
LBL-26796
UC-405

IB

t *
t

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Scry: A Distributed Image Handling System

Version 1.1

D.W. Robertson, W.E. Johnston, T.-J. Chua, J. Huang,
F. Renema, M. Rible, N. Texier, and B J. Wishinsky

April 1989 00 m MlSjliOHUi/l
com

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

Distribution of this document is unlimited

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

DISCLAIMER

This document was: prepared as an account of work sponsored
by the United States Government, Neither the United States
Government nor any agency thereat am The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any lega) Babflity or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other­
wise, does not necessarily constitute or itapiy its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof or The Regents of the University of Cali­
fornia. The views and opinions of suthors expressed herein do
not necessarily state or refleri those of the United States;
Government or any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

■/ V-. " ' ' V ■•I1"'.' .

Available to DOE and DOE Contraction from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, 1*137831 '
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
Nanooal Techmcat Mfonnatfon Service

U.& Department of Commerce
5285 Pott Royal Road. Springfield, VA 22161

Price; Printed Copy A04, Micsofiche A01

Lawrence Berkeley Laboratory la an equal opportunity employer.

April 6,1989
LBL—26796
DE90 003105

Scry:
A Distributed Image

Handling System

Version 1.1
April 1989

David W. Robertson, William E. Johnston, Teck-Joo Chua,

James Huang, Fritz Renema, Max Rible, Nicole Texier,

and BJ Wishinsky

Advanced Development Projects
Information and Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, CA 94720

D. W. Robertson, W. E. Johnston, J. Huang, F. Renema, and M. Rible can be reached via USMail at: Lawrence Berkeley La­
boratory, Bldg. SOB, Rm. 3238, Berkeley, CA 94720. Email addresses of those at LBL are:
davidr@csam.lbl.gov johnston@csam.lbl.gov,huang@csam.lbl.gov, fritz@csam.lbl.gov, and max@csam.lbl.gov

The work presented in this paper is supported by the U.S. Department of Energy under contract DE-AC03-76SF00098. Any conclu­
sions or opinions, or impUed approval or disapproval of a company or product name are solely those of the authors and not necessarily
those of The Regents of the University of California, the Lawrence Berkeley Laboratory, or the U.S. Department of Energy.

Sc
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Scry 1.1 README file

Scry is a distributed image handling system that provides both image compression
and transport on local and wide area networks, and a collection of higher level graphics
and scientific visualization functions. The system can be distributed among workstations,
between supercomputers and workstations, and between supercomputers, workstations
and video animation controllers. The system is most commonly used to produce video
based movie displays of time dependent data and complex 3D data sets, and to handle the
images resulting from certain image processing operations.

In the scientific visualization process, the system is typically used in one of two
configurations. In the first, the supercomputer application generates data (e.g. flow field
vectors) that are compressed and sent to a graphics workstation over a wide area network.
The graphics workstation environment is used to design and debug the graphics visuali­
zation for a movie. Finally, the raster images that represent the frames of the movie are
compressed and sent over a local area network to the video animation controller.

Alternatively, the data, and even its representation in terms of graphics primitives,
may be too voluminous to reasonably transport across a network. In this case the visuali­
zation, rendering and image compression are all done on the supercomputer. The
compressed images are then sent over a wide area or local area network to a user works­
tation at the local site.

The image servers, that is the local systems that receive the image, can be either a
window based workstation, such as a Sun color workstation using SunView, or a PC
based animation controller. All of the image servers present the same interface to the
client programs. A typical use of the Sun based server, for example, is to have a graphics
window which displays the images as they come in from the remote supercomputer,
while storing the compressed form of the image on disk for later video recording or pre­
view. In the case of the PC server the images are recorded in video format, either on tape
or video-optical disk.

Layered on top of the raster image interface are several visualization algorithms that
are of general interest. One of these is is Lorensen’s Marching Cubes [SIGGRAPH,
1987]. This algorithm provide a mechanism for displaying the level surfaces of a 3D
scalar field of arbitrary complexity. We have used this to explore mathematical functions
by displaying a sequence of surfaces f (x,y ,z)=cx,c2,c■ as a movie, as well as
showing a single level surface evolving in time for applications such as flame-front pro­
pagation studies. The user interface to this algorithm entails specification of a 3D grid of
function values, the function value to be displayed, and the presentation details of color,
light source position, viewing position, etc.

The system has been used to make a number of movies for Lawrence Berkeley
Laboratory scientists. Scry led directly to new insights from scientific data because of
the ease with which the system generates movies due to a simple software interface, the
ubiquitous availability of video technology, and to the rapid turnaround between generat­
ing and viewing movie “clips”.

References:

W. E. Johnston, D. E. Hall, J. Huang, M. Rible, and D. Robertson. ‘ ‘Distributed Scien­
tific Video Movie-Making”. Proceedings of the Supercomputing Conference 1988 (The
Computer Society of the IEEE). Also available as LBL-24996, University of California,
Lawrence Berkeley Laboratory, Berkeley, CA (1988).

William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Sur­
face Construction Algorithm 4 (July 1987), 163-169.

Additional references can be found in the man pages.

Note on this Distribution:
This distribution consists of the source code and documentation needed to build

both the Scry servers and clients. The development of Scry is supported by the U.S.
Department of Energy, Energy Research Division, under contract DE-AC03-76SF00098.

This is the first revision of the original Scry distribution. It now runs under
UNICOS on Cray’s (as well as under UNIX on Sun’s and Vaxen), with exceptions noted
in the man pages. The main additions are an implementation of Lorensen and Cline’s
marching cube algorithm (for reference see above), the capability for 3D viewing, and an
expanded Anima. There has been little change to the original material except for Anima.

Scry is available by anonymous ftp (login: “anonymous”, password: “guest”)
from csam.lbl.gov (128.3.254.6) in pub!scry.tar.Z (a compressed tar file, so don’t forget
to set binary mode in ftp). Be aware that the compressed file is just over 1 megabyte.
Once on your machine, run uncompress on scry.tar.Z, and extract the files using

tar xvf scry.tar scry

Besides the tar file this distribution is contained in, there is an additional file,
scry.trouble, also contained in the same directory on csam.lbl.gov. This file contains
hints on dealing with problems people have encountered, and bug fixes as they become
available.

We invite your comments and suggestions about this code. For further information
contact:
Bill Johnston, (wejohnston@lbl.gov, ...ucbvax'.lbl-csam.arpa'.johnston)

or
David Robertson (dwrobertson@lbl.gov, ...ucbvax!lbl-csam.arpa!davidr)
Advanced Development Group
MS 50B/3238
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720

There are a number of UNIX-style man pages that describe the various modules and
applications that make up Scry. The order to read the documents is:

scry.l -
an overview

scry_client.l -
a more detailed look at the client strategy

scry_pc_server.l -
user documentation on the PC animation server

scry_sun_server.l -
user documentation on the windowing (Sun) workstation-based server

anima. 1 -
user documentation on the animation playback editor

scry_pc_config.l -
comments on the PC animation controller hardware configuration and porting con­
siderations

greyrgb.l -
tests low-level client

test_c_gks.l -
2D GKS tester

grid.l, molecules.l -
3D sample programs

woggle.l, surfmov.l, march.l -
3D applications

scry_3D.3, scry_3D_control.3, scry_3D_ctm.3, scry_3D_proj.3,
scry_3D_obj.3, scry_3D_render.3 -" 3D viewing module

scry_gks.3, scry_gks_control.3, scry_gks_prims.3, scry_gks_xforms.3 -
Two versions: the 2D graphics interface library, and support for 3D

scry_scan3d.a.3 -
3D scan conversion library

scry_scan2d.a.3 -
2D scan conversion library

scry_send_frame.3 -
the image compression and transport library that is used by the Scry GKS layer

scry_client.a.3 -
the image compression and transport library that is used by a user application
The client programs are built upon several modules which are described in the man

pages in the directory scry/man. 2D clients are built on a GKS module, a 2D scan
conversion module, and a module at the RPC level. 3D clients have an additional, 3D
viewing module. (Elements in brackets are under development and will be provided
in a future distribution.) The PC server program is divided into two modules: the
server itself, and the modified Sun RPC library it is built on top of.

The software provided is contained in subdirectories, corresponding to each module,
under the directory scry. It is written mostly in C; part of the 3D viewing module is writ­
ten in Fortran.

111

scry root directory
scry/libs
scry/samples

scry! samples! data
scry/swfmov
scry/marching
scry/view3d
scry/gks
scry/scandrv
scry/scandrv/scan3d
scry/scandrv/scanld
scrylscandrv/client
scrylpcserver
scry/pcrpc
scry/sunserver
scry/anima

place libraries are put after modules compiled
sample client programs (scry_client(l),woggle(l)

test_c_gks(l), greyrgb(l), grid(l),
molecules(l)

data for sample client programs
marching cubes and rendering program (surfmov(l))
marching cubes library (march(l))
3D viewing module (scry_3D(3))
GKS routines (scry_gks(3))
software frame buffer driver (scry_gks2d.a(3))
3D scan conversion (scry_scan3d.a(3))
2D scan conversion (scry_scan2d.a(3))
image transmittal (scry_client.a(3))
PC server (scry_pc_server(3))
modified Sun RPC library (scry_pc_server(3))
Sun server (scry_sun_server(3))
Anima (anima(L))

All files except those in scrylpcserver and scry/pcrpc (for the PC server), and
scry/sunserver (for the Sun server) should be set up on the client machine; the files in the
latter directories should be installed on the server. Sample Makefiles for each machine
type are provided in each directory to make the appropriate module libraries. Doing
make all with the appropriate Makefile in scry/samples, i.e. Makefile.cray for the Cray,
makes all the client libraries and generates the proper format data files for that machine.
Separate commands also make the sample programs. On the Cray, it will be necessary to
modify the Makefile and create two directories in a temporary partition to hold the rather
large executables and the binary data files.

--------------- Begin Copyright notice--------------------
The Scry system is copyright (C) 1988, 1989, Regents of the University of Califor­

nia. Anyone may reproduce “Scry”, the software in this distribution, in whole or in part,
provided that:

(1) Any copy or redistribution of Scry must show the Regents of the University of
California, through its Lawrence Berkeley Laboratory, as the source, and must
include this notice;

(2) Any use of this software must reference this distribution, state that the software
copyright is held by the Regents of the University of California, and that the
software is used by their permission.

It is acknowledged that the U.S. Government has rights in Scry under Contract DE-
AC03-765F00098 between the U.S. Department of Energy and the University of Califor­
nia.

Scry is provided as a professional academic contribution for joint exchange. Thus it
is experimental, is provided “as is”, with no warranties of any kind whatsoever, no sup­
port, promise of updates, or printed documentation. The Regents of the University of
California shall have no liability with respect to the infringement of copyrights by Scry,

TV

or any part thereof.
----------------End Copyright notice--------------------

It should be noted that the Sun RPC code in the “pcrpc” directory is copyright Sun
Microsystems, Inc. and is provided here as a modified version of the Sun code that was
distibuted by Sun to the Usenet, comp.sources.unix bulletin board. The Sun code con­
tains the following notice:

“Sun RPC is a product of Sun Microsystems, Inc. and is provided for unrestricted
use provided that this legend is included on all tape media and as a part of the
software program in whole or part. Users may copy or modify Sun RPC without
charge, but are not authorized to license or distribute it to anyone else except as part
of a product or program developed by the user.

Sun RPC is provided as is with no warranties of any kind including the warranties
of design, merchantibility and fitness for a particular purpose, or arising from a
course of dealing, usage or trade practice.

Sun RPC is provided with no support and without any obligation on the part of Sun
Microsystems, Inc. to assist in its use, correction, modification or enhancement.

Sun Microsystems, Inc. shall have no liability with respect to the infringement of
copyrights, trade secrets or any patents by Sun RPC or any part thereof.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or
other special, indirect and consequential damages, even if Sun has been advised of
the possibility of such damages.
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, California 94043 ”

Additionally, the code in hershey.c carries the following copyright notice:
“Copyright (c) 1986, Marc S. Majka - UBC Laboratory for Computational Vision.
Permission is hereby granted to copy all or any part of this program for free distribu­
tion. The author’s name and this copyright notice must be included in any copy.”

Neither the RPC code nor the Hershey code is any way covered by the University of
California copyright notice given above.

v

LBL Advanced Development Project
"Scry" Distributed Image Handling System Architecture

CLIENTS (UNIX, UNICOS, CTSS, VMS)

3D graphics

GKS-like 2D graphics library

generate in memory frame buffer

compression

RPC Communication

TCP/IP Network

local area or wide area
SERVERS

Window-based workstation

Local user's
environmentPC (animation workstation)

RPC Communication
digital image
archiving

decompression

window library

frame buffer

video
recorder

tessellation

generate
frame buffer

generate
frame buffer

image
processing
application

molecule
movie
program

User 3D
application
(heart flow)

3D scalar
field display
program

User 2D
application
(2D particle
advection)

independent
user graphics
application
(e.g. G. Ward)

Video
image
recording
control

RPC Communication

hardware
frame buffer

decompression

vi W. Johnston/dlc
11/1/88

Access via Distributed
Window System

telnet
server

telnet
client

net interface

Visualization

Application

window library

window system

Display
server

Workstation

Window
Manager

net interface

graphics and text interface

Window client
(X or News)

Supercomputer

ID CD

W.Johnston/dlc
11/1/88

LBL Distributed Image
Handling - Scry

Supercomputer

telnet
server

Application
Visualization

graphics

raster generation

compression

net interface

Workstation
net interface

telnet
client

Movie Server
.digital,
image
store

video
optical disk
animation

control

decompression

window interfaceAnima

window client

window system

Scry 1.1 trouble shooting

April 12, 1989

Following are hints on what action to take, given a certain result or error message.
This file is also kept separately in the same public directory on 128.3.254.6 where
scry.tar.Z is found and will be updated occasionally if necessary.

1. Distributed Aspects

1. The error message rpctcp create: connection refused or rpcudp create: Bad file
number appears: the Scry server is not running.

2. The error message rpctcp create or rpcudp create: Bad file number appears: the
program number specified on the client with -wp is not the same as that specified on
the server with -P. If using the PC server, the client should always specify the pro­
gram number 300000, since it is hard-wired in on the PC side. If using the Sun
server, that program number should never be used.

3. The error message RPC: Procedure unavailable can’t make________call appears.
The server does not support that kind of compression.

4. When running Anima, the prevu or record button is pressed and Anima dies with a
segmentation fault: the server was not specified on the command line with -W.

2. SEW Problems
1. Opening SEW with Seopensew(REPORT_ERRORS) will generate a message on

many errors. If Seopensew is not called at all, the program will die without expla­
nation.

2. The object appears black. If the light source is FIXED, rotate the object. If the
light source is RELATIVE, rotate the light source.

3. All graphics primitives appear black. Be sure that the color indices for the primi­
tives have been set.

4. If changing the handedness of the coordinate system, for example after using
Serthand(OFF) to set a left handed coordinate system, be sure to call Sesetlightsrc
afterwards to ensure the proper setting of the light source.

5. The object is scaled improperly. The defaults will only work if the object ranges
from 0 to 1 in world coordinates in all three dimensions. Make sure that
Seset3Dwindow, Sesetparallel, and Sesetviewvolume have been called in that
order. It will probably be necessary to use the routines (e.g. Seuvn_obj) to find the
range of the object in view volume coordinates before being able to pass the proper
arguments to Sesetviewvolume.

6. The object appears off center or goes off the screen. If using the modelling transfor­
mation, be aware that any coordinates passed to SEW when ctm_set(ON) has been
called will be treated as modelling coordinates. This may cause improper setting of

vi 11

the 3D world window, for example.
7. The object appears off center. Make sure that Seset3Dwindow was called before

Sesetparallel, since Sesetparallel sets the view reference point to the center of the
world window.

