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ABSTRACT

An exact solution is derived for one-dimensional radionuclide transport
under time-varying fluid-flow conditions including radiocactive decay but
with the approximation that all radionuclides have identical retardation
factors. The solution is used to obtain exact expressions for the
cumulative radionuclide mass transported past a fixed point in space over
a given time period, and to assess the effects of a periodic perturbation
and a step change on the fluid-flow velocity and dispersion coefficient.
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1. INTRODUCTION

In assessing the long-term safety of nuclear-waste repositories, the
validity of assuming steady-state geological conditions has not been
established. For example, over the regulatory time frames of interest,
typically thousands of years, one may expect changes in the fluid-flow
rates through the repository due to changes in infiltration and recharge
caused by intermittent rainfall. Such changes are difficult to predict,
but that does not eliminate the need to assess how such changes may
affect results from models that rely on constant conditions.

To address part of this problem, a new exact solution is developed to
analyze the effects of time-varying conditions on the transport of a
decaying radionuclide chain in one-dimensional flow. Few exact solutions
are available for time-varying conditions [1, 2, 3, 4, 5], and no exact
solutions with time-varying flow rates have been found in the literature
that considers radioactive decay. Furthermore, for time-varying
conditions, even without radioactive decay, no exact analysis has been
found on the cumulative release of radionuclide past a fixed point in
space. Such an analysis is important because the performance measure in
the containment requirements of the Environmental Protection Agency's
standard for the disposal of high-level, spent fuel, and transuranic
wastes is given in terms of cumulative radionuclide releases over 10,000
years [6]. The analysis in this work extends available exact solutions
to include the release of decaying radionuclides from a repository of
arbitrary length under time-varying conditions, and may be used to
calculate the cumulative release of radionuclides past a given fixed
point in space.

The solution is developed for arbitrary time-varying fluid-flow
velocities and dispersion coefficients. However, the solution is
constrained to radionuclides that have identical adsorption distribution
coefficients or retardation factors. Such an approximation may be used
as a conservative estimate of the fastest transport from the repository
by assuming that no radionuclide adsorbs on the porous media. Thus, the
retardation factors are all unity. In addition, a less conservative, but
more realistic approximation is that each radionuclide has a retardation
factor equal to the minimum retardation factor of all the radionuclides.
This approximation may also be used for the solution presented in this
work,

The solution is presented and discussed in Section 2 in four subsections.
The governing equation is presented in the first subsection. In the
second subsection, the derivation begins with an existing exact solution
of the migration of radionuclides from a single instantaneous injection
point in a time-varying flow, without radioactive decay [2]. 1In the
third subsection, a general method is derived for extending transport
solutions, such as those given in the second subsection, to include
radioactive decay. In the last subsection, exact expressions and
asymptotic limits for the cumulative mass of radionuclide



past an arbitrary point are presented. The new contributions of this
study are a unified approach to existing exact transport solutions with
time-varying flow, a general method for extending transport solutions to
include radioactive decay, and an analysis for the cumulative
radionuclide mass transported past a fixed point.

Four special cases of the solution are discussed in Sections 3 and 4.

The first case is for time-invariant flow conditions and serves as a base
case for the three time-varying flow cases. A periodic perturbation of
the fluid-flow velocity is used in the second and third cases, and a step
change in this velocity is used in the fourth case. In Section 4 two
representative examples are used to demonstrate applications of the time-

varying solution. Finally, in Section 5 the results of this work are
summarized.



