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Adaptive mesh refinement (AMR) in conjunction with high order upwind finite difference methods has been used
effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method
that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution
of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the
volume fractions using a piecewise linear reconstruction technique.

1. Introduction

Adaptive techniques offer the advantage of re-
solving important phenomena while minimizing
the use of machine resources. In this paper we
describe an efficient adaptive finite difference
algorithm for a 3D, compressible, multimaterial,
inviscid fluid. We develop ideas based on Adap-
tive Mesh Refinement algorithms (AMR) pio-
neered by Berger and Oliger [4] and fluid inter-
face reconstruction techniques, based on volume
fractions, first used by DeBar [6].

AMR is used in conjunction with finite differ-
ence schemes to selectively resolve regions of the
solution domain. The savings in only resolving
the necessary parts of the domain can be signifi-
cant. As an example, if the 2D multifluid calcula-
tions in Henderson et al. [7] were performed on
a uniform mesh, the computations would have
taken several hours instead of approximately ten
minutes. The volume fraction description of a
fluid carries an additional quantity along with
density, momentum, and energy of each species.
This quantity is the volume fraction describing
how much of a given volume (a computational
cell volume for finite volume methods) is occu-
pied by a given material. The advantage of using

volume fractions is their robustness. The inter-
faces are locally constructed from the fractions
on a cell by cell basis eliminating the need for
complex data structures and the complex logic
associated with some tracking methods.

The outline of the paper follows. After this
introduction we write the equations modeling
a multispecies gas. The interface reconstruction
techniques studied and implemented are de-
scribed in the next section. A surprising diffi-
culty found when testing various reconstruction
techniques is the problems encountered by the
SLIC reconstruction algorithm when applied
to rotational flows. The section on 3D AMR
follows next. Here we briefly outline the major
components of the AMR algorithm. Finally we
outline and solve a test problem. We simulate a
flow that develops the Richtmyer—-Meshkov in-
stability. The test problem demonstrates the ef-
fectiveness of the error estimation and adaptiv-
ity on even a small three-dimensional problem.

2. Multimaterial gas dynamics

In this section we describe a multimaterial
gas dynamics model used within the AMR algo-
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rithm. The model was developed by Colella and
Glaz [5]. Our presentation will be limited to the
physical model and will not outline the details
of a practical implementation. Our derivation is
equivalent to [5] but arrives at the same results
along a different path. We start with two basic
assumptions about the fluid that covers a vari-
ety of flow regimes. The following two assump-
tions plus the usual thermodynamic relations
and conservation relations leads to the model:

(1) A single velocity field describes the move-
ment of materials.

(2) Material interfaces are and remain in pres-
sure equilibrium.

By having a single velocity field (assumption
1) the gas dynamics equations for a single mate-
rial can be used to find the velocity field every-
where if an appropriate equation of state can be
found. We then begin, away from material inter-
faces, for a species a, with the well known equa-
tions of gas dynamics in Lagrangian form

d(ft“ + poVu =0,

pait + Vp. =0,

pad:‘; + V. (pou) =0,

where

E, = e, + 34, pa = palea, pa)-

For species a, p, is the density, p, is the pressure,
e, is the internal energy, E, is the total energy,
and u is the velocity. The differential operator
d/ dt is the Lagrangian derivative. Also for each
species a a dimensionless scalar is defined as
I, = Paca
Da

b

where ¢, is the sound speed for the species a. For
each material
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where I, describes the compressibility of the
fluid o and V, its volume. For the treatment
given below one should think of the volumes V,
as the Jacobian transformations of initial con-
figurations to final configurations. The larger a
material’s I, the harder it is to compress the
material. Also away from material interfaces

1 dv, 1dv
V sl B o——— E me———,
V, dt vV dt

where V is the total volume. We now introduce a
new quantity called the volume fraction as there
is insufficient information given from individual
species densities to completely describe a fluid’s
structure. Let y, (x, ) be the characteristic func-
tion of a species a at time ¢ and point x. The vol-
ume fraction of a material species « is defined as

fgla(x,t) dQ

= lim f_Q Yo}

_"‘
V Vol(2)—0

Jal2,t) =

where the region £ shrinks around the point x
at a given time ¢. The definition is analogous to
density in the sense that the limiting process is
finite so that a large number of molecules is en-
compassed by the volume yet is is small enough
to contain a nearly constant distribution. From
the definition it is clear that

1 = zfa(x,z), V = ZVQ.

