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ORMDIN: A FINITE ELEMENT PROGRAM FOR 

TWO-DIMENSIONAL NONLINEAR INVERSE 

HEAT CONDUCTION ANALYSIS 

B. R. Bass 
J. B. Drake 
L,; J. Ott 

ABSTRACT 

The calculation of the surface temperature and surface 
heat flux from measured temperature transients at one or more 
interior points of a body is identified in the literature as 
the inverse heat conduction problem. Heretofore, analytical 
and computational methods of treating this problem have been 
limited to one-dimensional nonlinear or two-dimensional linear 
material models. This report presents, to the authors' 
knowledge, the first inverse solution technique applicable to 
the two-dimensional nonlinear model with temperature-dependent 
thermophysical properties. This technique, representing an 
extension of the one-dimensional formulation previously 
developed by one of the authors, utilizes a finite element 
heat conduction model and a generalization of Beck's one­
dimensional nonlinear estimation procedure. A digital computer 
program ORMDIN (Oak Ridge Multi-Dimensional INverse) is developed 
from the formulation-and applied-to the crosS-section of a com­
posite cylinder with temperature-dependent material properties. 
Results are presented to demonstrate that the inverse formula­
tion is capable of successfully treating experimental data. An 
important feature of the method is that small time steps are 
permitted while avoiding severe oscillations or numerical 
instabilities due to experimental errors in measured data. 
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I. INTRODUCTION 

The Oak Ridge National Laboratory (ORNL) Pressurized-Water 

Reactor (PWR) Blowdown Heat Transfer (BDHT) Program [l] is an experimental 

separate-effects study of the principal phenomena that are important to 

loss-of-coolant accident (LOCA) analysis. Primary test results· are 

obtained from the Thermal-Hydraulic Test Facility (THTF), a large non­

nuclear experi~ental loop with a test section that contains an array of 

indirect electrically heated fuel pin simulators with a 365.76 cm·(l2 ft) 

heated length. 

One of the primary objectives of the ORNL BDHT separate-effects 

program is the determination of the transient surface temperature and 

surface heat flux of fuel pin simulators (FPS) from interrial thermocouple 

signals obtained during a loss-of-coolant experiment (LOCE) in the THTF. 

This analysis requires the solution of the classical inverse heat 

conduction problem. The state-of-the-art solution of the inverse heat 

conduction problem [2,3] is one-dimensional in scope; that is, for an 

FPS cylindrical geometr.y, it is normally assumed that azimuthal and 

axial heat conduction are negligible, thereby allowing the governing 

differential equation tq be reduced to one dimension in terms of 

radius only. 

Analysis [4] has shown that these assumptions can introduce 

significant errors in the computed surface heat flux and surface tempera­

ture. The fuel pin simulators in the first rod bundle used in the THTF 

had a dual-sheath design (see {dealized rod cross section in Figure 1) 

with thermocouples (those used for .the inverse computations) being 

located in axial grooves machined in the inner sheath. These FPSs 
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Figure 1. Idealized representation of THTF bundle 1 FPS 
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were reduced to their final outside diameter by swaging; this operation 

crushed the embedded thermocouples to a somewhat elliptical shape and 

pulled the edges of the milled groove away from the outer sheath, thus 

forming air pockets around the thermocouples. Two-dimensiona·1 modeling 

of these BDHT.fuel pin simulators using HEATINGS [S], a generalized heat 

conduction code developed at ORNL, revealed severe perturbations in the 

surface heat flux and temperature driving potential. Figure 2 typifies 

these HEATINGS simulation results which illustrated a surface flux 

depression in the vicinity of ·the thermocouple and groove (as much as 

7% - 23% less than the mean flux) and surface flux rise away from the 

groove (4% - .7% greater than· the mean flux). Eccentricity of the heating 

element with respect to the outer sheaths contributed an extra+ 12%. 

perturbation in the computed surface conditions. Thus, it was concluded 

that azimuthal heat conduction could not be neglected. Additional work 

revealed that axial conduction could be neglected if the location to be 

analyzed was at least 2.S4 cm distant (axially) from a change in power 

generation rate. 

