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Absti'act

Newton’s method has proved to be a very efficient method for solving strictly 
convex unconstrained minimization problems. For the nonconvex case, various 
modified Newton methods have been proposed.

In this paper, a new modified Newton method is presented. The method is 
a linesearch method, utilizing the Cholesky factorization of a positive-definite 
portion of the Hessian matrix. The search direction is defined as a linear combi­
nation of a descent direction and a direction of negative curvature. Theoretical 
properties of the method are established and its behaviour is studied when 
applied to a set of test problems.

Keywords: Unconstrained minimization, modified Newton method, negative 
curvature, Cholesky factorization, linesearch, steplength algorithm

1. Introduction

In this paper we propose a method for finding a local minimizer of the problem

minimize fix).
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2 A modified Newton method

where / is a twice-continuously differentiable function. This fundamental problem 
has been studied extensively and various methods have been proposed that use first 
and second derivatives. The aim is to generate a sequence of iterates ^at
converge to a point x satisfying the first- and second-order necessary conditions, i.e., 
V/(x) is zero and V2f(x) is positive semidefinite.

Most methods that utilize second-derivative information may be viewed as exten­
sions of Newton’s method, in the sense that they are identical to Newton’s method 
in a neighbourhood where the Hessian is positive definite. If the Hessian is not 
positive definite at some iterate, the Newton step may not reduce the objective 
function. Consequently, if the method is required to generate a sequence of improv­
ing estimates, some modification is needed. Such modified Newton methods have 
been studied for two decades, see for example Fiacco and McCormick [FM68], Gill 
and Murray [GM74], McCormick [McC77], Fletcher and Freeman [FF77], Mukai 
and Polak [MP78], Kaniel and Dax [KD79], More and Sorensen [MS79] and Gold- 
farb [G0I8O].

Most modified Newton methods solve equations using a factorization of the Hes­
sian. The method proposed by Gill and Murray [GM74] uses a modified Cholesky 
algorithm, in which a diagonal matrix is implicitly added to the Hessian to make 
it positive definite. A similar modified Cholesky algorithm based on an alternative 
diagonal correction has been proposed by Schnabel and Eskow [SE88]. The methods 
proposed by Fletcher and Freeman [FF77] and More and Sorensen [MS79] use the 
Bunch-Parlett-Kaufman factorization of the Hessian (see [BP71], [BK77]).

In the method proposed in this paper, the Cholesky algorithm with complete 
pivoting is performed until all potential pivot elements are smaller than a preassigned 
tolerance. The Cholesky factor is used to obtain a search direction, which may be 
a linear combination of a descent direction and a direction of negative curvature. 
It is shown that the gradient is zero and the smallest eigenvalue of the Hessian 
is bounded below by a small negative number at all limit points of the iterative 
sequence. The magnitude of the bound may be predetermined by adjusting certain 
preassigned tolerances.

2. Basics

2.1. Assumptions

The following assumptions are made throughout the paper:

Al. The objective function is twice continuously differentiable.

A2. The level set ^(xo) = {x : /(x) < /(x0)} associated with the starting point x0 
is compact.

2.2. Preassigned parameters

The proposed method depends on seven preassigned scalar parameters. These pa­
rameters specify different tolerances and for reference, their purpose and range of 
values are are briefly summarized here.
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*€(0,1)

h-nun 0

^inim ^max
7? G (0,1)

p e (o,^) 

7 e (o,i)

is a parameter needed for the Cholesky factorization. It 
is used to determine the dimension of the positive-definite 
portion of the Hessian.
is a parameter used to reject small pivots in the factorization. 
No pivot elements smaller than e2hmia are accepted, 
define an acceptable interval for the initial steplength. 
specifies a tolerance associated with the direction of negative 
curvature.
is a parameter used in the linesearch to guarantee a sufficient 
decrease in /.
is a parameter used to determine the rate of decrease of the 
steplength in the backtracking linesearch.

2.3. Terminology

The idea of a descent direction and a direction of negative curvature are important 
when computing the search direction. A vector p is a descent direction at a point x if 
Vf(x)Tp < 0. Likewise, p is a direction of negative curvature at x if pTV2f(x)p < 0. 

Given a symmetric matrix

K -
T Nt 
N G

with T nonsingular, the Schur complement o/T in K will be denoted by A'/T, and 
is defined as

K/T = G - NT~1Nt.

The matrix K/T will be referred to as “the” Schur complement, when the matrix 
T is clear from the context. For further discussion of the Schur complement, see 
Cottle [Cot74].

Throughout the paper, the subscript k denotes the iteration index, and sub­
scripts i and j denote particular components or columns of a matrix or vector. 
When element i, j of a matrix Hk is addressed, we refer to it as hij—i.e., the low­
ercase letter is used and the iteration subscript is dropped. Also, for vectors and 
matrices, when the term norm is used, we mean the Euclidean vector norm and the 
corresponding induced matrix norm.

3. Preliminary Discussion

At the k-th iteration of the proposed method, Xf. denotes the current iteration point, 
Qk denotes Vf(xk) and denotes V2/(xfc). With Newton’s method as the model, 
it is desirable to compute the Newton search direction whenever Hk is sufficiently 
positive definite. If Hk is known to be positive definite, such a direction may be 
computed using the Cholesky factor of the Hessian. Whenever the Hessian is not 
sufficiently positive definite, the method presented here is based on the Cholesky 
factorization of a subset of the rows and columns of Hk- Complete pivoting is
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used, that is, the maximum diagonal element is chosen as the pivot at each step. 
Suppose that ni steps of the factorization have been performed and let 77 denote 
the permutation matrix representing the column interchanges. We have

***'«-(% Z)and "Mu)- <31)
where Hu is a positive-definite prinicipal submatrix of order ni, with Cholesky 
factor 77n. If ^12 = H12, we obtain the identity

nTHkn = fin
*12 )C 0

nTHkn/Hu

where nTHkH/H\\ is the Schur complement /722 — H2iH^Hl2.
In order to simplify the notation, we shall assume that no permutations are 

required. This implies that 77 is an identity matrix, and consequently nTHkII = Hk. 
We emphasize that this does not alter the theoretical results of later sections.

The factorization is usually terminated when all potential pivot elements in 
Hk/Hu are smaller than a tolerance c2max,{h;;}. However, if all diagonal elements 
of the Hessian are small or negative, the pivot tolerance is given by c2hmin for a 
preassigned positive constant hmin. Consequently, the pivot tolerance is defined as 
e2hk, where

hit = max{max{/i,-;}, Zimin}. (3.2)

The Cholesky factor is computed by rows, and the Schur complement is explic­
itly updated at each step of the factorization. Consequently, if the factorization is 
terminated with ni < n, the elements of the final Schur complement are known. 
Moreover, since we control the smallest acceptable pivot element, we have an upper 
bound on the diagonal elements of the 712 x 712 matrix Hk/Hu- These properties of 
the factorization will prove important when computing directions of negative cur­
vature. It is important to note that the dimensions of the matrices 77n, 77i2, H21 

and H22 depend on k.
The n X n\ matrix Z is defined to be

Z =
I
0

(3.3)

where the matrix 7 is an n\ x ni identity matrix. The n x matrix Y is defined 
to be

Y = ( ) , (3.4)

where we let yj denote the y'-th column of Y.

Lemma 3.1. The following relations hold:

ZTHkZ = 77n,
ZrHkY = 0 and 
YTHkY = H22 - H2XHjHl2.
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Proof. The result follows from substituting for Hk/Hu, Z and Y using (3.1), (3.3) 
and (3.4). |

Again, we emphasize that the dimensions of Z and Y depend on k. The following 
lemma shows that the columns of the nx n matrix M = (^ Z Y 'j form a basis for 
&n.

Lemma 3.2. The n x n matrix M is nonsingular.

Proof. The result is immediate from the fact that det(M) =1. |

The following lemma relates the smallest eigenvalue of Hk to the smallest eigen­
value of Hk/Hu.

Lemma 3.3. If Hk is indefinite then

^mia{HklHu) < Xmm{Hk) < ||y ||2 ^min(-^fc/-®n).

Proof. It follows from Lemma 3.1 that Hk/Hu = YTHkY. Let u denote an eigen­
vector of unit length corresponding to the smallest eigenvalue of YTHkY. It follows 
from (3.4) that uTYTYu > 1. Sylvester’s law of inertia yields Xmin{YTHkY) < 0, 
giving

0 > Xmm(YTHkY) = uTYTHkYu = uTYTYu.

