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ORMDIN: A FINITE ELEMENT PROGRAM FOR
TWO-DIMENS IONAL NONLINEAR INVERSE

HEAT CONDUCTION ANALYSIS

B. R. Bass
J. B. Drake
L. J. Ott

ABSTRACT

The calculation of the surface temperature and surface
heat flux from measured temperature transients at one or more
interior points of a body is identified in the literature as
the inverse heat conduction problem, IHeretofore, analytical
and computational methods of treating this problem have been
limited to one-dimensional nonlinear or two-dimensional linear
material models. This report presents, to the authors'
knowledge, the first inverse solution technique applicable to
the two-dimensional nonlinear model with temperature-dependent
thermophysical properties. This technique, representing an
extension of the one-dimensional formulation previously
developed by one of the authors, utilizes a finite element
heat conduction model and a generalization of Beck's one-
dimensional nonlinear estimation procedure., ‘A digital computer
program ORMDIN (Oak Ridge Multi-Dimensional INverse) is developed
from the formulation and applied to the cross section of a com-
posite cylinder with temperature-dependent material properties.
Results are presented to demonstrate that the inverse formula-
tion is capable of successfully treating experimental data. An
important feature of the method is that small time steps are
permitted while avoiding severe oscillations or numerical
instabilities due to experimental errors in measured data.



I. INTRODUCTION

The Oak Ridgé National Léboratory (ORNL) Pressurized-Water
Reactor (PWR) Blowdown Heat Transfer (ﬁDHT) Program [lJ is an experimental
separate-effects study of the principal ﬁhenomena thét'ére important to
1oss—of;coolant accident (LOCA) analysis. 'Primary test results are
obtained from the Thermal-Hydraulic Test Facility (THTF), a large non-
nuclear eiperimental loop with a test section thatvcontains an array of
indirect.electrically heated fuel pin simulators with a 365.76 cm (12 ft)
heated length.

One of the primary objectives of the ORNL BDHT éeparate—effects
program is the detérminétion of the fransienf surface temperature and
surface heat flux éf fuel pin simulators (FPS) from internal thermocouple
signals obtained during a loss-of-coolant eﬁperimentA(LOCE) in the THTF.
This anaiysis requires the solution of the classical inverse heat
conduction problem. The state-of-the-art solution Qf'the inverse heat
conduction proﬁlem [2,3] is one-dimensional in scope; that is,'for an
FPS cylindrical geometry, it is normally assumed that azimuthal and
a#ial heat conducfion are negligible, thefeby allowing the g0verﬁing
differential equation to be reduced to one dimension in terms 9f
radius only. |

Analysis [4] has shown that these assumptions can introduce
significant errors in the computed surface heat flux and surface tempera-
ture. The fuel pin simulators in the first rod bundle used in the THTF
. had a dual-sheath design (see idealized rod cross section in>Figure 1)
with thermocouples (those used for the inverse qomputations) being

located in axial grooves machined in the inner sheath, These FPSs
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Figure 1. TIdealized representation of THTF bundle 1 FPS



were reduced to their final outside diametcr by éwaging; this operation
crushed the embedded tﬁérmocouples to a somewhat elliptical shape and
pulled the edges of the milled groove away from the outer sheath, thus
forming air pockets arocnd thelthermocouples. Two—&imensional modeling
of these BDHT fuel pin simulators using HEATING5 [5], a generalized heat
conduction code developed at ORNL, revealed severe perturbations in the
surface heat flux and temperature driving potential. Figure 2 typifies
these HEATINGS5 simulation results which illustrated a surface flux
depression in the vicinity of the thermocouple and groove (as much as
7% - 23% less than the mean flux) and surfacevflux rise away from the
groove (4% - 7% greater than. the mean flux). Eccentricity of the heating
element wi;h respect to the outer sheaths contributed an extra + 127.
perturbation in the computed surface conditions. Thus, it was concluded
that azimuthal heat conduction could not be neglected. Additional work
revealed that akial conductionbcould be neglected if the location to be
analyzed was at least 2.54 cm distant (axially) from a change in power
generation ratef

Problem areas in the bundle 1 fuel pin simulators, highlighted by
the above analysis effort [4], were essentially eliminated in the design
and construction of the third bundle to be used in the THTF. Bundle 3
FPSs were constructed with a single outside sheath (rather than the dual-
sheath of bundle 1), insulator preforms to minimize eccentricity, and
multiple sheath thermocouples per axial level (as against one in bundle 1).
HEATINGS analysis.of this FPS design showed the surface heat flux to be
perturbed by only + 2% of the mean flux. X-rays and cross sections of

prototypical bundle 3 FPSs revealed negligible eccentricity. Furthermore,
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the bundle 3 FPS incorporated a flat power profile (i.e., no chaeges in
the power generation rate except at the ends of the 365.76 cm heated
length). These bundle 3 fuel .pin simulators were as nearly axisymmetric
as possible using state-of-the-art manufacturing processes; and, therefore,
axial and azimuthal heat conduction‘could possibly be neglected.
Experimental evidence, however, rules out the luxury of the above
assumptions. Originally, the bundle‘3 FPS design included three thermo—
cbuples éef level so that eccentricity in the FPS could be detected simply
from the thermometry. However,.during LOCE tests of prototypieal bundle 3
AFPSs in a single rod test facility at ORNL, the three thermocouples
indicatedvsignificantAdifferences in the FPS surface behavior circpm—
ferentially at one axiai level. Fof example, during blowdown FCTF 79-1-6,
three thermocouples at axial level D exhibited behavior as shown in
Figure 3. Thermocouples D1, D2, and D3 responded similarly-during‘.
steady-state and the first 5 sec of the LOCE. However, the similarities
ended starting with a sustained temperature excursion from D1 at 5.25 sec,
D3 followed suit at 5.33 sec, but D2 (120° azimuthally from both D1 and
D3 in an 0.95 cm-OD FPS) did not indicate CHF until 0.5 sec after D3.
Aléo, thermocouple D3 showed a slight rewet at 5.64 sec befere continua-
tion of fhe temperature excursion at 5.75 sec. The extreme response
differences in the FPS surfece beha&idr cannot be explained by the
design, construction or internals of the FPS. The eifferenées in the
circumferential surface behavior are attributed to forees purely external
to the FPS (i.e.,.different fluid conditibns).' Therefore, even for a
perfectly axisymmetric simulator, azimuthal heat conduction in tﬂe FPS

cannot be neglected.
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. These experimental observations‘indicate that determination
of surface conditi&ns of the bundle 3 FPS from'intérior thermocouple
trgnsients requires solution of a multidimensional inverse formulation,
This requirement has motivated the initial developmeﬁt of a two-dimensional
nonlinear inverse technique'thgt models radial and azimuthal heét conduc-—
‘tion in a composite cylinder. The following sections of this report -
deséribe the inverse technique, implementation of the technique in the
digital computer program ORMDIN, and applicatidn of OkMDIN to transients

recorded by the bundle 3 FPS in a representative FCTF-blowdown;
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IT. OBJECTIVE

In heat trénsfer studies, a class of problems‘can be identified
where the surface temperature and surface heat flux are determined from the
temperature his;bry measured at a set of discrete points in the.interior of
the body. Generally, this class is feferred to-in the literature as the
inverse problem, in contrast with the usual direct formulation where the
interior temperature history is determined from specified initial and
boundary conditions. Typically, the inverse formulation arises in
experimental studies where direct measurement of surface conditions is
not feasible; such as convective heat transfer in rocket nozzles or
quenching processes for materials., An application presented in this
paper trea;s an electrically heated composite rod with two-phase flow
boundary conditiohs. Temperature transients recorded by thermocpuple_
probes in the rod are used to investigate the time.history of surface
conditions., " Because these probes are positioned in the interior of the
rod to avoid disturbing surface conditions and the flow adjacent to ;he
surface, an inverse problem must be solved.