2. ANALYTICAL SOLUTION

2.1 Governing Equation

For time-varying one-dimensional convective and dispersive transport of a
radionuclide chain through an adsorbing porous media, the governing
equation for a chain of m radionuclides is {1, 7, 8, 9, 10],

2

8Ci 8Ci 8 Ci
Bige * U 5 =P /7 S RiMG Y Riata%ia (1)
where -o < X < o,
i=1, ..., m,
A =0,
o

t is time,

C. is the molar concentration in solution of the i-th radionuclide,

R. is the retardation factor of the i-th radionuclide, and

A is the radioactive decay rate of the i-th radionuclide.
To model time-varying flow, the fluid-flow velocity U(t), and dispersion
coefficient D(t) are assumed to be time dependent. It is also assumed
that the adsorbed radionuclide concentration on the porous media is
proportional to ;- The so-called retardation factor is then given by

R, =1+ —— (2)

where ¢ is the porosity, Py is the bulk density and K,; is the adsorption
distribution coefficient for the i-th radionuclide.

2.2 Exact Solution Without Radiocactive Decay

The initial and boundary conditions for a point source of radionuclide i
of mass per unit area given by M;, released at t = 0 and x = 0 into an
infinite domain initially containing no radionuclide are

C; (x,0) = §(x)M; (3)
_Jci<x,c> ax = M, (4)
C;(x ~» to,t) =0 (5

where §(x) is the Dirac delta function defined by

§(0)

]
8

(6)

§(x)

0 for x 0 (7)



00

Is(x) dx = 1 (8)

-0
Equation (4) constrains the solution such that all radionuclides in the

initial point source remain for all time in the domain -« < x < o,

The solution to Equation (1) without radioactive decay, satisfying
Equations (3), (4), and (5) is given by the Green’s function [2],

M, (x-U, t)
Ci(x,t) - exp {- ——— (9)

4nD, t
i

where the time-averaged species velocity and retarded dispersion
coefficient are given respectively by

t
jU(r) dr
U, -2 —— (10)
i R.t
i
and
t
ID(T) dr
= o
Di = ———ﬁzz——— (11)

The solution for arbitrary initial conditions may be constructed from
Equation (9) by summing point sources over the region of nonzero initial
radionuclide concentration. For a repository of length h releasing
radionuclide in the region -h < x < 0, the limit of the summation process
results in

x+h _ 2
Ci s -(s‘Uit)
Ci(x,t) = —— exp|——| d§ (12)
4aD, t 4Dit
i
X

where Ci is the initial concentration of the i-th radionuclide due to a
point solirce located at a distance ¢ from x. C. is assumed to have a
constant value in the repository over the region’-h < x < 0. Integrating
Equation (12) results in [4],
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o x+h-ﬁit x-U. t

e - % erf|——=| - erf (13)
s JAEit Jaﬁit
where erf is the error function defined by
2 [ .4
erf(¢) =— | e das (14)
I
o
As h » « Equation (13) reduces to
Cl 1 x-ﬁit
T, . -3 1 - erf = (15)
’ 4D, t
i

This special limit for a repository of infinite length was obtained
previously by using a Fourier Transform in x [1, 5].

Although the solution is for an infinite domain, the solution may also be
used to model the semi-infinite domain x 2 0. For a semi-infinite domain
that initially does not contain any radionuclide, the initial and
boundary conditions are,

C;(x,0) = 0 x>0 (16)

Ci(x = =,t) =0 t>0 (17)
c.(0,6) U.t

< =511+ erf t>0 (18)
i,s =

From Equation (18) we see that the concentration at the boundary x = 0
increases asymptotically to C. g 88 t > o, The solution to Equation (1)
for these boundary and initial’Conditions is given by Equation (15).
This solution may be used as a test case for numerical solutions of
Equation (1) since numerical solutions are better suited for semi-
infinite domains, than for infinite domains.