The proof of the second inequality is completed by noting that

uTYTHtYu 
0 > uTYTYu ~

and
utYtYu < \\Y\\2.

Using the Courant-Fischer minimax characterization of eigenvalues (see e.g., 
Wilkinson [Wil65, page 101]), it follows that the smallest eigenvalue of Hk is the 
global minimum of the problem

minimize vTHkV
ve*n (3.5)

subject to vTv = 1.

Lemma 3.2 implies the existence of vectors vz and vY such that v — Zvz + Yvy. 
Substituting for v in (3.5), and using the identity ZTHkY = 0 yields the problem

minimize vZzTHkZv7 + vT.YTHkYvY
t»2e»"i,vy€«"a 2 z v' * ^ (3.6)

subject to v^ZTZvz + 2v^ZTYvY + v^YtYvy = 1.

By definition, ZTHkZ = H\\ is positive definite, and it follows that the global 
minimum of (3.6) is no smaller than the global minimum of the problem

minimize 

subject to

vYYTHkYvY

vTzZTZvz + 2vtzZtYvy + v^YtYvy = 1.
(3.7)
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Since this is a problem where the gradient of the constraint is nonzero at all feasible 
points, the constraint qualification always holds. Therefore, if vz and vY are global 
minimizers, there must exist a Lagrange multiplier v such that the equations

v(ZTZvz + ZtYvy) = 0 (3.8a)
YTHkYvY + v(YtZvz + YtYvy) = 0 (3.8b)

vlZrZvz + 2vlZTYvY + vlYTYvY = 1 (3.8c)

are satisfied.
The global minimum of (3.6) is negative, so that the global minimum of (3.7) is 

also negative. If v is zero, it follows from (3.8b) that the global minimum of (3.7) 
is zero, which is a contradiction. Therefore, (3.8a) implies that vz is determined by 
Vy, with

vz = ~(ZTZ)~l ZTY vY.

Using this value of vz and the definitions of Z and T, problem (3.7) is equivalent 
to the problem

minimize vZYTHkYvv
vYeX"2 *, r (3.9)

subject to vYvY = 1.

The proof of the first inequality is completed by noting that the global minimum of 
(3.9) is the smallest eigenvalue of YTHkY. |

We also require a result that relates the smallest eigenvalue of a symmetric 
matrix to the magnitude of its elements.

Lemma 3.4. If all elements of an n x n symmetric matrix A have absolute values 
less than p, no eigenvalue of A has absolute value larger than pn.

Proof. This is an immediate consequence of the Gerschgorin circle theorem—see 
e.g., Golub and Van Loan [GV83, page 200]. |

4. The Cholesky Factorization

At each iterate, a positive-definite principal minor of the Hessian is factorized as 
outlined in the previous section. Some standard results concerning the Cholesky 
factorization are needed to derive uniform bounds on ||/7j'j1||. These results are 
reviewed in this section. For a complete discussion of the Cholesky factorization, 
see Higham [Hig87].

Lemma 4.1. If a positive-definite n X n matrix A is factorized using the Cholesky 
algorithm with complete pivoting, the elements of the Cholesky factor R have the 
following properties:

ni > r22 > • • • > rnn,
|r,j| < ra for j = 1,..., n, i = 1,... J - 1.

(4.1a)
(4.1b)
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Proof. For any j > i the complete pivoting strategy yields

j-i
rii - r» - Z-fr0‘’ 

l=i

from which (4.1a) follows. Since A is positive definite, it holds that rjj is positive, 
and therefore r? > r?-. |

Lemma 4.2. If R is the Cholesky factor of an n x n symmetric positive-definite 
matrix obtained by complete pivoting, the elements of its inverse U have the following 
properties.

t*ijl < -------- for ,,n, * = l,...,j - 1

Ujj

Tjj
1 for j = 1,.. . ,n

Ujj

fr- oII for j = \,.. • i * = j' + l,...,n

Proof. The matrix U satisfies the equation RU = I. The j-th column of this 
equation gives

Uij = 0

ujj —
’ 3J

1 v*
lij = -— 2w r*iub

l=i+l

if i > j

if i < j.

Lemma 4.1 implies that

3

I “O'| < Kl if i<j-
l=i+i

By induction, it follows that

Kjl < -------- if *' < j-
r33

This bound on the element growth is usually unduly pessimistic. However, for 
certain special matrices, substantial element growth may occur—see e.g., Higham 
[Hig87, page 6]. What is important here is the existence of a bound. Such a bound 
is needed in order to obtain a uniform bound on ||/f[“11||.

Lemma 4.3. There exists a positive constant cq, such that for all k, ||^ff11|| < cq.
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Proof. Since no pivot element smaller than e2/imin is accepted in the Cholesky 
factorization we have rnjni > f\//imin- Lemma 4.2 implies that

2"
< rr---- for * = and j =

The identity and Lemma 3.4 yield the desired result. |

5. Computation of the Search Direction

In the proposed method a search direction pk is computed at the fc-th iterate. The 
vector pk is defined in terms of two other vectors; a descent direction Sk and a 
direction of negative curvature dk.

5.1. Computation of the descent direction

The descent direction Sk satisfies the equation

Bk^k — 9ki

where
Hu 0

0 hkI

(5.1)

(5.2)

and hk is defined by (3.2).
If ni = n, then Bk = Hk and Sk is the Newton direction. If n2 = n then 

Bk = hmin/ and Sk is a multiple of the steepest-descent direction. (In general, ni 
need not be equal to the number of positive eigenvalues of Hk- For example, the 
matrix I — eeT, where e denotes an n-vector with unit components, has n—1 positive 
eigenvalues, but n\ = 0. However, the results reported in Section 8 include only one 
case where n\ was zero.)

The vector s* of (5.1) is computed by solving the triangular systems

= —oi and R\\v = u, with Sk = ( I .
V ~(l/hfc)<72 J

When Sk is computed from these equations, the norms of Sk and gk are related in a 
uniform way. The following lemma shows that Sk satisfies descent properties similar 
to those required by McCormick [McC77].

Lemma 5.1. If Sk is defined by (5.1) there exist positive constants C\ and c2 inde­
pendent of k, such that for all k, it holds that

-■sjfrjfc > call^H2 and HtfikH > c2||,S)t||.
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Proof. The definition of yields

IM ^ —/M u—iM* 11

The bound on ||^fii1|| obtained from Lemma 4.3 implies the existence of c-i.
The definition of Sk yields

Sk9k > min{Amin(/ri_11),(l//ifc)}||5ifc||2.

Since Hu is positive definite and symmetric, we may employ the identity

The compactness of 5(xo) and the smoothness of / ensure the existence of cj. I

5.2. Computation of the direction of negative curvature

The formula for dk is derived from a method for computing directions of negative 
curvature in quadratic programming (see Forsgren et al. [FGM89]). If the variables 
corresponding to H22 are temporarily locked at their current values, a direction of 
negative curvature is defined by releasing one or two of the locked variables. This 
scheme corresponds to using either yi or yi ± yj as a direction of negative curvature 
for a specific choice of i and j. The choice of i and j is determined by the values of 
the elements of Hk/Hu- When the factorization of Hk is terminated, these elements 
yjHky- are known for 1 < i, j < n2, without explicitly computing the vectors yx 
(see Lemma 3.1).

Let 7] E (0,1) denote a preassigned constant and let p denote 
The vector dk is computed as follows.

maxM lyfHkVjl-

iip<e2hk/r} then
dk = 0 (5.3a)

else if yjHkyi = — p for some i then

dk = ±y.- (5.3b)

else if \yfHkyj\ = p for some i ^ j then

1 T 
dk = ~ (5.3c)

end if

In each case, we choose the sign of dk so that gkdk < 0.
In the Cholesky algorithm, the pivot elements are chosen from the diagonal 

of the Schur complement, and it follows that yfH^ < e2hk for i = 1, ..., n2. 
Consequently, if p > €2hk/r) then yjHkyi < p for all i and dk is well defined.
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In order to obtain it is necessary to compute yi or yi ± yj. This is done by 
solving an equation involving Rn and Ru- For example, the computation of y, + yj 
requires the solution of the equation

u

V5(e‘ + ei)

The following lemma shows that any nonzero dk is a direction of negative cur­
vature.

