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Abstract

Newton’s method has proved to be a very efficient method for solving strictly
convex unconstrained minimization problems. For the nonconvex case, various
modified Newton methods have been proposed.

In this paper, a new modified Newton method is presented. The method is
a linesearch method, utilizing the Cholesky factorization of a positive-definite
portion of the Hessian matrix. The search direction is defined as a linear combi-
nation of a descent direction and a direction of negative curvature. Theoretical
properties of the method are established and its behaviour is studied when
applied to a set of test problems.

Keywords: Unconstrained minimization, modified Newton method, negative
curvature, Cholesky factorization, linesearch, steplength algorithm

1. Introduction
In this paper we propose a method for finding a local minimizer of the problem

minimize f(z),
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2 A modified Newton method

where f is a twice-continuously differentiable function. This fundamental problem
has been studied extensively and various methods have been proposed that use first
and second derivatives. The aim is to generate a sequence of iterates {zx}$2, that
converge to a point & satisfying the first- and second-order necessary conditions, i.e.,
Vf(z) is zero and V%f(Z) is positive semidefinite.

Most methods that utilize second-derivative information may be viewed as exten-
sions of Newton’s method, in the sense that they are identical to Newton’s method
in a neighbourhood where the Hessian is positive definite. If the Hessian is not
positive definite at some iterate, the Newton step may not reduce the objective
function. Consequently, if the method is required to generate a sequence of improv-
ing estimates, some modification is needed. Such modified Newton methods have
been studied for two decades, see for example Fiacco and McCormick [FM68], Gill
and Murray [GMT74], McCormick [McC77], Fletcher and Freeman [FF77], Mukai
and Polak [MP78], Kaniel and Dax [KD79], Moré and Sorensen [MS79] and Gold-
farb [Gol80].

Most modified Newton methods solve equations using a factorization of the Hes-
sian. The method proposed by Gill and Murray [GM74] uses a modified Cholesky
algorithm, in which a diagonal matrix is implicitly added to the Hessian to make
it positive definite. A similar modified Cholesky algorithm based on an alternative
diagonal correction has been proposed by Schnabel and Eskow [SE88]. The methods
proposed by Fletcher and Freeman [FF77] and Moré and Sorensen [MS79] use the
Bunch-Parlett-Kaufman factorization of the Hessian (see [BP71], [BK77]).

In the method proposed in this paper, the Cholesky algorithm with complete
pivoting is performed until all potential pivot elements are smaller than a preassigned
tolerance. The Cholesky factor is used to obtain a search direction, which may be
a linear combination of a descent direction and a direction of negative curvature.
It is shown that the gradient is zero and the smallest eigenvalue of the Hessian
is bounded below by a small negative number at all limit points of the iterative
sequence. The magnitude of the bound may be predetermined by adjusting certain
preassigned tolerances.

2. Basics

2.1. Assumptions
The following assumptions are made throughout the paper:
A1l. The objective function is twice continuously differentiable.

A2. The level set S(zg) = {z : f(z) < f(z0)} associated with the starting point zo
is compact.

2.2. Preassigned parameters

The proposed method depends on seven preassigned scalar parameters. These pa-
rameters specify different tolerances and for reference, their purpose and range of
values are are briefly summarized here.
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€ € (0,1) is a parameter needed for the Cholesky factorization. It
is used to determine the dimension of the positive-definite
portion of the Hessian.

Rmin > 0 is a parameter used to reject small pivots in the factorization.
No pivot elements smaller than €2hm, are accepted.

Qmin, ®max  define an acceptable interval for the initial steplength.

n € (0,1)  specifies a tolerance associated with the direction of negative
curvature.

u € (0, %) is a parameter used in the linesearch to guarantee a sufficient
decrease in f.

v € (0,1) is a parameter used to determine the rate of decrease of the
steplength in the backtracking linesearch.

2.3. Terminology

The idea of a descent direction and a direction of negative curvature are important
when computing the search direction. A vector p is a descent direction at a point z if
Vf(z)Tp < 0. Likewise, p is a direction of negative curvature at z if pT V2f(z)p < 0.

Given a symmetric matrix
K T NT
( = ,
N G

with T nonsingular, the Schur complement of T in K will be denoted by K /T, and
is defined as
K/T =G~ NT'NT.

The matrix K /T will be referred to as “the” Schur complement, when the matrix
T is clear from the context. For further discussion of the Schur complement, see
Cottle [Cot74].

Throughout the paper, the subscript k denotes the iteration index, and sub-
scripts ¢ and j denote particular components or columns of a matrix or vector.
When element ¢, j of a matrix Hj is addressed, we refer to it as h;;—i.e., the low-
ercase letter is used and the iteration subscript is dropped. Also, for vectors and
matrices, when the term norm is used, we mean the Euclid=an vector norm and the
corresponding induced matrix norm.

3. Preliminary Discussion

At the k-th iteration of the proposed method, z; denotes the current iteration point,
gx denotes Vf(zy) and Hj denotes V3f(z;). With Newton’s method as the model,
it is desirable to compute the Newton search direction whenever Hj is sufficiently
positive definite. If H} is known to be positive definite, such a direction may be
computed using the Cholesky factor of the Hessian. Whenever the Hessian is not
sufficiently positive definite, the method presented here is based on the Cholesky
factorization of a subset of the rows and columns of Hx. Complete pivoting is
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used, that is, the maximum diagonal element is chosen as the pivot at each step.
Suppose that n; steps of the factorization have been performed and let IT denote
the permutation matrix representing the column interchanges. We have

Hn H
nTH I = ( H“ H” ) and M7, = ( ‘Zl ) , (3.1)
21 22 2

where H,, is a positive-definite prinicipal submatrix of order n;, with Cholesky
factor Ryy. If Ry2 = RI'ITHW, we obtain the identity

HTHkH= RTI 0 I 0 Rll R12 ,
RL, I 0 ITH.IT/Hy, 0 I

where I1TH IT/ Hy, is the Schur complement H,, — H,, Hi'H,,.

In order to simplify the notation, we shall assume that no permutations are
required. This implies that IT is an identity matrix, and consequently ITTH,IT = H,.
We emphasize that this does not alter the theoretical results of later sections.

The factorization is usually terminated when all potential pivot elements in
H,/Hyy are smaller than a tolerance e2max;{h;;}. However, if all diagonal elements
of the Hessian are small or negative, the pivot tolerance is given by €2huyi, for a
preassigned positive constant An;,. Consequently, the pivot tolerance is defined as
€2hy, where

he = max{m;ax{h.'.-}, Pomin }- (3.2)

The Cholesky factor is computed by rows, and the Schur complement is explic-
itly updated at each step of the factorization. Consequently, if the factorization is
terminated with n; < n, the elements of the final Schur complement are known.
Moreover, since we control the smallest acceptable pivot element, we have an upper
bound on the diagonal elements of the ny x n matrix Hi/Hy;. These properties of
the factorization will prove important when computing directions of negative cur-
vature. It is important to note that the dimensions of the matrices Hyy, Hq2, Hny
and H,, depend on k.

The n X n; matrix Z is defined to be

1
Z=(0), (3.3)

where the matrix I is an n; X n; identity matrix. The n X ny matrix Y is defined

to be
-H'H
Y = ( 1} 12 ), (3.4)

where we let y; denote the j-th column of Y.

Lemma 3.1. The following relations hold:
Z'H,Z = Hu,
ZTH.Y =0 and
YTH,Y = Hyy — HyH Hy,.
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Proof. The result follows from substituting for Hy/Hy1, Z and Y using (3.1), (3.3)
and (34). 1

Again, we emphasize that the dimensions of Z and Y depend on k. The following
lemma shows that the columns of the n x n matrix M = ( zZY ) form a basis for
R
Lemma 3.2. The n X n matriz M is nonsingular.

Proof. The result is immediate from the fact that det(M)=1. 1

The following lemma relates the smallest eigenvalue of Hy to the smallest eigen-
value of Hk/Hll-

Lemma 3.3. If H;. is indefinite then

1

Amin(Hg/H11) £ Amin(Hy) < W’\min(ﬂk/Hll)-
Proof. It follows from Lemma 3.1 that Hy/H;; = YTH,Y. Let u denote an eigen-
vector of unit length corresponding to the smallest eigenvalue of YTH,Y . It follows
from (3.4) that uTYTYu > 1. Sylvester’s law of inertia yields Apmin(YTHrY) < 0,
giving roT
wY ' HyYu ¢ 1

TYTva 'Y Yu.