Various methods that have been applied to the inverse problem
include integral eéuation solutions, series solutions, transform solu-
tions, and function minimization techniques. Extensive bibliographies
that survey these methods are readily available in the iiterature (see,
for example, [6] and [7]); the limited number of feferences mentioned here
deal with materially nonlinear or multidimensional inverse formulations.
Heretofore, analytical and computational methods for treating the non-
linear inverse problem of temperature-dependent thermophysical properties

have been restricted to one-dimensional models. Beck [7,8] has developed
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a nonlinear formulation based on a finite differenée'heat conduction
model and nonlinear estimation procedures. Muzzy et al. [9] énd Bass [10]
have applied Beck's method, with some modifications, to one-dimensional
compoéite models with temperature—dependentvmaterial properties, Other
nonlinear formulations include a finite difference technique developed

by Ott and.Hedrick [2] and a transform method by Imber [6]. Apparently,
the only two-dimensional inyerse formulétion appearing in the open
literature is that of Imber [11,12]. His transform technique is appli-
cable to two-dimensional geometries‘of~arbiprary shape, but assumes a
linear material model with constant properties.

This report presents, to the aﬁthors' knowledge, the first inverse
solution technique applicable to the two—dimensioﬁal nonlinear'model with
temperature-dependent properties., This technique, representing an exten-
sion of the one-dimensional formulation previously'developed by Bass [10],
utilizes a fiﬁite-element heat -conduction model and a generalization of
Beck's one-dimensional nonlinear estimation procedure. The computational
technique assumes several thermocouple sensors judiciously positioned in
the interior of the material body. 1In .the formulation,:the unknown surface
heat flux ié discretized on the boundary domain of the body using a pre-
scribed set of podél points and suitable interpolating functions. Because
theltemberéture response at interior locatiéns is delayed and damped witﬁ
respecf to‘changes in surféce conditions, these nédalrpoint values of -
surface heat flux are determined in a given time step with a procedure
that utilizes interior temperatures at "future" times. Specifically,
the nodalAvalues of flux are assumed to be coﬁstanﬁjor'to vary piecewise

linearly over an analysis interval that consists of several time steps
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in the discretized data. The coefficients that describe fhe nodal
values are adjusted iteratively to achieve the closest agreement in a
leést squares sense with the input "future'" temperatures over the 5nalysis
interval, The diséretized approximation of thé surface heat flux fhus
determined proyides a conventional boundary condition for the forward
problem in the next time step; The inverse $olution computed in this
way represents a ''best approximation" in»the finite dimensional subspace
of solutions defined by the surface heat flux interpolation. An important
feature of the method is that small time steps are permitted while avoiding
severe oscillations or numerical instabilities due to éxperimental errors
in &easured data.

The formulation is implemented in the digital compﬁter program
ORMDIN and applied to the cross section of a composite cylinder with
temperature—dependent matérial properties, To evaluate the performance
of the technique in solving the inverse problem, a standard initial-
boundary value solution, with a known surfaqe.heat flux; is used as
input for the inverse calculation. The computed surface heat flux is
compared with the (known) imposed heat flux fof two different thermocouple
configurations, Finally, the'technique is applied to experimentally
determined temperature transients recorded at interior points'of an
electrically heated cylinder (THTF bundle 3 FPS) uéed to simulate a

nuclear fuel rod in reactor loss-of-coolant analyses.
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III. FINITE ELEMENT FORMULATION OF THE.

DIRECT PROBLEM

The conduction of heat in the region 2 is governed by the quasi-

linear parabolic equation

v . V(kVT) + Q = pc g% (L)
subject to.the boundary conditions
T = TW on Vl | (2)
and
kVT « n + q + qn +q%=0on Yoo (3)

The heat flow rates per unit area on convection and radiation boundaries

are written

n an

“=n-1 , f=na-1™ , (4)

where hn is defined by

i 2
nt = eo(T2 + T )y (T + TM') . (5)

In general, k, ¢, h, and hn are temperature and spatially dependent, while
Q énd q are time and spatially dépendeﬁt.

Let the region Q be partitioned by a system of finite elements énd
.let the unknown temperature T be approximated throughout the solution

domain at any time t by

. - M :
TG, t) = ) NG T(0) = M7 {1} . (6)
I=1
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Here the NI are the interpolation functions defined piecewise element
by element and the TI or {T} are the nodal temperatures. The governing
equations of the discretized system can be deriyed by minimizing a func-
tional or by using Galerkin's method [13]. 1In the Galerkin formulation
employed here, the problem is recast in a weighted integral form using

the interpolating functions N_ as the weighting functions:

I

f o {N}[V - KV ({N}T {Th) + q - pc 5% ANt {ThH 1 an
Q

- ﬂ . T {Th -+ q + RN {1} - 179
2

+ h’L({N}T {1} - TM)] dv =0 ., : (D

-

Only a single finité element is considered in the integral (7),‘as the
governing equations of the complete system of elements are obtained by
assembling the individual finite element matrices. The surface integral
over Tze refers only to those elements with external boundaries on which
condition (3) is given.
Green's first identity is applied to the first volume integral

of equétion (7) so that the second derivatives do not impose unnecessary
continuity conditions setween elements. When use is made of the boundary
conditions (2) and (3), the integral formulation (7) leads to a set of
transienf ordinary differential equations for the assemblage of finite

elements:

[C] ag'ﬁ} + [K] {1} + {F} + {F} =0 . (8)




15

The components in equation (8) are defined by:

E _ T
1= 3 [ et 0T e ®
e=1 ‘Q .
£ T
K] = } J o k[B] [B]" d®
e=1l ‘Q
£ n T e
+ ) § - (h+h) {N} {N} 4av ,
e=] /V_e :
2
[B] = v{N} , - (10)
_ E E
{F} = - } J o N} Qa2 + ] § {N} qav (11)
e=1 ‘Q e=1" Tze
_ E o an .
{F} = - § § @™+ n % av (12)
e=1 Tze :

where the summations are taken o§er the inaividual‘finite element contri-~
butions. These integrals are evaluated numerically using Gauss-Legendre
quadrature in the applications to be presented later,

The system of nonlinear equations (8) through (lZ)_which defines
the discretized problem can be solved using many différent types of inte-
gration schemes, The implicit one-step Eulér backward difference method
is employed in this analysis. The time deriQative of the temperature is

approximated by

a{T} - M ayae - Py _ {ar}

ot At , A ° (13)
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where {T}(i)At is assumed knéwn at time (i)At. In the nénlinear‘analysis,
{T}(i+l)At is calculated using a computational scheme that iterates on the
out-of-balance heat flow rate for a given time step. At time (i+l)At, the
initial approximation of the increment {AT}(O) in n&dal point temperétures

is calculated by

y {a1}(®) - {1}

1 I :
G [Clyae ¥ Klgyae - Kl gyae THpyae

- (P} (F}

(i+1)At " (i)at . (14)

In each iteration, a new temperature increment is computed from

{AT}(P) = {AT}(P_I) + {GT}(P) , (15)

where {GT}(P) is the (P)th correction to the temperature increment {AT}.
The'expression for computing the correction {ST}(P) is determined by

substituting (15) into (13) and using (8) in the form

B-1) oy (B) | (P-1) (P-1)
(87 za1)ae (6T = - [[K](i+l)At T} 141 ac

R & (P-1) (P-1)

+ {F_}(i+l)At + {ﬁ}gjgm} A, (16),
where
[S]gﬁ;m - 7% [C]EP;BM * [K]_g:-]l.;At an
is evaluated using temperatures
@WED my ke @D 18)

(i+1)At “(1)At
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The iteration continues until convergence is obtained according to the

¢riterion

||{6T}(P)||,/ |‘|{T}§Ii’.il)At|| < TOLL , (19)

where TOLl'represents an adjﬁstable tolerance.
Equations (14) through (19) constitute the full Newton iterative
solution of the governing system of equations (8). To avoid the un-

desirable computational expense of updating and factorizing the effective

(P-1)

stiffness matrix [s](i+l)At

in each iteration, the applications presented
in this paper make use of the modified Newton-Raphson scheme, In this

method, a new tangent stiffness matrix [S](n)At is computed periodically

from one of the converged solutions at time (n)At, n=0,1,2,... i, and

(P-1)

(i+1)At in equation (16). Because the matrix

used in place of [S]
[S](n)At is held fixed in a given timé step, this modified method involves
fewer stiffness reformations than full Newton iteration. The frequency
of the stiffness ﬁpdates can be adjusted according to the degrée of non-
linearity in the computational model to avoid an‘excessive number of
iterative corrections.

