

POSTIRRADIATION ANALYSIS OF EXPERIMENTAL
URANIUM-SILICIDE DISPERSION FUEL PLATES

CONF-851041--1

by

DE85 007935

G. L. Hofman and L. A. Neimark

EBR-II and Materials Science and Technology Division

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Abstract

Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of ^{235}U . Fuel plates containing 33 v/o U_3Si and U_3Si_2 behaved very well up to this burnup. Plates containing 33 v/o $\text{U}_3\text{Si-Al}$ pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded $\text{U}_3\text{Si-Al}$ plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U_3Si showed an increase swelling rate around 85% burnup.

INTRODUCTION

Irradiation in the Oak Ridge Research Reactor of all miniature, low-enriched uranium silicide fuel plates in the initial test matrix of the RERTR fuel development program was concluded last year. The three fuel types included in the matrix, U_3Si , $\text{U}_3\text{Si-Al}$, and U_3Si_2 , all attained maximum burnups of 96% of the original 20% ^{235}U . Postirradiation examinations of selected fuel plates are essentially completed and the results are reported here. Some miniplate parameters needed to follow the discussion of the irradiation behavior are given in Table 1. More detailed information on the fuel and the

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PS

TABLE 1. Parameters for Miniplates from the
First Irradiation Campaign of the
RERTR Fuel Development Program

Fuel Type	Fuel Loading gU cm ⁻³	Average v/o	Average Meat Porosity, %	Peak ²³⁵ U Bu, %	Peak Fission Density in Fuel 10 ²¹ cm ⁻³	Number of Plates
U ₃ Si	4.8	33	6	35	0.7	5
U ₃ Si	4.8	33	6	90	2.2	4
U ₃ Si	4.8	33	6	96	2.4	2
U ₃ Si	5.8	40	17	73	1.7	4
U ₃ Si ₂	3.7	34	5	90	1.6	4
U ₃ Si ₂	3.7	34	5	96	1.8	2
U ₃ SiAl	4.7	33	6	35	0.7	7
U ₃ SiAl	4.7	33	6	90	2.2	4
U ₃ SiAl	4.7	33	6	96	2.4	2
U ₃ SiAl	5.7	40	17	73	1.7	4
U ₃ SiAl	6.4	45	19	73	1.9	6
U ₃ SiAl	7.0	50	19	75*	2.2	6

*Preliminary values.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

fabrication of the miniplates has been reported by Domagala¹, Dwight², and Nazare.³ Inspection of Table 1 reveals an emphasis on U₃Si-Al (the intermetallic compound U₃Si alloyed until 1.5 w/o Al, as it was initially seen as the prime candidate for low-enriched fuel. Experience gained in the Canadian reactor program with this particular variety of U₃Si and the paucity of irradiation data on pure U₃Si and U₃Si₂ lead to the preference for U₃Si-Al. Unfortunately, in our current application and geometry, as the following discussion will show, this fuel proved to be the inferior of the three. Conclusions on the irradiation behavior of these miniplates put forth in previous reports^{4,5} are not fundamentally altered by the additional data accumulated since 1982. However, the new data on highly loaded plates now indicate an effect of volumetric loading on the U₃SiAl and U₃Si swelling rate at high burnup, and on the onset of pillowowing in U₃SiAl.

IRRADIATION BEHAVIOR

Miniplate Swelling

Irradiation swelling of the miniplates is shown in Fig. 1 in the conventional terms of volume change, ΔV , of the meat versus the accumulated number of fissions in the meat, expressed in f/cm³. The swelling in U₃Si₂ and U₃Si at a loading of 33-34% continues to be moderate up to the very high burnup value of 96%, i.e., 1.8×10^{21} and 2.4×10^{21} f/cm³ in U₃Si₂ and U₃Si, respectively. The ternary alloy U₃Si-Al at the same loading had, as previously reported,⁴ shown signs of breakaway swelling at 90% burnup (2.2×10^{21} f/cm³) and was found to have pillowowed at 96% burnup (2.4×10^{21} f/cm³).⁴ This instability and failure by pillowowing has now also occurred in U₃SiAl miniplates with 45 and 50 w/o fuel loadings at burnups of 75% (2.2×10^{21} f/cm³).

The data plotted in Fig. 1 indicate a general trend of breakaway swelling in the plates at about 2.2×10^{21} f/cm³ in the meat. With the exception of one cluster of data points for 40 v/o plates at 2×10^{21} f/cm³, there appears to be no correlation with fuel loading (and its attendant porosity variation; see Table 1) or fuel material. It would appear, however, that when swelling and pillowowing occur, the magnitude is greater in more highly loaded plates.

When the data are plotted as fuel volume increase versus fuel burnup, in f/cm³, a different picture of the effect of fuel loading appears. Figure 2 presents the data in this manner for U₃SiAl miniplates, and Fig. 3 presents the data for U₃Si and U₃Si₂. In generating these figures, it has been assumed that the meat porosity has been totally consumed in accommodating fuel particle swelling; this assumption is corroborated by the fuel microstructures shown in subsequent figures. When plotted in this manner, the data in Figs. 2 and 3 show that the threshold fuel burnup for breakaway swelling, followed by pillowowing, is higher in the plates with lower loadings. Interestingly, the data for the 45 and 50 v/o U₃SiAl plates (Fig. 2) cluster at a fuel burnup of $\sim 5 \times 10^{21}$ f/cm³, with the 50 v/o plates generally showing the higher swelling at this burnup. The 40 v/o U₃SiAl plates fall along the same swelling vs burnup curve, but in a lower swelling range. This suggests that the 40 v/o fuel may actually be following a swelling curve somewhere between those of the 33 v/o and 45-50 v/o plates. Unfortunately, there are no additional 40 v/o plates being irradiated to higher burnup to substantiate this hypothesis.