2.3 Exact Solution With Radioactive Decay

If the adsorption distribution coefficient of all radionuclides is
approximated as being equal, then Ky =K for all i, the time-averaged
species velocities and dispersion coefficients are independent of the
radionuclide, and the subscript i may be dropped from these variables.
Then the solutions for different radionuclides given by Equation (13),
differ only in the initial radionuclide concentrations. To construct
what will be called in this work the fundamental transport solution,
which is not radionuclide specific, Ci in Equation (13) is replaced by
C_, a unit measure of concentration. With this replacement, the
fundamental transport solution is the solution for the problem of an
instantaneous release resulting in an initial unit radionuclide
concentration. This fundamental transport solution is given by

C —_— —_—
Cp(x,t) = 52 {erf x+h-Uel g|%-Ut (19)

: 4Dt IZ%;

for a repository of finite length, and by

C _
o x-Ut
Cf(x,t) =5 1l - erf

(20)
[ue

for a repository of infinite length.

The general solution to Equation (1) may be obtained by assuming that it
is a product of the fundamental transport solution and an unknown time

dependent factor that is radionuclide specific, Ei(t), Thus

C;(x,t) = Ei(t)cf(x,t) (21)

Substituting Equation (21) into Equation (1) results in the Bateman
equations [11], given by the following coupled set of ordinary

differential equations for Ei(c):

1 _
T - MG (22)
dc, _ B
T = *-1C5.1 - 2G4 i>1 (23)



For Ci(x,t), given by Equation (21), to reduce to Equation (13) without
radioactive decay, the initial conditions for Equations (22) and (23) are

C. = C, t=0, i=1 (24)

Since each radionuclide has a distinct decay rate, the i-th eigenvalue of
the system of equations is equal to the decay rate of the i-th
radionuclide, Ai' The solution to Equations (22) and (23) is

i
Cc, = a b(j)exp(-k t) i=z1 (25)
i ji j -
j=1
where the eigenvectors are given by
0 i<ij
béJ) - 1 i=j (26)
i-1 A
T i> ]
k=j "k+l j
and
a) = Cl,s (27)
i-1
(3 .
a, = Ci,s - }:: aJ.bi i>1 (28)
j=1

Therefore, the general solution is given by substituting Equations (19)
and (25) into Equation (21) to give
_ _ i
C.(x,t) = 1 erf xth-Ut| erf x-Ut }:: a.be)exp(-A.t) (29)
i 2 — — J1 J
1 epe [45e)) 5T

where C has been dropped from Equation (29) since by definition it is
unity.

Equation (29) is the new general solution for instantaneous releases of a
decaying radionuclide chain transported by time-varying convection and
dispersion processes, but with uniform retardation factors. The



repository length, initial release concentrations of each radionuclide,
and the chain length are arbitrary.

2.4 Cumulative Release of Radionuclides Past a Fixed Point

As discussed earlier, a primary concern for nuclear-waste repositories is
the cumulative radionuclide mass reaching the accessible environment.
This quantity for one-dimensional transport of the i-th radionuclide past
the point x = L is given by the cross-sectional area for flow times

t
U(r)Ci(L,r) D(r) aci(L,r)
fi(t) = - dr (30)

R, R, ax
i i

O

where L is taken as the location of the accessible environment, and fi(t)
is the cumulative sum of the convective and dispersive mass fluxes of
radionuclide i. Since U(r) and D(r) are arbitrary functions of time, the
integral in Equation (30) can not be evaluated until these functions are
specified. Furthermore, numerical integration may be required since
C.(L,7), U(r), and D(r) may be given in terms of complicated functions
that are not explicitly integrable.

However, the cumulative mass of radionuclide i past a point L, per unit
cross-sectional area may be evaluated explicitly and is given by,

F,(t) = L'[Ci dx = Ei(t)LJ- Ce(x,t) dx (31)

Without radioactive decay, f.(t) and Fi(t) are equal, and the cumulative
activity reaching the accessible environment may be computed using either
expression. With radioactive decay, f,(t) may not be equal to F,(t).
fi(t) accounts for the radionuclide mass in the region x = L due to
convection and dispersion, but not due to radioactive decay. However,
Fi(t) does account for radioactive decay in this region.