Given individual volume fractions the total den-
sity and energy of a mixed fluid is

p=) Jabar E=3 fapaFa

By assumption 2 the pressure of the mixed fluid
is the pressure of any of the components. The
preservation of pressure equilibrium leads to the
following relations:

1dV _ l%——z Vo dpa
Vdr ~ ant_ VpoI, dt
_ ldp p
T o pdt &I (1)
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Using the first and last part of the previous rela-
tion gives an effective I" for the composite fluid
as

r-(£5)

a

The effective I along with the pressure equi-
librium assumption leads to an effective sound
speed in terms of the constituent volume frac-
tions, densities, and sound speeds. For two flu-
ids this relation agrees with an effective sound
speed derived by Woodward in [11].

Using pressure equilibrium again, an equation
for the evolution of the volume fractions can be
found by computing the Lagrangian derivative
of f, as

ik S{BY LG 1T
dt — dt\Vv )V dt *V dt
___Ja dDa
"~ Lp, dt JaV -4
__Ja dp
- Elpa—faVu
=—f;‘_,FV-u—f,1V-u. (2)

The equations of conservation of mass for
each individual species are derived from the
Lagrangian invariant m,/m where m, = V,p,
and m = Vp. Then

0=£(%)=d%(pa7fa). 3)

The equation for the evolution of momentum
is needed only to compute a single velocity up-
date and thus remains unchanged. But, it is also
used to derive a total energy equation. To do
so the momentum is partitioned by multiplying
the momentum equation by the density fraction
Uo = Pa/P so that

du
Pagy + HaVD = 0. (4)

Meanwhile, the internal energy or P — dV work
equation for a single material species can be writ-
ten in terms of the divergence of a velocity field
and the equilibrium pressure using the expres-
sion for the composite I” as
de, | padVa o de, +1£V.u.

a

O=pagr +3 4 =P T T

Finally, dotting # into the partitioned momen-
tum equation and adding it to the new form of
the P — dV equation results in an equation for
the evolution of total energy for each material
species

o, r
pa—(F+ﬂ“"'Vp +pFaV-u—0. (5)

Equations (2), (3), (4), and (5) describe the
evolution of a set of materials both around and
away from interfaces. The relations have several
important properties:

(1) The equations of evolution are hyperbolic.

(2) Volume fractions individually remain be-
tween zero and one and sum up to one if initially
they sum to one.

(3) The equations reduce to the proper single
fluid equations away from interfaces.

Proofs of these properties can be found in [5].

3. Interface reconstruction

A volume fraction representation of a fluid in-
terface has been used for several decades (see,
for example, Debar [6], and Hirt and Nichols
[8]). The motivation for the development of
the mixed fluid equations above comes primar-
ily from the ease of use and flexibility that vol-
ume fractions provide. To keep interfaces sharp,
volume fractions are updated in a special way
and a fluid interface is reconstructed from the
volume fractions. The interface is tracked rather
than the fraction advected. Fig. 1 shows the dif-
ference between tracking and advection. The dis-
tinguishing characteristic of advection is that the
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Fig. 1. The numerical evolution of front when it is tracked
(a) or advected (b).

material propagates a distance of one cell in one
time step. A higher order advection scheme di-
minishes the amount of material advected but
not the speed of propagation.

One of the simpler interface reconstruction
schemes is the simple line interface construction
(SLIC) algorithm of Noh and Woodward [9].
Its virtue is that it can be implemented in one-
dimensional sweeps. That is, a front is recon-
structed from the data in a zone and its left and
right neighbors. More sophisticated interface re-
construction schemes using all the cell neighbors
have also been developed by Youngs in two di-
mensions in [14] and in three dimensions in
[12].