The proof of the second inequality is completed by noting that

WTYTH.Yu
uTYTYu

0> Amin(YTHY) = uTYTH, Yu =

0> > Amin(I{k)

and
WTYTyu < |Y)2

Using the Courant-Fischer minimax characterization of eigenvalues (see e.g.,
Wilkinson [Wil65, page 101]), it follows that the smallest eigenvalue of Hj is the
global minimum of the problem

minimize vITHyv
vER™ (3.5)
subject to vIv = 1.

Lemma 3.2 implies the existence of vectors v, and vy such that v = Zv; + Yu,.
Substituting for v in (3.5), and using the identity ZTH,Y = 0 yields the problem
nimi T7T Ty T
vzéﬂg&lwggnz v ' HyZv, + vy Y HyY v, (3.6)
subject to vIZTZv, + 20TZTY v, + vIYTYw, = 1.

By definition, ZTH,Z = H,, is positive definite, and it follows that the global
minimum of (3.6) is no smaller than the global minimum of the problem
minimize vIYTH,Y v,
vZER™M vy ER"2 (3.7)
subject to vIZ7Zv, + 20127V v, + vIYTY v, = 1.



6 A modified Newton method

Since this is a problem where the gradient of the constraint is nonzero at all feasible
points, the constraint qualification always holds. Therefore, if v; and vy are global
minimizers, there must exist a Lagrange multiplier » such that the equations

W(ZTZvy + ZTYvy) = 0 (3.8a)
YTH,Yvy + v(YTZv, + YTYvy) = 0 (3.8b)
v3Z2TZv, + 20127 v, + vIYTY 0, = 1 (3.8¢)

are satisfied.

The global minimum of (3.6) is negative, so that the global minimum of (3.7) is
also negative. If v is zero, it follows from (3.8b) that the global minimum of (3.7)
is zero, which is a contradiction. Therefore, (3.8a) implies that v, is determined by
vy, with

v, = —(272)1ZTY vy.

Using this value of v; and the definitions of Z and Y, problem (3.7) is equivalent
to the problem

minimize vIYTH, Y v,
vy ER"2 (3.9)
subject to vlv, = 1.

The proof of the first inequality is completed by noting that the global minimum of
(3.9) is the smallest eigenvalue of YTH Y. 1

We also require a result that relates the smallest eigenvalue of a symmetric
matrix to the magnitude of its elements.

Lemma 3.4. If all elements of an n X n symmetric matriz A have absolute values
less than p, no eigenvalue of A has absolute value larger than pn.

Proof. This is an immediate consequence of the Gerschgorin circle theorem—see
e.g., Golub and Van Loan [GV83, page 200]. 1

4. The Cholesky Factorization

At each iterate, a positive-definite principal minor of the Hessian is factorized as
outlined in the previous section. Some standard results concerning the Cholesky
factorization are needed to derive uniform bounds on ||H;j!||. These results are
reviewed in this section. For a complete discussion of the Cholesky factorization,
see Higham [Hig87].

Lemma 4.1. If a positive-definite n X n matriz A is factorized using the Cholesky
algorithm with complete pivoting, the elements of the Cholesky factor R have the
following properties:
T11 27222+ 2 Tan, (4-13')
|rijl <rii for j=1,...,n, i=1,...,5-1 (4.1b)



4. The Cholesky Factorization 7

Proof. For any j > ¢ the complete pivoting strategy yields

J-1
2 2 2
i Srh- 2

=1

from which (4.1a) follows. Since A is positive definite, it holds that r;; is positive,
and therefore r% > r?. 1@

Lemma 4.2. If R is the Cholesky factor of an n X n symmetric positive-definite
matriz obtained by complete pivoting, the elements of its inverse U have the following
properties.

2j—i-—1

Juij| < for j=1,...,n, i=1,...,57-1
i

uj; = — for j=1,...,n
i

u;; =0 for j=1,...,n, i=j5+4+1,...,n.

Proof. The matrix U satisfies the equation RU = I. The j-th column of this
equation gives

u; =0 if i>3
1
Ujy = —
LET]
1 < e .
Uy = —— z Ty if i< 7.
T2

Lemma 4.1 implies that
J
Iu,-jl < Z |1L1j| if <.
=141
By induction, it follows that

2j—i—1

luijl < —— i i<

17

This bound on the element growth is usually unduly pessimistic. However, for
certain special matrices, substantial element growth may occur—see e.g., Higham
[Hig87, page 6]. What is important here is the ezistence of a bound. Such a bound
is needed in order to obtain a uniform bound on ||Hy!||-

Lemma 4.3. There erists a positive constant co, such that for all k, ||[H || < co.
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Proof. Since no pivot element smaller than €?h.,, is accepted in the Cholesky
factorization we have rp,n, > €/Amin. Lemma 4.2 implies that

n

(Ri})i; < for i=1,...,ny and j=1,...,n.

ehmj

=}

The identity H;;' = R7}!Rjy and Lemma 3.4 yield the desired result. 1@

5. Computation of the Search Direction

In the proposed method a search direction px is computed at the k-th iterate. The
vector pi is defined in terms of two other vectors; a descent direction s; and a
direction of negative curvature dj.

5.1. Computation of the descent direction

The descent direction s, satisfies the equation

Bisk = —gx, (5.1)
where
Hy;, 0
By = : 5.2
k ( 0 th) (5:2)

and hy is defined by (3.2).

If ny = n, then By = H; and s; is the Newton direction. If ny = n then
B = hminl and si is a multiple of the steepest-descent direction. (In general, n;
need not be equal to the number of positive eigenvalues of H;. For example, the
matrix I — ee”, where e denotes an n-vector with unit components, has n—1 positive
eigenvalues, but ny = 0. However, the results reported in Section 8 include only one
case where n, was zero.)

The vector si of (5.1) is computed by solving the triangular systems

v
Rru= - d Ryjv=u, with = )
1Y g1 an nv=1u, wi Sk ( —(1/hk)92 )

When s is computed from these equations, the norms of sx and gx are related in a
uniform way. The following lemma shows that s, satisfies descent properties similar
to those required by McCormick [McC77].

Lemma 5.1. If s is defined by (5.1) there ezist positive constants ¢, and c; inde-
pendent of k, such that for all k, it holds that

—sige > cillgkll®  and ||gi]| > callskll-
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Proof. The definition of By yields
1
max{|| Hy;'ll, (1/h«)}

The bound on ||Hy;!|| obtained from Lemma 4.3 implies the existence of c;.
The definition of s; yields

—stgk > min{Amin(H17"), (1/Rx) }Hgell?.

Since H,; is positive definite and symmetric, we may employ the identity

11
Amax(H11) || Hull

The compactness of S(zo) and the smoothness of f ensure the existence of ¢;.

llskll-

llgell >

/\min(Hl_ll) =

5.2. Computation of the direction of negative curvature

The formula for dj is derived from a method for computing directions of negative
curvature in quadratic programming (see Forsgren et al. [FGM89]). If the variables
corresponding to H,; are temporarily locked at their current values, a direction of
negative curvature is defined by releasing one or two of the locked variables. This
scheme corresponds to using either y; or y; + y; as a direction of negative curvature
for a specific choice of i and j. The choice of i and j is determined by the values of
the elements of Hy/H,,;. When the factorization of Hj is terminated, these elements
y'-TH kY; are known for 1 < i, j < n,, without explicitly computing the vectors y;
(see Lemma 3.1).

Let 7 € (0,1) denote a preassigned constant and let p denote max; ; [yfH il
The vector dj is computed as follows.

if p < €hi/n then
dp = 0 (5.3a)

else if yTH,y; = —p for some i then
dip = ty; (5.3b)

else if [yJH,y;| = p for some i # j then

1
i = (0 — sen(uTHit;)5) (5.30)
end if

In each case, we choose the sign of dj. so that g,{d,c <0.

In the Cholesky algorithm, the pivot elements are chosen from the diagonal
of the Schur complement, and it follows that y,-TH oY < €hg fori =1, ..., na.
Consequently, if p > €2hy/n then yTH,y; < p for all i and dy is well defined.



10

A modified Newton method

In order to obtain dy, it is necessary to compute y; or y; + y;. This is done by
solving an equation involving R;; and R;;. For example, the computation of y; + y;
requires the solution of the equation

u

Riju = —%Rm(ei + ej) with y; + Y =

1 . (5.4)
et e)
vature.