8. The edge of a polygon object appears ragged at the edge of the screen. Set side
clipping on with Sesetclip.

ix

SCRY(L) UNIX Programmer’s Manual SCRY(L)

NAME
Scry - a distributed image handling system

DESCRIPTION
Scry is a general purpose, distributed image handling system. It has been used for distributed scientific
movie-making and image processing applications. The system consists of clients that produce images, and
servers that display and/or record images. Scry is specifically designed for operation over wide-area net­
works, as well as local-area networks. It provides various image compression/decompression mechanisms
to optimize use of the networks. [It handles a number of common image formats (RLE and HIPS), and
provides format conversion tools for several others. Scry also provides an image archiving system for cata­
loging images and maintaining an off-line image library.] The clients are built on libraries provided with
the distributed software. These libraries provide interfaces at three levels. The lowest level provides an
interface to compress and transport raster images. The next level provides a GKS-like, 2D graphics inter­
face. The highest level provides 3D graphics primitives with SIGGRAPH Core viewing, and surface
rendering extensions.

The client libraries have been written to be fairly portable, and run on a variety of systems including Unix,
Unices, [VMS], and [partly on CTSS]. The client libraries are written in C, and have both C and Fortran
interfaces. The clients require a Unix-like run-time library and an implementation of 4BSD Unix sockets to
support them.
The client may run very slowly under UNICOS if the Cray used has only 4 megawords of memory. Scry
takes up a fair amount of memory because of the Cray word size, e.g. because of data structures such as the
software frame buffer.

There are two servers provided with Scry. One of these servers runs on a window-based workstation, and
the other on a PC based animation workstation. The window based server uses SunView [or X-ll/XT] to
provide image display. When invoked, the server opens a window and displays each frame that is sent by
the client. In addition to display, the Scry server has an option for writing the compressed images to a disk
file. This disk file may be archived, sent to the PC animation workstation, or viewed and manipulated with
Anima, a movie preview and editing program. A typical use for this server is to monitor the progress of a
client on a remote compute server, while saving the frames locally for subsequent video recording.

The PC server is used primarily to control video recording equipment. As a server the PC runs standalone.
It receives images from a client, decompresses them into a local frame buffer, and records them one frame
at a time on video tape or a video optical disk. [While Scry is intended to be image size independent, many
of the current modules assume 512H x 400V pixels. This will be generalized in a future release.]

SEE ALSO
scry_client(L), scry_pc(L), scry_3D(3), scry_gks(3), scry_scan3d.a(3), scry_scan2d.a(3),
scry_client.a(3), scry_pc_server(3), scry_sun_server(3)

W. E. Johnston, D. E. Hall, J. Huang, M. Rible, and D. Robertson. “Distributed Scientific Video Movie-
Making”. Proceedings of the Supercomputing Conference 1988 (The Computer Society of the IEEE).
Also available as LBL-24996, University of California, Lawrence Berkeley Laboratory, Berkeley, CA
(1988).

AUTHORS
David Robertson, Bill Johnston, Nicole Texier, BJ Wishinsky, Fritz Renema, Max Rible, Teck-Joo Chua,
and James Huang

March 15 1989 LAWRENCE BERKELEY LABORATORY 1

SCRY_CLIENT (L) UNIX ProgramnK r’s nual S CR Y_CLIENT (L)

NAME
Scry_client - Scry client overview

DESCRIPTION
Scry clients are built using one of several interfaces. These interfaces are implemented by modules that are
provided as several different libraries. The modules are described in detail in scry_3D.3, scry_gks.3,
scry_scan3d.a.3, scry_scan2d.a.3, and scry_client.a.3.
Scry clients generate and send images to the Scry servers. The client libraries and programs run on several
different systems that provide the 4BSD Unix socket IPC mechanisms, and enough of the Unix run-time
library to support the Sun RPC library, RPC’s being the preferred communication mechanism. Scry clients
run on 4.3BSD Unix systems, [VMS systems with TCP/IP] , and Cray UNICOS. For [Cray CTSS there
is a separate client and server library that uses the socket IPC interface directly without the mediation of
the Sun RPC library.]
A typical Scry client consists of several distinct layers that are fairly well insulated from each other. The
first layer provides graphics primitives that support graphics representation algorithms (“scientific visuali­
zation” algorithm in the current parlance). Algorithms of this type convert data structures into a geometric
form that can be used to generate graphics primitives. For example, a particle advection representation of a
flow field is generated by transporting hypothetical particles using a vector on grid representation of a flow
field. The resulting particle positions can be displayed on a frame-by-frame basis to produce an animation
of the original (time-dependent) flow field. This position information is passed to the graphics primitives
provided by the Scry, GKS-like (see man pages scry_gks2d.a(3)), or SIGGRAPH Core-like (see
scry_3D(3)) interface. Another example is an implementation of the marching cubes algorithm (see
surfmov(l)) [6].

The next layer of a Scry client converts the graphics primitives into an in-memory representation of the
image. From the point of view of the GKS level this is just a device driver that generates an in-memory
frame buffer. The two versions of this module are described in scry_scan3d.a(3). and scry_scan2d.a(3).
The final two tasks of the client are the compression and transmission of the image to the server, and are
handled by the routines described in scry_send_frame.a(3). Like all of the Scry modules, this layer has
been made as data-independent as possible. This module neither knows nor cares where a particular in­
memory image has come from; it only needs to know what type of compression to apply and where to send
the resulting byte stream. This permits user programs not built on the Scry, GKS interface to use Scry to
compress and transmit images to a Scry server for display. Scry is currently used to handle images from
both image processing clients, and alternative rendering clients. These clients produce a frame buffer in
standard format and pass it to the send_frame routines.

Since the send_frame module does not know the characteristics of the image that it is dealing with, it is
not possible to automatically select an optimal compression technique. Scry provides several compression
techniques, some lossy, some lossless, some suitable for synthetic images (those generated by scan con­
verting the graphics primitives generated by most visualization algorithms) and some suitable for natural
(remote sensed) images. Generally speaking, the compression techniques are: (1) block truncation coding
(BTC) [1]; (2) Heckbert’s median cut color map algorithm [2]; (3) frame-to-frame differencing [3]; and (4)
Lempel-Ziv coding [4], A detailed analysis of the characteristics of all of the useful combinations of these
is too tedious here (see [3] and [5]), but a few rules of thumb are useful. If the final display is to be a video
movie, fairly inexact compression works well. For video movies made from images generated by render­
ing graphics primitives, we usually use a combination of BTC and the color map algorithm, with Lempel-
Ziv cascaded if the images are being sent via a wide-area network. For natural images, color map
compression, and/or Lempel-Ziv compression are frequently useful.

The final step is to send the compressed image to the server. While socket-based servers are identified by
internet address and port number, RPC-based servers are identified by internet address and RPC program
number. In some cases the program number has a default value, and in some cases it must be supplied. In
particular, it must be supplied when there is the possibility of running more than one server as can be done
on, for instance, a Sun workstation. See the sample file scry/samples/greyrgb.c, and scry_sun_server(3),
for a program that operates at this level, greyrgb.c (see greyrgb(l)) is an example of how to test the low

April 6 1989 LAWRENCE BERKELEY LABORATORY 2

SCRY_CLIENT (L) UNIX Prc gra mmer’s Manual SCRY_CLIENT (L)

level interface for compressing and transporting an already-generated raster image (see
scry_send_frame(3)).
There are two sample 2D clients in scry!samples. One (in both a C and Fortran version) links in all the 2D
client modules, and uses the GKS-level routines. Explanation of the GKS client interface is given in the
gks*(3) manual entries. The documentation and samples assume the user has some graphics experience.
testj gks.1, generating the identical image as test_c_gks.c, is written in Fortran. See scry_gks(3) and
scry_3D(3) on the use of Fortran with the C package. For more information on the use of the sample 2D
chents, see test_c_gks(l)). scrylsamples also includes an example 3D client woggle.c (see woggle(l)), and
its analogue written in Fortran, wogglef.i.

The sample client programs have run on Sun 3’s and 4’s under OS 3.4 and above, VAX Unix systems, and
on Cray UNICOS systems. The hardest parts of the client software to port to new systems are probably the
Fortran to C interface routines.

AUTHORS
David Robertson, Nicole Texier, James Huang, and Bill Johnston

SEE ALSO
scry_pc(L), scry_3D(3), scry_gks(3), scry_scan3d.a(3), scry_scan2d.a(3), scry_client.a(3),
scry_send_frame(3), scry_pc_server(3), scry_sun_server(3)

[1] G. Campbell, T. DeFanti, J. Frederiksen, S. Joyce, L. Leske, J. Lindberg and D. Sandin, “Two
Bit/Pixel Full Color Encoding,” Computer Graphics, vol. 20, no. 4, 1986. (Proceedings ACM SIG­
GRAPH, 1986)

[2] P. Heckbert, “Color Image Quantization for Frame Buffer Display,” Computer Graphics, vol. 16,
no. 3,1982. (Proceedings ACM SIGGRAPH, 1982)

[3] N. Texier, W. Johnston, D. Robertson, “Encoding Synthetic Animated Images,” LBL-24236,
University of California, Lawrence Berkeley Laboratory, Berkeley, CA, 1987.

[4] T. Welch, “A Technique for High Performance Data Compression,” IEEE Computer, vol. 17,
no. 6, June, 1984.

[5] D. Robertson, "Use of a Distributed Movie Making System for Presentation of Fluid Flow Data,"
San Francisco State University, San Francisco, CA, (Masters Thesis - available as LBL-25274 from
Lawrence Berkeley Laboratory), 1988.

[6] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface Construc­
tion Algorithm SIGGRAPH ’87 Conference Proceedings 21, A (July 1987), 163-169.

April 6 1989 LAWRENCE BERKELEY LABORATORY 3

SCRY_PC_SERVER (L) UNIX Programmer’s Manual SCRY_PC_SERVER (L)

NAME
scry_pc_server - remote procedure call server running on PC server workstation

SYNOPSIS
serv -u|t [-o|v]

DESCRIPTION
Serves incoming remote procedure calls (RPC’s) to display and optionally record images sent over the net­
work. The Sun RPC package calls the remote “program” graphics_dispatch (located in serv.c) based on
information in the header of the incoming RPC call. Cases in graphics_dispatch correspond to remote
procedures. The remote procedure number identifying a particular case is also located in the RPC call
header, which is internal to the Sun RPC package. Routines starting with xdr_ decode incoming informa­
tion from network byte to PC byte order. The type of compression is set by the client, and communicated
to the server as part of the first RPC. For more information on how RPC’s are implemented on the PC, see
Robertson, D. W., W. E. Johnston, D. E. Hall, and Mendel Rosenblum. Video Movie Making Using
Remote Procedure Calls and UNIX IPC, LBL-22767, University of California, Lawrence Berkeley Labora­
tory, Berkeley, CA (1986).

The routines in scrylpcserver and scry/pcrpc must be ftp’d to the PC, and compiled there. Before the client
can run, the server must be invoked on the PC.

OPTIONS
-u selects the UDP protocol

-t selects TCP

One of the above must be selected
-o ready the optical disk for recording
-v ready the VTR for recording

If neither of the above two are invoked then the image is only displayed on the
frame buffer (a preview mode).

FILES
Contained in scrylpcserver.

Makefile
pcrpc .h

start x

servx

commsupt x
framsuptx

framdispx

dtargax

btex

colormap .c
hwdecx

definico .bat

decomp x

vtrx

makes the executable of the server
definitions and declarations

start up server

remote “program”

support routines common to metafile and software frame buffer approaches
support routines for information sent using software frame buffer approach

display and optionally record information sent with software frame buffer approach

modified, special-purpose, TARGA routines
BTC decompression

BTC and color map decompression

communicates, via a file on RAM disk, with 68020 coprocessor which performs
Lempel-Ziv decompression. Only used when color map compression and the TCP
protocol are selected.

copies relevant files onto RAM disk. Called at system startup.

performs Lempel-Ziv decompression (compiled on 68020 coprocessor). See
README.lzw in this directory on how to compile.

videotape driver

March 30 1989 LAWRENCE BERKELEY LABORATORY 4

SCRY_PC_SERVER (L) UNIX Programmer’s Manual SCRY_PC_SERVER (L)

opt.c videodisk driver

The modified Sun RPC code is contained in scry/pcrpc. The PC-DOS names of the files are given in the
left column, the original Sun fde names and descriptions are given in the right column.

Makefile compiles and installs the RPC library.

a.h auth.h - “Authentication interface”.

a unix.h. auth_unix.h - “Protocol for UNIX style authentication parameters for RPC.”

aunprot.c
c.h

authunix_prot.c - “XDR for UNIX style authentication parameters for RPC.”

clnt.h - “Client side remote procedure call interface.” (Some declarations and
definitions also needed by server side.)

nb.c Non-Sun routines. Version of Excelan software used had buggy ntohl and htonl
calls.

non-sun .h Non-Sun include file. Contains hard-wired port number.

p_clnt.c pmap_clnt.c - “Client interface to pmap rpc service” (portmapper unused in this
server implementation).

p clnt.h

p _prot.h
rpc.h

portmap_clnt.h - “Supplies C routines to get to portmap services” (unused).

pmap_prot.h - “Protocol for the local binder service, or pmap” (unused).

“Just includes the many rpc header fdes necessary to do remote procedure calling”
(path names modified).

rpcjnsg.h “rpc message definition.”
rpc _prot.c “This set of routines implements the rpc message definition, its serializer and some

common rpc utility routines.”
S.C svc.c - “Server-side remote procedure call interface.”
s.h svc.h - “Server-side remote procedure call interface.”

s_aulh.c svc_auth.c - “Server-side rpc authenticator interface.”
s_auth.h svc_auth.h - “Service side of rpc authentication.”

s_authun.c svc_auth_unix.c - “Handles UNIX flavor authentication parameters on the service
side of rpc.”

sjcpx
sjudp.c
time .h

svc_tcp.c - “Server side for TCP/IP based RPC.”

svc_udp.c - “Server side for UDP/IP based RPC.”

Non-Sun routine. Stuff needed for Sun RPC that was not in Microsoft <time.h>.
types .h Non-Sun routine. Stuff needed for Sun RPC that was not in Microsoft

<sys\types.h>.
XX xdr.c - “Generic XDR routines implementation.”
x.h xdr.h - “External Data Representation Serialization Routines.”
x arrx xdr_array.c - “Generic XDR routines implementation” (for arrays).
xjnemx xdr_mem.c - “XDR implementation using memory buffers” (used with UDP).
xrec x xdr_rec.c - “Implements TCP/IP based XDR streams with a ’record marking’ layer

above tep (for rpc’s use).”

March 30 1989 LAWRENCE BERKELEY LABORATORY 5

SCRY_PC_SERVER (L) UNIX Programmer’s Manual SCRY_PC_SERVER (L)

AUTHORS
David Robertson, Fritz Renema, Max Rible, Nicole Texier, and James Huang

SEE ALSO
scry_pc_config(l), scry_client(l), scry_pc(l), scry_client.a(3)

March 30 1989 LAWRENCE BERKELEY LABORATORY 6

SCRY_SUN_SERVER (L) UNIX Programmer’s Manual SCRY_SUN_SERVER (L)

NAME
scry_sun_server - window-based remote procedure call server running on a Sun 3 or 4 workstation

SYNOPSIS
serv [—t|u] [-P prog_num] [-f filename] [-w winx winy] [-C ident]

DESCRIPTION
Serves incoming remote procedure calls (RPCs) to display images in a SunView window that are sent from
the Scry client (OS 4.0 is necessary to run the server). This graphics window is created separately from the
text window in which the server is invoked. The image data can be written to a disk file for later use by the
Anima movie preview program. Runs on both a color and a monochrome Sun (care must be taken with the
Scry client with the monochrome Sun server - see scry_gks_prims(3)).
The RPC server calls graphics_dispatch (located in serv.c) based on information in the header of the
incoming RPC call. Cases in graphics_dispatch correspond to supported client procedures. Routines
starting with xdr_ decode incoming network information into the Sun format. The type of compression is
set by the client, and communicated to the server as part of the first RPC.
The server will run indefinitely unless explicitly terminated by the user. To do this, type ctrl-C in the win­
dow in which the server was invoked.