The swelling of U₃Si in 33 and 40 v/o plates, as shown in Fig. 3, appears to be similar to that of U₃SiAl, at least up to $\sim 5.7 \times 10^{21}$ f/cm³ in the fuel particles. The U₃Si data also show a lower burnup threshold for breakaway swelling with increasing fuel loading. In fact, these data when overlaid on the U₃Si-Al data would tend to support the hypothesis that the 40 v/o U₃Si-Al

swelling curve is different from the 45-50 v/o curve.

Even with the paucity of data points, U_3Si_2 shows lower swelling than U_3Si and U_3Si-Al at a loading of 33 v/o.

It may be important to note here that the swelling data pertain to the entire miniplate and thus reflect the average swelling for each plate. Plate thickness measurements show that the plates with lower loadings did swell very uniformly and the total swelling measurements are therefore representative of all the fuel in each plate. However, the highly loaded plates, particularly those with 50 v/o fuel, were found to have rather severe "dog-boning". Plate thickness measurements indicate that the swelling rate is higher in the dog-bone areas than in the more homogeneous areas of the plate. The effect of non-uniform meat thickness on breakaway swelling and pillowowing is under study.

Microstructure

Miniplate and fuel microstructures were determined by optical and scanning electron microscopy to complement the observations made on miniplate swelling.

The overall microstructure of transverse sections through the meat of the three different fuels at the same loading of 33 v/o and burnup of 96% ($7.3 \times 10^{21} f/cm^3$ of fuel in U_3Si and U_3SiAl and $5.3 \times 10^{21} f/cm^3$ of fuel in U_3Si_2) is shown in Fig. 4. The comparison illustrates the greatly different behavior of the fuels under the same irradiation conditions and almost the same burnup. The U_3Si-Al fuel is in an advanced state of breakaway swelling. Fuel particles have formed a continuous mass and lost their identity because of the link-up of large fission gas bubbles across this fuel mass. The linkage of large bubbles caused this fuel plate to fail by pillowowing.

Swelling in the U_3Si fuel has also caused linking up of the fuel particles

to a large extent. Fission gas bubble growth is, however, much less extensive and appears to occur predominantly towards the perimeter of the fuel particles. These two observations have been linked to the presence of Al in the fuel, as described previously.⁴

In sharp contrast to both other fuels, the U_3Si_2 fuel (Fig. 4, bottom) shows no signs of fission gas bubble formation at this magnification. The fuel swelling has eliminated the as-fabricated porosity and caused some fuel particles to link up. But on the whole, the meat morphology has changed minimally during the entire irradiation.

The microstructure of the high-burnup U_3Si_2 is shown in higher magnification in Fig. 5, and the scanning electron micrograph shown in Fig. 6 reveals the fission gas bubbles in a typical U_3Si_2 fuel particle. As is the case at a somewhat lower burnup (85%) the fission gas bubbles are small and uniformly distributed.⁴

The microstructure of the more highly loaded plates tends to explain the swelling data. For example, Fig. 7 shows a section of meat of a 50 v/o U_3SiAl plate with a calculated fuel swelling of 100% (see Fig. 2). The fuel in this plate is in a state of breakaway swelling just prior to pillowining. The fuel particles form a continuous network and large fission gas bubbles are beginning to link up across this network. In fact, the fuel ligaments between bubbles are already being stretched in the transverse direction. In more highly loaded plates, fuel particle linkage through fuel swelling will occur at a lower fission density than for plates with lower loadings because the particles are in closer proximity. The microstructures also show an increase in the bubble growth rate in the more highly loaded plates. This is most likely due to the effect of higher temperatures in these denser dispersions, which would increase fission gas mobility. The combined effect of earlier

interlinkage of fuel particles and the earlier onset of breakaway swelling due to enhanced bubble growth will lead to earlier bubble linkage across particles and thereby to earlier pillowing.

The effect of loading in U_3Si plates is not as clear, owing perhaps to the fact that no plates with over 40 v/o fuel loading were tested. However, as Fig. 3 indicates, fuel swelling in 40 v/o U_3Si plates is accelerated compared with that of 33 v/o U_3Si plates at high fission densities. The microstructures shown in Fig. 8 for a 40 v/o U_3Si plate are consistent with this swelling rate increase. Fission gas bubbles in a number of fuel particles appear to be in the breakaway stage as a result of higher fuel temperatures in the more highly loaded dispersion. Significantly, though, many fuel particles retain a more stable bubble morphology. Another illustration of this behavior is given in Figs. 9 and 10. The U_3Si fuel particle depicted in Fig. 9 is entering the breakaway swelling stage, while a neighboring particle shown in Fig. 10 exhibits the more common U_3Si bubble morphology of large bubbles at its periphery and very small bubbles in the center of the particle. The non-homogeneous bubble growth in U_3Si has been attributed to aluminum diffusion into the particles.⁴

CONCLUSIONS

1. Fuel swelling in 33 v/o U_3Si_2 plates continues to be moderate and the fission gas bubble morphology is very stable at a burnup of 96% ^{235}U ($2.4 \times 10^{21} f/cm^3$ of meat).
2. Higher fuel loadings have the effect of lowering the fuel burnup at which breakaway swelling and pillowing occur in U_3SiAl . This is likely due to an increase in fuel temperature that occurs when the fuel loading is increased.

