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ABSTRACT

An exact solution is derived for one-dimensional radionuclide transport 
under time-varying fluid-flow conditions including radioactive decay but 
with the approximation that all radionuclides have identical retardation 
factors. The solution is used to obtain exact expressions for the 
cumulative radionuclide mass transported past a fixed point in space over 
a given time period, and to assess the effects of a periodic perturbation 
and a step change on the fluid-flow velocity and dispersion coefficient.
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1. INTRODUCTION

In assessing the long-term safety of nuclear-waste repositories, the 
validity of assuming steady-state geological conditions has not been 
established. For example, over the regulatory time frames of interest, 
typically thousands of years, one may expect changes in the fluid-flow 
rates through the repository due to changes in infiltration and recharge 
caused by intermittent rainfall. Such changes are difficult to predict, 
but that does not eliminate the need to assess how such changes may 
affect results from models that rely on constant conditions.

To address part of this problem, a new exact solution is developed to 
analyze the effects of time-varying conditions on the transport of a 
decaying radionuclide chain in one-dimensional flow. Few exact solutions 
are available for time-varying conditions [1, 2, 3, 4, 5], and no exact 
solutions with time-varying flow rates have been found in the literature 
that considers radioactive decay. Furthermore, for time-varying 
conditions, even without radioactive decay, no exact analysis has been 
found on the cumulative release of radionuclide past a fixed point in 
space. Such an analysis is important because the performance measure in 
the containment requirements of the Environmental Protection Agency's 
standard for the disposal of high-level, spent fuel, and transuranic 
wastes is given in terms of cumulative radionuclide releases over 10,000 
years [6]. The analysis in this work extends available exact solutions 
to include the release of decaying radionuclides from a repository of 
arbitrary length under time-varying conditions, and may be used to 
calculate the cumulative release of radionuclides past a given fixed 
point in space.

The solution is developed for arbitrary time-varying fluid-flow 
velocities and dispersion coefficients. However, the solution is 
constrained to radionuclides that have identical adsorption distribution 
coefficients or retardation factors. Such an approximation may be used 
as a conservative estimate of the fastest transport from the repository 
by assuming that no radionuclide adsorbs on the porous media. Thus, the 
retardation factors are all unity. In addition, a less conservative, but 
more realistic approximation is that each radionuclide has a retardation 
factor equal to the minimum retardation factor of all the radionuclides. 
This approximation may also be used for the solution presented in this 
work.

The solution is presented and discussed in Section 2 in four subsections. 
The governing equation is presented in the first subsection. In the 
second subsection, the derivation begins with an existing exact solution 
of the migration of radionuclides from a single instantaneous injection 
point in a time-varying flow, without radioactive decay [2], In the 
third subsection, a general method is derived for extending transport 
solutions, such as those given in the second subsection, to include 
radioactive decay. In the last subsection, exact expressions and 
asymptotic limits for the cumulative mass of radionuclide
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past an arbitrary point are presented. The new contributions of this 
study are a unified approach to existing exact transport solutions with 
time-varying flow, a general method for extending transport solutions to 
include radioactive decay, and an analysis for the cumulative 
radionuclide mass transported past a fixed point.

Four special cases of the solution are discussed in Sections 3 and 4.
The first case is for time-invariant flow conditions and serves as a base 
case for the three time-varying flow cases. A periodic perturbation of 
the fluid-flow velocity is used in the second and third cases, and a step 
change in this velocity is used in the fourth case. In Section 4 two 
representative examples are used to demonstrate applications of the time- 
varying solution. Finally, in Section 5 the results of this work are 
summarized.
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2. ANALYTICAL SOLUTION

2.1 Governing Equation

For time-varying one-dimensional convective and dispersive transport of a 
radionuclide chain through an adsorbing porous media, the governing 
equation for a chain of m radionuclides is [1, 7, 8, 9, 10],

ac. ac.
Ri atT + a^T D(t)

aV

ax
- R, A , C. + R. A, i C, - ill i-l i-1 i-1 (1)

where -® < x < «,
i-1. ••• , m,
A - 0, o ’ t is time,

is the molar concentration in solution of the i-th radionuclide, 
R^ is the retardation factor of the i-th radionuclide, and 
A^ is the radioactive decay rate of the i-th radionuclide.