In the case of a Sun eight bit frame buffer with a color lookup table, the managment of the LUT with multi­
ple windows is somewhat tricky. In particular if greater than 128 colors are being used, all of the text win­
dows may go black when the mouse is in a graphics window, and visa versa. The subtleties of LUT
managment can be found in the SunView document.

OPTIONS
-t use the TCP protocol

-u use the UDP protocol
-P set the program number to be used. The use of different program numbers allows several servers

to be active on a particular workstation simultaneously. Each corresponding client must be
invoked with the identical program number (see scry_gks_control.3).

-f Set a filename where data received by the server will be written to. At present, this only works
with the TCP protocol.

-w set the coordinates of the uppermost left comer of the window where the image is to be displayed.

-C sets monochrome (0), or color (1), which is the default.

DEFAULTS
The defaults to the command line arguments are as follows:

1) The protocol used is TCP.
2) The starting point is (0,0).
3) The program number is 4000.
4) The filename is testfile.
5) The type of Sun is color (1).

FILES
The Sun server is located in scry/sunserver

Makefile
makes the executable of the server

sunserv.h
definitions and declarations

start.c start up server

serv.c decides which server routine to call based on information in the header of the incoming RPC call.

April 6 1989 LAWRENCE BERKELEY LABORATORY 7

SCRY_SUN_SERVER (L) UNIX Programmer’s Manual S CRY_SUN_SER VER (L)

colormap.c
BTC and colormap decompression routines

framdispx
load the color lookup table and display the images on the Sun screen as they come in

framsuptx
contains the xdr routines to convert data to the correct format, also writes the data to a file if
specified by the user

Izwdecompx
performs Lempel-Ziv decompression

SEE ALSO
scry_client(l), scry_pc(l), scry_client.a(3), scry_pc_server(l)
Teck-Joo Chua, William Johnston, David Robertson, “Sun Movie Server and An Animation Playback Pro­
gram”, LBL-25991, Lawerence Berkeley Laboratory, Berkeley, CA, 1988.

AUTHORS
Teck-Joo Chua, Max Rible, and David Robertson

April 6 1989 LAWRENCE BERKELEY LABORATORY 8

ANIMA(L) UNIX Programmer’s Manual ANIMA(L)

NAME
anima - animation playback program on a Sun 3 or 4 workstation.

SYNOPSIS
anima [-W PC workstation id] [-w winx winy]

DESCRIPTION
Reads image data from a fde (usually created by the Scry sun server) and allows the user to review the
frames of a movie in forward or reverse order at various speeds, advance or reverse frame by frame, skip to
a particular frame, or capture a frame on disk. (Anima will only run under Sun OS 4.0 and above.)
Since the frames are usually compressed, and therefore not of constant length, the Scry Sun server writes a
table of pointers (to the beginning of each frame) at the end of the movie file. If this table is missing Anima
will create it on the fly, but this will substantially slow down the first pass through the movie.

Only files created using the TCP option on the Scry Sun server are accepted.

After Anima is invoked, two windows will appear on the screen, one a control panel, and the other the win­
dow in which the image(s) will appear. These behave like ordinary Sun windows, e.g. they can be moved.
Pushing the quit button causes the windows to be destroyed and Anima to exit.

To read a file, type its name in after "File:" and then click the left button on "get". (All control features
require the use of the left button.) If the caret is not in the file field, click the left button with the cursor to
the right of "File:". If a mistake is made, use the Sun "Delete" key to backspace over a character. To save
an image, follow the same procedure, pushing the "save" rather than the "get” button.

To save a file on disk in Postscript form, follow the same procedure, but push the "lowpost" or "highpost"
button, "lowpost" generates a lower resolution (60 dpi) image when the resulting file is sent to a printer,
"highpost" generates an 100 dpi image.
Entering a number in the frame field and then pushing the "go to" button will display the image associated
with that number. The current frame number and the total number of frames in the sequence are displayed
after the ”#:" sign. "< step" will step to the previous frame if one is not at the beginning of the sequence,
and "> step” will step to the next frame if not at the end of the sequence. " > " instructs Anima to move
forward through a sequence of images, and " < " instructs it to move backward, "full" instructs Anima
to display images at full speed (several frames per second on a Sun 4/110). Alternatively, one can click on
the slider to control the speed (10 is the same as "full" speed.) To stop at a particular frame and/or to clear
all the text fields, click the "stop" button.

If a PC animation server was selected by the -W name option, a sequence of stored images can be sent to
the PC to be previewed or recorded. Type in the starting number in the "Frame:" field and the ending
frame number in the "End:” field. (<CR> will move the cursor from one field to the next, as will clicking
the left button in the appropriate field.) If one is only interested in previewing, then click the "prevu" button
and the images will be displayed on the PC workstation. As they are sent, the frame number in the "#:"
field will be incremented, but the image will not be updated on the Sun side. The -W option can also be
used to send images to another Sun server on the network by specifying that server’s name on the com­
mand line and using the "prevu" button as above.

To record, type in the starting and ending frame numbers as before. In addition, type in the starting video­
disk or videotape frame in the "Video:" field. If the server is equipped with a videodisk, typing in a nega­
tive number in the "Video:” field causes the videodisk to seek to the first frame of a block of frames long
enough to hold the sequence of images. If recording on videotape, it will also be necessary to type in the
number of copies per image in the "Copies" field. Now press the "record” button, and the images will be
recorded.

OPTIONS
-W Symbolic name of PC workstation which will record sequence(s) of frames on videotape or video­

disk

-w set the coordinates of the uppermost left comer of the window where the image is to be displayed.

April 6 1989 LAWRENCE BERKELEY LABORATORY 9

ANIMA (L) UNIX Programmer’s Manual ANIMA (L)

DEFAULTS
The defaults to the command line arguments are as follows:

1) The starting point is (0,0).

FILES
Anima is located in scry!anima

Makefile
makes the executable of the server

anima. h definitions and declarations
anima.c starts up the animation playback program

colormap.c
BTC and colormap decompression routines

framdispx
load the color lookup table and display the images on the Sun screen as they come in

framsuptx
contains the xdr routines to convert data to the correct format. Also writes the data to a file if
specified by the user.

headerx
creates the header array if it is not present in the file

lzw_decomp.c
performs Lempel-Ziv decompression

procs.c routines to handle panel set-up and buttons

targato _ps.c
compressed TARGA to Postscript conversion

pshalftone.pro
public domain Postscript header

airfield.image
test Anima file

SEE ALSO
scry(L),scry_client(L),scry_sun_server(3)
Teck-Joo Chua, William Johnston, David Robertson, “Sun Movie Server and An Animation Playback Pro­
gram”, LBL-25991, Lawerence Berkeley Laboratory, Berkeley, CA, 1988.

AUTHORS
Teck-Joo Chua, Max Rible, and David Robertson

April 6 1989 LAWRENCE BERKELEY LABORATORY 10

SCRY_PC_CONFIG (L) UNIX Programmer’s Manual SCRY_PC_CONFIG (L)

NAME
scry_pc - PC video animation workstation configuration

DESCRIPTION
The components of the PC server workstations are an IBM PC “compatible”, equipped with an Ethernet
board (Excelan, EXOS 205) and 4BSD socket library, an AT&T TARGA, 16-bit frame buffer (TARGA-
16) and associated software, and a recording device. There are two workstations presently in use at LBL.
Workstation #2 is equipped with a videotape recorder (Sony, SLO-383) and an animation controller (Dia-
Quest, DQ-400). Workstation #1 has a video optical disk recorder (Panasonic, TQ-2026F) and a 68020
coprocessor (Definicon, 750/1), to aid in decompression of images sent over the network.

Substitutions can be made for the hardware components of the PC server workstation with appropriate
changes to scry/pcrpc and scrylpcserver. Substitute routines of similar functionality in vrr.c and/or opt.c if
different recording units are used. The rest of the server is recording-device independent. If a different
frame buffer is used, locate all the places where the “TARGA” string occurs in a comment and replace the
code immediately following the comment. If the Definicon coprocessor is not used, modify the code that
follows after if (buf.lempel_ziv) in the routine display_tcp() in framdisp.c. If the Microsoft 4.0 or 5.0 C
compiler is not used, you are on your own.
The potentially most difficult modification to make to the code occurs if the PC server workstation has an
Ethernet board other than an Excelan. If the Ethernet interface does not provide some version of sockets,
forget it. Sun RPC is built on top of sockets. The include files with path names starting with \etc\libskt will
have to be replaced; these are Excelan specific.

Two different strategies can be taken to modify the Sun RPC routines to work with different Ethernet
boards. Every change made to the publicly distributed Sun RPC library (version 1.1), to make it work with
the Excelan socket library and the PC, has been marked by a comment in front of it containing the string
“CHANGERPC”. These are the places most likely to need modification when using a different Ethernet
board and software. Alternatively, the server portion of the original public-domain Sun RPC routines can
be used as a starting point. Although we have not tried it yet, we believe that the Sun PC-NFS development
environment would work perfectly well as an alternative.

AUTHORS
Bill Johnston, David Robertson, Fritz Renema, and Max Rible

SEE ALSO
scry clientOL), scry_client.a(3), scry_pc_server(3), scry_sun_server(3)

D. Robertson, W. Johnston, D. Hall, and M. Rosenblum. “Video Movie Making Using Remote Procedure
Calls and UNIX IPC”, LBL-22767, University of California, Lawrence Berkeley Laboratory, Berkeley,
CA (1986).

W. Johnston, D. Hall, F. Renema, D. Robertson, “Principles and Techniques for Low Cost Computer
Generated Video Movies,” LBL-22330, University of California, Lawrence Berkeley Laboratory,
Berkeley, CA, 1987.

September 1 1988 LAWRENCE BERKELEY LABORATORY 11

GREYRGB(L) UNIX Programmer’s Manual GREYRGB(L)

NAME
greyrgb - demonstrates use of low-level client

SYNOPSIS
greyrgb { -ww workstation -wp server program number } [options]

DESCRIPTION
greyrgb demonstrates the use of the low-level client, using an image from the University of Southern Cali­
fornia Image Data Base [1], in scry/samples/data/usc.2.1.1, as an example. If MAPPED_STYLE is not
defined, the image is read in in TARGA format and can be compressed. Otherwise the image can be read
in as indices into a color map, demonstrating the other image option besides the TARGA format.
The image is binary, but since it is all char’s, it can be used on Sun’s, Cray’s, and Vax’s.

OPTIONS
Options may appear in any order. Later options override previous ones.

-ww hostname
Use hostname to indicate the server that will display the image.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none. This only has an effect if
MAPPED_STYLE is not defined, compr is just a string composed of the first letters of the
protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation. This is the default protocol.

-wu Use UDP network protocol to contact the workstation.

-h Get quick help on all these options without wasting CPU on the nroff program.

AUTHORS
David Robertson and Fritz Renema

SEE ALSO
scry_send_frame(3), scry_sun_server(I), scry_pc_server(l), scry_client(l)

Weber, A. Image Data Base. University of Southern California USCIPI Report 1070. Image Processing
Institute, University of Southern California, University Park, Los Angeles, CA 90089-0272. 1983.

March 29 1989 LAWRENCE BERKELEY LABORATORY 12

TESTC_GKS (L) UNIX Programmer’s Manual TEST_C_GKS (L)

NAME
test_c_gks - tests the 2D GKS package

SYNOPSIS
tcst c gks { -ww workstation -wp server program number } [options]

DESCRIPTION
test_c_gks tests the 2D GKS package by generating and transmitting a sample image. This program is also
provided in Fortran form {scry!samples!test J_gks.f), in which case modifying the appropriate items in the
input file scry!samples!testf.arg will have the same effect as the options below.

OPTIONS
Options may appear in any order. Later options override previous ones.

-ww hostname
Use hostname to display the image.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none. The default is a combina­
tion of BTC and colormap compression, compr is just a string composed of the first letters of the
protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation. This is the default protocol.
-wu Use UDP network protocol to contact the workstation.

-h Get quick help on all these options without wasting CPU on the nroff program.

AUTHORS
David Robertson

SEE ALSO
scry_3D_obj(3), scry_gks_xforms(3)

March 28 1989 LAWRENCE BERKELEY LABORATORY 13

MOLECULES (L) UNIX Programmer’s Manual MOLECULES (L)

NAME
molecules - generates frame from molecular dynamics movie

SYNOPSIS
molecules { -ww workstation -wp server program number } [options]

DESCRIPTION
molecules generates a frame from a molecular dynamics movie. The data (contained in scry/samples!data)
is provided by Larry June of the Chemistry Department of the University of California at Berkeley,
molecules illustrates the use of multiple polygon objects (see scry_3D_obj(3)), the modelling transforma­
tion (see scry_3D_ctm(3)), depth intensity cueing for lines (see scry_3D_render(3)), and the marching
cubes library (see march(l)). The atomic positions are provided in 3 ASCII files, so no data conversion is
necessary for these files. However, spheredat.asc should be converted into binary. Invoke the program
field_to_bin (made by the Makefile in data) without any command-line arguments.

OPTIONS
Options may appear in any order. Later options override previous ones.

-r aPy
The three rotation values a, P, and y, specifying the position of the synthetic camera. The package
will accept floating point numbers; specifications should be in degrees. The program will default
to a rotation of 0,0,0. For further information, read the man page for scry_3D_proj(3).

-ww hostname
Use hostname to indicate the server that will display the image.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none. The default is a combina­
tion of BTC and colormap compression, compr is just a string composed of the first letters of the
protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation. This is the default protocol.

-wu Use UDP network protocol to contact the workstation.

-gg Use Gouraud shading rather than constant shading. The default is constant shading.

-h Get quick help on all these options without wasting CPU on the nroff program.

AUTHORS
Max Rible and David Robertson

SEE ALSO
scry_3D_obj(3), scry_3D_ctm(3), scry_3D_render(3)

March 29 1989 LAWRENCE BERKELEY LABORATORY 14

GRID (L) UNIX Programmer’s Manual GRID(L)

NAME
grid - generates frame from modelling of scattering of helium by hydrogen

SYNOPSIS
grid { -ww workstation -wp server program number } [options]

DESCRIPTION
grid generates a frame from a movie in which the scattering of helium by hydrogen is modelled. The data
(contained in scry!samples!data) is provided by Pascal Pemot of MCSD of the Lawrence Berkeley Labora­
tory. grid illustrates the use of the grid style of polygon object (see scry_3D_obj(3)), and the use of
viewports and the workstation transformation (see scry_gks_xforms(3)). The top surface shows the first
excited electronic state, and the bottom the ground electronic state. The x, y, and connectivity data is con­
tained in gridfileO.asc. Run the program grid_to_bin without any command-line arguments (the program is
made by the Makefile in data), since Scry expects binary files. An ASCII file is provided to avoid machine
dependency.

OPTIONS
Options may appear in any order. Later options override previous ones.

-ww hostname
Use hostname to indicate the server that will display the image.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none. The default is a combina­
tion of BTC and colormap compression, compr is just a string composed of the first letters of the
protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation. This is the default protocol.
-wu Use UDP network protocol to contact the workstation.

-gg Use Gouraud shading rather than constant shading. The default is constant shading.

-h Get quick help on all these options without wasting CPU on the nroff program.