3. There are indications that this temperature effect is at work in U_3Si as well. However, because of compositional inhomogeneities in this fuel, bubble growth is not as extensive and the swelling is not as rapid as it is in U_3SiAl . No pillow ing has occurred in 40 v/o U_3Si plates up to 73% burnup.

Acknowledgments

The authors would like to thank H. Lautermilch and C. H. Gebo, Jr., as well as the entire staff of the Alpha-Gamma Hot Cell Facility at ANL, for carrying out the postirradiation examinations, and Miss J. Ramos for preparing the manuscript.

Reference

1. R. F. Domagala, T. C. Wiencek, and H. R. Thresh, "U-Si and U-Si-Al Dispersion Fuel Alloy Development for Research and Test Reactors," *Nucl. Technol.* 62(3), 353-360 (September 1983).
2. A. E. Dwight, A Study of the Uranium-Aluminum-Silicon System, ANL-82-14, (Sept. 1982).
3. S. Nazare, "Low Enrichment Dispersion Fuels for Research and Test Reactors," *J. Nucl. Mater.*, 124, 14 (1984).
4. G. L. Hofman and L. A. Neimark, "Irradiation Behavior of Uranium-Silicide Dispersion Fuels," in Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Tokai, Japan, October 24-27, 1983, Conf. Report No. JAERI-M 84-073 (1984), pp. 43-53.
5. G. L. Hofman, L. A. Neimark, and R. F. Mattas, "Irradiation Behavior of Miniature Experimental Uranium Silicide Fuel Plates," in Proceedings of the International Meeting on Research and Test Reactor Core Conversions from HEU to LEU Fuels, Argonne, Illinois, November 1982, ANL/RERTR/TM-4, CONF-821155 (September 1983), pp. 88-98.

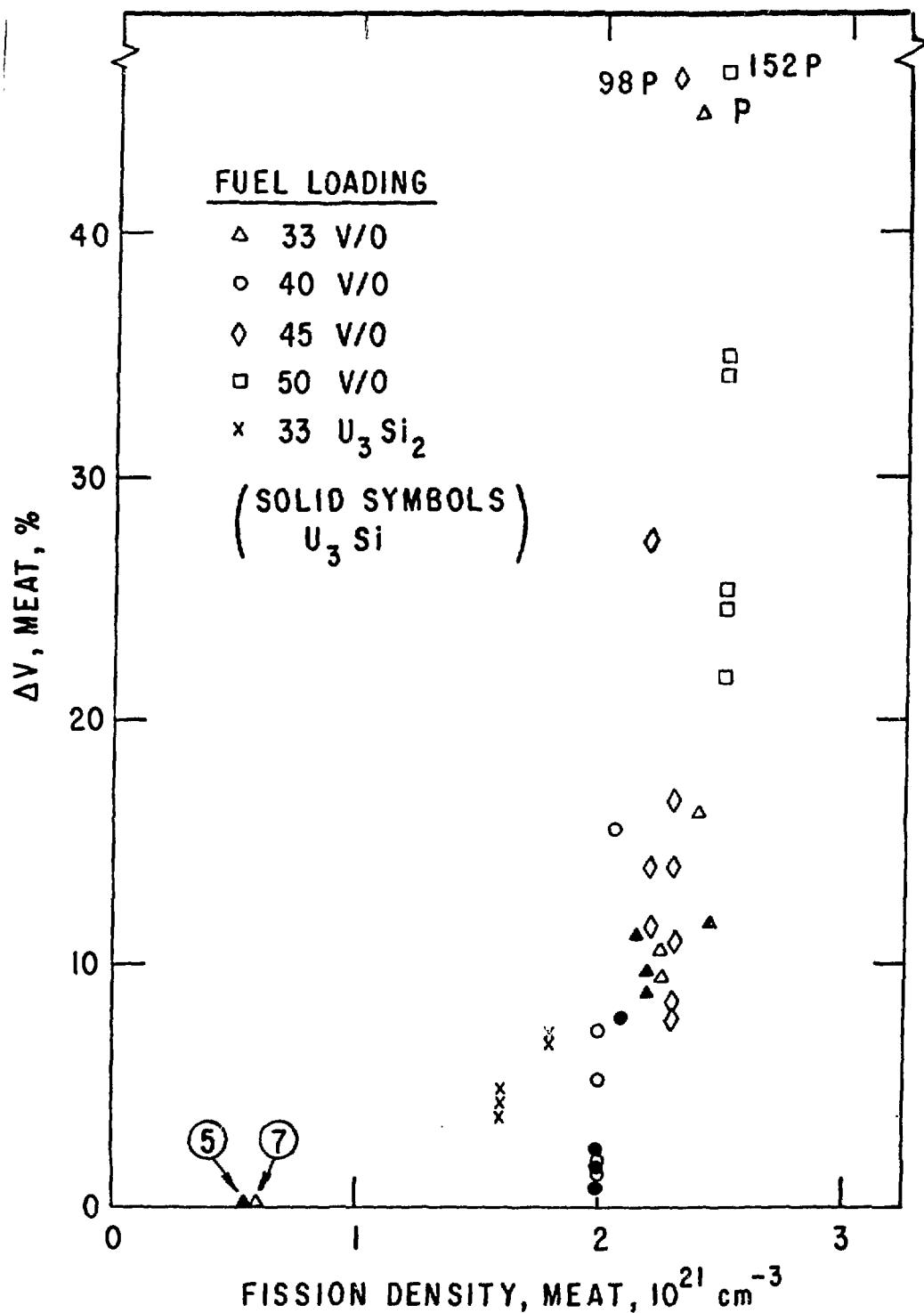


Fig. 1. Fuel Plate Meat Swelling in Miniplates with Various Fuel Loadings, as a Function of Meat Fission Density. P indicates pillow plates.