Problem areas in the bundle 1 fuel pin simulators, highlighted by 

the above analysis effort [4], were essentially eliminated in the design 

and construction of the third bundle to be used in the THTF. Bundle 3 

FPSs were constructed with a single outside sheath (rather than the dual­

sheath of bundle 1), insulator preforms to minimize eccentricity, and 

multiple sheath thermocouples per axial level (as against one in bundle 1). 

HEATINGS analysis of this FPS design showed the surface heat flux to be 

perturbed by only + 2% of the mean flux. X-rays and cross sections of 

prototypical bundle 3 FPSs revealed negligible eccentricity. Furthermore, 
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the bundle 3 FPS incorporated a flat power profile (i.e., no changes in 

the power generation rate except at the ends of the 365.76 cm heated 

length). These bundle 3 fuel pin simulators were as nearly axisymmetric 

as possible using state-of-the-art manufacturing processes; and, therefore, 

axial and azimuthal heat conduction could possibly be neglected. 

Experimental evidence, however, rules out the luxury of the above 

assumptions. Originally, the bundle 3 FPS design included three thermo­

couples per level so that eccentricity in the FPS c.ould be detected simply 

from the thermometry. However, during LOCE tests of prototypical bundle 3 

FPSs in a single rod test facility at ORNL, the three thermocouples 

indicated sign~f icant differences in the FPS surface behavior circum­

ferentially at one axial level. For example, during blowdown FCTF 79-1-6, 

three thermocouples at axial level D exhibited behavior as shown in 

Figure 3; Thermocouples Dl, D2, and D3 responded similarly during 

$teady-state and the first 5 sec of the LOCE. However, the similarities 

ended starting with a sustained temperature excursion. from Dl at 5.25 sec, 

D3 followed suit at 5.33 sec, but D2 (120° azimuthally from both Dl and 

D3 in an 0.95 cm-OD FPS) did not indicate CHF until 0.5 sec after D3. 

Also, thermocouple D3 showed a slight rewet at 5.64 sec before continua­

tion of the temperature excursion at 5.75 sec. The extreme response 

differences in the FPS surface behavior cannot be explained by the 

design, construction or internals of the FPS. The differences in the 

circumferential surf ace behavior are attributed to forces purely external 

to the FPS {i.e., different fluid conditions). Therefore, even for a 

perfectly axisymmetric simulator, azimuthal heat conduction in the FPS 

cannot be neglected. 
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These experimental observations indicate that determination 

of surf ace conditions of the bundle 3 FPS from interior thermocouple 

transients requires solution of a multidimensional inverse formulation. 

This requirement has motivated the initial development of a two-dimensional 

nonlinear inverse technique that models radial and azimuthal heat conduc­

tion in a composite cylinder. The following sections of this repor.t · 

describe the inverse technique, implementation of the technique in the 

digital computer program ORMDIN; and application of ORMDIN to transients 

recorded by the bundle 3 FPS in a representative FCTF blowdown. 
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II. OBJECTIVE 

In heat transfer studies, a class of problems can be identified 

where the surface temperature and surface heat flux are determined from the 

temperature history measured at a set of discrete po.ints in the interior of 

the body. Generally, this class is referred to in the literature as the 

inverse problem, in contrast with the usual direct formulation where the 

interior temperature history is determined from specified initial and 

boundary conditions. Typically, the inverse formulation arises in 

experimental studies where direct measurement of surface conditions is 

not feasible, such as convective heat transfer in rocket nozzles or 

quenching. processes for materials. An application presented in this 

paper treats an electrically heated composite rod with two-phase flow 

boundary conditions. Temperature transients recorded by thermocouple 

probes in the rod are used to investigate the time,history of surface 

conditions·. Because these probes are positioned in the interior of the 

rod to avoid disturbing surface conditions and the flow adjacent to the 

surface, an inverse problem must be solved. 