AUTHORS
David Robertson

SEE ALSO
scry_3D_obj(3), scry_gks_xforms(3)

April 7 1989 LAWRENCE BERKELEY LABORATORY 15

WOGGLE(L) UNIX Programmer’s Manual WOGGLE(L)

NAME
woggle - makes movie of rotating object

SYNOPSIS
woggle { -ww workstation -wp program number } [options]

DESCRIPTION
woggle provides a smoothly changing view of an object described by a Mosaic-style polygon file, and
optionally records the sequence of frames generated on videotape or videodisk. Experimenting with
command-line options can shed light on 3D routines (see scry_3D(3)). The “rainbow” effect can be
turned off by defining ONECOLOR in woggle.c, however, it is useful in trying out all options except
Gouraud shading. Regular clipping can be tested by defining NORMAL_CLIP in woggle.c, and prepass
clipping by defining PREPASS_CLIP instead (see scry_3D_proj(3)).
A sample polygon file, scrylsamplesldataltorus.poly.asc, is provided, generated from data produced at New
York University by Charles Peskin and Dave McQueen. Be sure to run the program poly_to_bin (made by
the Makefile in data), as Scry expects binary files. An ASCII file is provided to avoid machine depen­
dency.

The woggle program is also provided in Fortran form (scrylsampleslwogglef.f), in which case modifying
the appropriate items in the input file scry/samples/woggle.arg will have the same effect as the options
below.

OPTIONS
Options may appear in any order. Later options override previous ones.

-i file Polygon input file. Default is a chambered torus.

-r a P y
The three rotation values a, p, and y, specifying the position of the synthetic camera. The package
will accept floating point numbers; specifications should be in degrees. The program will default
to a rotation of 0,0,0. For further information, read the man page for scry_3D_proj(3).

-dr Act Ap Ay
The amount to rotate the object per frame changed. Aa, Ap.and Ay are added to their respective
values given in the -r command.

-ww hostname
Use hostname for display of images and/or recording. The graphics package handles everything
having anything to do with recording and type of device.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none. The default is a combina­
tion of BTC and colormap compression, compr is just a string composed of the first letters of the
protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation. This is the default protocol.

-wu Use UDP network protocol to contact the workstation.

-mr n Begin recording at absolute frame n on the recording device. The default is to simply preview;
there is no other way to enable recording mode.

-ml l Make a movie of length l frames. The program defaults to displaying a single frame.

-gg Use Gouraud shading rather than constant shading. The default is constant shading.
-gs a P type

March 29 1989 LAWRENCE BERKELEY LABORATORY 16

WOGGLE (L) UNIX Programmer’s Manual WOGGLE (L)

Set the light source to the angle specified by a, (5. This follows the same system as -r and -dr.
See scry_3D_render(3). The light source is relative to the viewpoint if type is SRCREL. It is
fixed relative to the object if type is SRCFIXED.

-gc front back
Front face cull set if front = 1. Back face cull set if back = 1.

-grflag
Set right-handed coordinate system if flag is 1, otherwise left-handed.

-h Get quick help on all these options without wasting CPU on the nroff program.

AUTHORS
David Robertson and Max Rible

SEE ALSO
scry_3D(3), scry_3D_proj(3), scry_3D_render(3)

March 29 1989 LAWRENCE BERKELEY LABORATORY 17

SURFMOV (L) UNIX Programmer’s Manual SURFMOV(L)

NAME
surfmov - tesselate and display a dense array of data

SYNOPSIS
surfmov { -ww workstation -i datafile | -c inputfile } [options]

DESCRIPTION
Surfmov is a program designed to produce images or movies of three-dimensional scalar fields. It uses an
implementation of the marching cubes algorithm described by Lorensen and Cline [1]. The program will
take an array of data and tesselate it using triangles. It will then display the file, leaving an intermediate
data file containing the polygon information. Under standard conditions, the intermediate file has a name
of the format “trianglesXXXXXX” with the “XXXXXX” being a unique identifier. This file is by
default placed in /tmp and removed after use. Another directory may be specified for this file if desired.
Further, an explicit filename may be given, in which case the program will not remove it; this allows great
savings of time when merely rotating an object at the same functional value.

The data file’s format is three unsigned long integers l, m, and n, followed by Ixmxn floating-point
numbers. These numbers are made up of l arrays, each of m arrays n floats long. Thus, breaking a box into
columns based on the z dimension, the ordering goes (0,0), (0,1),..., (0,m-l), (1,0),... (1-1,m-1). Examine
the source to writearr.c in the scry!surfmov directory for an example of the data format, (writearr.c must
be compiled with one certain mathematical surface defined, then invoked with “writearr file size”, size
being the dimension used for /, m, and n. Examples are in the Makefile in surfmov.) When this is all
loaded in, the program’s internal representation of it all goes from 0 to l-l, m-1, or n-1 (respectively) in
each dimension. Normally, the program takes the longest dimension in any direction parallel to an axis and
defines a cube of this side length for the 3-D viewing window; it is easy to tell the program minimum and
maximum values and get a result that is scaled in an absolute manner, so any change in size is immediately
apparent.

Warning to Cray users: surfmov uses a large amount of memory. Grid sizes over 50 cubed are not recom­
mended for machines with lesser amounts of memory, especially on a Cray with only 4 megawords of
memory.

OPTIONS
Options may appear in any order. Later options override previous ones.

-i filename
Tesselate the data in filename.

-o outfile
Use outfile for the intermediate file, rather than the standard /tmp/trianglesXXXXXX file. The
intermediate file will not be destroyed; this will save time when simply rotating the object without
changing the surface value.

-v <|> Evaluate the surface at functional value <|). If is not specified, the value 0.0 will be used.
-I valfile

Read surface values (as ASCII text, one value per line) from valfile, matching each given <|> value
with a frame.

-r a P y
The three rotation values a, p, and y, specifying the position of the synthetic camera. The package
will accept floating point numbers; specifications should be in degrees. The program will default
to a rotation of 0,0,0. For further information, read the man page for scry_3D_proj(3).

-dr Aa Ap Ay

April 6 1989 LAWRENCE BERKELEY LABORATORY 18

SURFMOV (L) UNIX Programmer’s Manual SURFMOV (L)

The amount to rotate the object per frame changed. Aa, Ap.and Ay are added to their respective
values given in the -r command.

-dv 8 The amount to change the function value by with each frame. As a default, the value will remain
the same <(> specified by -v. This option is not to be used with the -E option.

-c argfile
Get any or all arguments (as you can specify a great number of them) from the file argfile. These
arguments are overridden by any contradictory command line arguments.

-ww hostname
Use hostname for display of images and/or recording. The graphics package handles everything
having anything to do with recording and type of device.

-wp prognum
Contact the host at the specified program number. This is unnecessary with hosts with one display
screen (like a PC), but is required for those that can specify the program number (like Suns).

-wc compr
Select compression as a combination of Lempel-Ziv compression, BTC compression, colormap
compression, or frame-to-frame differencing; you may also select none, compr is just a string
composed of the first letters of the protocol(s) you wish: /, b, c,f, or n.

-wt Use TCP network protocol to contact the workstation.

-wu Use UDP network protocol to contact the workstation.

-W3xXyYzZ
Set the 3-D window coordinates to be from (x, y, z) to (X, Y, Z). This option can be used to set an
absolute bound on the scaling. Normally, the package will attempt to display the object at max­
imum size. However, for movies where the relative size of the object being displayed is impor­
tant, this option can be used to preserve objectivity.

Begin recording at absolute frame n on the recording device. The default is to simply preview;
there is no other way to enable recording mode.

Make a movie of length l frames. The program defaults to displaying a single frame.

The functional value to display at the ending frame. Use of the -me option will cause the pro­
gram to take the starting and ending values and the number of frames in the movie (specified by
-ml) and work out its own 8 value. This option is not to be used with the -dv option.

Use Gouraud shading rather than constant shading. This supplies normals to the graphics package
and is possibly more dependable. The CPU usage doesn’t change much either way. When you’ve
got enough triangles, it becomes academic whether you are using Gouraud or constant shading
anyway. This option is mutually exclusive with the one for turning off interpolation.
Turn off interpolation in the tessellation algorithm. This will turn smooth spheres into Mayan
beach balls and really not save all that much CPU time. This option is mutually exclusive with
Gouraud shading.

-gs a P Set the light source to the angle specified by a, P. This follows the same system as -r and -dr.
See scry_3D_render(3). The light source is always relative to the viewpoint, rather than abso­
lute; this prevents the object from rotating 180 degrees and becoming absolutely black.

-t directory
Use directory for the temporary directory, instead of /tmp. Do not append a slash to the directory
name.

-R filename
Render the file filename assuming that it is a valid LBL BYU data file. The options -mr, -W2,
-W3, and -gs will be the only ones to do anything serious; use of the -v option will put up what­
ever value is given rather than the actual value the data file represents. The -gg option must be

-mr n

-mil

-me Q

-gg

-g»

April 6 1989 LAWRENCE BERKELEY LABORATORY 19

SURFMOV(L) UNIX Programmer’s Manual SURFMOV(L)

given if the file was generated using the -gg option.

-h Get quick help on all these options without wasting CPU on the nroff program.

FILES
/tmp/trianglesXXXXXX

Temporary file

SOURCE
Contained
Makefile
march.h

march.c
array.c

tessel.c

movie.c
data.c
render.c
fixfrag.c

normfrag.c
writearr.c

in the marching/src directory of the distribution:
Makefile for creating surfmov.
contains type declarations, user macros, extern declarations, and program-specific
structures and definitions.
reads the input file, writes out the data, and calls the routines in array.c and tessel.c.
scans the dataset and creates an array of arrays containing information about all
cubes intersecting the given surface.
uses the output from array.c to do the actual tessellations, leaving all data in
memory.
contains the main routine and calls to set up the graphics package,
sets up the arrays for the marching cubes algorithm,
renders the tessellated surfaces.
Code fragment included three times in tesseLc to check for and fix the holes that
sometimes appear in surfaces due to an error in the conception of the marching
cubes algorithm.
Code fragment included in tessel.c to extract the normals from points selected,
generates sample input for surfmov and the march library

SEE ALSO
scry_3D(3),march(l)

[1] Lorensen, William E. and Cline, Harvey E. Marching Cubes: A High Resolution 3D Surface Con­
struction Algorithm SIGGRAPH '87 Conference Proceedings 21,4 (July 1987), 163-169.

DIAGNOSTICS
Most of the time, when surfmov detects an error, it calls perror with the name of some file or array that is
being worked on. There are a few custom diagnostics, mostly errors specific to bad arguments.

Marching at____...
The program is reading in the data file and tessellating at the surface value given. No newline should
appear.

____triangles. Rendering...
Control has been transferred to the SCRY graphics package. Again, no newline should appear.

Frame rendered.
The rendered frame has been sent to the specified host.

Did___triangles out of___ ???
The number of predicted triangles is different from the number of triangles that have been tessellated.
Check to make sure that array.c and tessel.c have the same compilation date; if one has been set up with
PARANOIA defined and the other hasn’t, this error is likely to occur.

April 6 1989 LAWRENCE BERKELEY LABORATORY 20

SURFMOV(L) UNIX Programmer’s Manual SURFMOV(L)

AUTHORS
Max Rible and David Robertson (max@csam.lbl.gov, davidr@csam.lbl.gov)

BUGS
In a special, well documented case, the marching cubes algorithm will create quadrilateral holes in a sur­
face that should be completely filled in. This can be fixed by recompiling with the PARANOIA option
defined in march.h.

April 6 1989 LAWRENCE BERKELEY LABORATORY 21

MARCH(L) UNIX Programmer’s Manual MARCH (L)

NAME
march - tesselate a dense array of data

SYNOPSIS
long march(dx, dy, dz, surface_value, grid, vertex_list, norm_list, conn_list, numverts, numsides)
unsigned long dx, dy, dz;
float ***grid, surface_value, *vertex_list[3], *norm_list[3];
long **conn_list, *numverts, *numsides;

DESCRIPTION
march is a routine designed to tesselate a dense array of data (specified by grid) using an implementation
of the marching cubes algorithm described by Lorensen and Cline [1]. (In this case the algorithm is part of
a separate library instead of being integrated with the rendering package, as in surfmov(l).) The routine
will take the array of data as input and tesselate it at surface_value, leaving the results in the various arrays
and pointers.

grid must be of dx by dy by dz dimensions. When the function returns, * numsides and *numverts will
contain the number of connections and vertices respectively. *conn_list will be the address of the begin­
ning of an array of * numsides length of long integers containing indices into the vertex list, which
describes the connectivity between vertices to produce triangles. It is movie.byu style, with negative
indices indicating the last vertex of a polygon. For an example of this type of edge list, see
scry_3D_obj(3). vertex_list should already be an array of three pointers to floats, and it will be filled with
the x, y, and z coordinates of each vertex. The Oth element of the arrays is blank. Vertices start at the 1st
element because of the movie.byu style of connectivity list. If norm_list is supplied, the marching cubes
will oblige by spending extra CPU time on finding the edge normals to the data, each entry in norm_list
being analogous to one in vertexjist. As with vertex_list, the zeroth element is unused. If you do not
wish or need normals, simply substitute NULL for normjist. march returns the number of triangles
tessellated.

An example call to this routine might be:

float sludge[17][23][42];
long ^connections, num connections, num_corners;
float *corner_coords[3], *corner_norms[3];

/* fill in sludge with something */

march(17, 23,42,3.141592, sludge, corner_coords, corner_norms, Connections,
&num_corners, &num_connections);

Another example of its use is provided in the program molecuIes(l).

Warning to Cray users: this program uses a large amount of memory. Grid sizes over 50 cubed are not
recommended for machines with lesser amounts of memory, especially on a Cray with only 4 megawords
of memory.

SEE ALSO
surfmov(l)

[1] Lorensen, William E. and Cline, Harvey E. Marching Cubes: A High Resolution 3D Surface Con­
struction Algorithm SIGGRAPH ’87 Conference Proceedings 21, 4 (July 1987), 163-169.

April 28 1989 LAWRENCE BERKELEY LABORATORY 22

MARCH (L) UNIX Programmer’s Manual MARCH (L)

BUGS
Normals are not returned based on a consistent ordering of the vertices of polygons. In other words, a
polygon adjacent to another may have its normal incorrectly facing in the opposite direction. The sug­
gested way around this is taken by the rendering package associated with surfmov(l). If a polygon normal
faces in the opposite direction of the eye point, the normal’s sign should be reversed.

AUTHOR
Max Rible (max@csam.lbl.gov)

April 28 1989 LAWRENCE BERKELEY LABORATORY 23

SCRY_3D (3) UNIX Programmer’s Manual SCRY_3D (3)

NAME
SCRY_3D - 3D viewing

DESCRIPTION
3D viewing includes setting up a view from a certain angle of an object made of points, lines, or polygons,
as part of the projection to 2D, and also 3D clipping. The 3D viewing module sits on top of a “GKS”
module modified for 3D (see gks(3)). GKS routines are called to display projected graphics primitives
(points, lines, and polygons). Most of the GKS routines that do not directly display primitives are identical
to those used in the 2D version of Scry.
A separate device driver is used for scan conversion of 3D primitives. As in 2D, scan conversion takes
place into a software frame buffer located in main memory. The hidden surface, or visibility problem, is
solved by using a “z” or “depth” buffer approach. This results in the final image having visual priority
that corresponds to the geometric priority of the scene and eye point. The rendering of polygons addition­
ally entails assignment of color according to some lighting model (calculating the color of a pixel based on
the position of the light source), and shading, which can involve varying the pixel color across the polygon
surface to present the appearance of a curved surface, according to some interpolation model.
A large proportion of the module is an extension of an experimental 3D viewing package for displaying
line drawings, which provides an easy means of changing the view of an object. This experimental pack­
age, SGP the Easy Way (called SEW for short), is a library of subroutines designed to simplify the use of
the Simple Graphics Package (SGP) 3D viewing routines described in Foley and van Dam [1]. It allows
3D graphics applications to use the synthetic camera viewing provided by SGP, without having to deter­
mine and provide complex viewing parameters. An easier, more intuitive method of specifying views is
used in SEW. There are also routines to assist in scaling and centering the object(s) being viewed.