To model time-varying flow, the fluid-flow velocity U(t), and dispersion 
coefficient D(t) are assumed to be time dependent. It is also assumed 
that the adsorbed radionuclide concentration on the porous media is 
proportional to C^. The so-called retardation factor is then given by

R.i 1 +
P K^- s di

4>
(2)

where <j> is the porosity, is the bulk density and is the adsorption
distribution coefficient for the i-th radionuclide.

2.2 Exact Solution Without Radioactive Decay

The initial and boundary conditions for a point source of radionuclide i 
of mass per unit area given by , released at t - 0 and x = 0 into an 
infinite domain initially containing no radionuclide are

Ci(x,0) = 5(x)Mi 

fc^x, t) dx = JL
- CCj

C^(x -*■ ±<»,t) - 0

where 5(x) is the Dirac delta function defined by

6(0) = ®

6(x) = 0 for x * 0

(3)

(4)

(5)

(6) 
(7)
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(8)15 (x) dx

Equation (4) constrains the solution such that all radionuclides in the 
initial point source remain for all time in the domain -«> < x < ®.

The solution to Equation (1) without radioactive decay, satisfying 
Equations (3), (4), and (5) is given by the Green's function [2],

Ci(x,t)
M.iJ 4jrD. t

exp
(x-lLt)'

4D.ti
(9)

where the time-averaged species velocity and retarded dispersion 
coefficient are given respectively by

[u(r ) dr
U. R^t

and
(10)

i
D. =i

D ( r ) dr

R^t (ID

The solution for arbitrary initial conditions may be constructed from 
Equation (9) by summing point sources over the region of nonzero initial 
radionuclide concentration. For a repository of length h releasing 
radionuclide in the region -h < x < 0, the limit of the summation process 
results in

Ci(x,t) -

x+h

xJ

C.i,s

47rD. t i

exp
(^-u.tr

4D.ti
(12)

where C. „ is the initial concentration of the i-th radionuclide due to a 1, spoint source located at a distance £ from x. s is assumed to have a
constant value in the repository over the region’-h < x < 0. Integrating 
Equation (12) results in [4],
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(13)
C.i

C.i,s
1
2 erf

x+h-U.t i - erf
x-U.tiJ 4D. ti J 4D. ti

where erf is the error function defined by

erf(O - dp (14)

As h Equation (13) reduces to

' *V
Ci 1

1 - erf
x-U.ti

C. 2 11 , s J 4D. ti

(15)

This special limit for a repository of infinite length was obtained 
previously by using a Fourier Transform in x [1, 5],

Although the solution is for an infinite domain, the solution may also be 
used to model the semi-infinite domain x > 0. For a semi-infinite domain 
that initially does not contain any radionuclide, the initial and 
boundary conditions are,

Ci(x,0) = 0 x > 0 (16)

Ci(x -> co,t) = 0 t > 0 (17)

0.(0,t)
c.i,s

1
2 1 + erf

U.ti
J^D.t

t > 0 (18)

From Equation (18) we see that the concentration at the boundary x = 0 
increases asymptotically to C. s as t -► ®. The solution to Equation (1) 
for these boundary and initial’conditions is given by Equation (15).
This solution may be used as a test case for numerical solutions of 
Equation (1) since numerical solutions are better suited for semi- 
inf inite domains, than for infinite domains.