Various methods that have been applied to the inverse problem 

include integral equation solutions, series solutions·, transform solu­

tions, and function minimization techniques. Extensive bibliographies 

that survey these methods are readily available in the literature (see, 

for example, [6] and [7]); the limited number of references mentioned here 

deal with materially nonlinear or multidimensional inverse formulations. 

Heretofore, analytical and cqmputational methods for .treating the non­

linear inverse problem of temperature-dependent thermophysical properties 

have been restricted to one-dimensional models. Beck (7,8] has developed 
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a nonlinear· formulation based on a finite difference ·heat conc;luction 

model and nonlinear estimation procedures. Muzzy et al. [9] and Bass [10] 

have applied Beck's method, with some modifications, to one-dimensional 

composite models with temperature-dependent material properties. Other 

nonlinear formulations include a finite difference technique developed 

by Ott and He_drick [2] and a transform method by Imber [6]. Apparently, 

the only two~dimensional inverse formulation appearing in the open 

literature is that of Imber [11,12]. His transform technique is appli­

cable to two-dimensional geometries of-arbitrary shape, but assumes a 

linear material model with constant properties. 

This report presents, to the authors' knowledge, the first inverse 

solution technique applicable to the two-dimensional nonlinear model with 

temperature-dependent properties. This technique, representing an exten­

sion of the.one-dimensional formulation previously developed by Bass [10], 

utilizes a finite element heat conduction model and a generalization of 

Beck's one-dimensional nonlinear estimation procedure. The computational 

technique assumes several thermocouple sensors judiciously positioned in 

the interior of the material body. In the formulation, the unknown surface 

heat flux is discretized on the boundary domain of the body using a pre­

scribed set of nodal points and _suitable interpolating functions. Because 

the temperature response at Interior locations is delayed and damped with 

respect to changes in surface conditions, these nodal point values of · 

surface heat flux are determined in a given time step with a procedure 

that utilizes interior temperatures at "future" times. Specifically, 

the nodal values of flux are assumed to be constant or to vary piecewise 

linearly over an analysis interval that consists of several time steps 
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in the discretized data. The coefficients that describe the nodal 

values are adjusted iteratively to achieve the closest agreement in a 

least squares sense with the input "future" temperatures over the analysis 

interval. The discretized approximation of the surface heat flux thus 

determined provides a conventional boundary condition for the forward 

problem in the next time step. The inverse solution computed in this 

way represents a "best approximation" in the finite dimensional subspace 

of solutions defined by the surface heat flux interpolation. An important 

feature of the method is that small time steps are permitted while avoiding 

severe oscillations or numerical instabilities due to experimental errors 

in measured data. 

The formulation is implemented in the digital computer program 

ORMDIN and applied to the cross section of a.composite cylinder with 

temperature-dependent material properties. To evaluate the performance 

of the technique in solving the inverse problem, a standard initial­

boundary value solution, with a known surface.heat flux; is used as 

input for the inverse calculation. The computed surface heat flux is 

compared with the (known) imposed heat flux for two different thermocouple 

configurations. Finaily, the technique is applied to experimentally 

determined temperature transients recorded at interior points of an 

electrically heated cylinder (THTF bundle 3 FPS) used to simulate a 

nuclear fuel rod in reactor loss-of-coolant analyses. 
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III. FINITE ELEMENT FORMULATION OF THE 

DIRECT PROBLEM 

The conduction of heat in the region Q is governed by the quasi-

linear parabolic equation 

\J • (k'VT) + Q (1) 

subject to the boundary conditions 

T = Tw on '11 (2) 

and 

k'VT • ~ + q + qlL + qe = 0 on "2 (3) 

The heat flow rates per unit area on convection and radiation boundaries 

are written 

e = h(T - Ta.e) IL hlL(T - TM) q q (4) 

IL where h is defined by 

IL 2 
2 

h = EO(T + Tali. ) (T + TaJr.) (5) 

ll. 
In general, k, c, h, and h are temperature and spatially dependent, while 

Q and q are time and spatially dependent. 