The following lemma shows that any nonzero dj, is a direction of negative cur-

Lemma 5.2. If di is nonzero then

1—n)e?h
gfd, <0 and dTH.d, < —(—%.
Proof. In each case, the sign of di is chosen so that ngdk < 0. Let p denote
max; ; |y,-THky]-|. If d, is given by (5.3b), then dfH,d, = yTH,y;, = —p. If d; is given
by (5.3c), then
1
dfHydy = 5 (0T Hii + v]H;) — [ By,

where |y,-THkyj| = p. Since y;-‘ery,- and ijHkyj are both less than or equal to e?hy,
it holds that d7H,d, < €2h) — p. The inequality p > e2hi/n implies that in either
case 2p
diHyd < S ke £
n
as required. 1
Finally. we relate the curvature along any nonzero d; to the smallest eigenvalue
of Hk.

Lemma 5.3. If d; is nonzero, there exists a positive constant c3, independent of k,
such that for all k

diH,d,
5% < 3 Amin(Hp).
dz‘ R S €3 Ami ( k)
Proof. Let p denote max;; lyiTHkyjl. If di is nonzero, it follows from the proof of
hence

Lemma 5.2 that dfH,d, < —(1-7)p. Lemma 3.4 implies that Amin(Hx/H11) > —pn,

1—
dfHyd, < — Amin( Hi/ Hnr).
From Lemma 3.3 we have
did,

Amin(H)-
< wdta, i)
Now (5.3b), (5.3c) and (5.4) may be used to obtain

1< didy, < |[YTY|| <1+ || HalP1HS .
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The uniform boundedness of ||dj|| now follows from Lemma 4.3 and the assumptions
on f. 1

The significance of this lemma is that a nonzero dx cannot be an arbitrarily poor
direction of negative curvature compared to the eigenvector corresponding to the
smallest eigenvalue of H; (which is the best possible choice). The vector dy may be
zero even if Hj is indefinite. However, when d}, is zero, the following lemma gives a
bound on the indefiniteness of Hy.

Lemma 5.4. If d; = 0 then Apin(Hi) > —nehi/n.

Proof. If n, = 0, then Hj is positive definite and Apin(Hk) > 0. Assume that
ng > 0. Since di = 0, it holds that p < €2hi /n. This result, together with Lemma 3.4
implies that

2
Amin(Hi/H11) > —nap > -‘Mnhk,
and it follows from Lemma 3.3 that
2
Amin(Hy) > — 2%
|
5.3. Computation of the search direction
The search direction p; is defined to be
Pk = Sk + Brdk, (5.5)
where the scalar §i is defined as follows:
if d, #0 and s{Hksk > d’,{de,c then
2
B = _siHd, X J (S{dek) 11— spH sy (5.62)
dekdk dngdk dl{dek
else
Br=10 (5.6b)
end if

Note that if ng = 0 (i.e., if Hj is sufficiently positive definite), pi is the Newton
direction. The choice of 3; is important only if dj is nonzero. The particular choice
of () given above is motivated by the following lemma, which also shows that if dj,
is nonzero, pyi is also a direction of negative curvature.

Lemma 5.5. If d; is nonzero, then 8, > 0 and p{Hkpk < d{dek.
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Proof. If dy # 0 and B¢ = 0 then plHypr = sTHysy < dJHydy. If di # 0 and
Br # 0 it follows from the definition of 34 that d;{H pde < sfH xS and the square
root in (5.6a) is well defined. In this case Bk is the unique positive number that
satisfies the quadratic equation (sx + Bxdx)THi(sx + Brdi) = d{dek. |

The following lemma shows that the norm of pj is uniformly bounded.
Lemma 5.8. If p; is defined by (5.5), ||pk|| s uniformly bounded.

Proof. Lemma 5.1 and the compactness of S(zg) imply that ||sk|| is uniformly
bounded.

From the proof of Lemma 5.3 it follows that ||dx|| is uniformly bounded. Lemma
5.2 guarantees that the denominator of (5.6a) is uniformly bounded away from zero.
Since f € C? and the level set S(zp) is compact, it follows that B is uniformly
bounded, as required. §

One consequence of Lemma 5.6 is that if dj is nonzero, p; cannot be an arbitrarily
poor direction of negative curvature.

6. Computation of the Iterates

Unlike the methods suggested by McCormick {McC77], Moré and Sorensen [MS79]
and Goldfarb [Gol80], if Hy is indefinite, the next iterate lies on a line emanating
from z, instead of an arc. At a given iterate x;, we will consider the case when an
initial estimate aj € [@min,@max] Of the steplength along py is given. One way of
generating such an oy is discussed in Section 8.1.

We follow McCormick [McC77] and guarantee a sufficient decrease by comparing
f to adamped truncated Taylor series consisting of two or three terms. The resulting
algorithm may be viewed as an Armijo-type linesearch [Arm66], extended to the
indefinite case.

Let p and 7 denote preassigned constants such that u € (0,1) and 7 € (0,1).
Given z; and a; € [@min, ¥max], the number i is defined to be the smallest non-
negative integer ¢ such that

flzi + Y apr) < flzk) + pr argipk if di=0; (6.1a)
2,212

. s (4] .
f(z+Yorpk) < fze) + priogglp, + £ 72 EpTHp, if di #0. (6.1b)

The next iterate zp4; is defined as
Thp1 = T + VD (6.2)

A complete description of the modified Newton method is given in Algorithm 6.1.
In order to show that the algorithm is well defined, we present two lemmas, which
are slightly modified forms of a lemma given by Moré and Sorensen [MS79, Lemma
2.2].



6. Computation of the Iterates 13

Specify tolerances €, Amin, @mins ®max, 7, i and 7v;
k — 0; converged — false;
repeat
Evaluate fj, gr and Hy;
Factorize H; to obtain ny, ng, Ry1, R12 and Hk/Hn;
Compute s; and dg;
if (ny = n or d; = 0) then
Pk — Sk;
else
Compute [y;
Pk Sk + Brdy;
end if
converged — convergence-test;
if (not converged) then
ComPUte o € [anl.in7amax];
Compute ¢ so that f(z + 7‘*akpk) is sufficiently decreased;
Tkpr — Tk +YRapp; k= k41
end if
until converged,

Algorithm 6.1. A modified Newton method for unconstrained minimization

Lemma 6.1. Ifp € (0,-%) is a given constant and ¢ is a continuously differentiable
univariate function such that ©'(0) < 0, then there ezists a positive scalar { such
that

#(¢) < (0) + p'(0)¢
for ¢ € (0,0).

Proof. The Taylor-series expansion for a positive ( yields
1
(PO = #(0) = ' (0)C) = (1 - u)¢'(0) + ¢'(6C) ~ #'(0),

for some 8 € (0,1), and it follows that

Jim 2(p(C) = #(0) - ¢/ (0)C) = (1 - W)@'(0) < 0.

Hence, there exists a positive number ¢ such that
@(¢) — ¢(0) — pe'(0)¢ < 0

for all ¢ € (0,(). ®
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Lemma 6.2. If u € (0, %) is a given constant and ¢ is a twice-continuously differ-
entiable univariate function such that ¢'(0) < 0 and ¢"(0) < 0, then there exists a
positive scalar ( such that

¢@)<ﬂ®+u¢mx+u2%®
for ¢ € (0,0).
Proof. The Taylor-series expansion for a positive { yields
1 ’ 2.1 C2 1‘ﬂ2 " L.y "
PO = ¢(0) = #(0)C - 7" (0) ) = —5—¢"(0) + 5(¢"(60) = ¥(0))
for some 8 € (0,1), and it follows that

2 2
Q) = 9(0) = #(0)C - "(0)5) = =" (0) < 0.

(0+

Hence, there exists a positive number { such that

A0 - #(0) - 10X ~ i O

for all ¢ € (0,¢). The proof is completed by noting that
¢'(0)¢ < ue'(0)C.

< 0.

1
We can now show that a sequence {z}72, generated by (6.2) is well defined.
Lemma 6.3. The sequence {xy}5>, is well defined.

Proof. First assume that d; is nonzero. It follows from Lemmas 5.2 and 5.5 that
g{pk <0 and p{Hkpk < 0. If we define ¢(¢) = f(zx + (pk), we have ¢'(0) = g{pk
and ¢"(0) = pfH,p,. Lemma 6.2 implies that given a4, there exists a nonnegative
integer ¢ such that (6.1b) holds.