5



2.3 Exact Solution With Radioactive Decay

If the adsorption distribution coefficient of all radionuclides is 
approximated as being equal, then — K for all i, the time-averaged 
species velocities and dispersion coefficients are independent of the 
radionuclide, and the subscript i may be dropped from these variables. 
Then the solutions for different radionuclides given by Equation (13), 
differ only in the initial radionuclide concentrations. To construct 
what will be called in this work the fundamental transport solution, 
which is not radionuclide specific, in Equation (13) is replaced by
C , a unit measure of concentration, ftith this replacement, the 
fundamental transport solution is the solution for the problem of an 
instantaneous release resulting in an initial unit radionuclide 
concentration. This fundamental transport solution is given by

CCf(x,t) = ^ erf x+h-Ut - erf x-Ut

J 4Dt J 4Dt *

(19)

for a repository of finite length, and by

Cf(x,t)
" ■»

1 - erf x-Ut
►J 4Dt

for a repository of infinite length.

(20)

The general solution to Equation (1) may be obtained by assuming that it 
is a product of the fundamental transport solution and an unknown time
dependent factor that is radionuclide specific, C^(t), Thus

Ci(x,t) = Ci(t)Cf(x,t) (21)

Substituting Equation (21) into Equation (1) results in the Bateman 
equations [11], given by the following coupled set of ordinary
differential equations for C^(t):

dC 1
dt A1C1 (22)

dC.
dt Vici-1 - Aici i > 1 (23)
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For C^(x,t), given by Equation (21), to reduce to Equation (13) without 
radioactive decay, the initial conditions for Equations (22) and (23) are

ci - CiiS t-0’ (24)

Since each radionuclide has a distinct decay rate, the i-th eigenvalue of 
the system of equations is equal to the decay rate of the i-th 
radionuclide, The solution to Equations (22) and (23) is

C.i
a.bf^ ^exp(-A.t) 
J i J i > 1 (25)

where the eigenvectors are given by

.0) =
i

0
1

i-1TT
k=j A.J

and

i < j 
i “ j

i > j

“l ” Cl,s

i-1
a. “ C. i i, s a.b. J i

(j) i > 1
j-1

(26)

(27)

(28)

Therefore, the general solution is given by substituting Equations (19) 
and (25) into Equation (21) to give

Ci(x,t) 1— I erf x+h-Ut
2 J^>t

erf x-Ut

4Dt
L v!J’exp(-A^ t) (29)

where CQ has been dropped from Equation (29) since by definition it is 
unity.

Equation (29) is the new general solution for instantaneous releases of a 
decaying radionuclide chain transported by time-varying convection and 
dispersion processes, but with uniform retardation factors. The
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repository length, initial release concentrations of each radionuclide, 
and the chain length are arbitrary.

2.4 Cumulative Release of Radionuclides Past a Fixed Point

As discussed earlier, a primary concern for nuclear-waste repositories is 
the cumulative radionuclide mass reaching the accessible environment.
This quantity for one-dimensional transport of the i-th radionuclide past 
the point x = L is given by the cross-sectional area for flow times

f^t)

•t
U(r)C.(L,r)

oJ
R.i

D(r) aC^L.r) 
R. flx dr (30)

where L is taken as the location of the accessible environment, and f^(t) 
is the cumulative sum of the convective and dispersive mass fluxes of 
radionuclide i. Since U(r) and D(r) are arbitrary functions of time, the 
integral in Equation (30) can not be evaluated until these functions are 
specified. Furthermore, numerical integration may be required since 
C.(L,r), U(r), and D(r) may be given in terms of complicated functions 
that are not explicitly integrable.

However, the cumulative mass of radionuclide i past a point L, per unit 
cross-sectional area may be evaluated explicitly and is given by,

Fi(t) dx (t) (x.t) dx (31)

Without radioactive decay, f^(t) and F^(t) are equal, and the cumulative 
activity reaching the accessible environment may be computed using either 
expression. With radioactive decay, f^(t) may not be equal to F^(t). 
f^(t) accounts for the radionuclide mass in the region x > L due to 
convection and dispersion, but not due to radioactive decay. However, 
F^(t) does account for radioactive decay in this region.