Let the region Q be partitioned by a system of finite elements and 

.let the unknown temperature T be approximated throughout the solution 

domain at any time t by 

T (.!., t) 
M 
l Ni(x) TI(t) = {N}T {T} 

I=l 
(6) 
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Here the NI are the interpolation functions defined piecewise element 

by element and the TI or {T} are the nodal temperatures. The governing 

equations of the discretized system can be derived by minimizing a func-

tional or by_ using Galerkin's method (13]. In the Galerkin formulation 

employed here, the problem is recast in a weighted integral form using 

the interpolating functions NI as the weighting functions: 

f ne {N}[V • (kV({N}T {T})) + Q - pc ;t ({N}T {T})] an 

- f \ e {N}[kV({N}T {T}) • n + q + h({N}T {T} - Tac.) 
2 

Only a single finite element is considered in the integral (7), as the 

governing equations of the complete system of elements are obtained by 

(7) 

assembling the individual finite element matrices. The surface integral 

over \
2

e refers only to those elements with external boundaries on which 

condition (3) is given. 

Green's first identity is applied to the first volume integral 

of equation (7) so that the second derivatives do not impose unnecessary 

continuity conditions between elements. When use is made of the boundary 

conditions (2) and (3), the integral formulation (7) leads to a set of 

transient ordinary differential equations for the assemblage of finite 

elements: 

[C] a{T} + [K] {T} + {F} + {F} = 0 
dt 

(8) 
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The components in equation (8) are defined by: 

[C] 

[K] 

{F} 

{F} 

E 

+ l 
e=l 

[B] 

E 

l 
e=l 

E 

l 
e=l 

'V{N} 

J 
{N} qdn + I l {N} qd\ 

ne e=l j\ e 
2 

(9) 

(10) 

(11) 

(12) 

where the sunnnations are taken over the individual ·finite element contri-

butions. These integrals are evaluated numerically using Gauss-Legendre 

quadrature in the applications to be presented later. 

The system of nonlinear equations (8) through (12) which defines 

the discretized problem can be solved using many different types of inte-

gration schemes. The implicit one-step Euler backward difference method 

is employed in this analysis. The time derivative of the temperature is 

approximated by 

a{T} ~ {T}(i+l)6t - {T}(i)6t {6T} 
at= 6t = t;t" (13) 
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where {T}(i)6 t is assumed known at time (i)6t. In the nonlinear analysis, 

{T}(i+l) 6 t is calculated using a computational scheme that iterates on the 

out-of~balance heat flow rate for a given time step. At time (i+l)6t, the 

initial approximation of the increment {6T}(O) in nodal point temperatures 

is calculated by 

1 (0) 
(6t [C] (i)6t + [.K] (i)6t) {6T} 

- {F} (i+lMt - fF} (iMt (14) 

In each iteration, a new temperature increment is computed from 

{6T}(P) = {6T}(P-l) + {oT}(P) (15) 

where {oT}(P) is the (P)th correction to the temperature increment {6T}~ 

The expression for computing the correction {oT}(P) is determined by 

substituting (15) into (13) and using (8) in the form 

(P-1) (P) [ (P-1) (P-1) 
[S](i+l)6t {oT} = - [K](i+l)6t {T}(i+l)6t 

- = (P-1) ·. J 
+ {F}(i+l)6t + {F}(i+l)6t 

where 

(P-1) 1 (P-1) (P-1) 
[S](i+l)6t = 6t [C](i+l)6t + [K](i+l)6t 

is evaluated using temperatures 

. (P-1) 
{T} (i+l)6t 

·{T} . + {6T}(P-l) 
. (1)6t 

(16) 

(17) 

(18) 
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The iteration continues until convergence is obtained accorqing to the 

criterion 

(19) 

where TOLl represents an adjustable tolerance. 