Run — --^=Ri2(ei + ej) with yi + yj =

Lemma 5.2. If dk is nonzero then

i igj.dk < 0 and djHkdk < —
(1 - T))e2hk

Proof. In each case, the sign of dk is chosen so that gfak < 0. Let p denote 
max.j \yjHkyj\. If dk is given by (5.3b), then = yjHkyi = -p. If dk is given
by (5.3c), then

dlHkdk = ^{yjnkyi + yjnkyj) ~ lyfHkVjl,

where \yjHkyj\ = p- Since yjHkyi and yjHkyj are both less than or equal to e2hk, 
it holds that < e2hk — p. The inequality p > e2hk/r} implies that in either
case

dlHkdk < (1 - g^hk
V

as required.

Finally, we relate the curvature along any nonzero dk to the smallest eigenvalue 
of Hk.

Lemma 5.3. If dk is nonzero, there exists a positive constant cz, independent of k, 
such that for all k

Proof. Let p denote max,j \yjHkyj\. If dk is nonzero, it follows from the proof of 
Lemma 5.2 that dlHkdk < -(l-g)p. Lemma 3.4 implies that \min(Hk/Hn) > —pn, 
hence

dTkHkdk < ^-^{Hk/H^).
Tt

From Lemma 3.3 we have

dlHkdk < 1 ~ ^ \ (ii \
jTj - „ jTj Ammyxik).dkdk n dkdk

Now (5.3b), (5.3c) and (5.4) may be used to obtain

1 < dTkik < \\YtY\\ < 1 + Ilffafll/rr.T
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The uniform boundedness of \\df.\\ now follows from Lemma 4.3 and the assumptions 
on /. |

The significance of this lemma is that a nonzero dk cannot be an arbitrarily poor 
direction of negative curvature compared to the eigenvector corresponding to the 
smallest eigenvalue of Hk (which is the best possible choice). The vector dk may be 
zero even if Hk is indefinite. However, when dk is zero, the following lemma gives a 
bound on the indefiniteness of Hk-

Lemma 5.4. If dk = 0 then \min{Hk) > —ne2hkf‘t].

Proof. If n2 = 0, then Hk is positive definite and Amin(^) > 0. Assume that 
7i2 > 0. Since dk = 0, it holds that p < e2hk/r]. This result, together with Lemma 3.4 
implies that

InnnWHn) > -n2p > ,

and it follows from Lemma 3.3 that

ArninCiffc) > .

5.3. Computation of the search direction

The search direction pk is defined to be

Vk = sk + Pkdk, (5.5)

where the scalar (3k is defined as follows:

if dk 7^0 and skHksk > dkHkdk then

a, - SlHkdk , (‘InA'
VlHkdk/

)2 + 1

dTHkdk
(5.6a)

else

Tr II O (5.6b)

end if

Note that if ?i2 = 0 (i.e., if Hk is sufficiently positive definite), pk is the Newton 
direction. The choice of /3*. is important only if dk is nonzero. The particular choice 
of fik given above is motivated by the following lemma, which also shows that if dk 
is nonzero, pk is also a direction of negative curvature.

Lemma 5.5. If dk is nonzero, then /?* > 0 and pjHkpk <
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Proof. If djt / 0 and fik = Q then p^HkPk = sjHkSk < djHkdk. If d*. / 0 and 
fik ^ 0 it follows from the definition of fik that d%Hkdk < sJ.Hksk and the square 
root in (5.6a) is well defined. In this case (3k is the unique positive number that 
satisfies the quadratic equation {sk + (3kdk)THk(sk + fikdk) = dkHkdk. |

The following lemma shows that the norm of pk is uniformly bounded.

Lemma 5.6. If pk is defined by (5.5), ||pfc|| is uniformly bounded.

Proof. Lemma 5.1 and the compactness of S(x0) imply that ||sfc|| is uniformly 
bounded.

From the proof of Lemma 5.3 it follows that ||dfc|| is uniformly bounded. Lemma 
5.2 guarantees that the denominator of (5.6a) is uniformly bounded away from zero. 
Since / G C2 and the level set ^(xo) is compact, it follows that fik is uniformly 
bounded, as required. |

One consequence of Lemma 5.6 is that if dk is nonzero, pk cannot be an arbitrarily 
poor direction of negative curvature.

6. Computation of the Iterates

Unlike the methods suggested by McCormick [McC77], More and Sorensen [MS79] 
and Goldfarb [GolSO], if Hk is indefinite, the next iterate lies on a line emanating 
from xk, instead of an arc. At a given iterate xk, we will consider the case when an 
initial estimate ak E [c*mm,amax] of the steplength along pk is given. One way of 
generating such an ak is discussed in Section 8.1.

We follow McCormick [McC77] and guarantee a sufficient decrease by comparing 
/ to a damped truncated Taylor series consisting of two or three terms. The resulting 
algorithm may be viewed as an Armijo-type linesearch [Arm66], extended to the 
indefinite case.

Let p and 7 denote preassigned constants such that p G (0,^) and 7 E (0,1). 
Given xk and ak E [c*min>a!max]> the number ik is defined to be the smallest non­
negative integer i such that

/(*fc + 7,ajfcPfc) < f(xk) +rfotkffkPk

f(xk + 7,afcp*) < f(xk) + m'akSkPk + "" g—

if dk = 0; (6.1a) 

if dk 7^ 0. (6.1b)

The next iterate xk+i is defined as

Xk+l = xk + llkakPk- (6.2)

A complete description of the modified Newton method is given in Algorithm 6.1. 
In order to show that the algorithm is well defined, we present two lemmas, which 
are slightly modified forms of a lemma given by More and Sorensen [MS79, Lemma 
2.2].
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Specify tolerances e, Zimin> owm amax> 'Hi ^ and 7;
A; <— 0; converged <— false; 
repeat

Evaluate /*., gk and Hk;
Factorize Hk to obtain to*, n2, ^n, R12 and Hk/Hu;
Compute Sk and dk\ 
if (ni = n or dk = 0) then 

Pk +- sk;
else

Compute /3k]
Pk * 'S fc d" Pk dk i

end if
converged <— convergence-test; 
if (not converged) then

Compute OCk E [®minj®max]>
Compute ik so that f(x + itkakPk) is sufficiently decreased; 
a:*+i «-a:*+ 7“ar*p*; k+-k + 1; 

end if
until converged;

Algorithm 6.1. A modified Newton method for unconstrained minimization

Lemma 6.1. If p 6 (0,-|) is a given constant and <p is a continuously differentiable 
univariate function such that <p'{0) < 0, then there exists a positive scalar £ such 
that

(p(0 < (fi(0) +p^(Q)C

for £ € (0,0-

Proof. The Taylor-series expansion for a positive £ yields

- ¥>(o) - p<p'(o)0 = (1 - mV(o) + <p'(90 -

for some 9 G (0,1), and it follows that

(lim. ^(V>(C) - m - ^'(0)0 = (1 - P)<P'(0) < 0.

Hence, there exists a positive number C such that

9(0 - 9(0) - Mo)C < 0

for all C G (0,C). I
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Lemma 6.2. If ^ £ (0> 2) 15 a 9^ven constant and <p is a twice-continuously differ­
entiable univariate function such that <p'(0) < 0 and ^(O) < 0, then there exists a 
positive scalar ( such that

<p{() < (^(0) + + pV'(0)y.

for( £ (0,0-

Proof. The Taylor-series expansion for a positive £ yields

£(¥>(0 - ¥>(0) - /(0)C - #<V'(0)£) = + i(v"(#C) - ¥>"(0))

for some 0 £ (0,1), and it follows that

- ¥>(») - ¥>'(0)C - /*2¥>"(0)^) = < 0.

Hence, there exists a positive number C such that

¥>(C) - ^(0) - /(OX - /xV"(0) j < o.

for all C 6 (0,C). The proof is completed by noting that

/(OX < /i/(o)C-

We can now show that a sequence {a:*;}£i0 generated by (6.2) is well defined. 

Lemma 6.3. The sequence {xjt}jfcT0 we^ defined.

Proof. First assume that dk is nonzero. It follows from Lemmas 5.2 and 5.5 that
9kPk < 0 and PkHkPk < °- If we define V(0 = f(xk + CPk), we have ^'(0) = glpk 
and = PkHkPk- Lemma 6.2 implies that given ak, there exists a nonnegative
integer ik such that (6.1b) holds.

Assume that dk is zero so that pk — sk. If sk — 0, then (6.1a) holds for ik — 0. 
If sk ^ 0, then Lemma 5.1 implies that gksk < 0. The application of Lemma 6.1 
with 9?(Q = f(xk -f (Pk) implies that there exists an ik such that (6.1a) holds. |

It is of interest to study the behaviour of f(x) along pk. It follows from Taylor- 
series expansion that

c2f(xk + CkPk) = f(xk) + (kgkpk + -^plHkpk + rk(xk,pk,(^k), 

where the remainder term is given by

»•*(**,Pk,(k) = ^pl{^2f{xk + - V2f{xk))pk (6.3)

for some 0k 6 (0,1).
In the following lemma, we establish the behaviour of the remainder term as k 

tends to infinity and C,k tends to zero.
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Lemma 6.4. lim^oo £* = 0 then

limk—*oo
rk(xk,Pk,(k)

Cl = o.