F.(t) may be evaluated explicitly by substituting Equation (29) into
Equation (31), and using the integral representation for the error
function given by Equation (14) to give




al

X+

h-Ut
(a5e
Ut

C.
i
{x

L

C 2
F () = — e? ap ax (32)

x-

Jaﬁt
The double integral in Equation (32) is over an upward sloping semi-

infinite strip in the (x,8) plane. This region may be integrated in two
parts by reversing the order of integration to give

x+h-Ut
slube + Te 4Dt  Bl4Dt + Ut
c 2 [4 2
F, o= = e axap + 2 e? axap  (33)
I I
LUt Lo b4 Ge L-Ut L
4Dt 4Dt

Since the integrands are independent of the inner integration variable,
the inner integrals may be evaluated to give

L+h-Ut

o ‘
ol
ot

————

2
ﬂJABt + Ut -1]e'ﬂ dg (34)
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Evaluating the single integrals in Equation (34) results in
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Ei = 32 -22 4Dt
Fy = 5= {hll-erf(z)] + (L-Ut) [erf(y)-erf(a)] + |e Y . e — (35)
where
L-Ut
y=— (36)
4Dt
and
7 = L+h-Ut (37)
.laﬁc
For an infinitely long repository, F; in Equation (35) reduces to
C, 2], =
F; = 5= {(L-T) [erf(y) - 1] + &Y Iﬁgﬁ (38)

The asymptotic values of F.(t) are given in Table 1. These asymptotic
limits may be obtained by using the following approximation for the error
function [12],

2
-y

erf(y) » 1 - (y >> 1) (39)

vALE

As t +» » for finite values of L of a finite repository, all the
radionuclides must pass x = L. Thus, in this limit, F,(t) must be equal
to all the radionuclide mass per unit area formed or decayed by nuclear
reactions. As given in column one and row one of Table 1, this quantity
is the decayed initial radionuclide concentration times the length of the
repository. For an infinite repository, as t - «, the radionuclides
transported past a fixed point are given by the effective travel distance
past x = L, times the decayed initial radionuclide concentration. This
quantity approaches infinity for an infinite repository, as given in
Table 1. Also shown in Table 1 is that the asymptotic limits for Fi(t>
as L » -« are identical to those limits given for t -+ «». This is because
in both asymptotic limits, all the radionuclides are contained in the
region of integration of Equation (31). Notice from Table 1 that for
long times, F. is independent of the dispersion coefficient. This long
time behavior will be demonstrated in Section 4 with an example problem.



Table 1
Asymptotic Values of Fi(t)’ the Cumulative

Radionuclide Mass Per Unit Area for x = L.

Limiting Conditions Finite Repository Infinite Repository
(h > 0) (h = =)
(t » =) hC, C; (Ut - L)
(L finite)
(L » -») hC, C;(Ut - L)
(t=0)

(t finite)

i is given by Equation (25),

U is the time-averaged species velocity,

I ol

h is the length of the repository,
t is time, and

L is the point beyond which the cumulative radionuclide mass per unit area is
determined.

- 11 -



3. SPECIAL CASES

One can not predict with absolute certainty future geological conditions
that may influence flow through a repository. The sensitivity of models
to changing geological conditions is therefore of interest. To study
this sensitivity for one-dimensional models, the solutions given in the
previous section were developed for arbitrary time-dependent functional
forms of the fluid-flow velocity and dispersion coefficient. We may now
use these solutions to determine how much the constant flow solution
differs from a solution obtained using a time-varying perturbation or a
step change on the parameters. To evaluate this difference, four special
cases are considered in this section. Table 2 summarizes the conditions
for each case.

First, a base case is defined in terms of a constant species velocity u,
and constant retarded dispersion coefficient do+d1|u|. These parameters
are defined such that d and dl are nonnegative constants.