Equations (14) through (19) constitute the full Newton iterative 

solution of the governing system of equations (8). To avoid the un-

desirable computational expense of updating and factorizing the effective 

'ff . [S](P-l) . h. . h l' . d sti ness matrix (i+l) 6 t in eac iteration, t e app ications presente 

in this paper make use of the modified Newton-Raphson scheme. In this 

method, a new tangent stiffness matrix [S](n) 6 t is computed periodically 

from one of the converged solutions at time (n)6t, n=0,1,2, ••• i, and 

(P-1) 
used in place of [S](i+l) 6 t in equation (16). Because the matrix 

[S](n) 6 t is held fixed in a given time step, this modified method involves 

fewer stiffness reformations than full Newton iteration. The frequency 

of the stiffness updates can be adjusted according to the degree of non-

linearity in the computational model to avoid an excessive number of 

iterative corrections. 

This application of the finite element method to the inverse heat 

conduction problem considers a two-dimensional model of the (r,8) cross 

section of a circular cylinder. An isoparametric [14] discretization is 

employed, so ·that the spatial coordinate.s are interpolated using the same 

functions NI as those used for Tin equation (6). The NI associated with 

the 4- to 8-noded two-dimensional isoparametric element are described in 

numerous references, including [14] and [15], and ~ill not be given here. 
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IV. FORMULATION OF THE INVERSE PROBLEM 

In this study, the two-dimensional problem of a cylindrical body 

subjected to a planar surface heat flux q(8,t) is considered as depicted 

in Figure 4. The conditions 

A 

0 < t ~ t l = l,L 

are prescribed at L equally spaced interior points along a contour of 

radius rp near the surface, while the surface heat flux function 

k(~~) = q(8,t) 
r=a 

(20). 

(21). 

is unknown. The problem is to determine q(8,t) and the temperature distri-

bution T(r,8,t), 0 < r < a, 0 ~ 8 ~ 2n, on a specified time domain. 

Although a circular geometry is assumed here, the basic technique described 

below for treating the inverse problem is applicable to other geometric 

shapes with a multiple number of thermocouple sensors judiciously posi-

tioned near the surface of the body. 

In his treatment of the linear inverse problem, Imber [11] indicates 

that a sµccessf ul extrapolation procedur.e requires the temperature distri-

bution to be known, a priori, throughout a closed region within the body. 

For a one-dimensional axisynnnetric analysis of a cylinder such as that 

depicted in Figure 1, the temperature can be determined in the closed 

region r 2_ rp < a using data from a single thermocouple sensor positioned 

at radius rP. The two-dimensional analog achieved by relaxing the 

condition of axisynnnetry then presumes a time-history of temperature 

dat·a recorded pointwise on a closed contour of radius p . r, i.e., a "line-

source" of temperature data. Because such a volume of measured data 
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. q(O, t) 

Figure 4.· Cross section of heated cylinder 
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would not be available in any realistic experimental program, the tech-

nique des.cribed below is based on a limited number of thermocouple sensors 

discretely positioned on a contour near the surface of the body. Numerical 

examples presented in the next section illustrate that the accuracy of 

the technique in approximating the flux boundary condition is improved 

as the number of temperature sensors per unit arc length. on the contour 

is increased. 

The initial step in the·development of the method is the discretiza-

tion of the unknoWn surface heat flux on the boundary domain using a set 

of nodal values ql' l = l,L, and suitable interpolating functions Rl (to 

be specified later), as depicted in Figure 1. Thus, the approximation 

of the surface heat flux q is given by 

q(6,t) (22) 

One surface flux node is designated for each active thermocouple sensor 

and positioned at the minimum distance from the sensor node. Numerical 

tests have indicated that this geometric arrangement produces a stable, 

well conditioned system of equations for approximati_ng the boundary heat 

flux function q. 

In addition, the nodal values of surface heat flux will be 

temporally discretized such that in a given time step 6t, q(6,t) is 

represented by 

L 

q(6,t) = l~l Rl(6) ql;(i)6t 

T 
= {R} {q}(i)6t (i-1)6t < t < (i)6t i 2:. 1 (23) 
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For a given i _'.:: 1, it is assumed that {q}(l) 6t' {q}( 2) 6t' ••• , {q}(i)6t 