Proof. Using properties of norms and (6.3) we get

< JWl!||vV(it + OkM - vJ/(**)ll.

Assumption A2 and Lemma 5.6 imply that ||xfc|| and ||pjk|| are uniformly bounded. 
Since limfc_0O ^ = 0 it follows that |0t| is uniformly bounded. Therefore, there exists 
a compact set C such that £ C and + OkCkPk € C for all k. Since C is compact 
and / is twice continuously differentiable, it follows that ||V2/|| : C —> 3? is uniformly 
continuous. Hence, for all 6 > 0 there exists a ^ > 0 such that || V2/(x) — V2/(j/)|| < l 
for all x,y € C such that ||x — j/|| < b. Since limt-KX) Cfc = 0 and ||pa:|| is uniformly 
bounded, for each b there exists a K such that U^CfcPfcll < ^ for all fc > K. |

If an infinite sequence is generated, the following lemma shows that
there are only a finite number of iterates where a direction of negative curvature is 
computed.

Lemma 6.5. For any sequence {xfc}£L0 there must exist a finite K such that dk = 0 
for all k > K.

Proof. The sequence {/(x^)}^ is decreasing and Assumptions Al and A2 imply 
that this sequence is bounded from below, and it follows that {/(a:jfc)}fcLo converges 
to a limit /. Assume that there exists an infinite subsequence {xk}k£j such that 
dk ^ 0 for all k & J. From the equation

OO

/-/(*o) = 2(/(*fc+i) “
k=o

and the fact that each term in this sum is nonpositive, it follows that

/ - f(x0) < ^2(f(xk+i) - f(xk)). 
keJ

From Lemmas 5.2 and 5.5 we obtain

PkHkPk < dkHkdk <
(1 - r?)<r2/tfc

for all fc £ J. The inequalities g^pk < 0 and ak > own imply that

f - f(x0) < ^2 
keJ 2V
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Since / is finite this inequality must imply that i* —> oo as A: —► oo, for A; € J. 
Further, from the definition of ik

1 • T U272(t* T
f(xk + Yk 1akPk) > f(xk) + Pl'k <Xk9kPk + -------o------ ~PkHkPk-

The Taylor-series expansion yields

rk(xk,Pk,l’k 'ak) ^ (1 ~ P) t (1 ~ P2) t
^2(ifc-l)a2 ■PkHkPk-

Using the fact that gjpk < 0, it follows from Lemmas 5.2 and 5.5 that

rkjxk^k,!'^1^) (1 ~^2)(1 - ^hmin
72(.t-i)a2 > 2r/ (6.4)

Taking the limit in (6.4) noting that ak < amax it follows from Lemma 6.4 that

n ^ (1 ~P2)(1 ~ r))e2hmin

which is a contradiction. Therefore, there exists a finite K such that dk is zero for 
all A; > K. I

7. Global Convergence Properties

Using the established lemmas we can derive the following theorem concerning the 
limit points of the sequence

Theorem 7.1. If an infinite sequence {x^^Lq is generated as defined in (6.2), any 
limit point x satisfies

nc2 h
V/(x) = 0 and Amin(V2/(x)) >---- —,

where h = max{max,-{(V2/(x))tt}, Zimin}

Proof. Without loss of generality, it may be assumed that the sequence {xtj^-o 
converges to some point x. Lemma 6.5 implies that there exists a K such that 
dk = 0 for all k > K, so that pk — sk for k > K. Therefore, Lemma 5.4 and the 
continuity of V2/ imply that

Amm(V2/(a;)) >------------- ■
T)

Assume that there exists an I such that ik < I for all k > K. It follows from 
Lemma 5.1 that

/(xjb+i) - f{xk) < Pl^kghk < -/Vciaminlltffcll2-



7. Global Convergence Properties 17

Since f(x) is finite, it follows that V/(i) = 0.
If the integers ik are not bounded above, then it may be assumed without loss 

of generality that tj. —► oo as fc —► oo. From the definition of ik it follows that

f(xk + 7,fc-1«fcSJfc) - f(xk) > p~l'k~lak9kSk

for all A; > if. The Taylor-series expansion yields

7** 1ak Ttt
^ skHksk + 7«'fc-1afc

> -(1 - p)glsk.

Using Lemma 5.1 it follows that

7*fc Ttt . Ufc(*fc,’Sfc,7,'‘ 1(Xk) . ^ „ |,2
---- 2---- skHksk + jik-iak-------> ^ " ^cihkW ■

Taking the limit and using Lemmas 5.6 and 6.4 we have V/(x) = 0 as required.

As stated in the following corollary, a consequence of this theorem is that if two 
consequent iterates are identical, a limit point is found, since all subsequent iterates 
are identical.

Corollary 7.1. If two consecutive iterates Xk and £jt+1 are identical, the point Xk 
satisfies

V/Cxfc) = 0 and Ami^V2/^*)) > -
ne2hk

The assumptions made are not sufficient to guarantee that the sequence {xfc}j£L0 
is convergent. Some additional conditions are needed to guarantee that a generated 
sequence has a unique limit point. As observed by More and Sorensen [MS79], if 
we make the additional assumption that there are only a finite number of points in 
S(xo) where the gradient vanishes, the following result may be used.

Lemma 7.1. (Ortega and Rheinboldt [OR70]) Suppose that a generated se­
quence {x,fc}fcL0 satisfies

lim (xjfc+i — Xk) — 0 and lim V/(xfc) = 0.
k—*oo k—*oo

Furthermore, suppose that the level set S(xq) is compact. If there are only a finite 
number of points in S(xq) where the gradient vanishes, then there exists a point x 
such that

lim Xk = x and V/(x) = 0.
fc—<-oo

Proof. See Ortega and Rheinboldt [OR70, Theorem 14.1.5]. |

In the method proposed in this paper, it follows from Lemma 6.5 that there is 
a K such that pk = Sk for k > K. From Lemma 5.1 we get limfc_005jt = 0. Using 
Lemma 7.1 the following corollary may be established.
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Corollary 7.2. If there are only a finite number of points in S(xq) where the gra­
dient vanishes, the sequence {xfc}^_0 converges to a point x satisfying

2 r
V/(x) = 0 and Amin(V2/(^)) > ,

V

where h = max{max,{(V2/(x)),-,},/imin}. |

8. Test Problems and Numerical Results

A Fortran version of the algorithm was run on two types of test problems: nonlin­
ear least-squares problems and barrier problems. The computer used was a DEC 
VAXstation II, with relative machine precision 1-39 X 10-17.

8.1. Parameter values

Various values of the parameters discussed in Section 2.2 were investigated. The 
results presented here were obtained with the following values:

e

htnin
V
^min

^max

7

10"6

10“3
10"3
10-1°

1015
0.1
0.5

(specifies smallest acceptable pivot element)
(smallest acceptable maximum diagonal element of Hu) 
(tolerance for the acceptance of df.)
(minimum step in the linesearch)
(maximum step in the linesearch)
(damping factor used in the truncated Taylor polynomial) 
(parameter for the backtracking).

The value of c is a tradeoff between a small value that gives the Newton search 
direction when Hk is positive definite, and a value large enough to ensure that Hu 
is well-conditioned. Theoretically, a very small value of e is preferred, since this is 
more likely to give limit points that satisfy the first- and second-order necessary 
conditions (see Theorem 7.1). However, small values of e may give ill-conditioned 
Cholesky factors which may cause inaccurate search directions. Our experiments 
indicate that the overall performance of the method is not sensitive to the precise 
value of e.

Given the value of e, hmm is selected to ensure that the minimum pivot element 
is always greater than the machine precision. In the experiments presented here, 
this value of h^n affected only two iterates.

The value of rj was varied by several orders of magnitude from the chosen value, 
without changing the overall performance. The value selected helps to avoid com­
puting directions of negative curvature when the elements of the Schur complement 
are all small in magnitude.

