
Since the resident bunch [s mismatched to the new conditions, it just
rotates as a vigid body. After a 90° rotation (or 1/4 of a synchrotron
oscillation) it reaches lts shortest extent in time. The corresponding

number of turns is 1/(4 v, ) with v_ given by Eq. (15). Figure 5(a) ::hows

S0
the example of Fig. 4 but with a matched bunch ¢y = /4 and (dp/p)H =
0.106Z. The voltage is abruptly reduced from 200 kV to 40 kV; this reduces
Ve, 0 0.0125. We show in Fig. 5(b) the state after 20 turns, which is
1/(4 vso). Ve then ralse the voltage to | MV/turn and track for five turns

the pbase space is shown in Fig. %(c).  The bunch is indeed very short.

This  technique  has been used at FNAL to extiact a very short proton bunch

for TeV I experiments |[9].
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Another way to lengthen a bunch without changing the volitage is to
(i) shift the stable phase ¢, by n to the unstable fixed point for a preset
number of turns so the beam debunches; (ii) then the stable phase is
shifted back by n. The mismatched bunch will just rotate - when it reaches
the desired length then the beam can be, e.g., extracted [d].

The abov: operations are straightforward and can be found described
elsewvhere. One topic which has piqued my curiosity is the barrier bucket
that was described by Jim Griffin in the 1983 PAC [7]). Yo: use a single
pulsed rf cavity that 1is just fired at the revolution frequency of the
synchronous particle. With this bucket you can create and maintain a gap
in a coasting beam. Mathematically this is done by just changing the sign
of the »f voltage. Figure €(a) shows a coasting beam with momentum spread
dp/p = + 0.1X%X. The ¢ range represents the whole storage ring. Figure 6(b)
shovs the situation after 1000 turns if you use a fourth harmonic berrier
bucket. A gap length of 1/10 the machine has been created. The voltage

vias -3 kV; we use the same example as above.

8. Concluslons

There arve still further operatlons in storage rings that 1 have not
discussed tor lack of space and energy. Nevertheless, 1 have tried to
describe how one treats the slngle paiticle motion via  Hamilton’s
equat fons.  The formalism has been laid out tor the treatment of complex i
vavetforms, and  intense beam effeety, ! havoe not discussoed the
Instabilities of bunched beams.  Actually these do tend te Himit the stored
Intenstties.  The extenslon to election storage tings 1oquites compensat fon
for  losses due to gynclnotron radiation.  The treatment become:s: somewhat

more complicated for aceeloration or deceleration; in thin cane sin ¢, /7 0,
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TABLE I. Ratios vs ¢a

( 323 ) Ra Ry Ry
10 0.006 0.087 1.000
20 0.024 0.174 0.995
30 0.053 0.259 0.986
40 0.093 0.342 0.972
50 0.144 0.423 0.955
60 0.203 0.500 0.934
70 0.271 0.574 0.910
8u 0.345 0.643 0.882
90 0.424 0.707 0.850

100 0.506 0.766 0.814
i10 0.589 0.819 0.774
120 0.672 0.866 0.731
130 0.751 0.906 0.683
140 0.825 0.940 0.629
150 0.891 0.966 0.569
166 0.945 0.985 0.500
170 0.984 0.996 0.412
180 1.000 1.000 0.138
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Figure 3.
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Figure Captions

RF voltage waveforms, "F" is fuadamental, "P = 2" represents 40%
second harmonic and "sum"’represents tae sum of the above two
vaveforms.

Trajectories of constant Hamiltonlan calculated from Eq. (33)
for the indicated values of ¢a. The axes are ¢ and the relative
momentum sr-ead dp/p. We assume the fundamental rf system with
r = 0.

Ratios plotted vs. ¢,. R, is defined by Fq. (35) and 1is the

ratio of the area |Eq. (34)] for the trajectory with limiting

$ =%, to the bucket area. Rvs is defined by Eq. (37) and is
the ratio of the synchrotron tune for ¢ = ¢, to the small-
amplltude value v, defined in Eq. (15).

Simulation of the adiabatic capture process for a sample ring
vith circumference 250 m, T 10.4, harmonic number h = 48, and
proton kinetic energy 500 MoV: (a) Phase-space plot after flve
turng for ten linae microbunches injected per  turn. (h)
Sttuation after 200 tarns with the ¢t voltage increased linearly
by 1T kV/turn,

Simulation of the 90° phase rotatlon technique which is used to
torm i very short bunch,  (a) Toitial matehed beam with nh
tor v 200 «VW/imny (b)) boeam after reducing  voltage 1o

A0 LkVZtun and tracking 20 turng; () beam al ter raising voltage

to 1 MV/twin and tracking 5 tuine,



Figure 6.
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Illustration of the formatioun of a gap in a coasting beam by use
of a barrier bucket. (a) Phase space of coasting beam with
dp/p = * 0.1%. The ¢ range represents the whole storage ring.
(b) Phase space after 1000 turns if you use a h = 4 single
pulscd rf cavity that is just fired at the revolution frequency

of the synchronous particle. The rf voltage is -3 IkV/turn.
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