This application of thé finite element method to the inverse heat
conduction problem considers a two-dimensional model of the (r,8) cross
section of a circular cylinder. An isoparametric [14] discretization is

employed, so that the spatial coordinates are interpolated using the same

‘as those used for T in equation (6). The N_ associated with

functions N I

I

the 4- to 8-noded two-dimensional isoparametric element are described in

numerous references, including [14] and [15], and will not be given here,
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IV, FORMULATION OF THE INVERSE PROBLEM

In this study, the two-dimensional problem of a cylindrical body
subjected to a planar surface heat flux q(6,t) is considered as depicted

in Figure 4. The conditions
TP, = Th (t) 0o<t<t , £=1,L (20)-

are prescribed at L equally spaced interior points along a contour of

radius r near the surface, while the surface heat flux function
' T _ : -
- k(g';) = q(6,t) (21)
r=a

is unknown. The problem is to determine q(6,t) and the temperaturé distri-
bution T(r,6,t), 0 < r < a, 0 <0 < 27, on a specified time domain.
Although a circular geometry is assumed here, the basic technique described
below for treating the inverse problem is épplicable to other geometric
shapes with a multiple number of thermocouple sensors judiciously bosi—
tioned near the surface of the body. |

In his treatment of the linear inverse problem, Imber [11] indicateé
that a successful ektrapolation procedure requires the temperature distri-
bution to be known, a priori, throughout a closed region within the bedy.
For a one-dimensional axisymmetric anaiysis of a cylindér such as that
depicted in Figure 1, the temperature can be determined in ;he closed
region r < rp < a using data from a single thermocouple sensér positioﬁed
at radius rp. The two-dimensional analog achieved by relaxing the
condition of axisymmetry then presumes a time-history of temperature

P

data recorded pointwise on a closed contour of radius r", i.e., a "line-

source' of temperature data. Because such a volume of measured data
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Figure 4.  Cross section of heated cylinder
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would not be ;vailable in any realistic ekperimental program, the tech-
niqﬁe described below is based on a limited number of thermocouple sensors
diséretely positioned on a contour near the surfaée'of the body. Numerical
' examples presented iq the next section illustrate that the accufacy of
the technique ih_approximating the flux'boundary condition is improved'
as the number of temperature sensors per unit arc length'oﬁ the contour
is increased.

The initial step'in'the'development of the method is the discretiza-
tion of the unknown surface heat flux on‘thé bouhdary domain using a set
of ﬁqdal values 9p>» £.= 1,L, and suitable interpolating functions RE (to .
be specified later),ias.depigped in Figure‘l. Thus, the'approkimation

of the surface heat flux q is given by
4 L ,T .
q1(8,t) = Kz Ry(8) qp(t) = {R}" {a} . | (22)
=1

One surface flux‘node is designated for each active thermocouple sensor
‘and positioned at the minimum distance from the sensor node. Numerical
tests have indicated that this geometric grrangement produces a staBle,
well conditioned system'of equations for.approximating the boundary heat
" flux function q. |

In additidn, the nodal values of surface heat flux will be
temporally discretized such that in a giﬁen time step At, q(6,t) is

represented by

L .
q(6,t) = {Zl Rﬂ(e) qﬂ;(i)At
= {R}' {q}

(1)AE 1A-DAt <t L (A)Ae i >1 . (23)
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{q} eeey {q}

For a given i > 1, it is assumed that {q}(l)At’ (2)At? (i)At
are known. To determine {q}(i+l)At’ an analysis interval ot J > 1 time
steps is selected, as depicted in Figure 5.1 1In the next step, {q} is

estimated over the analysis interval (i)At < t < (i+J)At using relations

that take the trend of q into account. For the first time step in the

intetval,
fadipmyae = Weyae ¥ Qe = 19 onyad) (24)
and for the‘"futgre" time steps
tadgiyae = 1@ augonae ¥ B 0 A9 Gqpgonae = 19 qag-2yar) (25)

for 2 < j < J, where 0 < B < 1 is an adjustable parametér.? Thus, the
interpolated boundary conditions can be estimated for each time step in

the analysis interval according to the. relation

q(e')(iﬂ.)At - &) {q} 1<j<J . ' (26)

(i+j)At

Then the boundary valQe problem (equations (1) through (5)) cast in the
discretized finite element formulation (equatiqns (8) through (12)) is '
solved over the analysis interval (i)At < t < (i+J)At using conditions
(24) - (26) in the surface integral of equation (11).

The objective of the method is to select {q} to achieve

(i+1)At

the closest agreement in a least squares sense between the computed and

input thermocouple temperatures over the analysis interval, This is

'For elementary one-dimensional models with characteristic dimension
a, Beck [7] recommends values of J that are approprlate for given values of
. the dimensionless time step AT = alAt/a2.

2{q}0 is determined from cunditions at the initial time.
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“FUTURE”TEMPERATURES‘

”~ Y
Tiae  Taenar Ta+2ar: oo T+ gat
1 — : - ‘
— 1 ™ { ; > T
: '
: : T ¥ : .
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Figure 5. Analysis interval for computing surface héat
: flux q ‘ ’ :
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accomplished by minimizing the weighted sum of squares function

J L :
. _ P 2
fHad (141)ae) jzl Y3 zzl (Tos a+iyae ~ Ty aty)ae’
S pyT p
= 3 v {T-r1 }(i+j)At {tr-rT }(i+j)At (27

j=1

with respect to the Lvnodal parameters represented by the array {q}(i+l)At'
In équation 27y, {1} and'{Tp} are the computed and input temperatures at
the in;erior thermocouple locations (rp,ez), £ = 1,L. The weighting
functions defined by wh = j2 were suggested by Muzzy et al. [9] in a
one-dimensional finite difference application of Beck's method. }

The minimization procedure for the function f of (27) is based on
an iterative technique that is a generalization of Beck's one-dimensional
formulation., For the (H)th iterative correction {Aq}(H) to the.minimiziﬁg

nodal parameters {q}(i+l)At’ the elements of the temperature array

{T}(H), in (27) are approximated by a truncated Taylor series
(i+j)At
ekpansion
| ' (H-1)
L 9T
(1) L o (B-1) e  (i+)At () )
TesGenae © Tyahnae L Ty e o £ L O8)
, k=1 3
;s (i+1)At :
where
(H) _ () _ (1) _
Bap " = dpGenyae T Y; (i+1)At- R= 1L . @9

If the heat conduction model is linear, this expression is exact and no-

iteration is required. The partial derivatives in (28), referred to as

YBeck'o one-dimensional Formnlation uses w, = 1 for all j.

]
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sensitivity coefficients, are approximated numerically according to the

expfession
ar (-1
J¢(H—l) - £; (i+4)At : o L,k = 1,L
, L Bq(H) =1,J

ks (i+1)At i

| (B-1) 3 (E-1) -
_ Tﬂ;(i+j)At(£q*l(i+l)At) 3 Tz;(i+j)At,{q}(i+1)At) L Goy
- (H-1) ’
Ap. (141)At

where {q*} is obtained from {ql} by perturbing the kth component,:i.e.,
qE = (l+A)qk and qm = Qs m# k. A value of A = 1 x 10_3 is used in

the present study.

In each 1terative correction to {q}(i+l)Atf (I (1+L) conventlonal
solutions of the finite element heat conduction model (equations (8) -

(12)) are required to compute the array (30) of sensitivity coefficients.

With the ¢'s thus determined, the extremizing condition

maf—.'— = _(_)_ (31)
‘YT 1+1)At : o

is used to compute the incremental correction. When (28) is substitﬁted
into (27) and the differentiation (31) is.performed, the (H)th correction

{Aq}(H) is determined from the expression

a1 (agp® < gy D)

] - A (32)
where the components are given by
J- L
H-1 i (H-1) j, (H-1
Aéh ) . 3wl J¢;£ ) J¢;h ) 33)
j=1 m=1
J L .
(B-1) _ v P _L(H-1) 3, (H-1) |

T L Tesyae = Ty Grae ke . (38)
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(H-1)
(i+1)At

- of surface flux according to equation .(29). Generally, the iteration is

The correétion (32) is then used to update the nodal array {q}

continued until convergence is achieved according to the criterion

|| < ToL2 ‘ (35)

| I{Aq}(H) | | / | |{q} Elii_),_l)At

for some prescribed tolerance TOLZ > O.