In the development process of the 3D multi-
material adaptive algorithm we tested several
techniques. These include a finite difference
method of Youngs, a center of mass calcula-
tion we developed, and the SLIC algorithm. All
the algorithms with the exception of the SLIC
method return a normal that along with a vol-
ume fraction determines a planar surface di-
viding the two fluids. The SLIC algorithm may

Fig. 2. The notched block is rotated at a rate of 2z radians
per unit time.

have more than one interface in a cell but the
orientation (s) of the interface(s) will always be
normal to the sweep direction. The center of
mass calculation generates a normal in a simple
manner. The center of mass of the volume frac-
tion distribution is computed for a region in-
cluding the central cell and its twenty-six nearest
neighbors. The vector from the center of mass
to the center of the central cell is normalized
and used as a normal. All the methods described
above do not reconstruct planar fronts exactly.
However, the test below indicates that unsplit
reconstruction techniques behave significantly
better than the split SLIC technique.

The problem chosen to test the reconstruction
schemes is the advection of a cube with some
notches cut out within a rotating velocity field.
This problem is of some relevance as the Taylor—
Meshkov problem outlined below will have sig-
nificant vortical flows. Fig. 2 shows a schematic
of the initial conditions and the axis of rotation.
The size of the computation region is 100 x 100 x
100. Fig. 3 shows an isosurface plot of the ma-
terial interface at the initial time and after one
revolution for each of the methods. What ismost
apparent is the oscillations the SLIC algorithm
produces on the interface. After one revolution
the notched cube is not easily recognized.



88 E.G. Puckett, J.S. Saltzman / 3D multimaterial flow with adaptive mesh refinement

Fig. 3. Isosurface renderings of (a) initial configuration, (b) finite difference method of Youngs, (c) center of mass normal
construction, and (d) SLIC. (b), (c), and (d) are after one revolution.

4. 3D adaptive mesh algorithm

The multimaterial algorithm was developed
using many components from a single fluid
AMR algorithm. A more detailed description of
the single fluid algorithm can be found in Bell,
Berger, Saltzman, and Welcome [2]. This 3D
algorithm was in turn based on a 2D algorithm
of Berger and Colella [3]. A 2D operator split
multimaterial algorithm using the same fluid

models and adaptive mesh techniques is de-
scribed in Henderson, Colella, and Puckett [7].

The AMR algorithm solves the flow equations
using a nested sequence of rectangular grids. The
grids are properly nested and aligned. Properly
nested grids have the property that a grid at some
level » is always found embedded in some subset
of the level n — 1 grids. Properly aligned grids
have the characteristic that a grid at some level
n always has its boundary cells aligned with cell
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edges of the level n — 1 grids.

The AMR algorithm has five major functions
that together generate an adaptive mesh hier-
archy and advance the data on this structure.
These functions are error estimation, grid gen-
eration, interpolation in tandem with data in-
tegration, and flux correction. There is a natu-
ral division between the integration routines and
the rest of the AMR algorithm. The error esti-
mation, grid generation, interpolation, and flux
correction routines have been implemented as
a shell for a general set of conservation laws in
[2]. The calls to the integration routines and
problem dependent routines are accomplished
through predefined interfaces. The components
of the AMR algorithm are outlined in the follow-
ing paragraphs.

The error estimation process makes a crude
estimate of the error in the computation (lead-
ing order terms in the truncation error) and then
flags cells on the computation mesh that require
additional resolution. The technique used to
estimate the error is Richardson extrapolation.
Given a level n grid set, the grids are coarsened
by a factor of two in each coordinate direction.
The level n grid set is advanced two steps in
time while the coarsened grid is advanced a
single step. Using the same CFL condition the
two grids coincide in time at the end of their
respective integrations. The finer level n grid
set at the new time is coarsened and compared
with the advanced coarsened grid set at the
same time. The differences in the grid values is
used to compute the leading order terms in the
truncation error of the finite difference scheme.
Where the truncation errors are large enough a
finer level n + 1 grid is placed.

The grid generation algorithm’s purpose is to
create meshes that contain, as a subset, those
points flagged by the error estimation process.
The grid generation algorithm tries to cover the
flagged points in such a manner as to create as
few rectangular mesh patches as possible. At the
same time the covering should be efficient in the
sense that the ratio of the flagged cells to the total

number of cells covered by the new mesh patches
approaches unity. We also specify that mixed
zones should always be refined. This avoids hav-
ing special interpolation and fluxing routines for
mixed zones because away from them the evolu-
tion equations described above become the stan-
dard conservation laws for a single fluid.