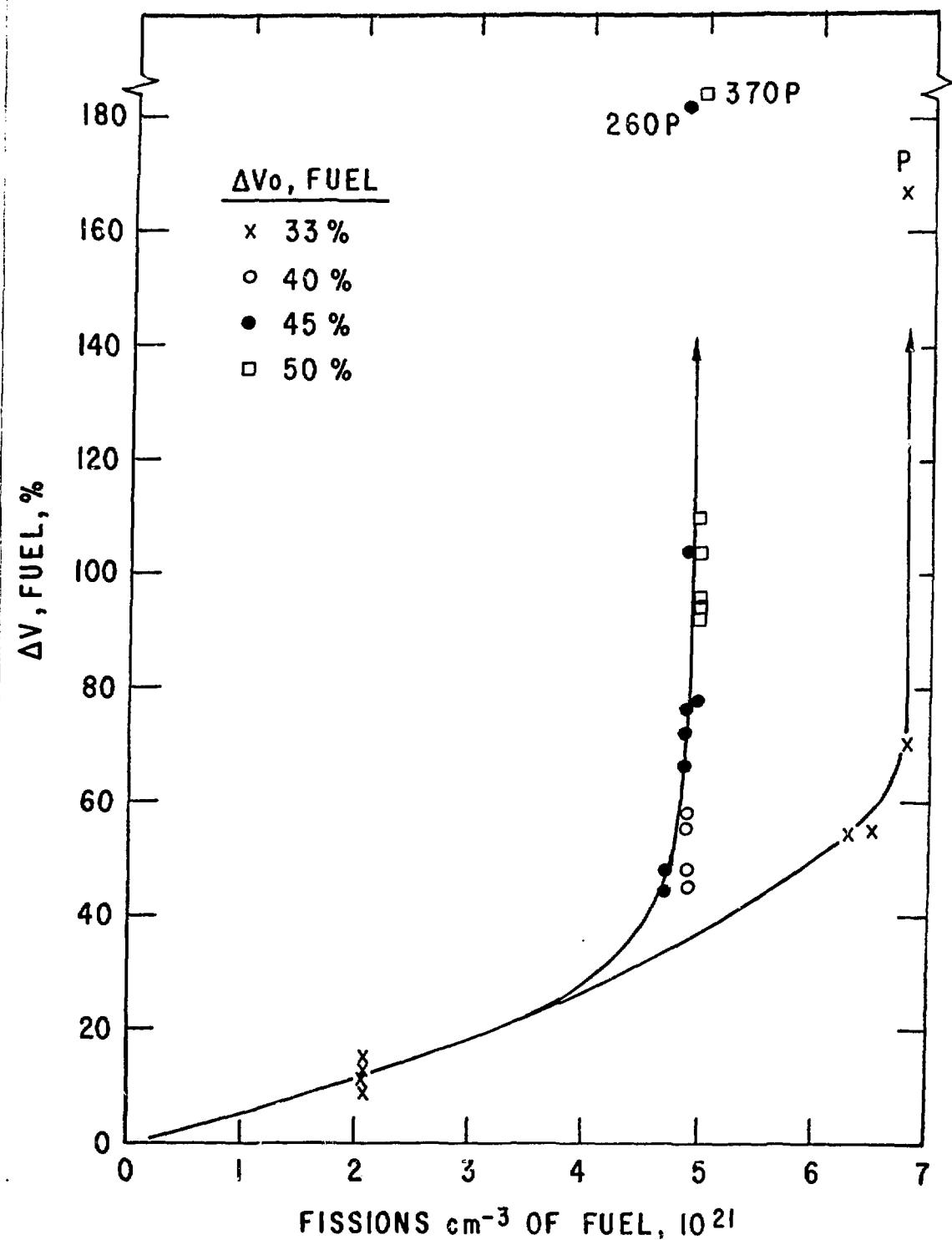


Fig. 2. Fuel Particle Swelling in U_3Si-Al Miniplates with Various Fuel Loadings, as a Function of Fission Density in the Fuel Particles Only.