The discretized approximation of the surface heat flux

T
10 (141ya¢ T {r} {q}(i-i-l)At (364)

thus determined provides a conventional boundafy condition (for equation
(ll))‘iﬂ the_nexf single time step At only. The analysis interval is then
shiffed by one time step and the process is repeated;-

In the numerical applications of this technique in the next section,

the surface flux interpolating functions {R} have the form

2.m ® - eﬂ)

cos [E- ———73;——~] ¢

RZ(S) = : : :
0 otherwise . (37)

for £ = 1,L. The functions (37) depicted in Figure 6 have the properties

1 L =rFr
R,(8,) = L,k =1,L (38)
O
' Rz(e) + R£+l(9) =1 62-5 S 5-e£+1
Rpyp 3Ry > O 200 (39)

It follows from equation (39) that the interpolation (22) can represent

a uniform surface heat flﬁx.
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Figure 6. Interpolating functions for surface heat flux
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V. NUMERICAL APPLICATIONS

The two-dimensional inverse formulation developed in the preceding
sections has been implemented in the digital computer brogram ORMDIN, as
described in Appendices A and B of this report. Program ORMDIN is applied‘
here to a composite rod containing anAelectric heating element and thermo-
couple sensors. This heater rod fepresents one member of a rod arréy
(THTF bundle 3) that is designed for test purpoées to simulate a nuclear
fuelibundle. The heater rod bundle is positioned in a thermal-hydraulics’
test loop thaf is used to study hypothetical loss-of-coolant accidents in
préssﬁ;ized-water nuc;ear reactors [1]."

A heater rod cross section and the corresponding two-dimensional
finite element discretization used in the inverse analy;is are depicted
in Figures 4 and s. The.réd has a nominal heated length of 366 cm
(144'in.) and is constructed with a stainlessAsteel outer sheath,
Attached to the . inner surface of this sheath‘at equal intervals are
twelve chromel-alumel thermocouple assemblies, 0.05 ecm (0.02 in.) in
diameter. Four additional sensors are positioned.in the center of the
rod. Oniy four of the sixteen thermocouples actively'reéord data
in the cross section of Figure 7, namely the three boron nitride- (BN)

filled thermocouples attached £o the outer sheath and one of the center
rod thermdcouples; the junctions of the remaining thermocquples are
positioned in different axial planes of the rod. Boron nitride is used
as a filler and an insulator between the inconel heating element and the

thermocoﬁple~assemblies. - In the finite element model of the heater rod

“This test facility is operated by the Oak Ridge National
Laboratory (ORNL) Pressurized-Water Reactor Blowdown Heat Transfer
Separate-Effects Program, which iIs part of the overall light=water
reactor safety research program of the Nuclear Regulatory Commission.
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(Figure 8), each thermocouple at the oﬁter sheath is modeled with

two quadrilateral elements that are assigned the appropriate material
properties of BN or MgO -and the same total cross sectional area as the
in sitﬁ circular sheaths. Those in the<§enter of the rod afe not used
to drive the inverse computationland are not included invthe finite
element discretization.

The thermophysical properties of thermal conductivity k and specific
heat ¢ are temperature dependent for each material in the rod. Except for
the thermal conductivities of MgO and BN, these properties are determined
for each material as a function of temperature from an optimum polynomial
fit to available data, as given in Reference [2]. The thermal conducﬁivi—
ties for the MgO and BN depend on packing density and must be determined
in situ as parf of the rod calibration procedure [16] prior to each test.

The first numerical example5 was sélectéd to evaluate the perfor-
mance of the technique in.solving the inverse probiem for the finité
element model of Figure 8. A standard initial-boundary value solution
was obtained from the finite'element.formulation (8) - (12) using the

prescribed surface heat flux function

2+12¢

q(0,t) = 47.31 + 126.2[sin(%{6 - 2mt})] watts/cm2 ,

0<tz< 1.0 ' (40)

a constant heat generation rate Q = 5274 watts/cm3, a time step At = .01

secs, and initial center rod temperature Tcenter = 441,2°C. From this

. direct solution, the temperature transients of Figure 9 were calculated

>The inverse calculations presented in this section were performed
using TOLl = .001, equation (19); B = 0.5, equation (25); TOL2 = 0.05,
equation (35). '
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Figure 9. Test case: Calculated temperatures at thermocouple
locations from direct solution
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at the thermocouple locations 1 through 6 of the discrete model (Figure 8).
With the thermocouple transients of Figure é serving as input, two different
inverse analyses were performed in an attémpt to reproduce the shrface flux
boundary condition (40). The first.analysisAutilizgd input data from only
three of the thermocouples (L % 3), those numbered i, 3, and 5 in Figufe 8,
while the second utilized data from six thermocouples (L = 6).. The |
analysis interval consisted of only one time step (J = 1). Results from
the two inverse analyses are compared with the known direct solution in
Figures 10 and 11 at different times. Throughout the traﬁsient, the
inverse analysis using six active thermocouples consisténtly‘produced a
good approximation of both the sgrface flux function (40) and the surface
temperatures, As.iliustrated in Figure 10, the solution using three active
thérmocouples was not as successful in approximating the surface variables
at those times when the localized éerturbation in the surface-flﬁx waé not -
"near" an active sensor. This exémple demonstrates that, within practical
liﬁits, the prediction of surfacelconditions is improved as the number
of thermocouple sensors per unit length of contour is increased.

In the second numerical example, the inverse formulation is
applied to actual thermocouple‘tranéients taken from a representative
test of ORNL's single-rod test apparatus.6 The heater power input to
the rod during the period of thé transient considered here is essentially
constant at Q = 5300 watts/cms. Figure 12 illustrates the time-history

of the thermocouple temperatures recorded by the active BN-filled

®The single<rod test facility [1] at ORNL is used primarily to
qualify heaters for the large rod bundle loop and to obtain blowdown heat
transfer results for a single rod in an annular geometry. The test data
utilized in this example were recorded ‘during blowdown FCTF 79-1-6 at
axial level D in the heater rod. '
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sensors (1, 3, and 5 in Figure 8) and by the one active center -thermo-
couple. The acquisition interval for these data is Af = 0,01 secs., 1In

the saﬁe figurg, the temperatures computed at the BN thermocouple locations
in an inverse solutioﬁ (for At = 0.01 secs and J = 2) are compared with
the input dat#; the error is not discernible on the scéle.pf these plots.
Because the center thermocouple data are not‘used in the inverse cémputa-
tion, comparisdn of these data with the computed center rod temperatures
permits an evaluation of the rod finite element model, This comparison
can be oniy approximate due to uncertainty in the precise orientation of
the ceﬁter thermocouple assembly and to the absence of appropriate
material modeling of the assembly in the discretization. Agree@ent
between the measured -and cémputéd values is generally good, although
~a slight divergence appears at time t =~ 5.75 secs when‘gradients and

time rates of temperature become pronounced ih the center of the rod.

Figures 13 - 15 illustrate the computed time history of surface

conditions at node 45 in Figure 8 for a time step At = 0.01 secs and

thrée different analysis intervals. The results for one time step in

the analysis interval, J = 1 (Figure 13), indicate that the measured data
of Figure 6 require the use of future temperatures to reduce oscillations
in the computed values. The solution using t&o time steps, J = 2 (Figure
14), removes much of the "noise" from the flux time history without

severe rounding of rapid changes thatAbegin at time t = 5,5 secs. The
results for J = 3 (Figure 15) lead to additional smoothing of the solution
and illustrate the tendency to '"round off'" rapid changes as J is increased.
For the finite element model of Figure 8 and a selected timé.step of

At = .01 secs, the use of one future temperature appears optimal for
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reducing oscillations. Figure‘l6 compares the surface conaitiohs at
time t = 5;85 secs for the abové three éolu;ions.