The error estimation and grid generation algo-
rithm may not be called every major cycle. If the
grid generation creates a sufficiently large fine
grid buffer area around the high error cells and
because the PDEs being approximated are hy-
perbolic then the algorithm can go several steps
without the important phenomena leaving a re-
solved region.

Interpolation and flux correction are impor-
tant parts of the AMR algorithm as they provide
the necessary communication between meshes at
a given level of refinement and between meshes
at adjacent levels. The data on the mesh hier-
archy is advanced in a recursive fashion. The
coarsest level is first advanced one time step and
its cell fluxes are stored. Even at the coarsest
level, the computation region may be made up of
a number of patches. When updating each patch,
several other patches must be used to provide
data for boundary conditions. Once the coarsest
level is updated. The next coarsest level is ad-
vanced using interpolated boundary conditions
supplied by the coarsest level. The fluxes of the
coarsest mesh are corrected using the fluxes from
the finer level. If there is still a finer level, it is
advanced using the interpolated data from the
next coarsest level because of proper nesting. As
before, the next coarsest level has its fluxes cor-
rected to agree with those of the finest level.

The constraint of insuring that mixed zones
are all contained in the finest level mesh patches
has allowed us to use the AMR shell in [2] with-
out changes to its data structures. We only in-
creased the number of field variables managed
by the AMR shell and the rest of the work in-
volved writing a new integrator to handle a mul-
tiple species fluid.
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5. Richtmyer-Meshkov problem

An example of a computation that can be car-
ried out by the multifluid AMR algorithm is
a simulation of a Richtmyer—Meshkov instabil-
ity. The instability is a phenomenon where the
interface between two compressible fluids be-
comes unstable following the traversal of a shock
through the interface. This instability is stud-
ied as a mechanism for understanding the early
phases of the turbulent mixing of compressible
fluids driven by shocks. Much like the Rayleigh-
Taylor instability, the dynamics are driven by
oppositely directed gradients of the pressure and
density. The linear analysis of a shock driven
instability was first studied by Richtmyer [10].
The first experiment and consequent analysis
was performed by Andronov et al. [1]. Pioneer-
ing numerical simulations by Youngs were car-
ried out in two dimensions in [13].

The computation is performed in a box of size
300 x 50 x 50 mm in the x, y, and z direc-
tions respectively. Within the box are two flu-
ids initially at rest and in equilibrium at stan-
dard temperature and pressure. The fluid occu-
pying the box from x = 0to x = 125 mm is air.
The air’s initial pressure and density is .10133
gm/(mm — ms?) and 1.293 x 106 gm/mm? re-
spectively. The air’s equation of state is modeled
by an ideal gas relation with a y of 1.4. The re-
maining part of the box is occupied by helium.
The helium has pressure and density of .10133
gm/(mm — ms?) and .179 x 10~ gm/mm? re-
spectively. The equation of state for helium is
also modeled by an ideal gas relation with a y of
5/3. At x = 0, a Mach 1.2 inflow of air is main-
tained. At x = 300 mm a reflecting boundary
condition is imposed. Periodic boundary condi-
tions are set at the four other faces of the box. A
perturbation of the material interface is super-
imposed with an amplitude and geometry given
by the relation

x =125—-[1—-cos(2ny/50)]
x [1 —cos(2mz/50)]. (6)

The length of the simulation is 1.25 milliseconds
which will allow the perturbation to grow into a
large structure.

The base coarse grid chosen is of size 72 x
12 x 12 cells in the respective x, y, and z di-
rections. Two additional levels of grids will be
used. The two additional grid levels of refine-
ment are a factor of two in each coordinate di-
rection. The code was set to regrid every other
major time step and the appropriate number of
buffer zones were added to insure waves and in-
terfaces requiring high resolution will not leave
the fine mesh regions before regridding. No re-
finement of shocks will be allowed for x < 100
mm. This restriction will act like an absorbing
boundary condition to catch waves moving to-
wards the inflow region.