Assume that dj is zero so that pr = sg. If s = 0, then (6.1a) holds for i = 0.
If sx # 0, then Lemma 5.1 implies that gfs, < 0. The application of Lemma 6.1
with ¢({) = f(zx + (px) implies that there exists an i; such that (6.1a) holds. 1§

It is of interest to study the behaviour of f(z) along pi. It follows from Taylor-
series expansion that

2
Sk + Cepr) = f(zi) + Cegilpr + %Pfﬂkpk + 76(Zk,s Pry Ck),

where the remainder term is given by

Tk(Tk, Pk, Ck) = —Pk(sz(ivk + 0kCipic) = Vi (2k))pk (6.3)

for some 8, € (0,1).
In the following lemma, we establish the behaviour of the remainder term as k
tends to infinity and (x tends to zero.
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Lemma 6.4. Iflimg_, o, (x = 0 then

lim Tk(mkvfkaCk) =0.
k— o0 Ck

Proof. Using properties of norms and (6.3) we get

2
,Tk(xkézpkvg.k)l < “P;“ ”v2f(-’13k + gk(kpk) _ V2f(fl'k)”-
Assumption A2 and Lemma 5.6 imply that ||zk|| and ||pk|| are uniformly bounded.
Since limg_, o, (& = 0 it follows that |(x| is uniformly bounded. Therefore, there exists
a compact set C such that 2; € C and x4 + 8;(xpx € C for all k. Since C is compact
and f is twice continuously differentiable, it follows that ||V3f|| : C — R is uniformly
continuous. Hence, for all € > 0 there exists a § > 0 such that ||V3f(z)— V%f(y)|| < €
for all z,y € C such that ||z — y|| < é. Since limg—oo (x = 0 and ||px|| is uniformly
bounded, for each § there exists a K such that ||0;(ipll < é forall k> K. 8

If an infinite sequence {z;}$2, is generated, the following lemma shows that
there are only a finite number of iterates where a direction of negative curvature is
computed.

Lemma 6.5. For any sequence {z}32, there must ezist a finite K such that dy = 0
forallk > K.

Proof. The sequence {f(zr)}?, is decreasing and Assumptions Al and A2 imply
that this sequence is bounded from below, and it follows that {f(z,)}{2, converges
to a limit f. Assume that there exists an infinite subsequence {zk}kes such that
di # 0 for all k € J. From the equation

F - f(@o) = S (feasn) — Flzn))
k=0

and the fact that each term in this sum is nonpositive, it follows that

S = f(zo) < Z(f(zk+l) - f(zk))-
keJ
From Lemmas 5.2 and 5.5 we obtain
(A —n)ethy

prHp, < dTH d; < .

for all £ € J. The inequalities g{pk < 0 and @i > amin imply that

f“‘ f(l‘o) < Z _;L-ﬂikafnin(l - 7])€2hmin.
keJ 27
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Since f is finite this inequality must imply that iy — oo as k — oo, for &k € J.
Further, from the definition of i

. . 2 2(ik—1) 2
fle + 7% awpr) > f(zk) + pr* oy gipe + —'2———kPkaPk-

The Taylor-series expansion yields

re(Te, pr, 1+~ o) (1—p) r (1-4?)
1) g? > T i, Ik T T PiH Dy

Using the fact that gfp, < 0, it follows from Lemmas 5.2 and 5.5 that

(@ Py Y o) (1= p?)(1 = ) hmin
- > .
A=l 20

(6.4)

Taking the limit in (6.4) noting that ax < amax it follows from Lemma 6.4 that

o5 (L=#2)(1 = D)ehumin
-_— 27) b

which is a contradiction. Therefore, there exists a finite K" such that dj is zero for
alk > K. 1

7. Global Convergence Properties

Using the established lemmas we can derive the following theorem concerning the
limit points of the sequence {zx}72,-

Theorem 7.1. If an infinite sequence {zx}32, is generated as defined in (6.2), any
limit point & satisfies
2h
V&) =0 and Amn(VH(E)) > - Mn ,

where h = max{max; {(V*f(£))ii}, hmin}

Proof. Without loss of generality, it may be assumed that the sequence {z}72,
converges to some point Z. Lemma 6.5 implies that there exists a K such that
di = 0 for all £ > K, so that p; = s for k > K. Therefore, Lemma 5.4 and the
continuity of V2f imply that

ne2h

(V3 (2)) > - :
Amm(V f( ))2 n

Assume that there exists an I such that ¢, < I for all £k > K. It follows from
Lemma 5.1 that

f(zrr1) = f(zr) < pyloggls, < —py’erominllgell®.
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Since f(&) is finite, it follows that Vf(z) = 0.
If the integers i are not bounded above, then it may be assumed without loss
of generality that ¢ — 0o as £ — o0o. From the definition of i) it follows that

f(@k + 7% Lose) = f(zk) > pr™* " aggis,
for all £ > K. The Taylor-series expansion yields

i(Tk, Sk, 7+~ ok)

i —1
vl g
;yik—lak

2 kH s + > —(1 - p)gis.

Using Lemma 5.1 it follows that

ri( Tk, Sk, 7'* " Lag)
7 lag

vl

5 > (1 — p)er|lgxl®

S{Hksk +

Taking the limit and using Lemmas 5.6 and 6.4 we have Vf(Z) = 0 as required. 1}

As stated in the following corollary, a consequence of this theorem is that if two
consequent iterates are identical, a limit point is found, since all subsequent iterates
are identical.

Corollary 7.1. If two consecutive iterates x; and 4, are identical, the point x;
satisfies

ne?
Vi(zr) =0 and Amin(Vi(21)) > - nhk.

The assumptions made are not sufficient to guarantee that the sequence {z4}32,
is convergent. Some additional conditions are needed to guarantee that a generated
sequence has a unique limit point. As observed by Moré and Sorensen [MS79], if
we make the additional assumption that there are only a finite number of points in
S(zo) where the gradient vanishes, the following result may be used.

Lemma 7.1. (Ortega and Rheinboldt [OR70]) Suppose that a generated se-
quence {zi}3>, satisfies

klim (Tk+1 —2) =0 and klim Vf(zk) = 0.

Furthermore, suppose that the level set S(zo) is compact. If there are only a finite
number of points in S(zo) where the gradient vanishes, then there ezists a point T
such that

lim z, =% and Vf(z)=0.

k—oco

Proof. See Ortega and Rheinboldt [OR70, Theorem 14.1.5]. 1
In the method proposed in this paper, it follows from Lemma 6.5 that there is

a K such that py = s; for ¥ > K. From Lemma 5.1 we get lim;_ o, s = 0. Using
Lemma 7.1 the following corollary may be established.
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Corollary 7.2. If there are only a finite number of points in S(zo) where the gra-
dient vanishes, the sequence {zx}32, converges to a point & satisfying

Vi(Z)=0 and Aun(VYH(F)) > -"‘:ﬁ,

where h = max{max;{(V%f(Z))ii}, hmin}. 1

8. Test Problems and Numerical Results

A Fortran version of the algorithm was run on two types of test problems: nonlin-
ear least-squares problems and barrier problems. The computer used was a DEC
VAXstation II, with relative machine precision €, ~1.39 x 10717,

8.1. Parameter values

Various values of the parameters discussed in Section 2.2 were investigated. The
results presented here were obtained with the following values:

€ 10~®  (specifies smallest acceptable pivot element)
hmin 1073 (smallest acceptable maximum diagonal element of Hy;)
n 1073  (tolerance for the acceptance of dj)

Omin  107!%  (minimum step in the linesearch)
Omax 1019 (maximum step in the linesearch)
I 0.1 (damping factor used in the truncated Taylor polynomial)
v 0.5 (parameter for the backtracking).

The value of € is a tradeoff between a small value that gives the Newton search
direction when H is positive definite, and a value large enough to ensure that Hqq
is well-conditioned. Theoretically, a very small value of ¢ is preferred, since this is
more likely to give limit points that satisfy the first- and second-order necessary
conditions (see Theorem 7.1). However, small values of ¢ may give ill-conditioned
Cholesky factors which may cause inaccurate search directions. Qur experiments
indicate that the overall performance of the method is not sensitive to the precise
value of e.

Given the value of €, hyi, 1s selected to ensure that the minimum pivot element
is always greater than the machine precision. In the experiments presented here,
this value of hn;, affected only two iterates.

The value of 5 was varied by several orders of magnitude from the chosen value,
without changing the overall performance. The value selected helps to avoid com-
puting directions of negative curvature when the elements of the Schur complement
are all small in magnitude.