In the experiméntal apparatus that produced.ﬁhe thermocouple
transients of Figure 12, the heater rod surface is exposed to a transieﬁt
two-phase flow that is primarily parallel to the rod axis. At ‘point (a)
in Figure 12 (time t = 5.65 secs), the entire surface of the rod croés.
section has departed from nucleate boiling; at point (b) (time t = 5.80
secs), part of the surface experiences a "rewet' with an accompanying-
drop in temperature; at (c) (time t = 5.95 secs) the entire surface is"
in transition to film Boiling. Contour plots in Figure 17 illustrate
the cﬁange in temperature distribution for the cross sectién of the

rod during this portion of the transient,
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VI. SUMMARY AND CONCLUDING REMARKS

This report has presented a two-dimensional formulation of the
iﬁverse heat conduction problem that is applicable to composite bodiés
with temperature-dependent thermophysical properties. The formulation,
based on a finite elemént heat conductiop model and a generalization of
Beck's one-dimensional nonlinear estimation procedure, was implemented_
iq the digitai computer program ORMDIN, Applications of program ORﬂDIN
to an electrically heated composite rod were examined in the study. In
the first example, a conventiopal initial-boundary value solution, with
a known surféce heat flux, was used és input for the inverse calculation,
The computed surface-heat flux was compared with the imposed hgat flux
for two different thermocouple configurationé. These comparisons indicate
that, within practical limits, the approximation of surface conditions is
improve& as the numbgr of thermocouple sensors'pér unit length of contour
is increased. Finally, the technique was applied to experimentally
determined temperature transients recorded at thermocouple sensors -in
the interior of the rod. The results presénted here demonstrate that
the inverse formulation is capable of successfully tfeating experimental
data. VConsideration of future temperatures in calculating surface condi-
tions permits the use of small time steps while avoiding severé oscilia—

tions or numerical instabilities due to errors in measured data.



10.

11.

12,

45

REFERENCES

"Project Description, ORNL-PWR Blowdown Heat Transfer Separate-
Effects Program — Thermal Hydraulic Test Facility (THTF),"
ORNL/NUREG/TM-2, February 1976.

ott, L. J. and R. A, Hedrick, "ORINC — A One-Dimensional Implicit

‘Approach to the Inverse Heat Conduction Problem," ORNL/NUREG-23,

November 1977.

Bass, B. R., "INCAP: A Finite Element Program for One-Dimensional
Nonlinear Inverse Heat Conduction Analysis,' NUREG/CR-0832,
ORNL/NUREG/CSD/TM-8, July 1979.°

ott, L. J. and K. W. Childs, "Surface Heat Flux Perturbations in BDHT
Fuel Pin Simulators,'" NUREG/CR-0610, ORNL/NUREG-54, April 1979.

_ Turner, W. D., D. C. Elrod, and I. I. Siman-Tov, "HEATING5 — An IBM

360 Heat Conduction Program,' ORNL/CSD/TM-15, March 1977.

Imber, M., "Nonlinear Heat Transfer in Planar Solids: Direct and

.Inverse Applications," AIJAA Journal, Vol. 17, No. 2, February 1979,

pp. 204-212,

Beck, J. V., "Nonlinear Estimation Applied to the Nonlinear Inverse
Heat Conduction Problem," International Journal of Heat and Mass

Transfer, Vol. 13, 1970, pp. 703-716.

Beck, J. V., "Criteria for Comparison of Methods of Solution of the
Inverse Heat Conduction Problem,'" Nuclear Engineering and Design,
Vol. 53, No. 1, June 1979, pp. 11-22,

Muzzy, R. J., J. H. Avila, and D. E. Root, "Topical Report:
Determination of Transient Heat Transfer Coefficients and the
Resultant Surface Heat Flux from Internal Temperature Measurements,"
GEAP-20731, General Electric Co., San Jose, California, January
1975,

Bass, B. R., "Application of the Finite Element Method to the
Nonlinear Inverse Heat Conduction Problem Using Beck's Second
Method,'" ASME Paper No. 78-WA/TM-1, 1978 (to be published in

. Transactions of ASME, Journal of Engineering for Industry).

Imber, M., "Temperature Extrapolation Mechanism for Two-Dimensional
Heat Flow," AIAA Journal, Vol, 12, No, 8, August 1974, pp, 1089-1093,

Imber, M., "Two-Dimensional Inverse Conduction Problem — Further
Observations," AIAA Journal, Vol. 13, No. 1, January 1975,

pp. 114-115.



13.

14,

15.

16.

46

Mitchell, A. R. and R. Wait, The Finite Element Method in Partial
Differentidl Equations, John Wiley and Sons, London, 1977.

Zienkiewicz, 0. C., The Finite Element Method, McGraw-Hill, London,
1977, :

Bathe, K. J. and E. L, Wilson, Numerical Methods in Finite Element

. Analysis, Prentice-Hall, Englewood Cliffs, 1976.

ott, L. J. and R. A, Hedrick, "ORTCAL — A Code for THTF Heater Rod
Thermocouple Calibration,' NUREG/CR-0342, ORNL/NUREG-51, February
1979. oo



4/// '

APPENDICES



INTRODUCTION .« « . o . o

I.
II.
ITI.

1v.

VI.

HEADING CARD . . .
MASTER CONTROL CARDS
NODAL POINT DATA .
ELEMENT DATA . . .A
TIME FUNCTION DATA

MATERTAL MODEL DATA

42//579

APPENDIX A

ORMDIN USERS MANUAL

Page
51

52

56
59
65

66



51

INTRODUCTION

Program OﬁMDIN is designed primaril? to perfdrm a transient two-
dimensional nonlinear inverse heaf conduction analysis of.the THTF bundle 3
heater rod depicted in Figure.7.' However, the'program can be applied to
other cylindrical geomet;ies for which the thermophysical properties are
prescribed functions of temperature.- The program assuﬁes that discretized
temperature historiés are ﬁrovided at three thermocéuple locations in the
in;erior of the cylinder,'corresponding to the case L = 3 'in Section IV.’ .
Concurrent with the two—diﬁensional analysis, ORMDIN also generates one-
dimensional solutions for eacﬁ of the three thermocouple radial planes
using a computational model described in Appendix B.

Program ORMDIN .uses an in-core solution technique and allocates
storage in.unlabeled common dynamically during the different phases of the
solution. The dimension of unlabeled common is adjgsted iﬁ program MAIN
to provide sufficient. storage for the problem under cbnéideration.

Storage allocation is checked in each phase of the solution fo ensure
that the maximum is not exceeded. If sufficient étorége is not avéilable,
an error message is printed that specifies the required dimension of
unlabeiedvcommon fof that phase of ‘the solution and execution is
terminated.

In the user instructions that follow, each card or group of cards is
identified Ly the format used on the card(s), the names of the variables,

_the meaning of the variables and notes,

’A second version of ORMDIN has been developed to treat both the
cases L = 3 and L = 6. ‘
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HEADING. CARD (10A8)

Entry

Notes Columns Variable:

1 - 80  HED(10)

MASTER CONTROL CARDS

Card 1 (415, 2F10.3, 5I5)

Enter the master heading information
for use .in labeling the output

Notes Columns  Variable Entry
1/ 1 - 5 NUMNP1 Total number of nodal points for one-.
. : dimensional finite element model
.1/ 6 - 10 NUMFDN * Total number of nodal points for one-:
‘ dimensional finite difference model
2/ 11 - 15 NUMNP2 Total number of nodal points for two-
e dimensional finite element model
3/ 16 - 20  NSTE Number of solution time steps
3/ 21 - 30 DT Time step increment
4/ 31 - 40 TSTART Time at solution start

41 - 45 IPRT

46 - 50 IPRD

5/ 51 - 55 IPLT
6/ 56 - 60 IRINT
6/ 60 - 65  MODEX

Print control for computed temperatures
at nodal points for two-dimensional

model :

EQ.0: Print temperatures only at
nodal points in thermocouple
radial planes

EQ.1l: Print temperatures at all
.nodal points

Print control for input thermocouple
temperature data
EQ.0: Do not print thermocouple
. data _
EQ.1l: Print thermocouple data

Option to save variables for plotting
. EQ.0: No
EQ.1l: Yes

Interval for saving restart informa-
tion _
EQ.0: Default set to 9999

Solution mode
EQ.0: Execution
EQ.1l: Restart
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II. MASTER CONTROL CARDS (Contd.)
Card 1 (Contd.)
NOTES/

1/ See Appendix B for'a description of the one-dimensional
model..  NUMNPl controls the number of Card 6-type cards
to be read. NUMFDN controls the number of cell radii
read from Card 7.