F^(t) may be evaluated explicitly by substituting Equation (29) into 
Equation (31), and using the integral representation for the error 
function given by Equation (14) to give
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x+h-Ut

CO

F^t) e ^ d/9 dx

«

x-UtJ 4Dt
(32)

The double integral in Equation (32) is over an upward sloping semi­
infinite strip in the (x,/3) plane. This region may be integrated in two 
parts by reversing the order of integration to give

F,----i

L+h-Ut

4Dt

P^jADt + Ut 
2

-P dx d^ +

4Dt - h + Ut

x+h-Ut

_i

4Dt

L-UtJ 4Dt

(i\ 4Dt + Ut
f .V

dx d/9 (33)

Since the integrands are independent of the inner integration variable, 
the inner integrals may be evaluated to give

L+h-Ut

4Dt

Fi
C.i he

L+h-Ut

C.i /9j4Dt + Ut -L e*^ d/9

L-Ut

4Dt 4Dt

(34)

Evaluating the single integrals in Equation (34) results in
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(35)
c r 2 2i

F. « — - i 2 h[l-erf(z)] + (L-Ut)[erf(y)-erf(z)] + -y -ze ^ - e 4Dt
►

*

where

L-Uty - ----
j4Dt

and

L+h-Ut z = ■■
j4Dt

(36)

(37)

For an infinitely long repository, in Equation (35) reduces to

Fi = r (L-Ut)[erf(y) - 1] + e -y 4Dt (38)

The asymptotic values of F^(t) are given in Table 1. These asymptotic 
limits may be obtained by using the following approximation for the error 
function [12],

erf(y) - 1----— (y » 1)
yJV

(39)

As t -» « for finite values of L of a finite repository, all the 
radionuclides must pass x = L. Thus, in this limit, F^(t) must be equal 
to all the radionuclide mass per unit area formed or decayed by nuclear 
reactions. As given in column one and row one of Table 1, this quantity 
is the decayed initial radionuclide concentration times the length of the 
repository. For an infinite repository, as t -» «>, the radionuclides 
transported past a fixed point are given by the effective travel distance 
past x = L, times the decayed initial radionuclide concentration. This 
quantity approaches infinity for an infinite repository, as given in 
Table 1. Also shown in Table 1 is that the asymptotic limits for F^(t) 
as L -* -<» are identical to those limits given for t -» <*>. This is because 
in both asymptotic limits, all the radionuclides are contained in the 
region of integration of Equation (31). Notice from Table 1 that for 
long times, F^ is independent of the dispersion coefficient. This long 
time behavior will be demonstrated in Section 4 with an example problem.
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Table 1

Asymptotic Values of F^(t), the Cumulative 

Radionuclide Mass Per Unit Area for x > L.

Limiting Conditions Finite Repository 
(h > 0)

Infinite Repository 
(h -* «)

(t -*• co) hC. C^Ut - L)
(L finite)

(L -+ -®)
(t > 0)
(t finite)

hC. C^Ut - L)

is given by Equation (25),
U is the time-averaged species velocity, 
h is the length of the repository, 
t is time, and
L is the point beyond which the cumulative radionuclide mass per unit area is 
determined.
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3. SPECIAL CASES

One can not predict with absolute certainty future geological conditions 
that may influence flow through a repository. The sensitivity of models 
to changing geological conditions is therefore of interest. To study 
this sensitivity for one-dimensional models, the solutions given in the 
previous section were developed for arbitrary time-dependent functional 
forms of the fluid-flow velocity and dispersion coefficient. We may now 
use these solutions to determine how much the constant flow solution 
differs from a solution obtained using a time-varying perturbation or a 
step change on the parameters. To evaluate this difference, four special 
cases are considered in this section. Table 2 summarizes the conditions 
for each case.

First, a base case is defined in terms of a constant species velocity u, 
and constant retarded dispersion coefficient do+d^|u|. These parameters 
are defined such that do and d^ are nonnegative constants.

The second and third cases in Table 2 are for a periodic perturbation of 
the species velocity given by

U(t)/R *= u + ecos(wt) (40)

where co is a nonnegative constant. For c = 0, the species velocity for 
the second and third cases reduce to that for the first case in which the 
flow conditions are constant. To maximize the early time difference 
between the base case and the time-varying case, the cosine function was 
chosen instead of the sine function in Equation (40). As will be shown 
in section 4, even with this maximum difference in the fluid-flow 
velocity at t=0, the time-varying solution rapidly approaches the base 
case solution.