The second and third cases in Table 2 are for a periodic perturbation of
the species velocity given by

U(t)/R = u + ecos(wt) (40)

where w is a nonnegative constant. For £ = 0, the species velocity for
the second and third cases reduce to that for the first case in which the
flow conditions are constant. To maximize the early time difference
between the base case and the time-varying case, the cosine function was
chosen instead of the sine function in Equation (40). As will be shown
in section 4, even with this maximum difference in the fluid-flow
velocity at t=0, the time-varying solution rapidly approaches the base
case solution.

For the fourth case, the species velocity will change from u  to u, at
time t,;. This case may be used to model an abrupt change in geological
conditions.

The retarded dispersion coefficient is often related to the species

velocity. For the second and fourth cases this relationship is given by
(13],

D(t)/R = d_ + d1|U(t)/R| (41)
and for the third case the relationship is given by

D(t)/R = d + (d;/w)[U(t)/R]? (42)



- S‘[ -

Table 2

Species Velocities and Retarded
Dispersion Coefficients for Special Cases

Case U/R D/R U D U D
(wt =+ =) (vt +» w)
1 u do+d1u u do+d1u u do+d1u
. sin(wt) dlesin(wt)
2 utecos(wt) do+d1[u+ccos(wt)] u + E—ngg—— d0+d1u + B — u d°+d1u
dl 2 esin(wt) d €2 dl£
3 utecos (wt) do + G—[u+ecos(wt)] u + —t do+d1u + 7a + u d°+d1u + o
d, e
auwt[ssln(Zwt)+8us1n(wt)]
4 (t < t1) u, do+d1uo_ u, do+d1u°
4 (t > tl) uy d°+d1ul uty + ul(t-tl) (d0+d1uo)t1 + (do+dlu1)(t-t1)

t

t

Note that u, u,

u;, d, and d; are nonnegative constants and for the second case u 2 |e].




Note that the constants u, do and d1 are chosen such that as ¢ =+ 0, the
perturbed cases reduce to the constant condition case.

The new general solutions for the concentration profile in Equations (29)
and the cumulative mass per unit area in Equations (35) and (38) are
expressed in terms of time-averaged quantities given by Equations (10)

and (11). The time-averaged quantities for the four cases are given in
Table 2.

From Table 2 we see that for cases 2 and 3 in the limit of long times

(i.e. wt » »), the time-averaged species velocity approaches the constant
value of u.

For case 2 the long time time-averaged retarded dispersion coefficient
approaches a constant value of d +dqu, which is identical to that for
case 1, However, due to the quadratic model used in case 3, the long

time time-averaged retarded dispersion coefficient is not equal to that
for case 1.




4. EXAMPLE PROBLEMS

Two example problems are used to demonstrate the significance of time-
varying flow conditions for an infinite repository. Table 3 lists the
parameters for the example problems. In the first example, a periodic
fluid-flow velocity is used with the linear and the quadratic models for
the retarded dispersion coefficent. The parameter ¢ was chosen
arbitrarily such that the fluid-flow velocity would oscillate with a 100%
variation about u for the first example, as shown in Figure 1. The
frequency of oscillation was also chosen arbitrarily, but for specific
sites one may wish to use a different value of w [{14]. In the second
example, an order of magnitude step change in the fluid-flow velocity
hglf way through the simulation is used. For both examples d = 0.03
m“/year, d; = 10 m and L = 5,000 m. From these values, the base-case
species velocity and dispersion coefficient are 1 m/year and 10.03
m~/year, respectively.

The cumulative mass of radionuclide past L = 5,000 m for time-varying
conditions relative to that for constant conditions is shown in Figure 2
for Example 1, and in Figure 3 for Example 2. This ratio is independent
of the radionuclide decay rate and the initial radionuclide
concentration. Deviations from unity of this ratio indicate deviations
of the time-varying solution from the constant flow solution. The lines
in the Figures were generated using Equation (38) for both the time-
varying and constant flow conditions. Also plotted in Figure 2 as
discrete points is the same ratio calculated based on the asymptotic
formula given in Table 1. For a periodic fluid-flow velocity given by
Equation (40), the asymptotic value of the ratio is given by