2/ NUMNP2 controls the number of Card 8-type cards to be
read.

3/ The solution domain is determined by [TSTART, TSTART +
NSTE*DT]. :

4/ TSTART is the solution time corresponding to the initial
condition. If MODEX.EQ.l, set for a restart, TSTART.EQ.O
can be used and the correct value of TSTART will be read
from the restart file. E

5/ When IPLT.EQ.1l, the solution variables listed below are
“saved on Units 3 and 4 for each time step. Each record
is written using an unformatted WRITE statement.

Unit : Variable ‘Definition
3 TIME , Time t
(TCQ(1),I=1,5) Measured data
(TEMP (NTCN(J),1),J=1,3) Computed thermocouple
" temperatures
TCTR . Computed center rod.
) temperature
(TEMP (NN (J),1),J=1,3) Surface temperature at
TC radial planes
TSA ‘ Average surface tempera-
SFA ture and surface flux at
TC radial planes
(SFX(1),1=1,3) Computed surface flux at
' TC radial planes
4 TIME Time t
(TEMP(LWT(I),l),FLUX(I), Temperature and heat
I=1,NBPl) flux at surface nodes

(TEMP(1D(1),1),I=1,NP) Nodal temperatures
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II. MASTER CONTROL CARDS. (Contd.)

Card 1 (Contd.)

6/ When restart information is being saved every IRINT time
' "steps, the restart information from the last save is over-

written,

Unit 2 serves as the output file for saving

information. To execute the program in restart mode, set
MODEX.EQ.l and change thé JCL so that the Unit 2 output
from the previously saved solution can be read by the
program from Unit 1. )

Card 2 (3I5, F10.4)

Notes  Columns Variable Entry
1 -5 ISREFK Number of time steps between reforma-
tion of conductivity matrix. Every
-ISREFK steps, a new [S] matrix is
formed (see equation (16))
~EQ.0: Default, set to "1"
6 - 10 IEQUIT Number of time steps between equilib-
rium iterations (see equations (14) -
17))
EQ.0: Default, set to "1"
11 - 15 ITEMAX. Maximum number of equilibrium
iterations permitted (see equations
(15), (16), (18))
EQ.0: Default, set to "15"
16 - 25 TOL1 Relative tolerance used to measure

equilibrium convergence (see
equation (19))
EQ.0: Default, set to "1.,E-3"

Card 3 (315) Nodal Temperature Printout Card

Notes Columns . Variable » Entry
1/ 1- 5  NPB(l) Number of nodes in radial plane 1
for condensed printout
6 - 10 NPB(Z) Number of nodes in radial plane‘2
: for condensed printout
11 - 15

NPB(3) Number of nodes in radial plane 3
for condensed printout A
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MASTER CONTROL CARDS (Contd.)

" Card 3 (Contd.)

NOTES/

1/

These nodes of -the 2-D model are selected near a thermo-

~ couple radial plane to give a condensed printout of the

radial plane temperature profile for easy comparison with
the 1-D model profile.

Card 4 (315, 3F10.0) Inverse Control Card

Notes Columns Variable B Entry
1/ 1- 5 KTER Maximum number of iterations per-
- mitted on surface heat flux q (see
equation (32))
6 - 10 NLAG ' Number of time steps used in analysis
interval (parameter "J" of equation
(27)) (NLAG.GE.1l)
2/ 11 - 15 ISF2 Mode of initializing 2-D surface
flux vector q
EQ.0: 1-D approximation
EQ.1l: 2-D extrapolation
3/ 16 - 25 BETA Factor used to increment q in the
: ‘ advanced time intervals, equation
(25)
4 26 - 35 TOL2 Convergence tolerance for heat flux,
inequality (35)
5/ 36 - 45 EPSH Perturbation factor for heat flux
(parameter A of equation (30))
NOTES/

1/ KTER is the maximum number of iterations allowed in the
minimization procedure for the sum of squares function of -
equation (27). If the index H of equation (32) exceeds
KTER, a message is printed and execution is terminated.

2/ 1f ISF2.EQ.0, the heat flux vector q computed by the 1-D

model is used as the first approximation in the subsequent
2-D calculation. If ISF2.EQ.1l, and this is the recommended
option, the vector q is approximated by a linear extrapo-
lation of the 2-D solutions in the previous time steps
according to equations (24) = (26).
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MASTER CONTROL CARDS (Contd.)

Card 4 (Contd.)

3/' For the model of Figure 8, BETA.EQ.0.5 is recommended.

4/ For the model of Figure. 8, TOL2,EQ.0.05 is recommended.

5/ For the model of Figure 8, EPSH.EQ.1.E-3 is recommended.

NODAL POINT DATA
Card 5 (61I5)

Notes Coiumns Variable

Entry

1- 5 NTCN(1)
6 - 10 NISE(1)

11 - 15 ~ NTCN(2)
16 - 20  NISE(2)
21 - 25  NTCN(3)

26 - 30 NISE(3)

Card 6 (Al, 14, Al, 14, 2F10.0,

.2-D global node number of thermo-
couple in radial plane 1

2-Dlglobal-node number of surface
heat flux node in radial plane 1

Plane 2, etc,

Plane 3, etc.

IS) 1-D Nodal Point Data for Finite
Element Discrgtization

Notes Columns Variable - Entry
1/ 1 1T Symbol describing the coordinate
: system for node N -
EQ. : Cartesian (X, Y, 2)
- EQ.X: X-cylindrical
2 - 5 N Node number; GE.1l and LE .NUMNP1
: "(see Card 1)
6 JPR

.Print suppression flag (ignored

unless N,EQ.1) _
EQ. : No suppression
EQ.A: Suppress ordered list of
node coordinates .
EQ.B: Suppress list of equation
numbers
EQ.C: Both A and B above
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III. NODAL POINT DATA (Contd.)

Card 6 (Contd.)

Notes Columns Variable : Entry
2/ 7 -10  ID(N) Leave blank
11 - 20 Y(N) Radial coordinate of 1-D finite

element node (inches)

21 - 30 z(N) Leave blank
3/ 31 - 35 KN Node number increment for nodal data
generation .

NOTES/

1/

2/

3/

Card 7 (8F1

Notes Co

EQ.0: No generatio

The X-cylindrical coordinate system has coordinate pairs
(r,0), see Figure 4.

The correct values for ID are computed internally in the
program.

If the sequence of node numbers N being input by cards
has missing numbers and KN is specified as positive, then
the program will generate nodes by linear interpolation
between the nodes bracketing the missing sequence. Node
numbers will be assigned to these nodes by incrementing
from the first node number in the sequence in steps of
KN. Fewer input cards are thus required.

0.5)

Jumne Variable ) ~ Entry

1/ 1

11

NOTES/

1/

- 10 RC(Z)‘ . .Radius of finite difference cell 2
(inches)

- 20 RC(3) Radius of finite difference cell 3
etc.

RC(N) " Radius of finite difference cell
N.EQ. NUMFDN + 2

See Appendix. B for a description of the one~dimensional
finite difference model.
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III. NODAL POINT DATA (Contd.)

Card 8 (Al, I4, Al, I4, 2F10.0,

Notes Columns Variable

'iS) 2-D Nodal Point Data

Entry

1/ 1 IT

1/ 2- 5 N

1/ ' 6 JPR

i/ - 7-10 ID(N)

i/ 11 - 20 Y(N)

21 - 30 Z(N)

.1/ 31 -35 KN

NOTES/

1/ See notes for Card 6.

Symbol describing the coordinate
system for this node
EQ. : Cartesian (X, Y, 2)
EQ.X: X-cylindrical

Node number
G E.1 and LE NUMNP2

Print suppression flag (ignored

unless N.EQ.1)

EQ. :
EQ.A:

No suppression

Suppress ordered list of
node coordinates
‘Suppress list of equation
numbers

Both A and B above

EQ.B:
EQ.C:
Leave blank
X (or r) coordinate (inches)
Y (or 0) coordinate
Node number increment for node data

generation
EQ.0: No generation

Card 9 (16I5) Thermocouple Radial Plane Nodes Card

Notes

Columns Variable Entry
1/ 1- 5 IAZ(1,1) Global node number of the first node
on radial plane 1
6 - 10 TAZ(2,1) Global node number of the second
: node on radial plane 1
etc. Continuing on next card if nécessary
1/ 1- 5 IAZ(1,2) Global node number of the first node

etc.

on radial plane 2

as above
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IIi. NODAL POINT DATA (Contd.)
Card 9 (Contd.)