For the fourth case, the species velocity will change from uQ to u^ at 
time t-. . This case may be used to model an abrupt change in geological 
conditions.

The retarded dispersion coefficient is often related to the species 
velocity. For the second and fourth cases this relationship is given by
[13],

D(t)/R = do + d1|U(t)/R| (41)

and for the third case the relationship is given by

D(t)/R = dQ + (d1/u)[U(t)/R]2 (42)

12



Table 2

Species Velocities and Retarded 
Dispersion Coefficients for Special Cases

Case U/R D/R U U D
(wt -*• <») (wt -*■ «)

u d +di u o 1 u d +d, u o 1 u d +d, uo i

r, /v j j r / n CSln(tl)t)2 u+ecos(wt) d +d-, fu+ccos(wt) ] u + -------o i v ^ j d +diU +o 1
d^£sin(wt)

wt u d +d-,u o i

/so lr / ^si2 £sm(wt)3 u+£Cos(wt) d + —[u+£Cos(wt)l u + --------o u •' wt
V

do+diu + + u
di£

do+diu + ^r

di£

4uwt [£sin(2wt)+8usin(wt)]

4 (t < t,) u d +d, u o 1 o u. d +d-,u o 1 o

4 (t > t, ) u. do+diui uotl + ^do+dluo^tl + (do+d^iXt-ti)

Note that u, uo, u^, dQ and d^ are nonnegative constants and for the second case u > JcJ.



Note that the constants u, d and d, are chosen such that as c -► 0, the 
perturbed cases reduce to the constant condition case.

The new general solutions for the concentration profile in Equations (29) 
and the cumulative mass per unit area in Equations (35) and (38) are 
expressed in terms of time-averaged quantities given by Equations (10) 
and (11) . The time-averaged quantities for the four cases are given in 
Table 2.

From Table 2 we see that for cases 2 and 3 in the limit of long times 
(i.e. wt ->■ <») , the time-averaged species velocity approaches the constant 
value of u.

For case 2 the long time time-averaged retarded dispersion coefficient 
approaches a constant value of d +d^u, which is identical to that for case 1. However, due to the quadratic model used in case 3, the long 
time time-averaged retarded dispersion coefficient is not equal to that 
for case 1.

14



4. EXAMPLE PROBLEMS

Two example problems are used to demonstrate the significance of time- 
varying flow conditions for an infinite repository. Table 3 lists the 
parameters for the example problems. In the first example, a periodic 
fluid-flow velocity is used with the linear and the quadratic models for 
the retarded dispersion coefficent. The parameter e was chosen 
arbitrarily such that the fluid-flow velocity would oscillate with a 100% 
variation about u for the first example, as shown in Figure 1. The 
frequency of oscillation was also chosen arbitrarily, but for specific 
sites one may wish to use a different value of w [14], In the second 
example, an order of magnitude step change in the fluid-flow velocity 
half way through the simulation is used. For both examples dQ - 0.03 
nr/year, d, “ 10 m and L - 5,000 m. From these values, the base-case 
species velocity and dispersion coefficient are 1 m/year and 10.03 
m /year, respectively.

The cumulative mass of radionuclide past L - 5,000 m for time-varying 
conditions relative to that for constant conditions is shown in Figure 2 
for Example 1, and in Figure 3 for Example 2. This ratio is independent 
of the radionuclide decay rate and the initial radionuclide 
concentration. Deviations from unity of this ratio indicate deviations 
of the time-varying solution from the constant flow solution. The lines 
in the Figures were generated using Equation (38) for both the time- 
varying and constant flow conditions. Also plotted in Figure 2 as 
discrete points is the same ratio calculated based on the asymptotic 
formula given in Table 1. For a periodic fluid-flow velocity given by 
Equation (40), the asymptotic value of the ratio is given by