are known. To determine {q}(i+l)6 t' an analysis interval of J > 1 time 

steps is selected, as depicted in Figure 5. 1 In the next step, {q} is 

estimated over the analysis interval (i)6t < t < ·(i+J)6t using relations 

that take the trend of q into account. For the first time step in the 

interval, 

{q}(i+l)6t = {q}(i)6t + ({q}(i)6t - {q}(i-1)6t) (24) 

and for the "future" time steps 

{q}(i+j)6t = {q}(i+j-1)6t + 8 . ({q}(i+j~l)6t - {q}(i+j-2)6t) <25 ) 

for 2 ~ j ~ J, where 0 ~ 8 ~ 1 is an adj us table parameter. 2 Thus, . the 

interpolated boundary conditions can be estimated for each time step in 

the analysis interval according to the relation 

q(e)(i+j)6t 
T 

{R} {q}(i+j)6t (26) 

Then the boundary value problem (equations (1) through (5)) cast in the 

discretized finite element formulation (equations (8) through (12)) is 

solved over the analysis interval (i)6t < t < (i+J)6t using conditions 

(24) - (26) in the surface integral of equation (11). 

The objective of the method is to select {q}(i+l)6 t to achieve 

the closest agreement in a least squares sense between the computed and 

input thermocouple temperatures over the analysis interval. This is 

1For elementary one-dimensional models with characteristic dimension 
a, Beck [7] reconunends values of J that are appropriate for given values of 

. the dimensionless time step 6T = a6t/ a2 • 

. 
2 {q} 

0 
is determ.ined from L:uiiuitions at the initial time. 
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"FUTURE" T.EMPERATURES. 

T (i + 1 )Lit T (i + 2)Lit · · · · · · · · · · · · · · · · T (i + J)Lit 

----+---~----+---------t------------------------t--------..... T 

____ ....., ________ .,.. ________ ....., ______________________ ~i----------t~t 

(i)6t (i + 1 )6t (i + 2)6t ................. (i + J)6t 

ANALYSIS INTERVAL (J ~ 1) 

Figure 5. Analysis interval for computing surface heat 
flux q 

.. 
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accomplished by minimizing the weighted sum of squares function 

J L p 2 
{({q}(i+l)6t) l w. l (Tl; (i+j )6t - Tl; (i+j )6t) 

j=l J l=l 

J 
p}T l w. {T - T (i+j)6t {T - TP}(i+j)6t 

j=l J 
(27) 

with respect to the L nodal parameters represented by the array {q}(i+l)6 t. 

In equation (27), {T} and· {TP} are the computed and input temperatures at 

the interior thermocouple locations (rP,el), l = l,L. The weighting 

functions defined by w. = j 
2 

were suggested by Muzzy et al. [ 9] in a 
J 

one-dimensional finite difference application of Beck's method. 3 

The minimization procedure for the function f of (27) is based on 

an iterative technique that is a generalization of Beck's one-dimensional 

formulation·. For the (H) th iterative correction {6q} (H) to the niinimizi~g 

nodal parameters {q}(i+l)6 t' the elements of the temperature array 

(H) . 
{T} (i+j ) 6 t in (27) are approximated by a truncated Taylor Beries 

expansion 

L (H-1) 
T(H) ~ T(H-1) l aTl;(i+j)6t 
l; (i+j )6t l; (i+j )6t + k=l (ll) . 

aqk;(i+l)6t 

where 

. (H) (H-1) 
- qk;(i+l)6t - qk;(i+l)6t· 

l,L 

k. ;;;: l,L 

(28) 

(29) 

If the heat conduction model is linear, this expression is exact and no· 

iteration is required. The partial derivatives in (28), referred to as 

~Beck' o one-dimensh,n<1l fnr:m11l;ition uses w = 1 for all J'. 
j 
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sensitivity coefficients, are approximated numetically according to the 

expression 

(H...,;l) 
= dT l; (i+j Mt 

(H) 
dqf<.; (i+l)llt 

l,k. l,L 

j = l,J 

~Tl; {i+j)lt ({q•}~~~gM) - T.t-{i+j)lt {q} ~~~glt 
(H-1) 

J..qk.;(i+l)b.t 

where {q*} is obtained from {q} by perturbing the k.th component, i.e., 

q~ = (l+J..)qk. and q~ = qm' m f k.. A value of A = 1 x 10-3 is used in 

the present study. 