The experimental package is coded in Fortran. User-level C routines are provided to make it easier to
access Fortran routines from within C. For example, these C routines make sure that each argument is
passed by reference to Fortran. Additions to the package were made both in C and Fortran. The majority
of the additions allow rendering of 3D polygons. The 3D viewing module can also be accessed from
within Fortran. The Fortran routines have different names; corresponding C and Fortran routines are iden­
tified in the manual entries listed below.

scry_3D_controI(3) describes routines for opening and closing 3D viewing, and setting defaults.

scry_3D_ctm(3) describes routines performing modelling transformations.

scry_3D_obj(3) describes routines handling databases containing objects made up of 3D polygons.

scry_3D_proj(3) describes the SGP, and the alternative SEW manner of projection from 3D to 2D. It also
describes the routines performing 3D clipping.

scry_3D_render(3) describes routines that display graphics primitives; set the light source and type of
shading in the case of polygons; and set the type of depth intensity cueing in the case of points and poly­
lines.

If it is still unclear how a particular routine works after reading a manual entry, refer to the woggle(l) sam­
ple program, and experiment with the command-line option that sets the arguments of that routine. This
might be useful, for example, to see the interaction of Serthand and Sesetparallel (see scry_3D_proj(3)).

The purpose of Scry is to provide a means for exploratory graphics, where it is often unknown precisely
what the visual output will look like. An example would be the output of the marching cubes algorithm [2]
(see surfmov(l)). Another important goal is to make Scry as easy to use as possible. Thus the 3D render­
ing is intended to be close to the minimal implementation that will enable the user to see what is going on
with his or her modelling. No attempt at state-of-the-art realism is made.

All of the rendering is done in software. On the one hand, this means that it is not close to real time. On
the other hand. Scry can run on machines such as Grays and Vaxen without intrinsic support for graphics,
and the images, placed in the software frame buffer, shipped to servers (possibly distant) which can display
the image and record them on disk, videotape, or videodisk. Speed in rendering is also not as critical where
the time spent in modelling dominates, and where Scry is being used to occasionally check on the progress

March 13 1989 LAWRENCE BERKELEY LABORATORY 24

SCRY_3D (3) UNIX Programmer’s Manual SCRY_3D (3)

of the modelling, to make sure that a mistake in the algorithm used in the simulation has not been made.
FILES

Contained in scry/view3d:

Makefile

3d.h
3df.h

3 dint.h

adjnct3d.c
ctm.c

ctofor.c
errhnd.c

fortocx

normals.c
polyobj.c
scaling.c
seprimt.f

seuser.f

sewint.f
sgclip.f
sgprojtS

sgusint.f
uvn.f

Makefile for creating Ubview3d.a, the 3D viewing library. The installation of this
library will have to be modified for your site.

user declarations and definitions.

same, but for Fortran user interface.

internal declarations and definitions for C portion.
sets up polygon clipping and depth intensity cueing

modelling transformation (translation only).

interface to Fortran routines if user interface uses C.

handles error messages.

interface to C routines if user interface uses Fortran.

handles calculation of polygon normals and sets up for Gouraud shading.
routines having to do with handling polygon objects.

scaling and centering routines, i.e. 3D world window and the view volume.

handles 3D viewing of primitives.

various SEW user-level routines.

internal SEW support routines.
Cohen-Sutherland clipping,

parallel projection.

SGP routines that were formerly user-level,
handles setting up scaling of view volume.

SEE ALSO
gks(3), scry_3D_control(3), scry_3D_obj(3), scry_3D_ctm(3), scry_3D_proj(3), scry_3D_render(3),
woggle(l)

[1] Foley, J. D., and A. van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley Pub­
lishing Company, Reading, MA. 1982.

[2] Lorensen, W. E. and H. E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algo­
rithm SIGGRAPH ’87 Conference Proceedings 21,4 (July 1987), 163-169.

AUTHORS
David Robertson and BJ Wishinsky

March 13 1989 LAWRENCE BERKELEY LABORATORY 25

SCRY_3D_C0NTR0L (3) UNIX Programmer’s Manual SCRY_3D_CONTROL (3)

NAME
SCRY 3D_CONTROL - 3D module control

SYNOPSIS
c Fortran

#include “3d.h’ INCLUDE ’3d.h

Seopensew(errind)
int errind;

CALL seinit(errind)
INTEGER errind

SesetdefaultsO CALL sedefsQ

SeclosesewQ CALL sefin()

DESCRIPTION
Only the C names are given for the following SEW routines. See the table above for their corresponding
names when called from Fortran.
Seopensew prepares the SEW package for use, setting defaults and allocating storage, among other things.
If errind is NOREPORT, no errors in SEW’s execution are reported. (Error messages may arise from
other sources, i.e. the low-level client.) If it is REPORT_ERRORS, error messages are written to standard
output. If an error is fatal, a message is printed and the program exits. If the error is non-fatal, a warning
message is printed. After 20 warning messages, no more are printed. The default is NOREPORT.

Sesetdefaults resets all options to the defaults. The default for each option is listed after the manual entry
for the routine that sets it.

Seclosesew closes the SEW package and deallocates storage.

SEE ALSO
scry_3D(3)

March 16 1989 LAWRENCE BERKELEY LABORATORY 26

SCRY_3D_CTM (3) UNIX Programmer’s Manual SCRY_3D_CTM (3)

NAME
SCRY_3D_CTM - modelling transformations

SYNOPSIS
c Fortran

#include “3d.h” INCLUDE ’3d.h’

ctm_set(flag)
int Bag;

CALL cset(flag)
INTEGER Bag

ctm_on_read(flag) CALL conread()

ctm_set_abs(matrix)
double matrix[4][4];

CALL csetabs(matrix)
DOUBLE PRECISION matrix(4,4)

ctm_trans_abs(x,y,z)
double x,y,z;

CALL ctrnabs(x,y,z)
DOUBLE PRECISION x,y,z

ctm_trans_rel(x,y,z)
double x,y,z;

CALL ctrnrel(x,y,z)
DOUBLE PRECISION x, y, z

DESCRIPTION
Only the C names are given for the following Sew routines. See the table above for their corresponding
names when called from Fortran.

These routines implement a 3D version of a portion of the CTM package described in Chapter 9 of Foley
and van Dam [1], along with some additions. Calling the appropriate CTM routines allows an instance
object described in master coordinates to be placed at various locations within the world coordinate system.
Multiplication by the CTM (current transformation matrix) transforms master coordinates to world coordi­
nates, which are then passed through the rest of the SEW rendering package. Scaling and rotation of
objects in master coordinates are features that will be added in a later version of Scry.

ctm_set instructs SEW to multiply coordinates by the CTM if flag is ON, and to stop doing so if flag is
OFF. The default is OFF. When ON is set, any coordinates passed to Sew, and not just those of primi­
tives, for example those passed to Seset3Dwindow, Sesetzrange, etc., are treated as master coordinates.

ctm_on_read(ON) instructs SEW to multiply coordinates of a polygon object by the CTM before placing
them in the arrays describing that object. The default is OFF. This routine is included to provide for cases
where the CTM only needs to be applied once, instead of for each projection (as in a sequence of images
showing rotation of an object). ctm_set(ON) should not be used in this situation.

ctm_set_abs sets the CTM matrix to the given matrix. The default matrix is the identity matrix, ctm set
must have been called with ON beforehand for this call to have effect.

ctm_trans_abs sets the CTM matrix to a particular translation matrix using x, y, and z. The default trans­
lation is x=0, y=0, 7.-0. ctm_set must have been called with ON beforehand for this call to have effect.

ctm_trans_rel premultiplies the CTM matrix by the particular translation matrix set up using x, y, and z.
ctm_set must have been called with ON beforehand for this call to have effect.

SEE ALSO
scry_3D(3)

[1] Foley, J. D., and A. van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley Pub­
lishing Company, Reading, MA. 1982.

March 26 1989 LAWRENCE BERKELEY LABORATORY 27

SCRY_3D_PR0J (3) UNIX Programmer’s Manual SCRY_3D_PROJ (3)

NAME
SCRY_3D_PROJ - 3D to 2D projection

SYNOPSIS
C

#include “3d.h”

Sesetparallel(alpha,beta,gamma)
double alpha,beta,gamma;

Sestartuvncal(opt)
int opt;

Seuvncal(x,y,z,n)
double x[],y[],z[];
int n;

Secloseuvncal(center,vxn,vxx,
vyn,vyx,vzn,vzx)

int center;
double *vxn,*vxx,*vyn,*vyx;
double *vzn,*vzx;

Seset3Dwindow(xmn,xmx,ymn,ymx,
zmn,zmx)

double xmn,xmx,ymn,ymx;
double zmn,zmx;

Serthand(hand)
int hand;

Sesetclip(type,back,front,side)
int type,back,frontside;

Sesetviewvolume(xmn,xmx,ymn,ymx
zmn,zmx)

double xmn^mx,ymn,ymx;
double zmn,zmx

Fortran

INCLUDE ’3d.h’

CALL separal(alpha,beta,gamma)
DOUBLE PRECISION alpha,beta,gamma

CALL seuvnon(opt)
INTEGER opt

CALL seuvncl(x,y,z,n)
DOUBLE PRECISION x(n),y(n),z(n)
INTEGER n

CALL seuvnof(center,vxn,vxx,
vyn,vyx,vzn,vzx)

INTEGER center
DOUBLE PRECISION vxn,vxx,vyn,vyx
DOUBLE PRECISION vzn,vzx

CALL sewn3(xmn,xmx,ymn,ymx,
zmn,zmx)

DOUBLE PRECISION xmn,xmx,ymn,ymx
DOUBLE PRECISION zmn,zmx

CALL serset(hand)
INTEGER hand

CALL seclip(type,back,frontside)
INTEGER type,back,frontside

CALL sevwvol(xmn,xmx,ymn,ymx
zmn,zmx)

DOUBLE PRECISION xmn,xmx,ymn,ymx
DOUBLE PRECISION zmn,zmx

DESCRIPTION
As mentioned in scry_3D(3), “SEW” stands for “SGP the Easy Way”. The main simplification has to do
with the manner of setting the projection. (Much of the following is lifted from Wishinsky, BJ. A Simpli­
fied Interface for SIGGRAPH Core Viewing. LBL-25038, University of California, Lawrence Berkeley
Laboratory, Berkeley, CA. 1987.)
The hardest thing to do in SGP is the preparation of the viewing parameters. In SGP a view is defined by a
view reference point and a set of vectors. Calculating the vectors that will generate a given view is some­
times a difficult proposition. In SEW, a projection is defined by revolving the synthetic camera around the
scene. No vectors need be calculated.
The following is a description of defining a projection in general, and how it is performed in SGP. In order
to create a two-dimensional image from three-dimensional data, that data must be projected onto a plane,
called the projection plane or view plane. If you follow an imaginary line from each three-dimensional
point through the view plane, the point at which the line intersects the view plane is the projection of that

March 15 1989 LAWRENCE BERKELEY LABORATORY 28

SCRY_3D_PR0J (3) UNIX Programmer’s Manual SCRY_3D_PROJ (3)

point. The imaginary line is called a projection ray or projector.
In a parallel projection, the projectors through all the data points are parallel to each other. A parallel pro­
jection is specified with a vector called the direction of projection (DOP), which gives the direction of the
projectors.
In order to restrict the volume of 3-space that is to be projected, a view plane window must also be speci­
fied, a rectangular region of a view plane which together with the DOP defines the sides of a volume. The
window is specified in the u,v coordinates of the view plane. The addition of front and back “clipping
planes” gives rise to a six-sided volume, each side of which may be used for clipping (limiting) the 3-
dimensional space to be viewed.
Suppose it is desired to view the data for a three-dimensional object from several different angles, for
example, from the front, top and side. There are two ways to think of these different views. One is that the
object is moving, viewed from some fixed location. The other is that the object is fixed and you move
around it to see the differing views. These two methods are equivalent, that is, exactly the same views can
be obtained either way.
SGP uses the second method, which is called synthetic camera viewing. The view plane can be imagined
as the film in a camera, and the camera can be moved whenever a different view is desired. The view
definition routines in SGP allow the user to specify the location of the camera by changing any of three
view parameters:

the view reference point (VRP)
the view plane normal (VPN)
the view up vector (VUP).

The view reference point (VRP) may be thought of as the “center of attention”. All other view parameters
are relative to the VRP, which is generally (but not necessarily) one of the data points being plotted. This
is the point about which the view is rotated. The projection of this point will be the origin of the view
plane’s u,v coordinate system.
The view plane normal (VPN) is a vector perpendicular to the view plane, or the film in the camera.
Together, the VPN and VRP define the view plane. The view plane normal can be imagined as a string
attached to the view reference point on the film, and coming out of the camera to point at the scene being
viewed.

Now imagine holding the string fixed and rotating the camera about the string. As the camera is rotated
about the string, the view will rotate in the view plane, changing which part of the scene points up. This
angle of rotation is indicated by the view up vector (VUP). The view up vector can be thought of as an
arrow from the view reference point in the view up direction. To set this portion of the view, look through
the camera and rotate the camera until its “up” corresponds with the view up vector. The view up vector
determines the orientation of the view plane’s u,v coordinate system.

In SGP four calls are necessary to set up the projection. Calls are made to set the view reference point, set
the view up vector, set the view plane normal, and set the DOP.

In SEW, only one call is needed to set the projection. Sesetparallel defines a 3D parallel projection based
on the movement of a synthetic camera about the objects) being plotted. (Only the C names are given for
this and following SEW routines. See the table above for their corresponding names when called from For­
tran.) It is important to remember that the input parameters define the movement of the CAMERA, not the
movement of the scene being viewed. The view reference point (VRP) is set to the center of the scene in
world coordinates, determined from the results of Seset3Dwindow. The direction of projection (DOP) is
set to equal the VPN, providing an orthographic projection. The setting of the VPN is determined accord­
ing to a (latitude,longitude) system. One end of the VPN is anchored on the VRP, and the other is set as if
the camere were placed on a globe surrounding the scene, alpha represents the latitude, and beta
represents the longitude. Zero degrees longitude is at the front of the scene in world coordinates. It should
be noted that less predictable results will be obtained if alpha is greater than 90 degrees or less than -90

March 15 1989 LAWRENCE BERKELEY LABORATORY 29

SCRY_3D_PROJ (3) UNIX Programmer’s Manual SCRY_3D_PROJ(3)

degrees, gamma determines the tilt of the camera (of the view plane). The VUP is set as a unit vector
(0.0,1.0,0.0) that has been rotated according to alpha and beta, and then by gamma.

The angles alpha, beta, and gamma are relative to the default view, which is an orthographic parallel pro­
jection from the front. Multiple calls to Sesetparallel are not cumulative; for every call the view is re­
calculated relative to the default. The default alpha, beta, and gamma is (0,0,0).