The steplength is computed using the linesearch procedure of Gill et al. 
[GMSW79] with default parameter settings. At each step of the linesearch both the 
function and gradient are evaluated. The value of p above was chosen to ensure that 
ik = 0 is accepted in most cases. Since the value of ik in (6.2) differed from zero 
in only two cases, we deduce that the choice of 7 is not crucial. The values of ctmin 
and oimax were designed to ensure that the steplength produced by the linesearch
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is accepted in almost all cases. In practice, a sensible choice of amax can improve 
efficiency.

The efficiency of the linesearch is affected by the initial estimate of a. Whenever 
dk was zero, the choice of a = 1 was found to be adequate. However, the unit step 
tended to overestimate the accepted step when dk was nonzero. To allow for this, 
an initial step of 0.01 was used in these cases.

8.2. Least-squares test problems

The least-squares test problems comprise a suite of 45 problems, given by Fra­
ley [Fra88]. Many of these problems are known to be hard to solve, in spite of their 
small size. A summary of results obtained on these problems when applying dif­
ferent least-squares methods and methods for unconstrained minimization is given 
in Fraley [Fra88]. Our numbering of the problems is the same as in Fraley’s study. 
The formulations for problems l-35c are given by More et al. [MGH81], problems 
36a-36d are presented in Fraley [Fra88], problems 37-38 are given by Salane [Sal87], 
problems 39a-4k/ are from McKeown [McK75], problems 42a-43/ originate from de 
Villiers and Glasser [dVG81] and problems 44a-45e are from Dennis et al. [DGV85].

We accept x* as a solution of a least-squares problem if one of the following two 
conditions are met:

Cl. 

or

C2.

The first condition is intended to accept points that approximately satisfy the 
first- and second-order necessary conditions for optimality. The second condition is 
intended to test when the sequence has converged. For a detailed discussion
of convergence criteria for unconstrained optimization, see Gill et al. [GMW81, 
Chapter 8].

In some problems it was not possible to evaluate the function at all trial points. 
In these cases, the trial step was repeatedly decreased by a factor 7 (7 = 0.5) until / 
could be evaluated. This additional backtracking was necessary for problems 42a and 
43d because of an implicit nonnegativity constraint on one variable; and for problem 
19 because of overflow during the calculation of the objective function. Similarly, 
the initial step at the starting point of problem 11 was repeatedly decreased until 
the Hessian and gradient were not numerically zero. These trial function evaluations 
are included in the number of function evaluations shown.

In problems 2, 36a, 366 and 36d, the algorithm failed to converge within the 
permitted number of iterations. In all cases, this non-convergence is a consequence 
of the Hessian being very ill-conditioned at the solution. Although the algorithm did 
not converge in these cases, the objective value was close to the optimal objective 
value.

dk = 0
V

I

JS) y/

dk “ 0
f(xk-l) -- fi^k) < fAf(l + l/(**)l)

\\Xk -
■ Z*-l|| < + 11**11)

INI < ^7(1 + !/(**)!)
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nr name n nl h IU-II k n/ conv #n+ #rfu

1 rose 2 2 6.317050E-32 6.0E-15 2.E+03 22 29 j 0 0 0
2 froth 2 2 2.449213E+01 1.7E-07 1.E+03 7 11 7 2 0 0
3 poslbs 2 1 2.837351E-05 1.1E+01 1.E+00 600 2079 n 5 593 1
4 brosnbs 2 1 3.8S1860E-34 2.8E-11 1.E+00 4 5 y i 3 0
5 be ale 2 2 1.007290E-23 3.8E-12 l.E+02 8 18 y 0 3 3
6 jensam 2 2 6.218109E+01 2.0E-13 8.E+00 10 11 y 0 0 0
7 helix 3 3 2.943716E-35 2.5E-17 3.E+02 14 25 y 0 5 5
8 bard 3 3 4.107439E-03 4.4E-16 2.E+03 14 21 y 0 1 1
9 gauss 3 3 5.639664E-09 4.9E-11 5.E+Ol 2 3 y 0 0 0

10 meyer 3 2 2.661418E+04 4.1E+01 6.E+07 24 74 n 4 23 2
11 gulf 3 3 8.612303E-20 2.0E-10 l.E+10 151 251 y 0 8 7
12 box 3 3 8.939108E-30 1.3E-15 7.E+03 14 19 y 0 1 0
13 sing 4 4 1.300559E-13 1.8E-09 1.E+08 21 22 y 0 0 0
14 wood 4 4 O.OOOOOOE+OO 0.0E+00 5.E+02 39 52 y 0 1 1
IS kowosb 4 4 1.537528E-04 3.6E-11 2.E+03 9 23 y 0 4 4
16 brounden 4 4 4.291110E+04 1.6E-10 6.E+01 8 9 y 0 0 0
17 osbl 5 5 2.732447E-05 3.6E-09 1.E+09 65 147 y 0 28 28
18 exp6 6 5 2.827825E-03 1.9E-09 1.E+05 48 136 y 1 46 37
19 osb2 11 11 2.006887E-02 2.2E-12 4.E+03 16 37 y 0 6 6
20a uatson06 6 6 1.143835E-03 5.2E-13 2.E+04 12 13 y 0 0 0
20b satson09 9 9 6.998801E-07 7.5E-15 2.E+08 13 14 y 0 0 0
20c watsonl2 12 11 4.178499E-09 6.4E-08 8.E+09 31 38 y 3 32 1
20d vatson20 20 13 6.886510E-08 1.8E-08 2.E+11 53 107 y 3 54 0
21a rosex 10 10 3.158525E-31 1.3E-14 2.E+03 22 29 y 0 0 0
21b rosex2 20 20 6.317050E-31 1.9E-14 2.E+03 22 29 y 0 0 0
22a singx 12 12 3.901678E-13 3.2E-09 1.E+08 21 22 y 0 0 0
22b singx2 20 20 1.284503E-13 1.2E-09 2.E+08 22 23 y 0 0 0
23a peni4 4 4 1.124989E-05 7.5E-11 5.E+03 34 43 y 0 0 0
23b penilO 10 10 3.543826E-05 1.3E-12 1.E+03 36 44 y 0 0 0
24a penii4 4 4 4.688147E-06 1.1E-10 2.E+06 110 158 y 0 0 0
24b peniilO 10 10 1.468303E-04 1.0E-09 2.E+06 93 132 y 0 0 0
2Sa vardiml 10 10 8.680345E-27 2.6E-12 1.E+02 14 15 y 0 0 0
25b vardim2 20 20 0.000000E+00 0.0E+00 4.E+02 18 19 y 0 0 0
26a trig 10 10 1.721941E-24 1.3E-12 8.E+00 7 11 y 0 1 1
26b trig2 20 20 3.074585E-28 1.2E-14 4.E+00 11 22 y 0 5 5
27a brounall 10 10 2.651544E-28 2.3E-14 2.E+03 8 9 y 0 0 0
27b brownal2 20 20 2.462302E-18 3.3E-09 l.E+04 9 10 y 0 0 0
28a discbvl 10 10 9.287387E-25 1.7E-13 9.E+01 3 4 y 0 0 0
28b discbv2 20 20 1.182787E-2S 1.7E-14 7.E+02 3 4 y 0 0 0
29a disciel 10 10 1.997048E-22 2.5E-11 1.E+00 3 4 y 0 0 0
29b discie2 20 20 3.293268E-22 3.2E-11 1.E+00 3 4 y 0 0 0
30a broytril 10 10 8.9S5574E-33 7.6E-16 2.E+00 6 7 y 0 0 0
30b broytri2 20 20 2.051115E-32 1.1E-15 2.E+00 6 7 y 0 0 0
31a broybanl 10 10 6.032100E-27 5.2E-13 3.E+00 8 9 y 0 0 0
31b broyban2 20 20 6.067580E-27 5.2E-13 3.E+00 8 9 y 0 0 0
32 lin 10 10 5.OOOOOOE+OO 9.7E-16 1.E+00 1 2 y 0 0 0
33 linl 10 1 2.317073E+00 2.8E-11 1.E+00 1 3 y 1 2 0
34 linO 10 1 3.067568E+00 4.0E-11 1.E+00 1 3 y 1 2 0
35a chebyqul 8 8 1.758437E-03 5.4E-15 2.E+01 19 34 y 0 11 11

Table 8.1: Results for least-squares test problems l-35a.
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nr name n ni Ik Ibkll *(tfil) k conv #"2 #du