The steplength oy is computed using the linesearch procedure of Gill et al
[GMSW79] with default parameter settings. At each step of the linesearch both the
function and gradient are evaluated. The value of p above was chosen to ensure that
ix = 0 is accepted in most cases. Since the value of i; in (6.2) differed from zero
in only two cases, we deduce that the choice of v is not crucial. The values of ayin
and amax were designed to ensure that the steplength produced by the linesearch
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is accepted in almost all cases. In practice, a sensible choice of amax can improve
efficiency.

The efficiency of the linesearch is affected by the initial estimate of . Whenever
d). was zero, the choice of @ = 1 was found to be adequate. However, the unit step
tended to overestimate the accepted step when di was nonzero. To allow for this,
an initial step of 0.01 was used in these cases.

8.2. Least-squares test problems

The least-squares test problems comprise a suite of 45 problems, given by Fra-
ley [Fra88]. Many of these problems are known to be hard to solve, in spite of their
small size. A summary of results obtained on these problems when applying dif-
ferent least-squares methods and methods for unconstrained minimization is given
in Fraley [Fra88]. Our numbering of the problems is the same as in Fraley’s study.
The formulations for problems 1-35¢ are given by Moré et al. [MGH81], problems
36a-36d are presented in Fraley [Fra88], problems 37-38 are given by Salane [Sal87],
problems 39a-41g are from McKeown [McK75], problems 42a—43f originate from de
Villiers and Glasser [dVG81] and problems 44a—45¢ are from Dennis et al. [DGV85].

We accept z; as a solution of a least-squares problem if one of the following two
conditions are met:

dp = 0
Ll < Ve
or
d. = 0
Ca. f(zr-1) = fzr) < el +|f(ze)l)
lze — zkall < VEu(1+ l2kl])
llgell < Veu(1 4+ |f(z)l).

The first condition is intended to accept points that approximately satisfy the
first- and second-order necessary conditions for optimality. The second condition is
intended to test when the sequence {z4}¢2, has converged. For a detailed discussion
of convergence criteria for unconstrained optimization, see Gill et al. [GMWS81,
Chapter 8].

In some problems it was not possible to evaluate the function at all trial points.
In these cases, the trial step was repeatedly decreased by a factor v (y = 0.5) until f
could be evaluated. This additional backtracking was necessary for problems 42a and
43d because of an implicit nonnegativity constraint on one variable; and for problem
19 because of overflow during the calculation of the objective function. Similarly,
the initial step at the starting point of problem 11 was repeatedly decreased until
the Hessian and gradient were not numerically zero. These trial function evaluations
are included in the number of function evaluations shown.

In problems 2, 36a, 36b and 36d, the algorithm failed to converge within the
permitted number of iterations. In all cases, this non-convergence is a consequence
of the Hessian being very ill-conditioned at the solution. Although the algorithm did
not converge in these cases, the objective value was close to the optimal objective
value.
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nr name n m i llgxll rk(Hy1) k nf conv #n'z" #dy

1 rose 2 2 6.317050E-32 6.0E-15 2.E+03 22 29 yo 0 [

2 froth 2 2 2.449213E+01 1.7E-07 1.E+03 7 11 y 2 (o] (o]

3 powlbs 2 1 2.837351E-05 1.1E+01 1.E+00 600 2079 ns 693 1

4 brownbs 2 1 3.851860E-34 2.8E-11 1.E+00 4 5 yi 3 o]

5 beale 2 2 1.007290E-23 3.8E-12 1.E+02 8 18 yo 3 3

6 jensam 2 2 6.218109E+01 2.0E-13 8.E+00 10 11 yo 0 0

7 helix 3 3 2.943716E-35 2.5E-17 3.E+02 14 25 yo 5 5

8 bard 3 3 4.107439E-03 4.4E-16 2.E+03 14 21 yo 1 1

9 gauss 3 3 5.639664E-09 4.9E-1t 5.E+01 2 3 yo (o] o]
10 meyer 3 2 2.661418E+04 4.1E+01 6.E+07 24 74 n 4 23 2
11 gulf 3 3 8.612303E-20 2.0E-10 1.E+10 151 251 yo 8 7
12 box 3 3 8.939108E-30 1.3E-15 7.E+03 14 19 yo 1 o}
13 sing 4 4 1.300569E-13 1.8E-09 1.E+08 21 22 yo V] 0
14 wood 4 4 0.000000E+00 0.0E+00 5.E+02 39 52 yo 1 1
15 kowosb 4 4 1.537528E-04 3.6E-11 2.E+03 9 23 yo 4 4
16 brownden 4 4 4.291110E+04 1.6E-10 6.E+01 8 9 yo [ 0o
17 osbl 5 5 2.732447E-05 3.6E-09 1.E+09 65 147 yo 28 28
18 exp6 6 5§ 2.827825E-03 1.9E-09 1.E+05 48 136 y1 46 37
19 0sb2 11 11 2.006887E-02 2.2E-12 4.E+03 16 37 yo 6 6
20a watsonO6 6 6 1.143835E-03 5.2E-13 2.E+04 12 13 yo 0 0
20b watsonO9 9 9 6.998801E-07 7.5E-15 2.E+08 13 14 yo 0 0
20c watson12 12 11 4.178499E-09 6.4E-08 8.E+09 31 38 y3 32 1
204 watson20 20 13 6.886510E-08 1.8E-08 2.E+11 53 107 y3 54 0
21a rosex 10 10 3.158525E-31 1.3E-14 2.E+03 22 29 yo 0 [
21b rosex2 20 20 6.317050E-31 1.9E-14 2.E+03 22 29 yo o] 0
22a  singx 12 12 3.901678E-13 3.2E-09 1.E+08 21 22 yo 0 0
22b singx2 20 20 1.284503E-13 1.2E-09 2.E+08 22 23 yo o 0
23a peni4 4 4 1.124989E-05 7.5E-11 5.E+03 34 43 yo 0 0
23b penilo 10 10 3.543826E-05 1.3E-12 1.E+03 36 44 yo o ¢
24a penii4 4 4 4.688147E-06 1.1E-10 2.E+06 110 158 yO 0 [
24b peniilo 10 10 1.468303E-04 1.0E-09 2.E+06 93 132 yo 0 0
25a vardimi 10 10 8.680345E-27 2.6E-12 1.E+02 14 15 yo 0 0
25b vardim2 20 20 0.000000E+00 O0.QE+00 4.E+02 18 19 yoO (o] [¢]
26a trig 10 10 1.721941E-24 1.3E-12 8.E+00 7 11 y o 1 1
26b trig2 20 20 3.074585E-28 1.2E-14 4.E+00 11 22 y o 5 5
27a  brownalil 10 10 2.651544E-28 2.3E-14 2.E+03 8 9 yo ] 0
27b brownal2 20 20 2.462302E-18 3.3E-09 1.E+04 9 10 yo 0 0
28a  discbvi 10 10 9.287387E-25 1.7E-13 9.E+01 3 4 yo 0 0
28b discbv2 20 20 1.182787E-25 1.7E-14 T7.E+02 3 4 yo 0 o
29a disciel 10 10 1.997048E-22 2.5E-11 1.E+00 3 4 yo 0 0
29b discie2 20 20 3.293268E-22 3.2E-11 1.E+00 3 4 yo 0 0
30a broytrit 10 10 8.955574E-33 7.6E-16 2.E+00 6 7 yo 0 0
30b broytri2 20 20 2.051115E-32 1.1E-15 2.E+00 6 7 yo o] 0o
31a  broybani 10 10 6.032100E-27 5.2E-13 3.E+00 8 9 yo o) [
31b broyban2 20 20 6.067580E-27 5.2E-13 3.E+00 8 9 y o 0 0
32 lin 10 10 5.000000E+00 9.7E-16 1.E+00 1 2 yo [ 0
33 lini 10 1 2.317073E+00 2.8E-11 1.E+00 1 3 y1 2 0
34 1in0 10 1 3.067568E+00 4.0E-11 1.E+00 1 3 y1 2 0
35a chebyqui 8 8 1.758437E-03 5.4E-15 2.E+01 19 34 yo 11 11