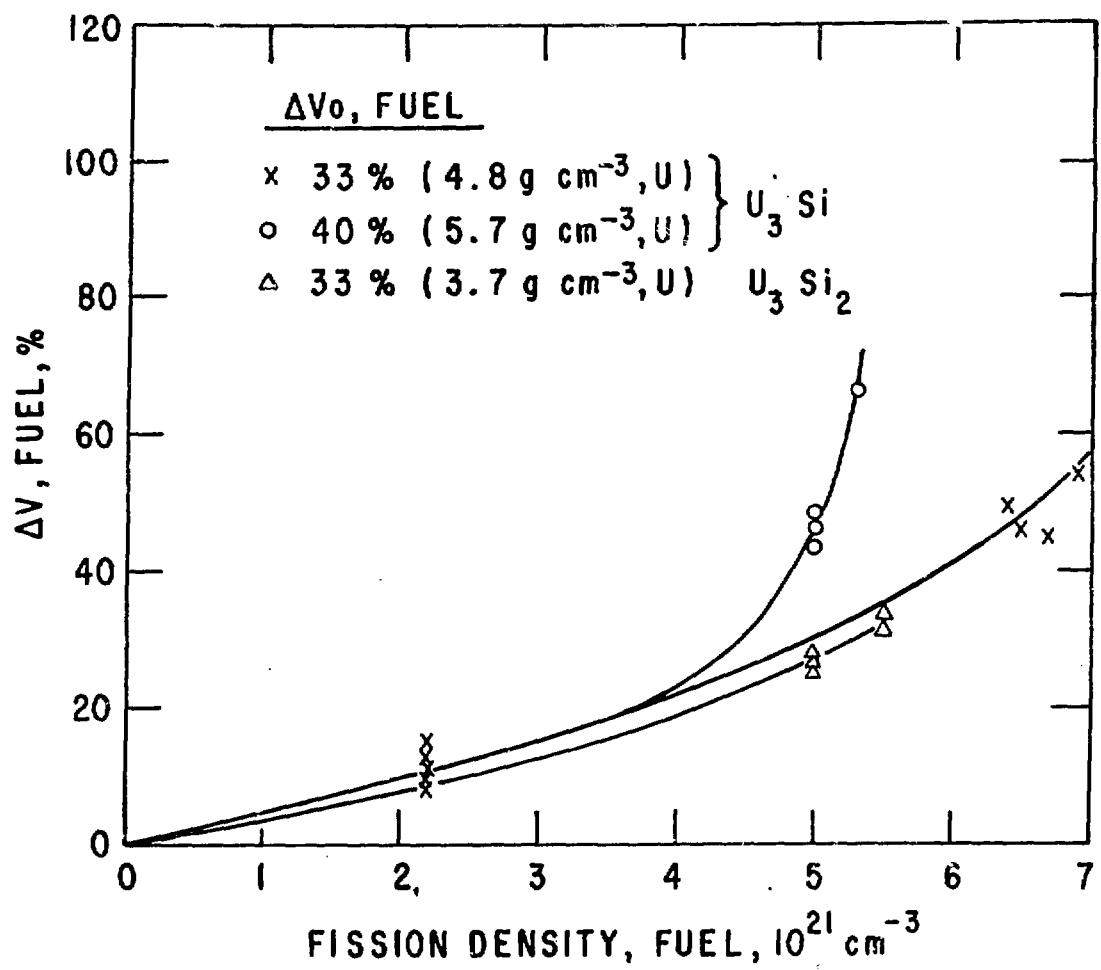


Fig. 3. Fuel Particle Swelling in $U_3\text{Si}$ and $U_3\text{Si}_2$ Miniplates with Various Fuel Loadings, as a Function of Fission Density in the Fuel Particles Only