The SGP routines are no longer available because of the difficulty in specifying a view with vectors, espe­
cially a sequence of views resulting in a smooth rotation. For example, what orientation of the camera is
set by a view up vector of (0.0,1.0,1.0)?
In the original SEW implementation, the perspective projection was available as well. In this modified ver­
sion, only the parallel projection is available. SEW is intended to be used for exploratory graphics in
which the positions of objects in a scene may not be known. In such a situation it is more likely that
undesired results will occur with the perspective projection, e.g. if the center of projection is set wrong, the
result will be garbage.
Another operation that is sometimes awkward in SGP is the definition of the view plane window. Often it
is not certain in what range of u,v coordinates the projected image will appear, and part of the scene may
be inadvertantly clipped. The following three routines go through the calculations of projection and return
the coordinates of a view plane window that will display the complete scene, with the option of being cen­
tered, along with the range of z values in view volume coordinates.
The following trio of routines are used to find the minimum and maximum x, y, and z coordinates in the
view volume coordinate system (see above), given set(s) of graphics primitives - points, lines, and
polygon objects.
Sestartuvncal indicates that one or more sets of coordinate data are ready to be accepted. If opt is set to
SINGLE_FRAME, the minima and maxima are found for a particular setting of the synthetic camera. In
this case, Sestartuvncal must be called after the projection has been set up with Sesetparallel. If opt is set
to ANIMATION, the minima and maxima are found for all settings of the synthetic camera’s orientation
relative to the scene in world coordinates. In this case, Sestartuvncal should be called before setting the
projection with Sesetparallel.

Each set of coordinate data is then passed to Seuvncal. n indicates the number of data points in the set, and
can be as few as one. The minima and maxima resulting from a particular polygon object, obtained with
Sevpw_obj, can be compared with these results to find the overall minima and maxima.

A call to Secloseuvncal indicates that all data has been submitted, and the minimum and maximum x, y,
and z view volume coordinates returned. If center is set to 1, the x and y minima and maxima are
returned, centered. The default minima and maxima bound the unit cube.

Seset3Dwindow informs SEW of the minimum and maximum x, y, and z world coordinates. This call
should be performed before Sesetparallel, which sets the view reference point to the center of the world
window, and before Sesetviewvolume if using object-oriented clipping. The default minima and maxima
bound a unit cube in world coordinates.

Serthand sets world coordinates to be right- (Serthand(ON)) or left-handed (Serthand(OFF)). 3D coor­
dinates that have been projected to the view plane are considered to be left-handed, that is, the positive z-
axis points away from the synthetic camera (i.e., into the display). It is usual to consider that world coordi­
nates are right-handed and therefore the z-coordinates would be negated for projection. The default system
is right-handed. It is necessary to set up the handedness of the coordinate system before calling Seset-
lightsrc (see scry_3D_render(3)) since that call depends on the handedness of the system. Toggling Sert­
hand also has the effect of changing the (latitude,longitude,tilt) system described above so that positive
changes in angle are turned to negative, and vice versa.

Sesetclip sets side, front, and back clipping on or off, i.e. Sesetclip(type,OFF,ON,OFF) sets only front
clipping on. type specifies view-oriented or object-oriented front clipping. View-oriented clipping, where
type is set to NORMAL, refers to clipping against the sides of the view volume. The default is the same
as specifying Sesetclip(NORMAL,OFF,OFF,OFF). If a vertex of a primitive goes outside the bounds of

March 15 1989 LAWRENCE BERKELEY LABORATORY 30

SCRY_3D_PROJ (3) UNIX Programmer’s Manual SCRY_3D_PROJ (3)

the software frame buffer, and side clipping is not set, that primitive will be thrown away. This can result
in a jagged appearance at the edge of the screen, especially with polygons.
In object-oriented clipping, front clipping is performed against a plane parallel to the front of the scene in
world coordinates. In other words, the same portions of objects are always clipped. A prepass (with type
set to DOFIXED) is made through all polygon objects (Sedraw obj is called for each object). Ordinary
viewing clipping is used at (0,0,0) rotation. The prepass identifies all polygons that are partially or fully
clipped, using the Cohen-Sutherland clipping algorithm on their edges. It is not necessary for point and
line primitives. After the prepass, type is set to USEFIXED, e.g. Sesetclip(USEFIXED,OFF,ON,OFF).
Sedraw_obj is called for each object again. During scan conversion, each pixel of polygons identified as
partially clipped is checked for its relation to the clipping plane. If it is in front, it does not overwrite the
pixel location in the frame or z buffer.

Sesetviewvolume has the purposes of setting the side, front, and back of the view volume, i.e. the clipping
planes, and scaling the scene so that it just fills the screen if the values returned by Secloseuvncal are used.
To clip part of the scene use a smaller range of coordinates than those returned by Secloseuvncal, and use
Sesetclip. To make the scene smaller, use Gsetviewport (see scry_gks_xforms(3)). The default view
volume is the unit cube.

SEE ALSO
scry_3D(3), scry_gks_xforms(3)

BUGS
1. It is assumed that a polygon will only intersect one clipping plane. In exceptional cases, as where

a polygon intersects both a side plane and the front clipping plane, only one clipping test is per­
formed during scan conversion. In the aforementioned case, side clipping but not front clipping is
performed. The result will be a jagged edge.

2. The view volume that will result in an exact filling of the screen is not always calculated correctly
by Seuvncal, but in the cases tested it has always been close.

March 15 1989 LAWRENCE BERKELEY LABORATORY 31

SCRY_3D_OBJ (3) UNIX Programmer’s Manual SCRY_3D_OBJ (3)

NAME
SCRY_3D_OBJ - 3D polygon database handling

SYNOPSIS
C Fortran

#include “3d.h”

Seread_obj(flIename,objnum)
char * filename;
int objnum;

Sedraw_obj(objnum,func)
int objnum;
int *func();

Sedestroy_obj(objnum)
int objnum;

Seinqpolys_obj(objnum,numpolys)
int objnum,*numpolys;

Sewind_obj(objnum,xmn,xmx,
ymn,ymx,zmn,zmx)

int objnum;
double *xmn,*xmx,*ymn,*ymx;
double *zmn,*zmx;

Seuvn_obj(objnum,opt,center,
xmn^mx,ymn,ymx,zmn,zmx)

int objnum,opt,center;
double *xmn,*xmx,*ymn,*ymx;
double *zmn,*zmx;

INCLUDE ’3d.h’

CALL seread(filename,objnum)
CHARACTER filename+MAXCHAR
INTEGER objnum

CALL sedraw(objnum)
INTEGER objnum

CALL sedstry(objnum)
INTEGER objnum

CALL seinqpo(objnum,numpoIys)
INTEGER objnum,numpolys

CALL sew3obj(objnum,xmn,xmx,
ymn,ymx,zmn,zmx)

INTEGER objnum
DOUBLE PRECISION xmn,xmx,ymn,ymx
DOUBLE PRECISION zmn,zmx

CALL sevpwob(objnum,opt,center,
xmn,xmx,ymn,ymx,zmn,zmx)

INTEGER objnum,opt,center
DOUBLE PRECISION xmn,xmx,ymn,ymx
DOUBLE PRECISION zmn,zmx

Seread_grid(fp,objnum^tart,timescale) not available
FILE *fp;
int objnum^tart;
double *time,scale;
DESCRIPTION

These routines handle rendering of 3D polygons, unless Sepolygon3D is used. The latter option is not
recommended (see scry_3D_render(3)). Polygons are assumed to belong to some coherent object, e.g. a
sphere. Only the object, identified by an object number, is accessible to the user from within Scry — edge
and vertex data are hidden. This brings simplicity at the cost of some flexibility in handling polygon
rendering. For example, all storage allocation, and calculation involved with such as processes as object-
oriented clipping and Gouraud shading are handled internally.
Polygon vertex and edge data are assumed to arise from some modelling process. They must be stored, one
object per file, in a specific format. As used at LBL, the files are usually generated by a separate process.
Some problems have been left to the user to handle, i.e. providing a vertex list with no duplicate vertices,
and an edge list where the vertices in each polygons are provided in a consistent clockwise or counter­
clockwise order.

The specific polygon input format expected is similar to the input format expected by the Mosaic package
of movie.byu. To improve efficiency in reading large data files, Scry polygon object files are read and
written as binary. A binary version of the following file would be rendered as two filled triangles.

March 28 1989 LAWRENCE BERKELEY LABORATORY 32

SCRY_3D_OBJ (3) UNIX Programmer’s Manual SCRY_3D_OBJ (3)

4 6 10 0
0.80000e+02 0.69282e+02 0.40000e+02 0.00000e+00
0.00000e+00 0.40000e+02 0.69282e+02 0.00000e+00
0.13000e+03 0.14000e+03 0.13000e+03 0.14000e+03

4 1 -2 4 2 -3

The first two items on the first line contain the number of vertices in the vertex list and the number of ver­
tices in the edge list. The third item specifies the transparency and should be set to 10. It is provided for
compatibility with a future release of Scry, in which the option of using transparency will be added. The
fourth item informs SEW whether the vertex normals are being supplied by the file. (For example, vertex
normals are supplied by the marching cubes routines if Gouraud shading had been specified - see
march(l).) It should be set to 0 if not, 1 if so. All items on the first line should be written as int’s.

The vertex list is contained in the next two lines, i.e. xl, x2, x3, x4, yl, y2, y3, y4, zl, z2, z3, z4. These
should be written as float’s.
If the vertex normals were supplied, they would be given at this point, i.e. normxl, normx2, etc., normyl,
normy2, etc., normzl, normz2, etc. These should be written as float’s.
The fourth line is the edge list, consisting of indices into the vertex list. These should be written as int’s.
A negative index signals the end of a polygon. Vertices are numbered starling with 1 rather than 0. The
3D scan conversion module connects the last vertex to the first vertex - don’t do that in this file. It is
important that the vertices of all polygons be listed in a consistent counter-clockwise order. Otherwise the
polygon normals, if calculated by Scry, may have the opposite of their correct sign. This can result in an
object being covered with a mesh of light and dark patches.

Only the C names are given for the following routines handling polygon objects. See the table above for
their corresponding names when called from Fortran.

Seread_obj reads in an object from a file, filename should be the character name of the file, not a file
pointer (this choice was made to enable calling this routine from a Fortran program). Seread_obj opens
the file, read-only, and when done, closes it. objnum is the identifier for the object, and should be used to
refer to it in other routines operating on objects.

Sedraw_obj renders all the polygons in the object, func can either be a pointer to a function, or
NOFUNC, indicating no function to be passed. (Note that this option is not available from Fortran.) It is
called as

func(x,y,z,n)

x, y, and z, the centroid of the polygon, and n, the number of vertices, are set internally in Sedraw_obj for
each polygon, func can then rearrange attributes to provide some desired effect, for example, coloring
polygons according to their depth in z_finder in samples/woggle.c. Note that communication of such
things as the range of z coordinates is done by means of external variables. The object model is preserved
because no internal data can be acted upon directly. The default for func is NOFUNC.

Sedestroy_obj deallocates the space for the object, and enables another object to have the particular object
number objnum.

SeinqpoIys_obj returns the number of polygons in object objnum.

Sewind_obj is used to find the minimum and maximum x, y, and z world coordinates, if unknown, of the
object objnum. The minima and maxima may then be used to set the 3D world window, with or without
modification.

Seuvn_obj is used to find the minimum and maximum x, y, and z coordinates in the view volume coordi­
nate system, given a particular polygon object. (See scry_3D_proj(3) for an explanation of the view
volume.) If center is set to 1, the x and y minima and maxima are returned, centered. If opt is set to
SINGLE FRAME, the minima and maxima are found for a particular setting of the synthetic camera. In
this case, Seuvn obj must be called after the projection has been set up with Sesetparallel. If opt is set to

March 28 1989 LAWRENCE BERKELEY LABORATORY 33

SCRY_3D_OBJ (3) UNIX Programmer’s Manual SCRY_3D_OB J (3)

ANIMATION, the minima and maxima are found for all settings of the synthetic camera’s orientation
relative to the scene in world coordinates. In this case, Seuvn_obj should be called before setting the pro­
jection with Sesetparallel. The output of Seuvn_obj can be compared to that of Seuvncal if there is more
than one object or there are point and line primitives.
Another form of object can be used when the polygons are arranged in a grid and only the height or eleva­
tion data changes with time. In this case there are two separate object files: one for the x, y, and connec­
tivity data, and one for the elevation data. The first file is exactly like the regular object file, except that
the z vertex data is left out, and there is no provision for storing vertex normals. The second file is in the
form

timeO
zl, z2, z3, etc.
timel
zl, z2, z3, etc.
etc.

where time is a double.
Seread_grid reads the “grid object” data in two steps, with the result being a polygon object that can be
operated on by Sedraw_obj, etc, exactly like a regular polygon object, start indicates to SEW whether the
file pointed to by fp is a x, y, and connectivity file (start should be 0), or a z data file (start should be 1).
scale scales the z data by that amount (before the modelling transformation if ctm_on_read has been
called), objnum is an identifier for the object as before. The time step is returned by Seread grid in
time. See grid(l) for a description of the sample program using this option.

SEE ALSO
scry_3D(3), scry_3D_proj(3), scry_3D_render(3)

BUGS
1. Doesn’t handle concave polygons. If one is encountered, there will either be an erroneous result

or Scry will die horribly.

2. The view volume that will result in an exact filling of the screen is not always calculated correctly
by Seuvn_obj, but in the cases tested it has always been close.

March 28 1989 LAWRENCE BERKELEY LABORATORY 34

SCRY_3D_RENDER (3) UNIX Programmer’s Manual SCRY_3D_RENDER (3)

NAME
SCRY_3D_RENDER - 3D rendering extensions to SEW

SYNOPSIS
c Fortran

#include “3d.h” INCLUDE ’3d.h’

Sepolygon3D(x,y,z,num)
double x[],y[],z[];
int mim;

CALL sepgon3(x,y,z,num)
DOUBLE PRECISION x(foo),y(foo),z(foo)
INTEGER num

Sesetcull(front,back)
int front,back;

CALL sescull(front,back)
INTEGER front,back

Sesetlightsrc(alpha,beta,type)
double alpha,beta;
int type;

CALL seltsrc(alpha,beta,type)
DOUBLE PRECISION alpha,beta
INTEGER type

Sesetshading(type)
int type;

CALL seshade(type)
INTEGER type

Sepoint3D(x,y,z)
double x,y,z;

CALL sept3(x,y,z)
DOUBLE PRECISION x,y,z

Seline3D(x,y,z,num)
double x[],y[],z[];
int num;

CALL seplt3(x,y,z,num)
DOUBLE PRECISION x(foo),y(foo),z(foo)
INTEGER num

Sesetdepth(type)
int type;

CALL sedepth(type)
INTEGER type

Sesetzr ange(zm in ,zmax)
double zmin,zmax;

CALL sezrnge(zmin,zmax)
DOUBLE PRECISION zmin,zmax

DESCRIPTION
Only the C names are given for the following Sew routines. See the table above for their corresponding
names when called from Fortran.

Sepolygon3D renders a convex 3D polygon with n vertices. The 3D scan conversion module connects the
last to the first vertex. Use of this routine is an alternative to using the routines handling polygon data­
bases, described in scry_3D_obj(3). It is provided to be used in situations where greater access to vertex
and edge data is desired, or where the polygon object file format is undesirable, i.e. where there are large
numbers of objects with only a few polygons each. There are drawbacks to using this approach to render­
ing polygons: Gouraud shading and object-oriented clipping are not available. These two options depend
on having all the vertex and edge data for an object available, in which there are no duplicate vertices,
before any polygon rendering is done. This situation occurs with the polygon object approach, but would
be problematic in the case where the data for only one polygon is provided at a time.