Table 8.1: Results for least-squares

test problems 1-35a.
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nr  name n n fr llgkll x(H11) k nf conv #n] #du
35b «chebyqu2 9 9 9.668790E-22 8.5E-11 2.E+02 34 84 yo 27 27
35c chebyqu3 10 10 3.251977E-03 6.4E-11 2.E+02 24 46 yo 16 16
36a msqrtii 4 4 T7.839519E-11 5.5E-06 6.E+10 600 885 n 5 0 0
36b msqrt2i 9 7 2.066297E-09 1.8E-05 2.E+08 600 2175 =n 5 421 361
36c  msqrt3i 9 8 6.499547E-16 2.1E-08 4.E+08 28 44 n 4 2 1
36d msqrtdi 9 9 2.105165E-09 1.6E-06 5.E+10 600 2154 a5 415 361
37  hanl 2 2 1.043501E+02 1.SE-12 3.E+04 5 9 yo 1 0
38 han2 3 3 1.983216E+01 2.TE-10 1.E+06 6 11 yo 0 0
39a mckia 2 2 9.180060E-02 1.0E-17 7.E+00 3 4 gyo 0 0
39 mckib 2 2 9.180060E-02 7.7E-12 5.E+00 3 4 yo o o
39¢  mckic 2 2 9.180060E-02 1.3E-13 2.E+00 3 4 gyo 0 o
39d mckid 2 2 9.180060E-02 2.2E-17  2.E+00 5 6 yo 0 0
39 mckle 2 2 9.180060E-02 1.0E-14 6.E+00 7 8 yo 0 0
39f mckif 2 2 9.180060E-02 3.9E-18 7.E+00 10 11 yo 0 0
39g mckig 2 2 9.180060E-02 8.8E-10 T7.E+00 12 13 yo 0 0
40a mck2a 3 3 3.98277T6E-01 4.2E-15 2.E+01 3 4 gyo 0 0
40b  mck2b 3 3 3.982776E-01 1.2E-10 8.E+00 3 4 gyo 0 0
40c  mck2c 3 3 3.982776E-01 6.6E-13 2.E+00 4 5 yo 0 0
40d mck2d 3 3 3.982776E-01 1.0E-16 4.E+00 s 6 yo 0 0
40e mck2e 3 3 3.982776E-01 6.7E-17 1.E+01 7 8 yo 0 0
40f mck2f 3 3 3.982776E-01 §.4E-12 2.E+01 9 10 yo 0 o
40g mck2g 3 3 3.982776E-01 1.4E-15 2.E+01 12 13 yo 0 0
41a mck3a 5 5 5.000001E-01 8.3E-10 4.E+00 2 3 yo 0 0
41b  mck3b 5 5 5.000001E-01 6.7E-14 3.E+00 3 4 yo 0 0
41c  mck3c 5 5 5.000001E-01 4.8E-12 3.E+00 7 8 yo 0 0
41d mck3d 5 5 5.000001E-01 9.6E-15 2.E+00 8 9 yo 0 o
4le mck3e 5§ 5 5.000001E-01 3.7E-10 2.E+00 10 11 yo 0 0
41f  mck3f 5§ 5 5.000001E-01 1.7E-11 3.E+00 13 14 yo 0 0
41g mck3g 5 5 §.000001E-01 2.1E-12 3.E+00 16 17 yo 0 0
42a  devgla 4 4 3.593754E-28 7.3E-12 5.E+04 16 27 yo 2 2
42b  devglb 4 4 2.485558E-23 1.2E-09 G5.E+04 28 51 yo 6 6
42c  devglc 4 4 2.223602E-28 5.3E-12 5.E+04 21 43 yo 5 5
424  devgld 4 4 1.910276E-28 7.0E-12 5.E+04 19 26 yo 2 2
43a  devg2a 5 5 1.390367E-29 1.4E-12 8.E+06 17 26 3o 3 3
43b  devg2b 5 5 1.352306E-25 9.4E-11 8.E+06 16 29 3O 4 4
43c  devglc 5 5 5.445605E-29 5.4E-12 8.E+06 13 27 yo 6 5
434 devg2d 5 5 9.207747E-22 2.1E-09 8.E+06 29 5 yo 5 4
43¢  devg2e 5 5 1.059680E-21 2.8E-09 8.E+06 17 30 yo 5 5
43f  devg2f § 5 3.254051E-30 2.8E-13 8.E+06 18 32 yo 4 4
44a dgvéa 6 6 3.982829E-24 2.3E-11 7.E+06 38 121 y O 29 29
44b  dgvéb 6 6 1.255706E-31 1.6E-14 4.E+02 12 26 yo 4 4
44c  dgvée 6 6 8.742151E-25 8.2E-10 4.E+11 392 833 y O 385 83
44d  dgved 6 6 3.416587E-26 1.2E-10 2.E+10 316 764 y O 306 126
44e  dgvee 6 6 1.306575E-30 1.1E-12 1.E+08 175 516 y O 164 163
45a  dgvsa 8 8 5.542109E-26 1.4E-11 7.E+06 39 116 §y O 31 31
45b  dgvsb 8 8 3.710801E-33 6.7E-16 2.E+03 16 3 yo 7 7
45¢  dgv8c 8 8 1.234906E-30 1.3E-11 9.E+11 484 1003 1y O 480 134
454  dgved 8 8 1.970398E-30 3.4E-12 4.E+10 480 1053 y O 470 174
45¢  dgv8e 8 8 3.968786E-31 6.0E-13 4.E+08 349 953 y O 339 338

Table 8.2: Results for least-squares test problems 35b—45e.



22 A modified Newton method

nr  mame 10 10?2 10 107t nr  name 10! 102 10° 107

1 rose 5 12 16 17 35b chebyqu2 20 29 29 31

2 froth 2 3 4 4 35¢ chebyqu3 11 14 19 21

3 powlbs 1 4 8 235 36a msqrtli 2 4 6 10

4 brownbs 3 3 3 3 36b msqrt2i 2 4 6 10

5 beale 2 3 4 5 36c msqrt3i 2 3 5 7

6 jensam 2 3 5 6 36d msqrt4i 2 4 6 10

7 helix 4 6 7 8 37 hanl 1 2 2 3

8 bard 2 4 6 8 38 han2 1 2 3 3

9 gauss 1 1 1 1 39a mckila 1 1 1 1
10 meyer 1 2 2 3 39 mckilb 1 1 1 2
11 gulf 1 1 3 6 39¢ mckic 1 1 1 2
12 box 2 3 5 7 39d mckid 2 2 3 3
13 sing 2 3 S 6 39e¢ mckle 2 3 4 5
14 wood 1 3 4 26 39f mckif 2 3 5 6
15 kowosb 3 5 6 7 39g mckig 2 3 5 6
16 brownden 2 4 5 5 40a mck2a 1 1 1 1
17 osbl 12 28 32 37 40b mck2b 1 1 2 2
18 exp6 10 25 27 32 40c  mck2c 1 2 2 2
19 0sb2 7 9 11 12 40d mck2d 1 2 2 3
20a watsonO6 1 2 5 7 40e mck2e 2 3 4 4
20b watsonO9 1 2 5 8 40f mck2f 2 3 5 6
20c  watsoni2 1 3 4 6 40g mck2g 2 3 5 6
20d watson20 4 7 12 17 41a mck3a 1 1 1 1
2la rosex 5 12 16 17 41b mck3b 1 1 1 1
21b rosex2 3 12 16 17 41c  mck3c 2 3 4 5
22a singx 2 3 5 6 41d mck3d 1 3 4 5
22b  singx2 2 3 5 6 41e mck3e 2 4 5 6
23a peni4 2 3 5 6 41f mck3f 2 3 5 6
23b  penilo 2 3 5 6 41g mck3g 2 3 5 6
24a penii4 2 2 3 4 42a devgla 8 10 12 12
24b peniil0 2 3 4 5 42b devglb 20 23 24 25
25a  vardiml 2 3 § 6 42c  devgilc 14 16 17 18
25b vardim2 2 3 5 6 42d  devgld 11 14 14 15
26a trig 3 4 4 S 43a devg2a 2 3 5 6
26b trig2 6 7 8 8 43b  devg2b 3 5 7 9
27a  brownall 1 1 1 1 43¢ devglc 1 4 7 7
27b brownal2 1 1 1 1 43d devg2d 4 6 8 10
28a  discbvi 1 1 1 2 43e devg2e 2 4 7 9
28b discbv2 1 1 1 2 43f devg2f 3 6 8 10
29a  disciel 1 1 2 2 44a dgv6a 11 22 30 33
29b discie2 1 1 2 2 44b dgv6d 3 6 8 9
30a broytril 1 2 3 3 44c  dgv6e 1 5 29 119
30b broytri2 1 2 3 3 44d  dgvéd 1 3 24 97
31a  broybani 2 3 4 5 44e dgv6e 1 3 14 52
31b  broyban2 2 3 4 5 45a dgv8a 11 22 29 33
32 lin 1 1 1 1 45b dgvéb 2 5 9 12
33 lint 1 1 1 1 45¢ dgv8c 6 9 27 99
34 1in0 1 1 1 1 45d dgv8d 3 6 20 89
35a chebyqul 10 15 15 16 45e¢ dgv8e 3 4 14 57

Table 8.3: Number of iterations required to reduce (f(zx) — f(z*))/(f(z0) — f(z¥))
below four different tolerances.
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Tll-conditioning was also responsible for the failure in problems 10 and 36¢. In
these cases, the algorithm terminated because of a failure in the linesearch. Again,
the objective value has been reduced significantly. In problem 36¢ the algorithm
terminated at a point very close to the solution. In problem 10 the Hessian at the
final iterate is positive definite but very ill-conditioned.