35b chebyqu2 9 9 9.668790E-22 8.5E-11 2.E+02 34 84 7 0 27 27
35c chebyqu3 10 10 3.251977E-03 6.4E-11 2.E+02 24 46 7 0 16 16
36a msqrtli 4 4 7.839S19E-11 5.SE-06 6.E+10 600 885 n 5 0 0
36b msqrt2i 9 7 2.066297E-09 1.8E-05 2.E+08 600 2175 n 5 421 361
36c msqrt3i 9 8 6.499547E-16 2.1E-08 4.E+08 28 44 n 4 2 1
36d msqrt4i 9 9 2.10516SE-09 1.6E-06 5.E+10 600 2154 n 5 415 361
37 hanl 2 2 1.043501E+02 1.5E-12 3.E+04 5 9 y 0 1 0
38 haji2 3 3 1.983216E+01 2.7E-10 1.E+06 6 11 7 0 0 0
39a mckla 2 2 9.180060E-02 1.0E-17 7.E+00 3 4 7 0 0 0
39b ncklb 2 2 9.180060E-02 7.7E-12 5.E+00 3 4 7 0 0 0
39c ncklc 2 2 9.180060E-02 1.3E-13 2.E+00 3 4 7 0 0 0
39d nckld 2 2 9.180060E-02 2.2E-17 2.E+00 5 6 7 0 0 0
39e ackle 2 2 9.180060E-02 1.0E-14 6.E+00 7 8 7 0 0 0
39f mcklf 2 2 9.180060E-02 3.9E-18 7.E+00 10 11 7 0 0 0
39g acklg 2 2 9.180060E-02 8.8E-10 7.E+00 12 13 7 0 0 0
40a ack2a 3 3 3.982776E-01 4.2E-1S 2.E+01 3 4 7 0 0 0
40b Bck2b 3 3 3.982776E-01 1.2E-10 8.E+00 3 4 7 0 0 0
40c ack2c 3 3 3.982776E-01 6.6E-13 2.E+00 4 5 7 0 0 0
40d Bck2d 3 3 3.982776E-01 1.0E-16 4.E+00 5 6 7 0 0 0
40e Bck2e 3 3 3.982776E-01 6.7E-17 1.E+01 7 8 7 0 0 0
40f mck2f 3 3 3.982776E-01 5.4E-12 2.E+01 9 10 7 0 0 0
40g Bck2g 3 3 3.982776E-01 1.4E-15 2.E+01 12 13 7 0 0 0
41a Bck3a 5 5 5.000001E-01 8.3E-10 4.E+00 2 3 7 0 0 0
41b mck3b 5 5 5.000001E-01 6.7E-14 3.E+00 3 4 7 0 0 0
41c mck3c 5 5 5.000001E-01 4.8E-12 3.E+00 7 8 7 0 0 0
41d Bck3d 5 5 5.000001E-01 9.6E-15 2.E+00 8 9 7 0 0 0
41e mck3e 5 5 5.000001E-01 3.7E-10 2.E+00 10 11 7 0 0 0
41f mck3f 5 5 5.000001E-01 1.7E-11 3.E+00 13 14 7 0 0 0
41g mck3g 5 5 5.000001E-01 2.1E-12 3.E+00 16 17 7 0 0 0
42a devgla 4 4 3.S93754E-28 7.3E-12 5.E+04 16 27 7 0 2 2
42b devglb 4 4 2.485558E-23 1.2E-09 5.E+04 28 51 7 0 6 6
42c devglc 4 4 2.223602E-28 5.3E-12 5.E+04 21 43 7 0 5 5
42d devgld 4 4 1.910276E-28 7.0E-12 5.E+04 19 26 7 0 2 2
43a devg2a 5 5 1.390367E-29 1.4E-12 8.E+06 17 26 7 0 3 3
43b devg2b 5 5 1.352306E-25 9.4E-11 8.E+06 16 29 7 0 4 4
43c de»g2c 5 5 5.445605E-29 5.4E-12 8.E+06 13 27 7 0 6 5
43d devg2d 5 5 9.207747E-22 2.1E-09 8.E+06 29 50 7 0 5 4
43e devg2e 5 5 1.059680E-21 2.8E-09 8.E+06 17 30 7 0 5 5
43f devg2f 5 5 3.254051E-30 2.8E-13 8.E+06 18 32 7 0 4 4
44a dgv6a 6 6 3.982829E-24 2.3E-11 7.E+06 38 121 7 0 29 29
44b dg»6b 6 6 1.255706E-31 1.6E-14 4.E+02 12 26 7 0 4 4
44c dg»6c 6 6 8.742151E-2S 8.2E-10 4.E+11 392 833 7 0 385 83
44d dgv6d 6 6 3.416587E-26 1.2E-10 2.E+10 316 764 7 0 306 126
44e dgv6e 6 6 1.306575E-30 1.1E-12 1.E+08 175 516 7 0 164 163
45a dgvSa 8 8 5.542109E-26 1.4E-11 7.E+06 39 116 7 0 31 31
45b dgv8b 8 8 3.710801E-33 6.7E-16 2.E+03 16 36 7 0 7 7
45c dgvSc 8 8 1.234906E-30 1.3E-11 9.E+11 484 1003 7 0 480 134
45d dgv8d 8 8 1.970398E-30 3.4E-12 4.E+10 480 1053 7 0 470 174
45e dgv8e 8 8 3.968786E-31 6.0E-13 4.E+08 349 953 7 0 339 338

Table 8.2: Results for least-squares test problems 356-45e
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nr name icr1 ion2 KT3 ion* nr name nr1 KT2 KT3 io-^

1 rose 5 12 16 17 35b chebyqu2 20 29 29 31
2 froth 2 3 4 4 35c chebyqu3 ii 14 19 21
3 powlbs 1 4 8 235 36a msqrtli 2 4 6 10
4 brosnbs 3 3 3 3 36b msqrt2i 2 4 6 10
5 be ale 2 3 4 5 36c msqrt3i 2 3 5 7
6 jensam 2 3 5 6 36d msqrt4i 2 4 6 10
7 helix 4 6 7 8 37 hanl 1 2 2 3
8 bard 2 4 6 8 38 han2 1 2 3 3
9 gauss 1 1 1 1 39a mckla 1 1 1 1

10 meyer 1 2 2 3 39b mcklb 1 1 1 2
11 gulf 1 1 3 6 39c mcklc 1 1 1 2
12 box 2 3 5 7 39d mckld 2 2 3 3
13 sing 2 3 5 6 39 e mckle 2 3 4 5
14 wood 1 3 4 26 39f mcklf 2 3 5 6
15 kowosb 3 5 6 7 39g mcklg 2 3 5 6
16 brownden 2 4 5 5 40a mck2a 1 1 1 1
17 osbl 12 28 32 37 40b mck2b 1 1 2 2
18 exp6 10 25 27 32 40c mck2c 1 2 2 2
19 osb2 7 9 11 12 40d mck2d 1 2 2 3
20a watson06 1 2 5 7 40e mck2e 2 3 4 4
20b satson09 1 2 5 8 40f mck2f 2 3 5 6
20c satsonl2 1 3 4 6 40g mck2g 2 3 5 6
20d satson20 4 7 12 17 41a mck3a 1 1 1 1
21a rosex 5 12 16 17 41b mck3b 1 1 1 1
21b rosex2 5 12 16 17 41c mck3c 2 3 4 5
22a singx 2 3 5 6 41d mck3d 1 3 4 5
22b singx2 2 3 5 6 41 e mck3e 2 4 5 6
23a peni4 2 3 5 6 41f mck3f 2 3 5 6
23b penilO 2 3 5 6 41g mck3g 2 3 5 6
24a penii4 2 2 3 4 42a devgla 8 10 12 12
24b peniilO 2 3 4 5 42b devglb 20 23 24 25
25a vardiml 2 3 5 6 42c devglc 14 16 17 18
25b vardim2 2 3 5 6 42d devgld 11 14 14 15
26a trig 3 4 4 5 43a devg2a 2 3 5 6
26b trig2 6 7 8 8 43b devg2b 3 5 7 9
27a brownall 1 1 1 1 43c devg2c 1 4 7 7
27b browna!2 1 1 1 1 43d devg2d 4 6 8 10
28a discbvl 1 1 1 2 43e devg2e 2 4 7 9
28b discbv2 1 1 1 2 43f devg2f 3 6 8 10
29a disciel 1 1 2 2 44a dgv6a 11 22 30 33
29b discie2 1 1 2 2 44b dgv6b 3 6 8 9
30a broytril 1 2 3 3 44c dgv6c 1 5 29 119
30b broytri2 1 2 3 3 44d dgv6d 1 3 24 97
31a broybanl 2 3 4 5 44 e dgv6e 1 3 14 52
31b broyban2 2 3 4 5 45a dgvSa 11 22 29 33
32 lin 1 1 1 1 45b dgv8b 2 5 9 12
33 linl 1 1 1 1 45c dgv8c 6 9 27 99
34 linO 1 1 1 1 45d dgv8d 3 6 20 89
35a chebyqul 10 15 15 16 45e dgv8e 3 4 14 57

Table 8.3: Number of iterations required to reduce (f(xk) — f(x*))/(f(xo) — f(x*)) 
below four different tolerances.
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Dl-conditioning was also responsible for the failure in problems 10 and 36c. In 
these cases, the algorithm terminated because of a failure in the linesearch. Again, 
the objective value has been reduced significantly. In problem 36c the algorithm 
terminated at a point very close to the solution. In problem 10 the Hessian at the 
final iterate is positive definite but very ill-conditioned.