Notes Columns Variable Entry

1/ 1 - 5 1Az(1,3) Global node number of the first node
' on radial plane 3 :

etc. as above
NOTES/
1/ The program expects to read NPB(I) nodal points for radial
plane I, T = 1, 3, as described in the notes for Card 3.
- IV. ELEMENT DATA

Card 10 (I5) One-Dimensionai Elements Card

Notes "Columns Variable Entry
1/ l1- 5 NUME1 Number of eléments in 1-D model
NOTES/

1/ NUME1l is the number of elements in the 1-D finite elément
' model described in Appendix B, .

Card 11 (615) Individual 1-D Element Card

jNotes Columns Variéble S Entry
1/ '1 - 5 ' M 1-D conduction element number
1/ 6 - 10 II Left node number
1/ 11 - 15 JJ Right node numbér
2/ - 16 - 20 MTYP . Material type
3/ 21 - 25 KG | Ndde generétion increment fof

missing element

26 - 30 KQ .. Internal heat generatibn flag
EQ.0: No internal heat generation
EQ.l: Yes
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ELEMENT DATA (Contd.)

Card 11 (Contd.)

NOTES/

1/

2/

3/

The one-dimensional finite element conduction model is
described in Appendix B.

The variable MTYP describes the material from the material
model library listed below that is used to determine
thermophysical properties for the element M.

Material Model Library:

MIYP " Material

Annular boron nitride

Core boron nitride

Chromel-alumel

Inconel 600

Magnesium oxide (804 theoretlcal density)
316 stainless steel’

TC composite I (junction)

TC composite II (nonjunction)

TC composite III (center grouplng)

User defined material

= : '
CVwONOULEWNE

Optimum polynomial functions of temperature for the heat
capacity and thermal conductivity of material models -

1 through 9 "have been incorporated into ORMDIN. . For
material models 1 and 2 (annular .and core boron nitride),
the effective thermal conductivity must be determined

in situ as part of a rod calibration procedure described
in Reference [16]. The coefficients obtained from this
calibration procedure are input on Cards 20 and 21.
Material model 10 is included to permit the user to
input temperature function.data for heat capacity and
thermal conductivity on Cards 22 - 25, '

Elements must be input in increasing element number
order. If cards for elements M+ 1, M+ 2, ..., M + J)
are omitted, these "J" missing elements are generated using .
MTYP of element 'M" and by incrementing the node numbers
of successive elements with the value "KG"; KG is taken
from the first-card of the element generation sequence

.(i.e., from the "Mth" element card).



IV, ELEMENT DATA (Contd.)

Card 12 (16I5) (Skip if NUMFDN.EQ.O on Card 1)

Notes - Columns Variable Entry
1/ 1 -5 MATFD(3) Material model for cell 3 of the
: finite difference model
6 - 10 MATFD(4) Material for cell 4
etc. |

NOTES/

1/

MATFD (NUMFDN + 2)

Material model for the outermost
cell

See Note 2 of CGard 11 for a description of different
material types and see Appendix B for a description of
the finite difference model.

Card 13 (8I5) Two-Dimensional Elements Card

Notes Columns - Variable Entry
gy 1- 5 NUME2 Number of 2-D conduction elements
2/ 6 - 10 ITYP2D Type of element
EQ.0: Axisymmetric
EQ.1l: Plane
3/. 11 - 15 MXNODS Maximum number of nodes per element,
' 2-D model
4f 16 - 20 NINT Numerical integration order
NINT.GE.l1 and LE.3
21 - 25 NBYE Total number of elements with
surface boundary
5/ 26 - 30 NBND Total number of nodes on the surface
boundary with prescribed heat flux
6/ 31 - 35 NSST Number of constrained nodes
7/ 36 - 40 INTR Boundary interpolation option

EQ.0: Linear
EQ.1: Nonlinear
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IV. ELEMENT DATA (Contd.)

Card 13 (Contd.)

NOTES/

1/

2/
3/

4/

5/

6/

7/

Two-dimensional conduction element numbers begin with "1".
and end with the total number NUME2 of conduction elements.

Use ITYPZD.EQ.l.

MXNODS limits the number of nodes that can be used to
describe any of the elements in this group. - A minimum of
4 and a maximum of 8 nodes can be used with the 2-D
elements.

For rectangular elements, an integration order of 2 is
suggested. If the elements are distorted, an integration
order of 3 should be used. ‘

NBND is set equal to the total number of nodes of the
finite element model that are positioned on the surface
of the rod. .

To generate the initial steady-state solution, the
temperature must be constrained at one or more nodes. In
the 2-D model, NSST nodes near the center of the rod are
constrained to be equal to the initial center thermo-
couple temperature., The constrained node numbers are
entered on Card 16.

Surface flux boundary conditions are computed by interpo-
lating the values of the surface flux qg, 2 =1, 2, 3, at
radial plane surface nodes. If INTR.EQ.0, the flux values
qq are interpolated linearly. If INTR.EQ.1, the
interpolation described by equation (37) is used.

Card 14 (51I5) Individual 2-D Element Card

Notes Columns Variable Entry
1/ 1- 5 M 2-D conduction element number
2/ 6 - 10 TIEL Number of nodes used to describe this
element
3/ 11 - 15 MTYP Material type (add 100 if surface
. element)
1/ 16 - 20 KG Node. generation increment for

missing elements



63

IV. ELEMENT DATA (Contd.)

Card 14 (Contd.)

Notes Columns Variable . Entry
21 - 25 KQ Internal heat generation flag
EQ.0: No internal heat generation
EQ.1l: Yes
NOTES/

1/ Elements must be input in ascending element number order,
If data cards for elements (M + 1, M+ 2, ..., M + J) are
omitted, these "J" missing elements are generated using
IEL and MTYP given on the card for element "M" and by
incrementing node numbers of successive elements with the
value "KG". The value of KG used for incrementation is
taken from the Mth element card, and only the nonzero
nodes appearing on the Mth element card are incremented
when generating element data., The last element in the
group cannot be generated and must be input.

2/ The number of nodes of element '"M" is defined by "IEL".
However, all 8 entries from NOD(I) on Card 15 are read;
if IEL.LT.8, the particular node locations not used in
this element, need to be input as "0" in NOD(I).

Figure 18 defines the input sequence .that must be
observed for element node input.

'3/ See Note 2 of Card 11 for the available material types.

If this element has an external boundary, add 100 to the
value ‘of MTYP, : .

Card 15 (81I5) Element Connectivity Card

Notes Columns Variable - Entry
"1/ 1 -5 NOD(1) Global node number for eiement.node
' 1 of element M from Card 14
6 - 10 ~ NOD(2) " Global pode number for elemént node 2
etc., |
36 —.40 -NOD(8) Global node number for element node 8
NOTES/

1/ See Figure 18 and Notes 1 and 2 of Card 14.
IMPORTANT: Nodes 1, 2 (and 5, if included) must represent

the gurface nodes tor those elements having an
external boundary. ‘
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ELEMENT EXTERNAL
BOUNDARY (IF
APPLICABLE)

4

Figure 18. Element node number input sequence for 2-D conduction
elements

o
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ELEMENT DATA (Contd.)

Card 16 (16I5) Constrained Nodes Card

Notes Columns Variable Entry
1/ 1 - 5 LNST (1) Temperature'constrained node
6 - 10 LNST(2) Temperature constrained node
ctc.
LNST(NSST) Temperature constrained node
NOTES/

1/ See Note

TIME FUNCTION DATA

Card 17 (215)

6 on Card 13.

Notes Columns Variable Entry
1/ 1 - 5 NPIM Total number of points used to input
the thermocouple data and internal
heat generation data
1/ 6 - 10 NUNIT I/0 unit for input of time function
curves
NOTES/
1/ NPIM describes the total number of points (i.e., [t

i

Tz(ti)’ Q(ti)] triplets) which define the time-thermocouple
~ temperature functions-TE(t) of the inverse analysis and

the time-internal heat generation function Q(t).