Sesetcull sets a front or back-face cull for polygons, i.e. to set a back-face cull, use Sesetcull(OFF,ON). A
cull eliminates all polygons where the angle between the polygon normal and the view plane normal is
negative (back face) or positive (front face). In other words, a back face cull eliminates all polygons that
are normally hidden from the eye point anyway, and a front face cull exposes all hidden polygons. Usually
the former option is much more useful. Culling occurs before any scan conversion or rendering is done,
and can save a great deal of time in displaying an object. A back-face cull should not be used in

March 15 1989 LAWRENCE BERKELEY LABORATORY 35

SCRY_3D_RENDER (3) UNIX Programmer’s Manual SCRY_3D_RENDER (3)

conjunction with clipping, or with objects with holes in them, because in these cases polygons whose nor­
mals face in the opposite direction from the view plane normal are exposed. The default is the same as
specifying Sesetcull(OFF,OFF). See Rogers, Chapter 4 [1] for more information on culls.

Sesetlightsrc sets the location of a white point light source, alpha and beta specify the position of the
light source in a (latitude,longitude) system in the same manner as in the specification of the eye point (see
scry_3D_proj(3)). If type is SRCFIXED, the light source stays in the same relation to the object no
matter what the specification of the eye point. That is, if the light source is at (0,0), and the eye point is
rotated by 180 degrees, only the side hidden from the light source will be visible, and the whole object will
be colored black. If type is SRCREL, the relationship of the light source to the eye point is held constant
as the eye point is moved around the object. Thus if the light source is specified directly in front of the
object at the (0,0) position of the eye point, the object as it appears on the display will still be fully
illuminated at the (180,0) position of the eye point. The default is the same as specifying
Sesetlightsrc(0.0,0.0,SRCREL). See Rogers, Chapter 5 [1] for more information on lighting models.

Sesetshading sets the type of polygon shading. Constant shading (Sesetshading(CONSTANT)) results in
an object having a faceted appearance, unless the size of the polygons in an object are small compared to
the resolution in pixels of the display. All the pixels in a scan-converted polygon are colored the same,
depending on the relation of the polyon normal to the light source. Gouraud shading
(Sesetshading(GOURAUD)) interpolates the color along and between each scan line as a polygon is scan
converted, resulting in a smooth appearance of the object. It is more time consuming than constant shad­
ing, but can result in a more realistic appearance. However, if there are sharp edges within the object, this
implementation of Gouraud shading will eliminate them. The default is constant shading. See Rogers,
Chapter 5 [1] for more information on shading models.
Sepoint3D scan converts a 3D point. Unless the defaults are used, the width should have previously been
set with Gsetptwidth and the color set with Gsetptcolourind (see scry_gks_prims(3)). Depth intensity
cueing is used depending on the Sesetdepth call (see below).

Seline3D scan converts a 3D line using a version of Bresenham’s algorithm. Unless the defaults are used,
the width should have been set with Gsetlinewidth and the color set with Gsetlinecolourind (see
scry_gks_prims(3)). Depth intensity cueing is used depending on the Sesetdepth call (see below).

Sesetdepth sets the type of depth intensity cueing, i.e. NONE, DEPTHDIST, or WORLDDIST. NONE
chooses no depth cueing. DEPTHDIST colors a point or a point on a line “darker” or “lighter” depend­
ing on whether its z value after viewing has been performed is further from or nearer to the front of the
scene (see Foley and van Dam [2] and scry_3D_proj(3)). WORLDDIST colors a point or a point on a
line “darker” or “lighter” depending on its z value in world coordinates. This obviously assumes that
what is desired to be the front of the object in world coordinates is correctly oriented, and may require a
user-performed rotation of points or lines before handing them off to Scry. (A rotation of primitives in
master coordinates may be provided in a future release of Scry — see scry_3D_ctm(3)). The default is
NODIST.

Sesetzrange sets the z range used in depth intensity cueing. If Sesetdepth (WORLDDIST) has been
specified, the color of a point or a point on a line depends on its relative z position to the minimum z world
coordinate value (zmin), divided by the total z range (zmax - zmin). If DEPTHDIST was chosen, the
situation is similar, except that the color is based on the minimum and maximum z values as they have
been transformed by the viewing operation. The default zmin is 0.0 and the default zmax is 1.0.

SEE ALSO
scry_3D(3)

[1] Rogers, D. F. Procedural Elements for Computer Graphics. McGraw-Hill Book Company, New York.
1985.

[2] Foley, J. D., and A. van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley Pub­
lishing Company, Reading, MA. 1982.

March 15 1989 LAWRENCE BERKELEY LABORATORY 36

SCRY_GKS (3) UNIX Programmer’s Manual SCRY_GKS (3)

NAME
scry_gks - device-independent graphics calls libraries

SYNOPSIS
#include “gks.h”

DESCRIPTION
GKS (the Graphical Kernel Standard) provides a device-independent manner of wridng graphics applica­
tions programs. It is described in Enderle, G., K. Kansy, and G. Pfaff. Computer Graphics Programming:
GKS - The Graphics Standard. Springer-Verlag, Berlin. 1984.

The routines in the gks2d.a and gks3d.a libraries are best described as “GKS-like”, rather than as even a
minimal GKS implementation. GKS does not support 3D; 3D graphics primitives have an additional non­
standard z argument for use by the z buffer. The HSV rather than the RGB color model is used. (Algo­
rithms for converting from one color representation to another are provided in getjisv.c and get_rgb.c)
There is really only one device driver (in 2 versions), for scan conversion of 2D or 3D graphics primitives
into a software frame buffer. Several routines included in this library are not standard GKS.
The routines are written in C and have the standard C names (starting with “G”) used in several commer­
cial GKS packages (there is currently no standard C binding). However, the arguments to these routines
are in the Fortran binding form. For those wishing to use this package from within Fortran, interface rou­
tines with Fortran binding names (starting with “g”) are provided that take care of the details of calling C
routines from Fortran. The file gksf.h has been provided for Fortran routines. It can either be included, or
copied into the user’s program at the appropriate place.

As mentioned in scry_client(L), this initial release runs on Sun Unix, VAX Unix, and Cray UNICOS sys­
tems when user routines are called from Fortran. The details of calling C routines from within Fortran are
usually system specific. A later release will allow the use of this package from Fortran on CTSS systems.

Routines common to 2D and 3D GKS include those controlling GKS and the workstation, controlling the
use of color, converting from world to normalized device coordinates, and setting the workstation transfor­
mation. Stricdy 2D graphics primitives (points, lines, and text) are available for the user in the 2D version.
Strictly 3D calls are not user level. They are only made from within the 3D viewing package (see
scry_3D(3)). Besides the 3D graphics primitives (points, lines, and polygons) information relating to
polygon shading, clipping, and the use of depth intensity cueing is routed to the software frame buffer dev­
ice driver for 3D.

FILES
Contained in scry/gks:

Makefile Makefile for creating libgksld.a, the 2D GKS library, and Ubgks3d.a, the 3D GKS
library. The installation of these libraries will have to be modified for your site.
user definitions for GKS

internal declarations and definitions
include file for use from Fortran

generic GKS routines

2D graphics routines

3D graphics routines

Interface allowing 2D Fortran routines to call C routines.

Interface allowing 3D Fortran routines to call C routines,

algorithm to convert from RGB to HSV

algorithm to convert from HSV to RGB

gfa.h

gksint.h

gksf.h
gks.c

gksld.c
gks3d.c
fortoc2d.c
fortoc3d.c

gethsvx

getrgbx

March 13 1989 LAWRENCE BERKELEY LABORATORY 37

SCRY_GKS (3) UNIX Programmer’s Manual SCRY_GKS (3)

AUTHOR
David Robertson

SEE ALSO
scry_3D(3), scry_gks_control(3), scry_gks_xforms(3), scry_gks_prims(3), scry(l), scry client(l),
scry_client.a(3)

BUGS
Virtually no error checking is done. The most common error encountered is attempting to display primi­
tives outside the bounds of the frame buffer through improper setting of windows and viewports.

March 13 1989 LAWRENCE BERKELEY LABORATORY 38

SCRY_GKS_CONTROL (3) UNIX Programmer’s Manual SCRY_GKS_CONTROL (3)

NAME
Gopengks (gopks), Gopenws (gopwk), Gclosews (gclwk), Gclosegks (gclks), Gclearws (gclrwk), Gsetrec-
mode (grectyp), Gsetcopynum (gcpynum), Gsetcompr (gcompr), Gupdatews (gupwk) - GKS and worksta­
tion control routines (alternative names are for use from Fortran)

SYNOPSIS
C Fortran

#include “gks.h”

GopengksO

Gopenws(workid,host,protocol,prognum)
int workid;
char *host;
int protocol;
int prognum;

Gclosews(workid)
int workid;

GclosegksQ

Gsetrecmode(record,length)
int record;
int length;

Gsetcopynum(copynum)
int copynum;

Gsetcompr(compr)
int compr;

G u pdatews(wor kid,r egfl)
int workid;
int regfl;

INCLUDE ’gksf.h’

CALL gopksQ

CALL gopwk(workid,host,protocol,prognum)
INTEGER workid
CHARACTER host*MAXCHAR
INTEGER protocol
INTEGER prognum

CALL gclwk(workid)
INTEGER workid

CALL gclksQ

CALL grectyp(record,length)
INTEGER record
INTEGER length

CALL gcpynum(copynum)
INTEGER copynum

CALL gcompr(compr)
INTEGER compr

CALL guwk(workid,regfl)
INTEGER workid
INTEGER regfl

DESCRIPTION
Only the C names are given for the following GKS routines; routines to be called from Fortran are inter­
face routines that take care of the details of calling C routines from Fortran and then call the corresponding
C-binding routines.

Gopengks prepares the GKS package for use.

Gopenws opens the connection to the Scry server, workid must be FRAMED, corresponding to the only
driver available: a software frame buffer, host is the symbolic name of the server system, or its Internet
address. (If the symbolic name is used, then an entry needs to be set in the system /etc/hosts file to map
this symbolic name into the Internet address of the server system.) protocol can either be UDP or TCP.
Data is sent more slowly using the TCP protocol, but is guaranteed to reach its destination in an error-free
fashion, unlike data sent using the UDP protocol, prognum is an identifier for the particular instance of
the server executing. In the case of the Scry Sun server there can be several servers representing several
different windows on a single Sun. prognum should always be PCPROGRAM for use with the PC
server, which can run only one process at a time.

March 25 1989 LAWRENCE BERKELEY LABORATORY 39

SCRY_GKS_CONTROL (3) UNIX Programmer’s Manual SCRY_GKS_CONTROL (3)

Gclosews closes the connection to the Scry server.

Gclosegks closes GKS (at present this routine does nothing).
Gclearws clears the software frame buffer to the background color.

Gsetrecmode (a non-standard routine) sets the record mode if the PC server is being used. If record is
PREVIEW, images are displayed by the Scry server, but no recording is done. If record is a positive
integer, the server attempts to start recording at the frame identified by that number. Be sure the recording
media does not already have something recorded on the frames starting with record. On the VTR, previ­
ous material will be recorded over. On the videodisk, which is WORM, an error will be generated. If
record is AUTOSEEK, the second argument indicates the number of images in the movie. This only has
an effect if the videodisk is used, and is used to automatically seek to the first place on disk large enough to
hold the movie.

Gsetcopynum (a non-standard routine) sets the number of frames an image will be recorded on. This is
used to change the rate of playback if the recording unit is a VTR. For example, to play back at 10 frames
per second, copynum should be set to 3 (the normal rate is 30 frames per second). This call has no effect
if the recording unit is a videodisk which can play back a recorded sequence at various integral multiples or
fractions of 30 frames per second.

Gsetcompr (a non-standard routine) sets the compression type. The particular compression is chosen by
I’ing (in C) or -i-’ing (in Fortran) the options BTC, COLORMAP, FRAME_FRAME, and
LEMPEL_ZIV. BTC chooses BTC compression, COLORMAP chooses Heckbert’s color map algo­
rithm, FRAME_FRAME chooses frame-to-frame differencing, and LEMPEL_ZIV chooses Lempel-Ziv
compression. (The color map algorithm is described in Heckbert, P., Color image quantization for frame
buffer display, SIGGRAPH 1982 Proceedings, pp. 297-307.) For example, to use BTC compression with a
color map and frame-to frame differencing: BTC | COLORMAP | FRAME_FRAME. Use NONE by
itself if no compression is desired. Lempel-Ziv compression, even if chosen, is only performed if the TCP
transmission protocol was selected with Gopenws.

Not all combinations of compression are implemented, i.e. LEMPEL_ZIV, LEMPEL_ZIV |
FRAME FRAME, FRAME FRAME, COLORMAP | FRAME FRAME, COLORMAP |
LEMPEL ZIV, and COLORMAP | FRAME FRAME | LEMPEL ZIV are not implemented. The Sun
server only understands a subset of compressed images, i.e. only BTC | COLORMAP, BTC | COLOR-
MAP | LEMPEL_ZIV, and COLORMAP. The default (also chosen in case of error) is BTC | COLOR-
MAP.

BTC compression by itself, and any combination of compression with frame-to-frame differencing, is not
available under UNICOS. If these are attempted, the default will be chosen instead.

Gupdatews takes the data in the software frame buffer (optionally) compresses it, and sends it to the server
to be displayed and (optionally) recorded if the PC server is used. Currently regfl has no effect.

SEE ALSO
scry client(l), scry_gks(3), scry_client.a(3), scry_pc_server(I), scry_sun_server(l)
The compression algorithm references may be found in scry_client(l).

March 25 1989 LAWRENCE BERKELEY LABORATORY 40

NAME
Gpoint (gpt), Gpolyline (gpl), Gtext (gtxt), Gsetcolourrep (gscr), Gsetptcolourind (gsptci), Gset-
linecolouurind (gsplci), Gsetpgoncolourind (gspgonci), Gsettextcolourind (gstxtci), Gsetpointwidth
(gsptwsc), Gsetlinewidth (gslwsc) - display graphics primitives (points, lines, and text). Alternative names
are for use from within Fortran.

SYNOPSIS
C Fortran

SCRY_GKS_PRIMS (3) UNIX Programmer’s Manual SCRY_GKS_PRIMS (3)

#include “gks.h” INCLUDE ’gksf.h’

Gpoint(x,y)
double x, y;

CALL gpt(x,y)
REAL x, y

Gpolyline(numpc,y)
int num;
double x[], y[];

CALL gpl(num,x,y)
INTEGER num
DOUBLE PRECISION x(foo), y(foo)

Gtext(ndx,ndy,string)
double ndx, ndy;
char ^string;

CALL gtxt(ndx,ndy ^string)
REAL ndx, ndy
CHARACTER string+MAXCHAR

Gsetcolourrep(wkid,index,hue,sat,val)
int wkid;
int index;
int hue;
double sat, val;

CALL gscr(wkid,index,hue,sat,val)
INTEGER wkid
INTEGER index
INTEGER hue
REAL sat, val

Gsetptcolourind(index)
int index;

CALL gsptci(index)
INTEGER index

Gsetlinecolourind(index)
int index;

CALL gsplci(index)
INTEGER index

Gsetpgoncolourind(index)
int index;

CALL gspgonci(index)
INTEGER index

Gsettextcolourind(index)
int index;

CALL gstxtci(index)
INTEGER index

Gsetptwidth(width)
int width;

CALL gsptwsc(width)
INTEGER width

Gsetlinewidth(width)
int width;

CALL gslwsc(width)
INTEGER width

DESCRIPTION
Only the C names are given for the following GKS routines; routines to be called from Fortran are inter­
face routines that take care of the details of calling C routines from Fortran and then call the corresponding
C-binding routines.

Gpoint (non-standard routine) draws a 2D point at world coordinates (x,y). It is only available with the 2D
version.

March 7 1989 LAWRENCE BERKELEY LABORATORY 41

SCRY_GKS_PRIMS (3) UNIX Programmer’s Manual SCRY_GKS_PRIMS (3)

Gpolyline draws a 2D polyline with num points given by arrays x and y in world coordinates. It is only
available with the 2D version.