The results of the computer runs are summarized in Tables 8.1 and 8.2. The
column headings have the following meaning;:

nr Problem number.

name Problem name.

n Number of variables.

n Dimension of Hy; at the final iterate zj.

i Value of the objective function the final iterate zj.

[lgll Norm of the gradient at the final iterate z.

k(Hy;) Estimate of the condition number of the final Hy;.

k Number of iterations.

nf Number of function evaluations.

conv Convergence information.
y 0 Convergence criteria C1 satisfied with ny = 0.
y 1 Convergence criteria C1 satisfied with n; > 0.
y 2 Convergence criteria C2 satisfied with n, = 0.
y 3 Convergence criteria C2 satisfied with ny > 0.
n 4 Nonconvergent due to failure in linesearch.
n 6 Nonconvergent due to too many iterations (> 600).

#nJ Number of iterates where ny was positive.

#d, Number of iterates where d was used.

Our experience from working on these problems is that it is possible to reduce
the value of the objective function significantly in a relatively small number of
iterations, as illustrated in Table 8.3. However, stringent convergence criteria such
as those used here may not always be achievable if the Hessian is ill-conditioned at
the solution.

8.3. Barrier test problems

The test problems with a general objective form originate from the barrier function
approach of Resende et al. [RKR89] for solving 0-1 integer programming problems.
The aim of this approach is to find a point z* with all components +1 in the set F,
where F is defined to be

A 2b — Ae+e
F=qz:| -I {z< e , (8.1)
I e

for an m X n matrix A and an n-vector b. We consider the case where all elements
of A and b are integers. The vector e denotes a suitably dimensioned vector with
unit components.

If the composite matrix and vector associated with the inequalities of (8.1) are
denoted by A and b, we may write F = {z : Az < b}.



24 A modified Newton method

This integer feasibility problem is converted into a smooth minimization problem.
The function to be minimized is the barrier function f defined by

m+2n

> In(ef(b -~ Az))

i=1

f(z) = %ln(n — 2Ty — ;:1—2-7;
(see Resende et al. [RKR89]). This barrier function does not satisfy the assumptions
of Section 2.1, since the function is only defined for z such that Az < b. Moreover, as
is shown in the appendix. the barrier function tends to minus infinity for a sequence
converging to a point with all components +1. Nevertheless, these functions are
useful as test problems because they have many local minimizers and exhibit many
directions of negative curvature. (Moreover, it was also of interest to see if the
algorithm was able to locate a point in F with all components +1.)

Three different test problems were used, and for each of them the set of points
in F with all components 1 consists of only one point, z*.
Data for barrier test problem 1:

-2 -1 -1 0 0 0 -1
-1 0 0 -2 -1 0 ~2
A= 0o -1 0 -1 0 -1, b=| -2,
0 0 -2 0 -1 -1 -1
3 2 3 4 2 3 8
T
a) zo=(-09 076 —076 0.64 020 —020) ,
T
b) zo=(-086 064 —064 046 —020 020 ) ,
T
F=(-1 1 -1 1 1 -1).

Data for barrier test problem 2:

A= 1 2 4 3
-4 -3 -4 =2

) =(2):

a) zo=( 09 -010 045 —0.95)",
b) zo=( 088 008 034 —0.94 )T,
F=(1 -1 1 1)

Data for barrier test problem 3:

a) zo=( —040 080 020 -0.99 )T,
b)  zo=(-03¢ 078 012 —09 )",
#=(-1 1 1 -1)"
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nr  name n n fx lgxll x(H1,) k =nf conv #n;’ #du
46a barlogla 6 5 -1.841628E+00 1.3E+07 3.E+00 18 22 y6 19 19
46b bdarlogid 6 6 7.626996E-01 2.8E-12 3.E+01 7 11 b XY 3 3
47a barlog2a 4 3 -1.122621E+00 9.0E+06 2.E+00 16 17 y6 17 17
47b barlog2db 4 4 5.805715E-01 3.5E-14 1.E+01 7 8 yo 1 1
48a barlog3a 4 3 -1.996615E+00 6.0E+06 3.E+00 16 17 y6 17 17
48b barlog3db 4 4 1.433882E-01 8.9E-15 8.E+00 10 14 yo 2 2
49a baria 6 5 1.618634E-01 2.3E+06 3.E+00 17 21 y 6 18 18
49> Dbarild 6 6 2.144056E+00 7.0E-12 3.E+01 7 11 yo 3 3
50a bar2a 4 3 3.771148E-01 8.2E+05 2.E+00 14 15 y 6 15 15
50b bar2d 4 4 1.787059E+00 4.8E-13 1.E+01 7 8 yo 1 1
6l1a bar3a 4 3 1.435501E-01 1.1E+06 2.E+00 15 16 y6 16 16
51b bar3d 4 4 1.154178E+00 1.1E-11 8.E+00 10 13 yo 3 3

Table 8.4: Results for barrier test problems

For each of the three test problems, two starting points were used. Problems
46a,47a and 48a correspond to starting points for which the sequence {zx}32, con-
verged to z*. Problems 46b,47b and 48b correspond to starting points for which the
sequence converged to a local minimizer of the barrier function.

Problems 49, 50 and 51 are similar to problems 46, 47 and 48, except that the
objective function is the argument of the logarithmic barrier function, i.e.,

(n _ xTx)l/Z
(T (6~ Aa))/mdn)

f(z) =

For the same starting points, the same final points were reached in approximately
the same number of iterations.

The barrier problems are not truly unconstrained, since the objective function
is only defined for z such that Az < b. To allow for this, the iteration was modified
so that amax Was made subject to being no greater than 99.99% of the step to the
boundary of F. If d; was zero, the unit initial steplength was chosen, and when d;,
was nonzero, a trial value of 0.8 amax Was used. The trial step was accepted if the
directional derivative was still negative. Otherwise, the same linesearch as used for
the least-squares test problems was used.

The following criterion was used to decide when a point in F with all components

+1 had been reached,
C3. max;{l - |e,Tzk|} <10, /€y
The results for the barrier test problems are presented in Table 8.4. The column

headings are the same as for the least-squares test problem, and the only difference
is that convergence criteria C3 is denoted by “y 6” in the conv column.

8.4. Practical behaviour of the computed directions

In Section 5 of this paper theoretical properties of the computed directions s, di and
pi are established. It is shown in Lemma 5.3 that the ratio between the curvature
along the direction of negative curvature, di, and the smallest eigenvalue of H is
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uniformly bounded away from zero. Lemmas 5.5 and 5.6 imply that whenever d;
is nonzero, the ratio between the curvature along px and the smallest eigenvalue of
Hy is also uniformly bounded away from zero.

In order to measure the magnitude of the curvature along di, it is compared
to the smallest eigenvalue of Hy. Figure 8.1 shows the ratio between the curvature
along dj and the smallest eigenvalue of H; for those iterates of the least-squares
problems where di was nonzero. Figure 8.2 shows the corresponding data for the
barrier problems. If 10% of the best possible curvature is regarded as “good”, we
see that this “good” curvature is computed in 95% of the cases for the least-squares
problems and in 98% of the cases for the barrier problems.

Ideally, if di is nonzero, px should be both a nontrivial direction of negative
curvature and a descent direction that is not too orthogonal to the negative gradient.
Unfortunately, a direction that simultaneously has both these properties may not
exist. In Figures 8.3 and 8.4 we give the ratio between the curvature along p; and
the curvature along dy for iterates for which d; was nonzero. Since dy is intended to
be a good direction of negative curvature, this ratio gives an idea of how much of the
best possible curvature is achieved along p;. The data for the least-squares problems
is given in Figure 8.3; data for the barrier problems is given in Figure 8.4. Note that
for both classes of problem, the ratio is close to one in most cases. Moreover, a ratio
greater than one is possible if ||pi|| < ||dk||. A ratio greater than 0.1 is achieved
in 98% of the cases for the least-squares problems and in 99% of the cases for the
barrier problems.