1+ esin(wt)

Ftime-varying/Fconstant > wot (43)

The solid and dashed lines in Figure 2 are for the linear and the
quadratic models of the dispersion coefficient, respectively. Notice
that little difference was found between using a linear or a quadratic
model for the dispersion coefficient as given by Equations (41) and (42),
respectively. As can be seen from Figure 2, the asymptotic expression in
Equation (43) provides an excellent approximation at long times.
Furthermore, as expected from the asymptotic analysis given in section
2.4, F; is not sensitive to the model used for the dispersion
coefficient. Notice that although there is a 100% variation in the flow
conditions, the oscillations dampen quickly after one or two cycles in
the fluid-flow rate. Thus, although the analysis in section 3 shows that
for long times the solution should approach that for constant conditions,
this example demonstrates that the constant flow solution may be a good
approximation in this case after only one cycle in the fluid-flow
velocity.

- 15 -



Table 3

Parameters in Example Problems

No. Fluid-Flow Parameters Time Period (years) Figures
1 Periodic w = 2x/10,000 year ! 100, 000 1, 2
u = 1 m/year
e = 1 m/year
2 Step Change u, = 0.1 m/year 10,000 3

u; = 1 m/year
u = 0.55 m/year

t; = 5,000 years

For both examples, do = 0,03 m2/year, d1 = 10m and L = 5,000 m.

- 16 -




In Figure 3 the cumulative mass ratio is shown for Example 2. In this
example, for constant conditions, the fluid-flow velocity is 0.55 m/year,
which is the average fluid-flow velocity over 10,000 years. Thus, for
the first 5,000 years, the fluid-flow velocity for constant conditions
greatly exceeds the initial fluid-flow velocity of 0.1 m/year for time-
varying conditions. Therefore, the ratio shown in Figure 3 is much less
than unity for about the first 8,500 years. However, the cumulative
fluid-flows are equal for the constant and time-varying cases at 10,000
years. At that time the ratio shown in Figure 3 is unity, which

. indicates for this example that at 10,000 years the cumulative
radionuclide release is not affected significantly by the step change in
the fluid-flow velocity.

- 17 -




5. SUMMARY AND CONCLUSIONS

An exact solution has been obtained for radionuclide transport under
time-varying fluid-flow velocities and dispersion coefficients, including
radioactive decay. The solution was based on a unified treatment of
previously reported transport solutions without radioactive decay. New
exact expressions were obtained for the cumulative radionuclide mass per
unit area past a fixed point in the flow. These new expressions were
used to determine the effects of a periodic perturbation and a step
change of the fluid-flow rate on the cumulative radionuclide mass per
unit area past a fixed point.

For the example presented of a periodic variation in the fluid-flow rate,
the time-varying solution for the cumulative radionuclide mass past a
fixed point dampened rapidly, and approached the constant flow solution
regardless of the model for the dispersion coefficient.

For the example presented of a step change in the fluid-flow velocity,
the cumulative radionuclide mass past a fixed point reached that for the
constant flow solution when the cumulative fluid-flows were identical.

The examples demonstrated that the solutions presented in this work are
useful for assessing the effects of time-varying flow, but are limited to
radionuclide chains with uniform retardation factors. Numerical
solutions may be required to account for nonuniform retardation factors.
These numerical solutions may be tested by using the exact solutions in
this work for cases when the retardation factors are uniform.
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Figure 1. Species velocity for first example problem given by utscos(wt), where
u = 1 meter/year, ¢ = 1 meter/year, and t is time.
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Figure 2. Ratio of cumulative radionuclide mass past L = 5,000 meters for the
first example problem, where the solid and dashed lines are for the linear and
quadratic models of the dispersion coefficients, respectively, as given by
Equations (41) and (42), respectively. The discrete points were calculated
using the asymptotic approximation given by Equation (43).
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