The computation evolves in the following
fashion. The initial shock moves in the positive
x direction and passes through the material in-
terface. The perturbed interface inverts but only
drifts without growth in the positive x direction
as the right passing shock does not cause an un-
stable situation. The shock reflects off the wall
and intensifies the pressure within the helium to
the point where opposing gradients are formed
when the shock passes through the interface
traveling from right to left. At this point the
perturbation grows and a single bubble can be
observed growing in the center of the computa-
tion region. At late times it is observed that the
bubble starts to roll up and form a “mushroom
cap” driven by the vortex ring surrounding the
bubble.

Fig. 4 shows volume renderings of the adap-
tive mesh, density field and material interface
just after the shock first reflects off the boundary
at x = 300 (0.16 ms). In the volume rendering
of the adaptive mesh, the red regions are level 3
meshes, the green regions are level 2 meshes and
the blue regions are level 1 (coarsest) meshes.
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Fig. 4. The left top, middle, and bottom renderings are of the adaptive mesh, density field, and material interface at an early
time in the calculation (0.16 ms). The right figures correspond to the left in type and are all from a late time (1.25 ms) in
the computations.
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By comparing the renderings it is easy to see how
the adaptive mesh is tracking the shocks and ma-
terial interfaces in the region. Fig. 4 also shows
volume renderings late (1.25 ms) in the calcula-
tion. Even at late times the adaptive mesh con-
forms only to the region surrounding the mate-
rial interface.

The adaptive computation took 30616 sec-
onds with an average time of 140 microseconds
per cell. The computations were done on a sin-
gle processor of a YMP-2/64 under UNICOS 6.0
using CFT77 version 4.0.3. A uniform compu-
tation with a resolution equivalent to the adap-
tive calculation has an average cell computation
time of 50 microseconds per cell. The equivalent
amount of time necessary for the multifluid cal-
culation assuming a comparable number of time
steps would be 63 466 seconds. The ratio of the
computation times of the adaptive to uniform
calculation is 2.1. Had the problem only been
run to 0.125 milliseconds the ratio of computa-
tion times is greater (3.4).

The particular test problem is “small” in the
sense that patch sizes are not large enough to
compensate for redundant computations done
on adjacent meshes. This is reflected in the factor
of three in grind times between the uniform and
adaptive computations. The overhead of the er-
ror estimation and grid generation is quite small
relative to overlap problems (on the order of
15%). Where the AMR algorithm was able to
recover was the number of points it needed to
advance. The uniform computation integrates a
factor of six times more points over the length
of the problem.

6. Conclusions

We have described the components of a three-
dimensional adaptive mesh algorithm for mul-
timaterial gas dynamics. From the “small” com-
putation it is seen that the AMR algorithm will
become more efficient as the adaptive mesh
patches become larger. Perhaps the most com-

pelling evidence for larger gains with larger
problems is reflected in the test problem in
[2]. Here a factor of at least twenty in overall
speedup was achieved as larger mesh refinement
ratios were used. We can examine several areas
to understand how to achieve similar gains. The
efficiency of the integrator computations is pro-
portional to the surface to volume ratio of the
patches, the vector length of the computations,
and the number of points integrated by the AMR
algorithm verses the uniform case. The average
vector length can be increased by concatenating
sweep lines of the operator split integrator. This
is because in two of the three dimensions the
maximum problem size cannot exceed 48. The
vector length of a Cray Y-MP computer is 64.
Another inefficiency is the patch size. The
number of ghost cells used in the computation
is six and the maximum patch dimension in two
of the three dimensions is, as encountered in the
vector length comments, 48. Even assuming the
third dimension is infinite, the maximum effi-
ciency from surface to area arguments implies
an efficiency of 56%. The efficiency is probably
much less than this as can be seen in the dis-
crepancy in the average cell timings. By decreas-
ing the number of ghost cells and increasing the
patch size, gains should be achieved for larger
problems. For example, a patch size of 64 and
using four ghost cells (the number of ghost cells
can be reduced to 4 since the flows of interest
have relatively low Mach numbers. The extra
dissipation and corresponding larger stencil are
not needed since there are no near stationary
strong shocks in the problem) instead of six
leads to an efficiency of 75%. Finally, larger re-
finement ratios will increase the general size of
the patches and boost the integrator efficiency.
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