The direction s is intended to be a good descent direction. In order to inves-
tigate whether this property is inherited by pi, the ratio of the cosine between s
and gx and the cosine between p; and sy was measured. These ratios are given in
Figure 8.5 for the least-squares problems and in Figure 8.6 for the barrier problems.
In general, this ratio is not as close to one as the curvature ratios. However, a ratio
greater than 0.1 is obtained in 86% of the cases for the least-squares problems and
in 93% of the cases for the barrier problems. We believe that the main reason for
this ratio not being as close to one as the other two ratios, is that ||s|| tends to zero
as the solution is approached, but a nonzero ||dx|| will be of order one. Therefore,
because of the way py is constructed, d; will usually dominate s, so that p; = d;.

It is noticeable that the barrier ratios seem better than the least-squares ratios.
This is probably due to the fact that even though both problem classes contain
highly nonlinear problems, the condition number of Hy; is generally smaller for the
barrier problems.
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Figure 8.1: Least-squares problems: Ratio of the curvature along di to the smallest
eigenvalue of the Hessian. Percentage out of 2013 observations.
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Figure 8.2: Barrier problems: Ratio of the curvature along di to the smallest eigen-
value of the Hessian. Percentage out of 115 observations.
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Figure 8.3: Least-squares problems: Ratio of the curvature along py to the curvature
along di. Percentage out of 2013 observations.
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Figure 8.4: Barrier problems: Ratio of the curvature along p;. to the curvature along
dj. Percentage out of 115 observations.



8. Test Problems and Numerical Results 29

20% ]

| |

00 01 02 03 04 05 06 07 08 09 1.0

Figure 8.5: Least-squares problems: Ratio of the cosine between p; and g, to the
cosine between s, and gi. Percentage out of 2013 observations.
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Figure 8.6: Barrier problems: Ratio of the cosine between p; and gi to the cosine
between s; and g,. Percentage out of 115 observations.
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9. Discussion

This report describes a modified Newton method for unconstrained minimization.
At each iteration a positive-definite portion of the Hessian is factorized using the
Cholesky algorithm. A descent direction is computed if the gradient is nonzero, and
a direction of negative curvature is computed if the Hessian is sufficiently indefinite.
A linear combination of these vectors define a search direction, along which the
next iterate is found. Theoretical properties of the algorithm are established, and
numerical data from a set of test problems are included.

As the algorithm is stated, if the direction of negative curvature is nonzero, it is
always used to form p;. From a practical point of view it is not clear if this is the
best use of di. It is possible to define a number G such that whenever ||gk|| > G,
we may discard the direction of negative curvature and still obtain the convergence
properties of Section 7. This alternative algorithm would allow a scheme for control-
ling that the cosine between p; and g is not much smaller than the cosine between
sk and gk, hereby ensuring that the search direction is not significantly closer to
orthogonality to the negative gradient than the descent direction. The significance
of utilizing a direction of negative curvature was investigated by rerunning the test
problems with 8; set to zero for all k. On those problems where a direction of nega-
tive curvature previously had been used, the number of iterations required to satisfy
the reduction of fj given in Table 8.3 tended to increase. Moreover, the number
of problems for which the convergence criteria were not met increased from six to
twelve.

Finally, we note that the convergence results given in Section 7 imply convergence
to a point where the gradient vector is zero and the Hessian matrix has a smallest
eigenvalue greater than a small negative number. Since a point satisfying the second-
order necessary conditions has nonnegative Hessian eigenvalues, it might appear that
the convergence results are somewhat less satisfactory than those usually given for
methods of this type. However, we observe that the magnitude of the bound on the
smallest eigenvalue may be made as small as required by assigning a suitably small
value for the parameter ¢. Small values of € affect only the numerical performance
of the method, and not the theoretical convergence properties. Moreover, it may be
observed from Tables 8.1, 8.2 and 8.4 that in most cases the iterates converged to a
point where ny was equal to n, that is the Hessian was positive definite. The only
exceptions are problems where the Hessian at the solution is very ill-conditioned,
singular or undefined (for some of the barrier problems).

Our overall conclusion from the results is that it was possible to reduce the value
of the objective function significantly in a rather small number of iterations by using
directions of negative curvature whenever the Hessian was indefinite. However, to
meet stringent convergence criteria was not always possible when the Hessian was
very ill-conditioned or singular at the solution. Also, by running the algorithm
without using the direction of negative curvature, we have the impression that the
ability to compute a direction of negative curvature is not only a theoretical tool
to show convergence, but also a helpful device in order to improve robustness and
efficiency.
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A. Appendix: Properties of the Barrier Test Problems

The barrier test problems originate from a barrier function approach proposed by
Resende et al. [RKR89] for solving 0-1 integer programs. Given an m X n matrix A
and an n-vector b, the 0-1 integer program concerns finding a z in ®* that belongs
to the set Fj, where

FL={2:42<b, =0 or =1 for i=1,...n}

We shall consider only the case where A and b have integer coefficients, since the
analysis is simpler in this case.

Applying the linear transformation z = 2z — e, the 0-1 problem is transformed
to an equivalent problem where all components of the integer solution are 1. The
transformed problem is converted into a smooth minimization problem by seeking
values in the set F given by

A 26— Ae+ e
F={z:| -I |z< e = {z: Az < b}.
I e

The aim is to find a point z* in F with components +1 by minimizing the barrier

function
1 m+2n

In(el(b — Az))
i=1

1 T
f(z) = iln(n— z'z) - e—
(see Resende et al. [RKR89)).

Although the barrier function is not defined for a point z* with components +1,
the following lemma shows that the barrier function has a global minimizer at z*,
since there exist sequences converging to z* for which the function tends to minus
infinity.

Lemma A.1. Assume that the matriz A has at least one row. Furthermore, assume
that {z;}%2, converges to a point z* € F such that z* has all components 1. If
Az < b for all k, and if there ezists a positive constant ¢ independent of k, such
that it holds for all k that

_T . J
min le; (zx — 27)|

>c
v lze - 2| '

then limg— o f(zi) = —00.
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Proof. For clarity, the iteration subscript k is dropped when subscript ¢ is used to
denote a particular component of z.
Using properties of logarithms, f(z) may be rewritten as

= . (2:‘;1(1 - :I:?))’"/2+n
f(z) = m+ 2n In (H?—.l e'-T(2b — Ae+e— Az)[T%;(1 - x?)) (A.1)

=t

Since z* € F with all components +1, it follows that 2b — Ae — Az* > 0 and
consequently

klim el(2b — Ae + e — Azy) > 1.

—00

Therefore, it may be assumed without loss of generality that Az, < 2b — Ae + e for
all k. If r denotes the vector whose i-th component is given by r; = |z; — 2| we get

(Cia (=2 (Er2- )"
H?:l(l - 1:12) ?:1 7‘,‘(2 - Ti) ’

where it without loss of generality may be assumed that r; < 1 for all :. Dividing
both numerator and denominator by the positive quantity (eZr)* and using the
existence of the constant ¢, we derive the inequality

(‘; 6_7:"(2 j Ti)) (2713/2 ) "
< .

c

If m > 0 then limg_, o (n— xz'a:k )"‘/ 2 = 0, and it follows that the argument of the log-
arithm in (A.1) tends to zero as k tends to infinity. Consequently, limy_., f(zx) =
—00 as required. 1

The following lemma shows that there is a one-to-one correspondence between
points in F with all components £1 and points in Fj.

Lemma A.2. The set Fy is nonempty if and only if there ezists a point in F with
all components +1.

Proof. Assume that 2z € F}. A linear transformation z = 2z — e yields z € F' with
all components +1.

Assume that ¢ € F with all components +1. Let z = 2z — ¢, and it follows that
z is a vector with all components zero or one, for which Az < b+ %e. However, Az
and b are integer vectors, and therefore it holds that Az < b. Consequently, z € F;.

Lemma A.1 implies that the barrier function has a global minimizer at any point
z* in F with all components +1. From Lemma A.2 it follows that if such a global
minimizer is found, a point in F; may be identified, thereby providing a solution of
the original 0-1 integer program.
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