Gtext (non-standard routine) draws 2D text string at NDC coordinates (ndx,ndy).

Gsetcolourrep sets an entry at location index in the color table for workstation wkid. The entry is given
in the hue, saturation, value (HSV) color scheme. Color table entry 0 is reserved for the background color.
The default is white. Color table entry 1 is reserved for the foreground color. The default is black. Other
entries may be used to set the point, line, and text colors, unless a monochrome Sun server is used, in
which case only the defaults will work.

Gsetptcolourind (non-standard routine) sets the current point color by setting the current point color index
into the color table. Do not use with a monochrome Sun server.

Gsetlinecolourind sets the current polyline color by setting the current polyline color index into the color
table. Do not use with a monochrome Sun server.

Gsetpgoncolourind (non-standard routine) sets the current polygon color by setting the current polygon
color index into the color table. It has no effect in the 2D version, since a 2D polygon primitive is not
implemented. Do not use with a monochrome Sun server.

Gsettextcolourind (non-standard routine) sets the current text color by setting the current text color index
into the color table. Do not use with a monochrome Sun server.

Gsetptwidth (non-standard routine) sets the current point width in pixels.
Gsetlinewidth sets the current polyline width in pixels.

SEE ALSO
scry_client(l), scry_gks(3), scry_client.a(3)

March 7 1989 LAWRENCE BERKELEY LABORATORY 42

SCRY_GKS_XFORMS (3) UNIX Programmer’s Manual SCRY_GKS_XFORMS (3)

NAME
Gselntran (gselnt), Gsetwindow (gswn), Gsetviewport (gsvp), Gsetwswindow (gswkwn), Gsetwsviewport
(gswkvp), Gsetclip (gsclip), Ginqdisplaysize (gqmds) - GKS coordinate transformations routines (alterna­
tive names are for use from Fortran)

SYNOPSIS
C Fortran

#include “gks.h”

Gselntran(trn)
int trn;

Gsetwindow(trn,xmin,xmax,ymin,ymax)
int trn;
double xmin,xmax,ymin,ymax;

Gsetviewport(trn,xmin,xmax,ymin,ymax)
int trn;
double xminpcmax,ymin,ymax;

Gsetwswindow(wkid,xmin,xmax,ymin,ymax)
int wkid;
double xmin^max,ymin,ymax;

Gsetwsviewport(wkidpcminptmax,ymin,ymax)
int wkid;
double xn)inpcmax,ymin,ymax;

Gsetclip(clipind)
int clipind;

G inqdisplaysize(wkid,xmax,y max)
int wkid;
int xmax, ymax;

INCLUDE ’gksf.h’

CALL gselnt(trn)
INTEGER trn

CALL gswn(trn,xmin,xmax,ymin,ymax)
INTEGER trn
REAL xmin, xmax, ymin, ymax

CALL gsvp(trn,xmin,xmax,ymin,ymax)
INTEGER trn
REAL xmin, xmax, ymin, ymax

CALL gswkwn(wkid,xmin,xmax,ymin,ymax)
INTEGER wkid
REAL xmin, xmax, ymin, ymax

CALL gswkvp(wkid,xmin,xmax,ymin,ymax)
INTEGER wkid
REAL xmin, xmax, ymin, ymax

CALL gsclip(clipind)
INTEGER clipind

CALL gqmds(wkid,xmax,ymax)
INTEGER wkid
INTEGER xmax, ymax

DESCRIPTION
Only the C names are given for the following GKS routines; routines to be called from Fortran are inter­
face routines that take care of the details of calling C routines from Fortran and then call the corresponding
C-binding routines.

See Enderle et al. (referenced in scry_gks2d.a(3)) for details on the coordinate systems used in GKS.

Gselntran selects the normalization transformation, which converts from world coordinates to Normalized
Device Coordinates (NDC). World coordinates are those of the space the user is working in, and NDC,
ranging from 0.0 (lower left comer) to 1.0 (upper right comer), is a device-independent way of placing an
object on a certain portion of the display.

Gsetwindow sets the world window, trn is the normalization transformation number, xmin and ymin
give the lower left hand comer in world coordinates, while xmax and ymax give the upper right hand
comer. The default is trn=0, xmin=ymin=0.0, xmax=ymax=1.0. It is not available in the 3D version,
being supplanted by Sesetviewvolume.

Gsetviewport sets the Normalized Device Coordinate (NDC) viewport, trn is the normalization transfor­
mation number, xmin and ymin give the lower left hand comer of a rectangular region in NDC, while
xmax and ymax give the upper right comer. The default is trn=0, xmin=ymin=0.0, xmax=ymax=1.0.

March? 1989 LAWRENCE BERKELEY LABORATORY 43

SCRY_GKS_XFORMS (3) UNIX Programmer’s Manual SCRY_GKS_XFORMS (3)

Gsetwswindow sets the workstation window. This is a window on the whole NDC screen (there may be
several NDC viewports contained in it), wkid is the workstation identifier, which can currently only be
FRAMED (see scry_gks_control(3)). The default is xmin-ymin=0.0, xmax=ymax=1.0.

Gsetwsviewport sets the workstation viewport, wkid is the workstation identifier. The workstation
viewport specifies a portion of the actual display device, given in device (integer) coordinates. The default
is the whole display. The package automatically scales workstation window into viewport so that the
aspect ratio (y:x ratio) of the window is preserved. If the display device is not square and it is desired to
use the full range of its coordinates, the workstation window should be set so that it has the same aspect
ratio as the display device. Keep in mind that the legal range for the workstation window is (0.0 to 1.0,0.0
to 1.0).

Gsetclip sets the clipping indicator. It is not available in the 3D version. If clipind is 0, clipping is done
only against the current NDC viewport. (This is the only option in the 3D version.) If it is 1, clipping is
done against the intersection of the current NDC viewport and workstation window.

Ginqdisplaysize returns the range of device coordinates, xmax and ymax, of the display for workstation
wkid.

SEE ALSO
scry_client(L), scry_gks(3)

March 7 1989 LAWRENCE BERKELEY LABORATORY 44

SCAN3D.A(3) UNIX Programmer’s Manual SCAN3D.A(3)

NAME
scan3d.a - 3D scan conversion library

DESCRIPTION
This library is the 3D image generator. GKS routes 3D calls into routines in this library. Scan converts
points, lines, 2D text, and polygons to generate an image in the software frame buffer. Polygons are ren­
dered depending on the lighting and shading model, and optionally clipped during scan conversion. Lines
and points are colored according to their depth during scan conversion. Hidden points, lines, and polygons
are removed using a z-buffer. [The software frame buffer has the same dimensions as the hardware display
buffer]. The other component library of the 3D driver, client.a, optionally compresses the software frame
buffer and transmits it to the server for display.

FILES
Contained in scry/scandrv:

pcwork.h

pcworkx

scandef.h

scan.h

comattrx
hersheyx All preceding files are shared with scan2d.a and descriptions are listed in that sec­

tion.

Contained in scrylscandrv/scanSd:

Makefile

bujfersx
adjSdx
scan3d.h

pointSdx
UneSdx

textldx

poly 3d x
polySd.h

const x

color.h

color x

zbuf.h

gouraudx

makes Ubscan3d.a. The installation of this library will have to be modified for your
site.
color tables

set entries in color tables, clear frame buffer

z-buffer

z-buffer algorithm

used in object-oriented clipping

include file for object-oriented clipping

renders 3D point with depth intensity cueing into software frame buffer

renders 3D line with depth intensity cueing into software frame buffer

renders stroke of 2D text into software frame buffer
polygon rendering shared by both Gouraud and constant shading

include file for polygon rendering

renders 3D polygon using constant shading

renders 3D polygon using Gouraud shading

AUTHOR
David Robertson

SEE ALSO
scry_client(l), scry_3D(3), scry_gks(3), scry_client.a(3)

March 13 1989 LAWRENCE BERKELEY LABORATORY 45

SCRY_SCAN2D.A (3) UNIX Programmer’s Manual SCRY_SCAN2D.A (3)

NAME
scry_scan2d.a - 2D scan conversion library

DESCRIPTION
This library is effectively the 2D image generator. The GKS level routes 2D calls into routines in this
library to generate an image in the software frame buffer. These routines clip points and lines to the inter­
section of the current Normalized Device Coordinates viewport and the workstation window, and scan con­
verts remaining points and lines, as well as unclipped text, into the software frame buffer. [The software
frame buffer has the same dimensions as the hardware display frame buffer.] The other component of the
driver for this approach, client.a, optionally compresses the software frame buffer, and transmits it to the
server for display.

FILES
Contained in scry/scandrv:

scworkJb

scwork.c
scan.h

comattr.c
hershey.c

used in 2D clipping and workstation transformation
performs 2D clipping and workstation transformation

frame buffer and color index declarations

conversion from HSV to RGB, setting color indices
public domain text scan conversion

Contained in scrylscandrvlscan2d:

Makefile

color.h

color.c
pointldx
line2dx

textldx

makes scan2d.& library. The installation of this library will have to be modified for
your site.
color table

clear frame buffer, set color table entries
renders 2D point into software frame buffer

renders 2D line into software frame buffer

renders stroke of 2D text into software frame buffer

AUTHOR
David Robertson

SEE ALSO
scry_client(l), scry_gks(3), scry_client.a(3)

January 3 1989 LAWRENCE BERKELEY LABORATORY 46

SCRY_SEND_FRAME (3) UNIX Programmer’s Manual SCRY_SEND_FRAME (3)

NAME
scry_send_frame, scry_open, scry_close, scry_set_compress, scry_set_record, scry_set_copy_num,
scry_set_max_color, scry_set_image, scry_set_map - routines for software frame buffer compression and
transmittal

SYNOPSIS
#include “clnt.h”
#include “scan.h”

scry_send_frame()
scry_open(host,protocol,prognum)
char *host;
int protocol;
int prognum;

scry_closeO
scry_set_compress(option)
int option;

scry_set_copy_num(num_copies)
int num_copies;
scrysetrecordfoption,length)
int option;
int length;
scry_set_max_color(max)
int max;

scry_set_image(type)
int type;

scry_set_map(num,map)
int uum;
unsigned short *map;

DESCRIPTION
Routines to take software frame buffer generated in TARGA format, optionally compress it, and transmit it
to a server workstation via Sun RPC’s for decompression and display. (These are unavailable from For­
tran.) The software frame buffer is unsigned short sc_frame_arr[y][x], where y is 400 and x is 512, and is
15 bits/pixel (0,5R,5G,5B). It is declared in scrylscandrvlscanh. An example of converting a red, green,
blue pixel color representation into the packed TARGA 2-byte format is given in routine GreyRGB in
scry! samples! greyrgb.c.

scry_open is called first to set up the connection to the server workstation, host is a symbolic reference to
the server workstation as explained in scry_gks_control(3), e.g. the Internet address of the server system,
protocol must be either UDP or TCP. prognum is an identifier for the server (see scry_gks_control(3)).
scry_close is called at the end of a session to terminate the connection with the server workstation.

scry send frame transmits the software frame buffer, optionally compressing it first, to the server works­
tation.

scry set compress sets the compression type. Gsetcompr calls this routine when the library is used with
GKS and the 2D scan conversion module. See scry_gks_control(3) for setting the compression options.

scry_set_record sets the recording mode and only has an effect with the PC server. If option is PRE­
VIEW the images are displayed on the PC server workstation but not recorded. If option is a positive
number, frames are recorded starting at the frame on videotape or videodisk identified by that number. If
option is AUTOSEEK, the second argument indicates the number of images in the movie. This only has
an effect if the videodisk is used, and is used to seek to the first place on disk large enough to hold the

March 28 1989 LAWRENCE BERKELEY LABORATORY 47

SCRY_SEND_FRAME (3) UNIX Programmer’s Manual SCRY_SEND_FRAME (3)

movie.
scry set copy num only has an effect if the PC server workstation is equipped with a VTR (as in adv-pc-
2). num is the number of frames to record the image on. This is used to change the speed of playback of
the movie. For example, to play back at 10 frames per second, num is set to 3. (The normal speed of play­
back is 30 frames per second.) If the PC server workstation is equipped with a videodisk player (as in
adv-pc-1), this call has no effect. The videodisk player can play a movie at various integral multiples or
fractions of 30 frames per second.

Three new low-level routines are provided in this distribution. scry_set_max_color sets the maximum
number of color table entries. The largest that can be set is 256. This routine is useful in conjunction with
use of the Sun server (see scry_sun_server(l)). If the maximum is 128 or less, the image can be viewed in
a Sun window even when the cursor is not in the server window. The default, 128, is chosen when the
higher level 3D and GKS modules are used.
scry setjmage sets the image type to be either TARGA_IMAGE or MAPPED_IMAGE. The default,
TARGA_IMAGE, is chosen when the higher level modules are used. An image in TARGA format can be
compressed before transmission. IF MAPPED_IMAGE is chosen, the pixels in the image provided by the
user are in the form of indices into a color map, also provided by the user. Each pixel is an unsigned char
rather than an unsigned short. See greyrgb(l) for a description of the program illustrating the usage of the
MAPPEDJMAGE option.

If MAPPED_IMAGE is chosen, the color map is provided by the user with scry_set_map. Do not use
this routine if TARGA IMAGE is the current mode. Be sure the number of entries is consistent with that
chosen by scry_set_max_color.

AUTHORS
David Robertson, Nicole Texier, James Huang, and Bill Johnston

SEE ALSO
scry(l), scry_client(I), scry_pc(l), scry_gks_control(3), scry_client.a(3)

March 28 1989 LAWRENCE BERKELEY LABORATORY 48

SCRY_CLIENT.A (3) UNIX Programmer’s Manual SCRY_CLIENT. A (3)

NAME
scry_client.a - library for software frame buffer compression and interprocess communication with the
server

DESCRIPTION
This is the lowest level of the Scry client. Takes software frame buffer generated by routines in
scry_scan2d.a(3) or scry_scan3d.a(3), optionally compresses it, and transmits to the Scry server worksta­
tion via Sun RPCs for decompression and display. If record mode is set, controls recording as well. Over
a local-area network. Block Truncation Coding combined with color map compression and frame-to-frame
differencing is usually used, since it is the least CPU consuming option (the other options are discussed in
scry_gks_contr°l(3) and scry_send_frame(3)). Over a wide-area network we usually use a further
compression step, Lempel-Ziv compression, as well. Select Lempel-Ziv compression with Gsetcompr
(see scry_gks_control(3)), and choose the TCP protocol in Gopenws. (The PC based Scry server will
have to be modified if the 68020 coprocessor is not present on the PC. It is not practical to do LZW
decompression on the PC without the coprocessor. See scry_pc_server(3).)

This library can also be used apart from scanld.a or scan3d.a. As long as the software frame buffer is in
TARGA format, it does not care how the images were generated. See scry_send_frame(3) and greyrgb(l)
for information on the TARGA format, and an example of how to use the low-level interface to the rou­
tines in this library.

FILES
Contained in scry/scandrv/client:

Makefile

clnt.h
c Intint.h

control.c

record.c
btcalgx

btcbufx

btcsndx
colalgx

colmap .h
colsndx

auxsndx

hwx

makes library libclient.a. The installation of this library will have to be modified
for your site.

user definitions for send_frame

definitions and declarations for this library

controls communication with the Scry server

controls recording
BTC compression

building up compressed buffer to send as final step of BTC, or BTC and color map
compression

compresses (optionally) and transmits the software frame buffer

general color map compression algorithm

definitions and declarations for color map compression

sends the image using only color map compression

routines that aid the routines in btcsndx and colsndx
Lempel-Ziv compression

SEE ALSO
scry(l), scry_client(l), scry_scan3d.a(3), scry_scan2d.a(3), scry_send_frame(3)

March 13 1989 LAWRENCE BERKELEY LABORATORY 49