The results of the computer runs are summarized in Tables 8.1 and 8.2. The 
column headings have the following meaning:

nr
name
n
n\
fk
ll^ll
k(Hu)
k

nf
conv

#»2
#du

Problem number.
Problem name.
Number of variables.
Dimension of H\\ at the final iterate x*.
Value of the objective function the final iterate x*.
Norm of the gradient at the final iterate x*.
Estimate of the condition number of the final H\\.
Number of iterations.
Number of function evaluations.
Convergence information.

y 0 Convergence criteria Cl satisfied with n2 = 0.
y 1 Convergence criteria Cl satisfied with ri2 > 0.
y 2 Convergence criteria C2 satisfied with n2 = 0.
y 3 Convergence criteria C2 satisfied with n2 > 0.
n 4 Nonconvergent due to failure in linesearch. 
n 5 Nonconvergent due to too many iterations (> 600).

Number of iterates where n2 was positive.
Number of iterates where d was used.

Our experience from working on these problems is that it is possible to reduce 
the value of the objective function significantly in a relatively small number of 
iterations, as illustrated in Table 8.3. However, stringent convergence criteria such 
as those used here may not always be achievable if the Hessian is ill-conditioned at 
the solution.

8.3. Barrier test problems

The test problems with a general objective form originate from the barrier function 
approach of Resende et al. [RKR89] for solving 0-1 integer programming problems. 
The aim of this approach is to find a point x* with all components ± 1 in the set F, 
where F is defined to be

F =
l A \

-I
I)

x <
f 26 — Ae + e ^ 

e
e y

(8.1)

for an m x n matrix A and an n-vector b. We consider the case where all elements 
of A and b are integers. The vector e denotes a suitably dimensioned vector with 
unit components.

If the composite matrix and vector associated with the inequalities of (8.1) are 
denoted by A and b, we may write F = (x : Ax < 6}.
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This integer feasibility problem is converted into a smooth minimization problem. 
The function to be minimized is the barrier function / defined by

I ^ m+2n
/(*) = 2 ln(n “ xTx) ~ m ^~2n ^ ^

(see Resende et al. [RKR89]). This barrier function does not satisfy the assumptions 
of Section 2.1, since the function is only defined for x such that Ax < b. Moreover, as 
is shown in the appendix, the barrier function tends to minus infinity for a sequence 
converging to a point with all components ±1. Nevertheless, these functions are 
useful as test problems because they have many local minimizers and exhibit many 
directions of negative curvature. (Moreover, it was also of interest to see if the 
algorithm was able to locate a point in F with all components ±1.)

Three different test problems were used, and for each of them the set of points 
in F with all components ±1 consists of only one point, x*.
Data for barrier test problem 1:

a)

b)

/ -2 --1 -1 0 0 0 \ ( _1 \

-1 0 0 -2 --1 0 -2

A = 0 --1 0 -1 0 -1 , 6 = -2

0 0 -2 0 --1 -1 -1

3 2 3 4 2 3 l 8
/

x0 = ( -0.90 0.76 -0.76 0.64 0.20 -0.20 f
x0 = ( -0.86 0.64 -0.64 0.46 -0.20 0.20

*x = (’-1 1 -1 1 1 -1 )

Data for barrier test problem 2:

2

-3

4

-4

3

-2
)• *■(. 5

-8

a) Xq = ( 0.90 -0.10 0.45 -0.95

b) Xo = ( 0.88 0.08 0.34 -0.94 )T
*

X = ( 1 -1 1 --> )T-

Data for barrier test problem 3:

a)

b)

A =
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nr name n A ll^ll «(»») k »/ conv #nj #<A

46a barlogla 6 5 -1.841628E+O0 1.3E+07 3.E+00 18 22 i 6 19 19
46b barloglb 6 6 7.626996E-01 2.8E-12 3.E+01 7 11 i 0 3 3
47a barlogZa 4 3 -1.122621E+00 9.0E+06 2.E+00 16 17 7 6 17 17
47b barlog2b 4 4 5.805715E-01 3.5E-14 l.E+01 7 8 7 0 1 1
48a barlogSa 4 3 -1.996615E+00 6.0E+06 3.E+00 16 17 7 6 17 17
48b barlogSb 4 4 1.433882E-01 8.9E-15 8.E+00 10 14 7 0 2 2
49a bar la 6 5 1.618634E-01 2.3E+06 3.E+00 17 21 7 6 18 18
49b bar lb 6 6 2.144056E+00 7.0E-12 3.E+01 7 11 7 0 3 3
50a bar2a 4 3 3.771148E-01 8.2E+05 2.E+00 14 15 7 6 15 15
50b bar2b 4 4 1.787059E+00 4.8E-13 l.E+Ol 7 8 7 0 1 1
51a bar3a 4 3 1.435501E-01 1.1E+06 2.E+00 15 16 7 6 16 16
51b bar3b 4 4 1.154178E+O0 1.1E-11 8.E+00 10 13 7 0 3 3

Table 8.4: Results for barrier test problems

For each of the three test problems, two starting points were used. Problems 
46a, 47a and 48a correspond to starting points for which the sequence {a:jt}?Lo con‘ 
verged to x*. Problems 466,476 and 486 correspond to starting points for which the 
sequence converged to a local minimizer of the barrier function.

Problems 49, 50 and 51 are similar to problems 46, 47 and 48, except that the 
objective function is the argument of the logarithmic barrier function, i.e.,

(n — xTx
(UZ\2n e?(b- Ax))1/^2")'

For the same starting points, the same final points were reached in approximately 
the same number of iterations.

The barrier problems are not truly unconstrained, since the objective function 
is only defined for x such that Ax < 6. To allow for this, the iteration was modified 
so that Omax was made subject to being no greater than 99.99% of the step to the 
boundary of F. If dk was zero, the unit initial steplength was chosen, and when dk 
was nonzero, a trial value of 0.8amax was used. The trial step was accepted if the 
directional derivative was still negative. Otherwise, the same linesearch as used for 
the least-squares test problems was used.

The following criterion was used to decide when a point in F with all components 
±1 had been reached,

C3. max,- {l - \efxk\} < lO^/e^.

The results for the barrier test problems are presented in Table 8.4. The column 
headings are the same as for the least-squares test problem, and the only difference 
is that convergence criteria C3 is denoted by “y 6” in the conv column.

8.4. Practical behaviour of the computed directions

In Section 5 of this paper theoretical properties of the computed directions sk, dk and 
pk are established. It is shown in Lemma 5.3 that the ratio between the curvature 
along the direction of negative curvature, dk, and the smallest eigenvalue of Hk is
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uniformly bounded away from zero. Lemmas 5.5 and 5.6 imply that whenever dk 
is nonzero, the ratio between the curvature along pk and the smallest eigenvalue of 
Hk is also uniformly bounded away from zero.

In order to measure the magnitude of the curvature along dk, it is compared 
to the smallest eigenvalue of Hk- Figure 8.1 shows the ratio between the curvature 
along dk and the smallest eigenvalue of Hk for those iterates of the least-squares 
problems where dk was nonzero. Figure 8.2 shows the corresponding data for the 
barrier problems. If 10% of the best possible curvature is regarded as “good”, we 
see that this “good” curvature is computed in 95% of the cases for the least-squares 
problems and in 98% of the cases for the barrier problems.

Ideally, if dk is nonzero, pk should be both a nontrivial direction of negative 
curvature and a descent direction that is not too orthogonal to the negative gradient. 
Unfortunately, a direction that simultaneously has both these properties may not 
exist. In Figures 8.3 and 8.4 we give the ratio between the curvature along pk and 
the curvature along dk for iterates for which dk was nonzero. Since dk is intended to 
be a good direction of negative curvature, this ratio gives an idea of how much of the 
best possible curvature is achieved along pk- The data for the least-squares problems 
is given in Figure 8.3; data for the barrier problems is given in Figure 8.4. Note that 
for both classes of problem, the ratio is close to one in most cases. Moreover, a ratio 
greater than one is possible if ||p*;|| < ||djt||. A ratio greater than 0.1 is achieved 
in 98% of the cases for the least-squares problems and in 99% of the cases for the 
barrier problems.