NUNIT

is the I/0 unit number for the input of these data.

NUNIT.EQ.

Card 18 (2F10.0)

5 is used for card input.

Notes Columns Variable Entry
1/ 1 -10 RI Inner radius of heater annulus
(inches)
11 - 20 RO Outer radius of heater annulus

(inches) ) '
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V. TIME FUNCTION DATA (Contd.)
Card 18 (Contd.)
NOTES/
1/ These radii ére used ﬁo compute -a density term for calcu-

lation of heat generation from the Q values input on
Card 19. See Note 1 of Card 17 for related information.

Card 19 (6F10.0 if NUNIT = 5; otherwise, unformatted)
’ Time Function Data Card

Include one card for each point I =1, 2, ..., NPTM

'l Notes Columns Variable Entry

1/ 1 - 10 T;MV(I) Time of measurement I (seconds)
11 - 20 RV(1,I) Data for thermocouple 1 (deg F)
21 - 30 RV(2,I) Data'for thérmocouple 2 |
31 - 40 RV(3,I) Data for thermocouple 3
41 - 50. RV(4,I) Data for center thermocouple
51 - 60 RV(5,I) Heat generation rate (Btu/hr-ft)

NOTES/

1/ The following units are assumed for each input variable:
Time - sécond
Temperature - degree F
Heat generation rate - BTU/hour/linear -foot of
’ heater rod

See Note 1 of Card 17 for related ihformation.

VI. MATERIAL MODEL DATA
Card 20 (3F15.5) Material Model 1: Thermal conductivity coefficients
for annular boron nitride

(Leave this card blank if material model 1 is not used)

Notes Columns Variable Entry

1/ 1 -15 CBNANN(1)
' Coefficients of temperature-thermal
16 - 30 CBNANN(2) 7 conductivity function for annular
boron nitride
31 - 45 CBNANN(3)
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VI. MATERIAL MODEL DATA (Contd.)
- Card. 20 (Contd.)
NOTES/
4 1/ The .coefficients. of the thermal conductivity functién
for annular boron nitride are determined Zn sitw as part .

of the heater rod calibratiéon procedure described in
Reference [16].

Card 21 (3F15.5) Thermal conductivity coefficients for qbre boron

nitride
(Leave this card blank if material model 2 is not
used) :
Notes Columns Variable ‘ Ehtry
1/ 1-15 CBNCOR(1)

Coefficients of temperature—thermhl
16 - 30 CBNCOR(2) conductivity function for core boron
nitride
31 - 45 - CBNCOR(3)

NOTES/
1/ The comments of Note 1, Card 20, also apply to the core

boron -nitride material model 2.

Card 22 (215) Control card for material model 10 (user-supplied model)
(Leave card blank if material model 10 is not used)

Notes Columns Variable ' Entry

1/ 1- 5 NCRIIO Total number of points (i.e., [Tj,c;]
‘ o pairs) used to input the temperature-
specific heat function c(t)
(NCRHO.LE.25)

1/ 6 - 10  NAK Total number of points (i.e., [Ty,kjl
pairs) used to input the temperature-

_thermal conductivity function k(T)
(NAK,LE,25)

NOTES/
1/ The specific heat and thermal conductivity are temperature

dependent and are described by the discrete points
entered on Cards 23 and 24,
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MATERIAL MODEL DATA (Contd.)

Card 23 (2F10,. 3) Temperature function data for spec1f1c heat of
material model. 10 4
(Skip this card if NCRHO.EQ.O)

Notes Columns Variable .__Entry
1/ 1 - 10 ° TCRHO(I) Temperature at point, I,T;
1/ 11 - 20 CRHO(I) Function value of specific heat at

point T, c(TI)
NOTES/

1/ Linear interpolation is used to compute the specific heat
between the points input on this card. ‘A total of NCRHO
cards must be input, with temperature values TCRHO(I) in
ascending order. The temperature interval (TCRHO(1),
TCRHO(NCRHO) ) must contain all computed temperatures
-of the solution. - .

Card 24 (2F10.3) Temperature function data for thermél conductivity
of material model 10
(Skip this card if NAK.EQ.O0)

Notes  .Columns Variable ' Entry
1/ 1-10 TAKINP(I) Temperature at point I',TI
1/ 11 - 20 AKINP(I) Function value of thermal conductivi-

ty at point I, k(TI)
NOTES/
1/ . The general restrictions of Card 23 also apply to

Card 24,

Card 25 (F¥10.3) Density of material model 10
(SkiE this card if NCRHO,EQ.0)

- Notes Columns Variable L Entry

1- 10 DIN ~ Density p of material model 10

This concludes the card input to the program.
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APPENDIX B

ONE-DIMENSIONAL COMPUTATIONAL MODEL OF THE

ELECTRIC HEATER ROD

The one-dimensional computational mo&el of the electric heater rod
‘utilizes a combined finite element and finite difference discretization.
In Figure 19, the region r g rP of the rod is parti;ioned by a set of
‘one~dimensional linear isoparametric elements (the finite element model
is described in [3]). The input thermocouple .data Tp(t) is used as a
conventional boundary condition in this finite elémenf formulation to
determine the temperature solution T(r,t) for r 5_rP. To compute the
solution in the region rP < r < a, thé finite difference discretization
described in [2] is "grafted" onto the finite element model (FEM) at the
outermost nodes NUMNPl-1, NUMNP1l (NUMNPl is entered on Card 1). The
finite difference moael (FDM) consists of NTC = NUMFDN + 2 cells (NUMFDN
is entered on Card 1), with the nodes for cells 1,2 of the FDM coinciding
with nodes NUMNP1-1, NUMNPl of the FEM. The cell ra&ii Tos r3, sees Tyre
and cell material models are specified by the user on Card 7‘énd Card 12,
respectively; each cell consists of only one material model. From

Chapter II of [2], the cell radius r, is computed by the program

1

from

(B1)

and the remaining nodal radl; Tgs Tps ey Tymo from
-2 _ 1,2 2 ‘
T2 =2ty F Try) s (B2)

I = 1, NUMFDN.
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One-dimensional discretization of heater rod

 Figure 19.

1-D model
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typical cell

(b)
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For a given time (i)At, it is assumed that the temperatures at all
nodes of the one-dimensional model are known. To determine the values
at time (i+l)At, the FEM is first solved using the boundary condition
P
T(i+l)At at r = r . With the tempergtures at thg FDM nodes 1,2 thus

determined, the (P)th iterative estimate of the remaining nodal values

1s computed from the equation (see Figure 19-b)

(p-1) . (P) _ (P) . ®) .(P)
brvr T atnae - 791 0 Trp@yae T Pr-1 Trolg (it)ae
(P) (P) (P-1) (P)
+ (bI tdp T by ) T Gd+nae -
‘I = 2, NTC-1 (B3)

which is derived from equations B.9 of [2]. The temperature-dependent

coefficients in (B3) are'given‘by

(34)

(B5)

by = mﬁﬂﬂﬁ)+huﬂﬂ)
k4 kg
b . = 2
-1 a(F/r; ) . Lolry /Ty )
kg k1
2
pe.(xs - v ) ' ‘
i = I I I-1 : (B6)

The estimate for the FDM nodal temperatures T is corrected

30+ Iygg

iteratively ﬁsing (B3) until the incremental change in temperatures

satisfies a convergence criterion analogous to that of equation (19).
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Finally, the surface heaﬁ flux is approximated from the relation
2895 9)8r = bﬁTc-l(TNTc;(i+1)Ac - TNTC—lg(i+l)At)
- d (

which is derived from equation B.69 of [2]. The surface temperature is

calculated from équation B.72 of [2], which is given by

T o _PAdgyae
SURF; (i+1)At NTC;(i+l)At: ZkNTC

Kn(rNTC/?ﬁTC)

(B8)

When ISF2 = 0 is entered on Card 4, the surface flux values computed from
equation (B7) at the three thermocouple radial planes are used as initial

estimates in the two~dimensional discretization given by equation (23).

NTC TNTC;(i+1)At - TNTC;(i)At)‘ > (B7) -

[ 2]
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