F . • /F -+ 1 + £®ill(i£t)
time-varying' constant uwt

The solid and dashed lines in Figure 2 are for the linear and the 
quadratic models of the dispersion coefficient, respectively. Notice 
that little difference was found between using a linear or a quadratic 
model for the dispersion coefficient as given by Equations (41) and (42), 
respectively. As can be seen from Figure 2, the asymptotic expression in 
Equation (43) provides an excellent approximation at long times. 
Furthermore, as expected from the asymptotic analysis given in section 
2.4, F^ is not sensitive to the model used for the dispersion 
coefficient. Notice that although there is a 100% variation in the flow 
conditions, the oscillations dampen quickly after one or two cycles in 
the fluid-flow rate. Thus, although the analysis in section 3 shows that 
for long times the solution should approach that for constant conditions, 
this example demonstrates that the constant flow solution may be a good 
approximation in this case after only one cycle in the fluid-flow 
velocity.
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Table 3

Parameters in Example Problems

No. Fluid-Flow Parameters Time Period (years) Figures

1 Periodic w - 2jr/10,000 year'^ 100,000 1, 2

u = 1 m/year 

e = 1 m/year

2 Step Change uQ = 0.1 m/year 10,000 3

u^ “ 1 m/year 

u - 0.55 m/year 

t-^ - 5,000 years

oFor both examples, do — 0.03 m /year, d^ - 10 m and L - 5,000 m.

16



In Figure 3 the cumulative mass ratio is shown for Example 2. In this 
example, for constant conditions, the fluid-flow velocity is 0.55 m/year, 
which is the average fluid-flow velocity over 10,000 years. Thus, for 
the first 5,000 years, the fluid-flow velocity for constant conditions 
greatly exceeds the initial fluid-flow velocity of 0.1 m/year for time- 
varying conditions. Therefore, the ratio shown in Figure 3 is much less 
than unity for about the first 8,500 years. However, the cumulative 
fluid-flows are equal for the constant and time-varying cases at 10,000 
years. At that time the ratio shown in Figure 3 is unity, which 
indicates for this example that at 10,000 years the cumulative 
radionuclide release is not affected significantly by the step change in 
the fluid-flow velocity.

17



5. SUMMARY AND CONCLUSIONS

An exact solution has been obtained for radionuclide transport under 
time-varying fluid-flow velocities and dispersion coefficients, including 
radioactive decay. The solution was based on a unified treatment of 
previously reported transport solutions without radioactive decay. New 
exact expressions were obtained for the cumulative radionuclide mass per 
unit area past a fixed point in the flow. These new expressions were 
used to determine the effects of a periodic perturbation and a step 
change of the fluid-flow rate on the cumulative radionuclide mass per 
unit area past a fixed point.

For the example presented of a periodic variation in the fluid-flow rate, 
the time-varying solution for the cumulative radionuclide mass past a 
fixed point dampened rapidly, and approached the constant flow solution 
regardless of the model for the dispersion coefficient.

For the example presented of a step change in the fluid-flow velocity, 
the cumulative radionuclide mass past a fixed point reached that for the 
constant flow solution when the cumulative fluid-flows were identical.

The examples demonstra.ted that the solutions presented in this work are 
useful for assessing the effects of time-varying flow, but are limited to 
radionuclide chains with uniform retardation factors. Numerical 
solutions may be required to account for nonuniform retardation factors. 
These numerical solutions may be tested by using the exact solutions in 
this work for cases when the retardation factors are uniform.
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Figure 2. Ratio of cumulative radionuclide mass past L = 5,000 meters for the 
first example problem, where the solid and dashed lines are for the linear and 
quadratic models of the dispersion coefficients, respectively, as given by 
Equations (41) and (42), respectively. The discrete points were calculated 
using the asymptotic approximation given by Equation (43).
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Figure 3. Ratio of cumulative radionuclide mass past L « 5,000 meters for the 
second example problem. At 5,000 years the fluid-flow velocity changed from 
0.1 meter/year to 1.0 meter/year. The constant flow conditions were for a 
fluid-flow velocity of 0.55 meter/year.
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