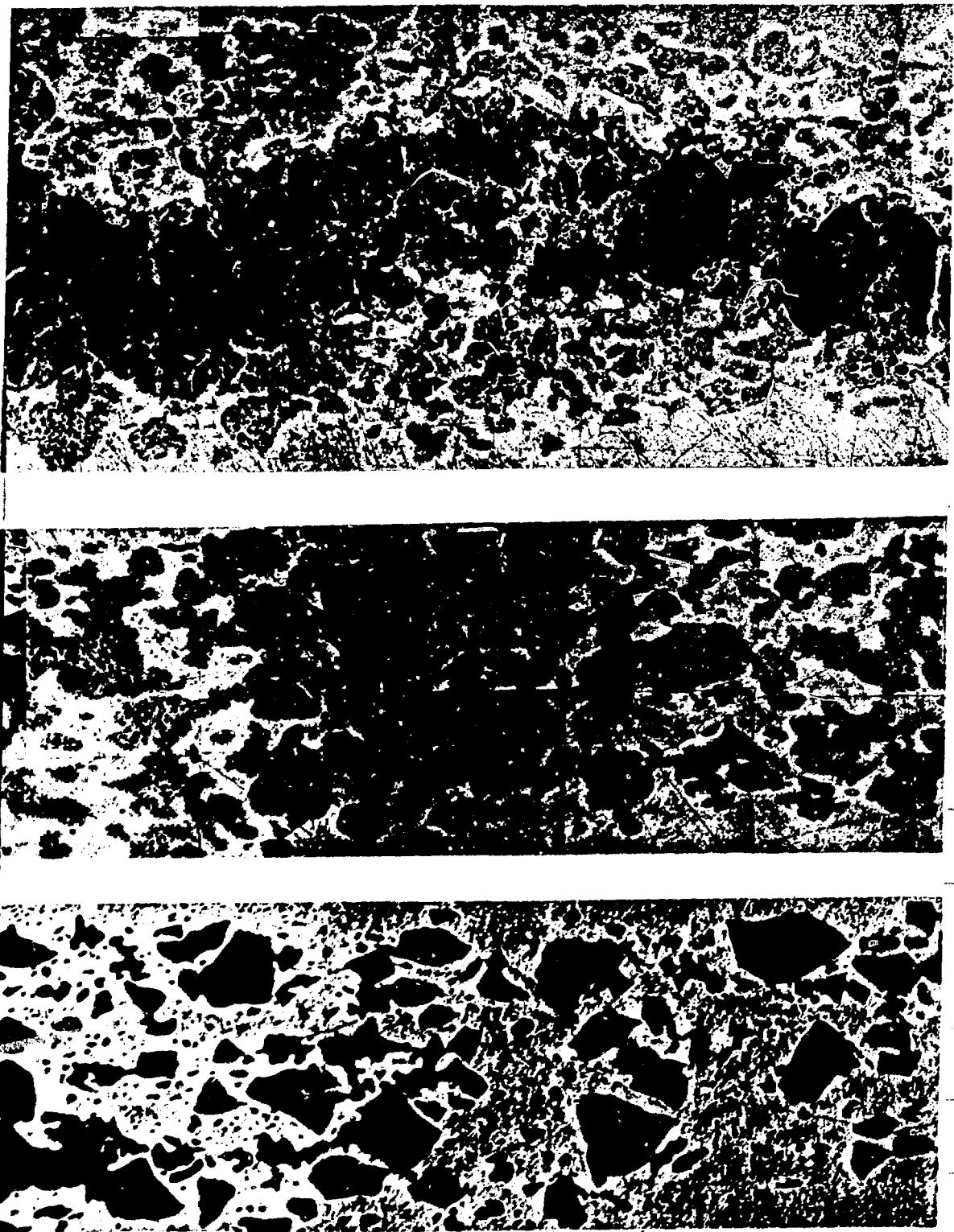


Fig. 4. Meat Microstructure of (Top to Bottom) As-polished U_3Si-Al , U_3Si , and U_3Si_2 after 96% ^{235}U Burnup.

50 μ

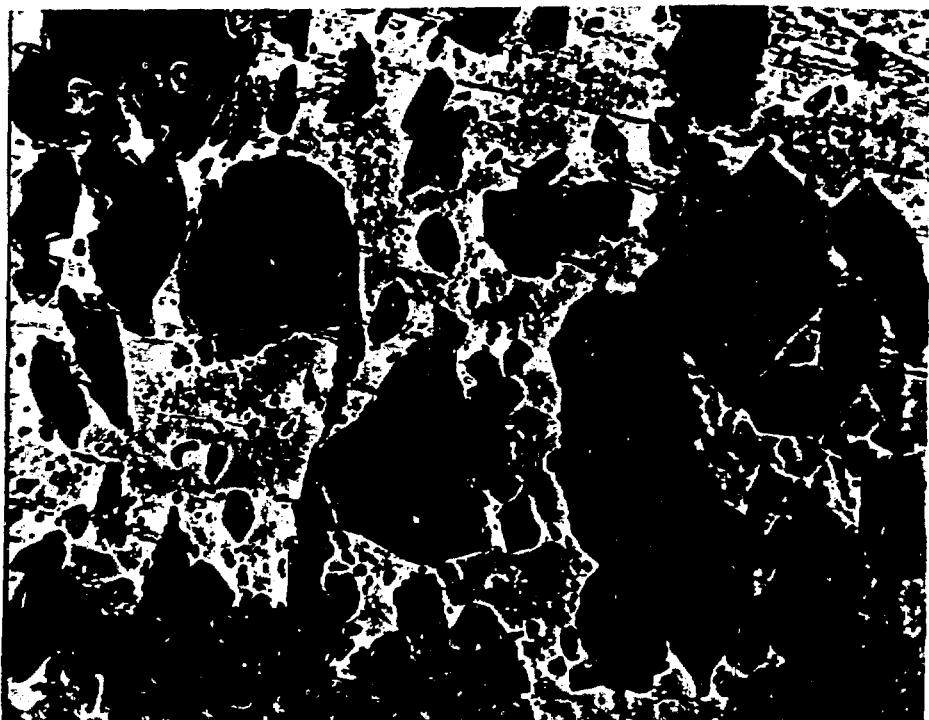


Fig. 5. Meat Microstructure of As-polished U₃Si₂ after 96% ²³⁵U Burnup.