The direction Sk is intended to be a good descent direction. In order to inves­
tigate whether this property is inherited by pk, the ratio of the cosine between Sk 
and gk and the cosine between pk and Sk was measured. These ratios are given in 
Figure 8.5 for the least-squares problems and in Figure 8.6 for the barrier problems. 
In general, this ratio is not as close to one as the curvature ratios. However, a ratio 
greater than 0.1 is obtained in 86% of the cases for the least-squares problems and 
in 93% of the cases for the barrier problems. We believe that the main reason for 
this ratio not being as close to one as the other two ratios, is that ||s^|| tends to zero 
as the solution is approached, but a nonzero ||dfc|| will be of order one. Therefore, 
because of the way pk is constructed, dk will usually dominate Sk so that pk ~ dk-

It is noticeable that the barrier ratios seem better than the least-squares ratios. 
This is probably due to the fact that even though both problem classes contain 
highly nonlinear problems, the condition number of Hn is generally smaller for the 
barrier problems.
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Figure 8.1: Least-squares problems: Ratio of the curvature along to the smallest 
eigenvalue of the Hessian. Percentage out of 2013 observations.

Figure 8.2: Barrier problems: Ratio of the curvature along dk to the smallest eigen­
value of the Hessian. Percentage out of 115 observations.
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Figure 8.3: Least-squares problems: Ratio of the curvature along to the curvature 
along dk. Percentage out of 2013 observations.

Figure 8.4: Barrier problems: Ratio of the curvature along pk to the curvature along 
dk- Percentage out of 115 observations.
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20% n

------- ------- ------- ------- ------- ------- ------- ------- ------- ------- —II—
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.5: Least-squares problems: Ratio of the cosine between Pk and to the 
cosine between Sk and gk- Percentage out of 2013 observations.

Figure 8.6: Barrier problems: Ratio of the cosine between pk and gk to the cosine
between Sk and gk- Percentage out of 115 observations.
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9. Discussion

This report describes a modified Newton method for unconstrained minimization. 
At each iteration a positive-definite portion of the Hessian is factorized using the 
Cholesky algorithm. A descent direction is computed if the gradient is nonzero, and 
a direction of negative curvature is computed if the Hessian is sufficiently indefinite. 
A linear combination of these vectors define a search direction, along which the 
next iterate is found. Theoretical properties of the algorithm are established, and 
numerical data from a set of test problems are included.

As the algorithm is stated, if the direction of negative curvature is nonzero, it is 
always used to form pk. From a practical point of view it is not clear if this is the 
best use of dk- It is possible to define a number G such that whenever > G, 
we may discard the direction of negative curvature and still obtain the convergence 
properties of Section 7. This alternative algorithm would allow a scheme for control­
ling that the cosine between Pk and gk is not much smaller than the cosine between 
Sk and gk, hereby ensuring that the search direction is not significantly closer to 
orthogonality to the negative gradient than the descent direction. The significance 
of utilizing a direction of negative curvature was investigated by rerunning the test 
problems with fik set to zero for all k. On those problems where a direction of nega­
tive curvature previously had been used, the number of iterations required to satisfy 
the reduction of fk given in Table 8.3 tended to increase. Moreover, the number 
of problems for which the convergence criteria were not met increased from six to 
twelve.

Finally, we note that the convergence results given in Section 7 imply convergence 
to a point where the gradient vector is zero and the Hessian matrix has a smallest 
eigenvalue greater than a small negative number. Since a point satisfying the second- 
order necessary conditions has nonnegative Hessian eigenvalues, it might appear that 
the convergence results are somewhat less satisfactory than those usually given for 
methods of this type. However, we observe that the magnitude of the bound on the 
smallest eigenvalue may be made as small as required by assigning a suitably small 
value for the parameter e. Small values of e affect only the numerical performance 
of the method, and not the theoretical convergence properties. Moreover, it may be 
observed from Tables 8.1, 8.2 and 8.4 that in most cases the iterates converged to a 
point where n\ was equal to n, that is the Hessian was positive definite. The only 
exceptions are problems where the Hessian at the solution is very ill-conditioned, 
singular or undefined (for some of the barrier problems).

Our overall conclusion from the results is that it was possible to reduce the value 
of the objective function significantly in a rather small number of iterations by using 
directions of negative curvature whenever the Hessian was indefinite. However, to 
meet stringent convergence criteria was not always possible when the Hessian was 
very ill-conditioned or singular at the solution. Also, by running the algorithm 
without using the direction of negative curvature, we have the impression that the 
ability to compute a direction of negative curvature is not only a theoretical tool 
to show convergence, but also a helpful device in order to improve robustness and 
efficiency.
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A. Appendix: Properties of the Barrier Test Problems

The barrier test problems originate from a barrier function approach proposed by 
Resende et al. [RKR89] for solving 0-1 integer programs. Given an m x n matrix A 
and an n-vector 6, the 0-1 integer program concerns finding a z in that belongs 
to the set F\, where

F\ = {z \ Az < b, Zi = 0 or z, = 1 for i = 1,... n}.

We shall consider only the case where A and b have integer coefficients, since the 
analysis is simpler in this case.

Applying the linear transformation a; = 2z — e, the 0-1 problem is transformed 
to an equivalent problem where all components of the integer solution are ±1. The 
transformed problem is converted into a smooth minimization problem by seeking 
values in the set F given by

r / A \ ^ 26 — Ae + e ^
x : -I x < e

> \ I) l e /
{x : Ax < b} .

The aim is to find a point x* in F with components ±1 by minimizing the barrier 
function

1 . m+2n

f(x) = — ln(n - xTx) - -~+ 2n Ax))

(see Resende et al. [RKR89]).
Although the barrier function is not defined for a point x* with components ±1, 

the following lemma shows that the barrier function has a global minimizer at x*, 
since there exist sequences converging to x* for which the function tends to minus 
infinity.

Lemma A.l. Assume that the matrix A has at least one row. Furthermore, assume 
that {xjt}£L0 converges to a point x* E F such that x* has all components ±1. If 
Aik < b for all k, and if there exists a positive constant c independent of k, such 
that it holds for all k that

min
\ef(xk-x*)\

II** - **11 > c,

then lim^oo f(xk) = -oo.
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Proof. For clarity, the iteration subscript k is dropped when subscript i is used to 
denote a particular component of £*•

Using properties of logarithms, f{x) may be rewritten as

/(*) = In (Er=i(i-x?))m/2+n
m + 2n \ n,™! e/(26 - Ae + e - Ax) n"=,(l -

(A.l)

Since x* E F with all components ±1, it follows that 2b — Ae — Ax* > 0 and 
consequently

lim ej(2b — Ae + e — Axk) > 1.
A:—>oo

Therefore, it may be assumed without loss of generality that Ax^ <2b — Ae + e for 
all k. If r denotes the vector whose i-th component is given by r, = |x, — £*1 we get

(E£.i(i-*?))" _ (ELi^-n))"
nr=i(i - *?) n?=, >•.■(2 - r.) ■

where it without loss of generality may be assumed that < 1 for all i. Dividing 
both numerator and denominator by the positive quantity (eTr)n and using the 
existence of the constant c, we derive the inequality

If m > 0 then limfc_00(n — x^xk)m^ = 0, and it follows that the argument of the log­
arithm in (A.l) tends to zero as k tends to infinity. Consequently, limfc_).00 /(xfc) = 
—oo as required. |

The following lemma shows that there is a one-to-one correspondence between 
points in F with all components ±1 and points in Fj.

Lemma A.2. The set Fi is nonempty if and only if there exists a point in F with 
all components ±1.

Proof. Assume that z E F\. A linear transformation x = 2z — e yields x E F with 
all components ±1.

Assume that x E F with all components ±1. Let x = 2z — e, and it follows that 
2 is a vector with all components zero or one, for which Az < b + ^e. However, Az 
and b are integer vectors, and therefore it holds that Az < b. Consequently, z E F\.

Lemma A.l implies that the barrier function has a global minimizer at any point 
x* in F with all components ±1. From Lemma A.2 it follows that if such a global 
minimizer is found, a point in F\ may be identified, thereby providing a solution of 
the original 0-1 integer program.
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