10 μ

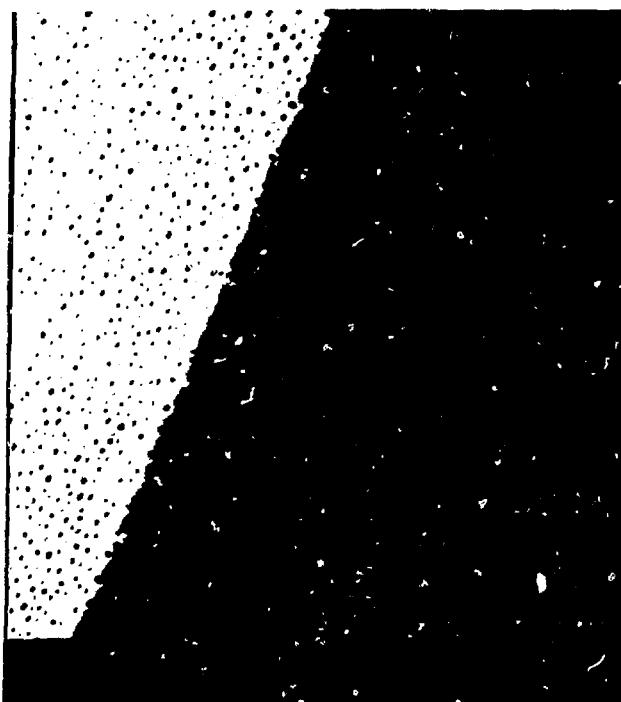
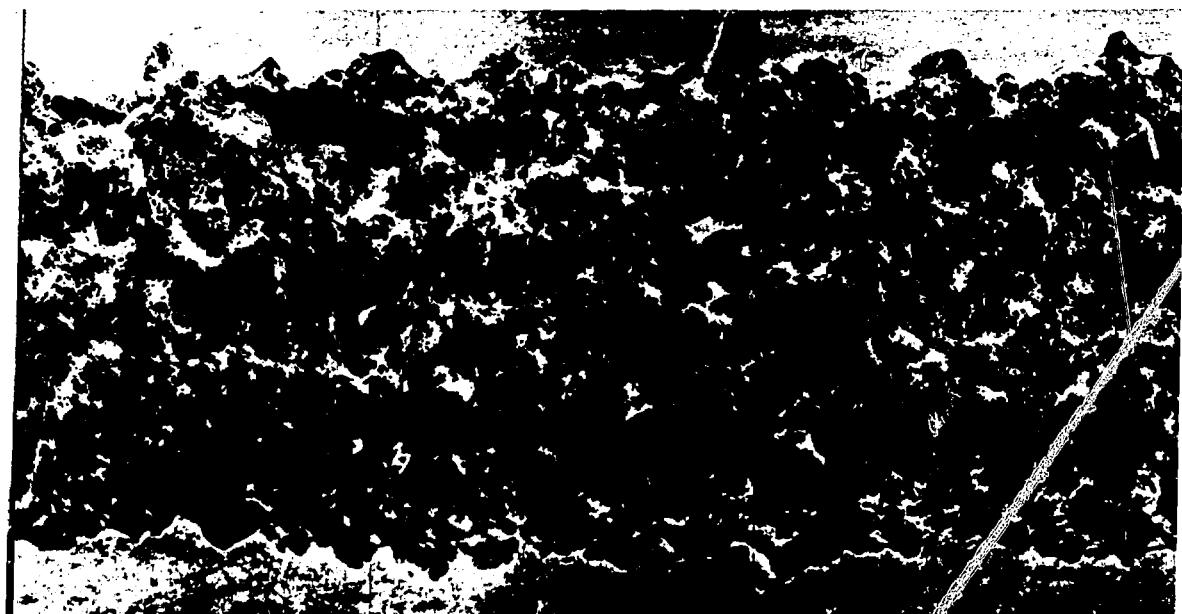
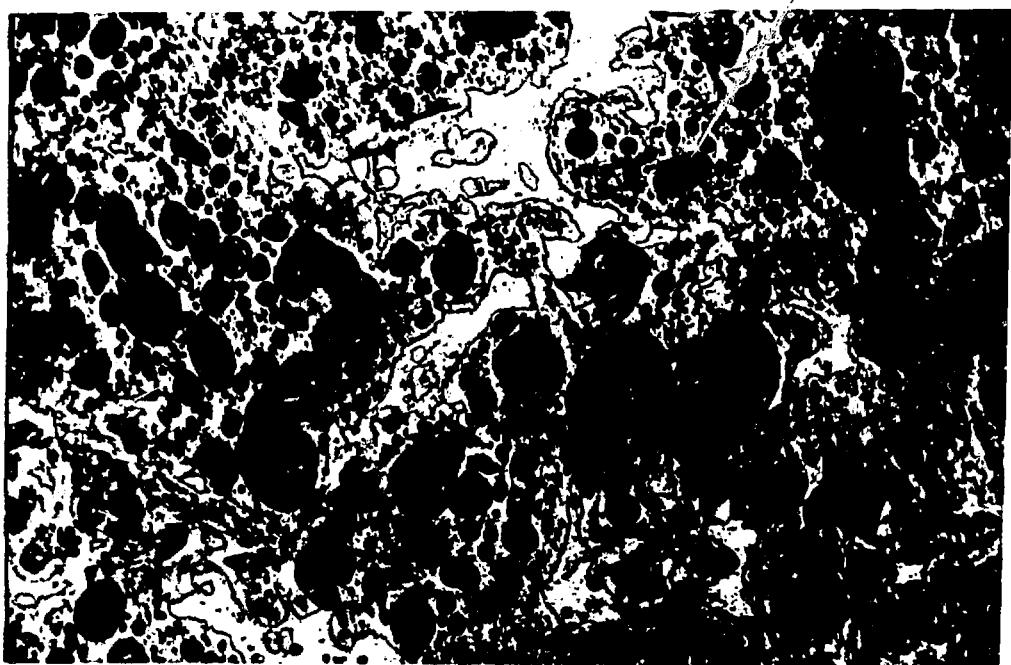
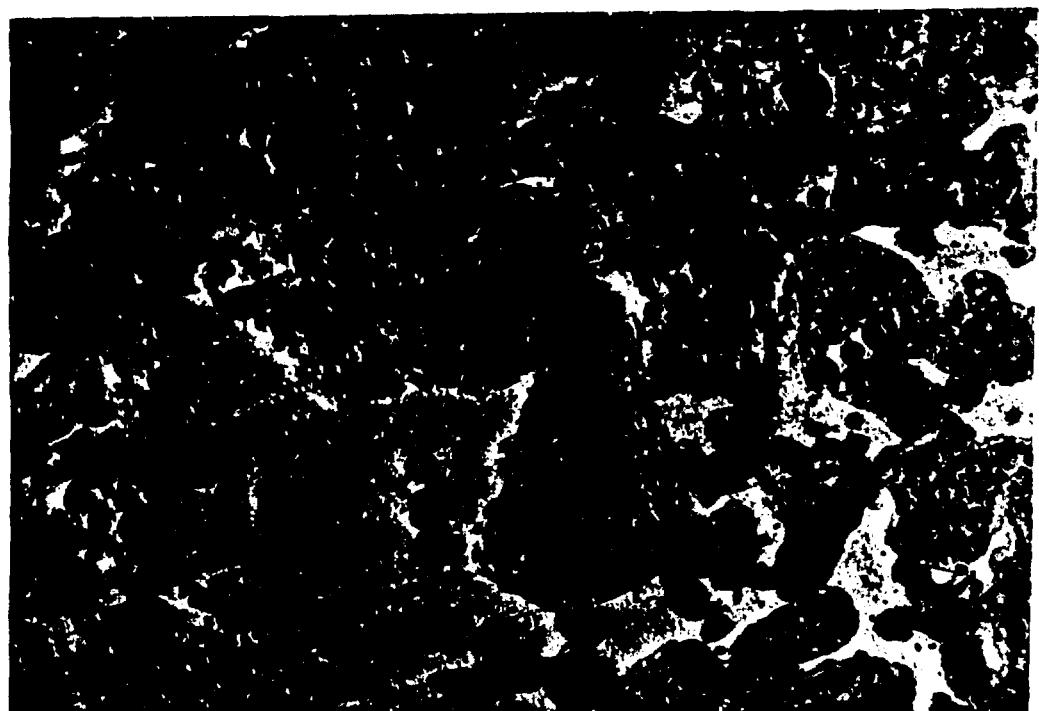




Fig. 6. Scanning Electron Micrograph Showing Bubble Morphology in U₃Si₂ after 96% ²³⁵U Burnup.

100 μ



10 μ

Fig. 7. Meat Microstructures As-polished 50 v/o U₃Si-Al after 75% ²³⁵U Burnup.

100 μ

10 μ

Fig. 8. Meat Microstructures of As-polished 40 v/o U₃Si after 74% 235U Burnup.

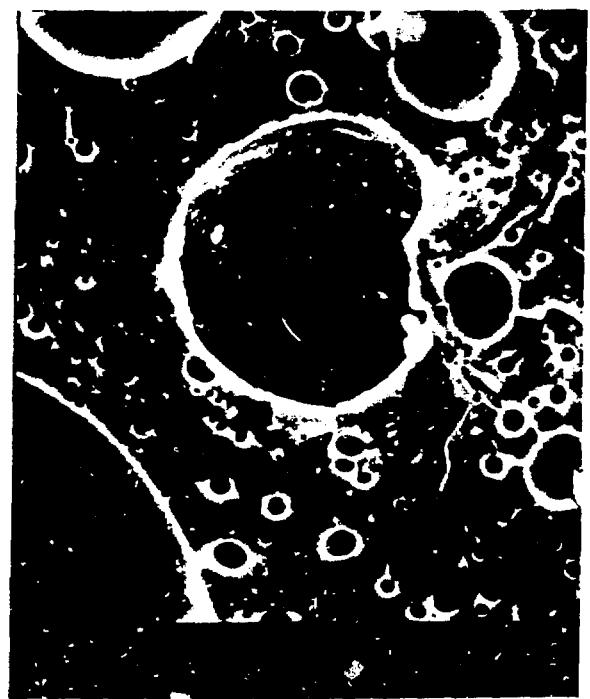
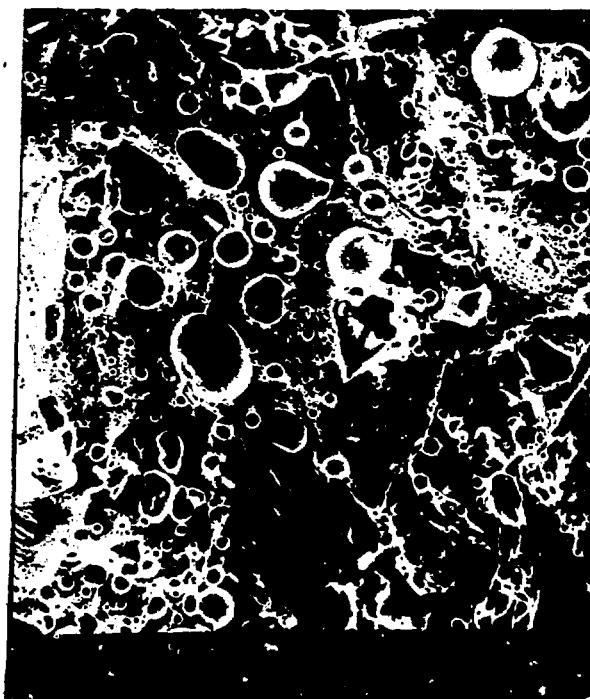



Fig. 9. Scanning Electron Micrographs Showing Breakaway Fission Gas Bubble Growth in U₃Si Particle in 40 v/o Loaded Plate after 75% ²³⁵U Burnup.

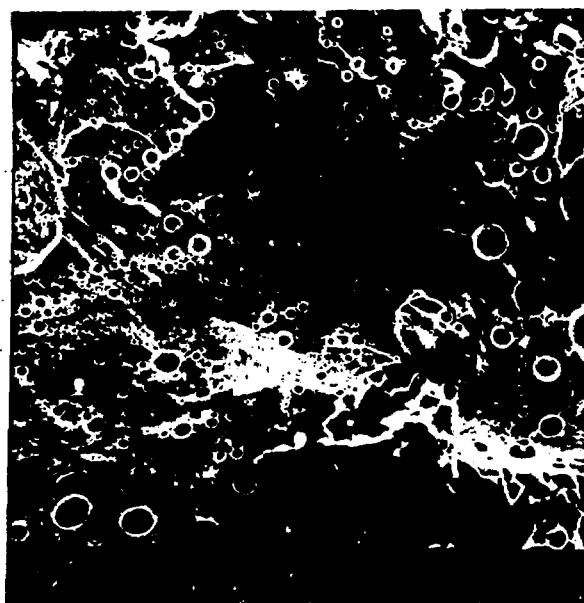


Fig. 10. More Stable Bubble Morphology in Particle Adjacent to That Shown in Fig. 9.