(30) 

In each iterative correction to {q}(i+l)b.t' (J)(l+L) conventional 

solutions of the finite element heat conduction model (equations (8)' -

(12)) are required to compute the array (30) of sensitivity coefficie~ts. 

With the ¢'s thus determined, the extremizing condition 

df = 0 (31) 
a{q}(i+l)b.t 

is used to compute the incremental correction. When (28) is substituted 

into (27)· and the differentiation (31) is performed, the (H)th correction 

{b.q}(H) is determined from the expression 

[A](H-1) {b.q}(H) = {D}(H-1) 

where the components are given by 

A(H-1) = 
lk. . 

J L 

J 1 
\ \ j~(H-1) j~(H-1) 
l w. l "'ml "'mk. 

j=l J m=l 

\ \ ( p 
l w. l Tk.,•(i+J')b.t 

j=l J k.=1 

(32) 

(33) 

·(34) 
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The correction (32) is then used to update the nodal array {q}~~~~~~t 

of surface flux according to equation.(29). Generally, the iteration is 

continued until convergence is achieved ·according to the criterion 

11 {~q} (H) 11 I 11 {q} ~~llMt 11 < TOL2 

for some prescribed tolerance TOL2 > O. 

The discretized approximation of the surf ace heat flux 

T 
q(e)(i+l)~t = {R} {q}(i+l)~t 

(35) 

(36) 

thus determined provides a conventional boundary condition (for equation 

(11)) in the next single time step ~t only. The analysis interval'is then 

shifted by one time step and the process is repeated. 

In the .numerical applications of this technique in the next section, 

the surface flux interpolating functions {R} have the form 

R,e_(6) 

for £. l,L. 

2 'IT 
(e - e .e) · 

e.e. - ~e ~ e < et + ~e •{:OS [2 ~e l 

otherwise 

The functions (3,7) depicted in Figure 6 have the 

1 

i.,k. = l,L 

e.e. ~ e 5... ei.+l 

(11_+i := Rl 

(37) 

properties 

(38) 

(39) 

It follows from equation (39) that· the interpolation. (22) can represent 

a uniform surface heat flux. 
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Figure 6. Interpolating functions for surface heat flux 
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V. NUMERICAL APPLICATIONS 

The two-dimensional inverse formulation developed in the preceding 

sections-has been implemented in the digital computer program ORMDIN, as 

described in Appendices A and B of this report~ Program ORMDIN is applied 

here to a composite rod containing an electric heating element and thermo-

couple sensors. This heater rod represents one member of a rod array 

(THTF bundle 3) that is designed for test purposes to simulate a nuclear 

fuel bundle. The heater rod bundle is positioned in a thermal-hydraulics 

test loop that is used to study hypothetical loss-of-coolant acc{dents in 

pressurized-water nuclear reactors [l]. 4 

A heater rod cross section and the corresponding two-dimensional 

finite element discretization used in the inverse analysis are depicted 

in Figures 4 and 5. The rod has a nominal heated length of 366 cm 

(144 in.) and is constructed with a stainless steel outer sheath. 

Attached to the.inner surface of this sheath at equal intervals are 

twelve chromel-alumel thermocouple assemblies, 0.05 cm (0.02 in.) in 

diameter. Four additional sensors are positioned.in the center of the 

rod. Only four of the.sixteen thermocouples actively record data 

in the cross section of Figure 7, namely the three boron nitride- (BN) 

filled thermocouples attached to the outer sheath and one of the center 

rod thermocouples; the junctions of the remaining thermocouples are 

positioned in different ~xial plan~s of the rod. Boron nitride is used 

a8 a filler and an insulator be.tween the inconel heating element and the 

thermocouple assemblies. In the finite element model .of the heater rod 

4 This test facility is operated by the Oak Ridge National 
Laboratory (ORNL) Pressurized-Water Reactor Blowdown Heat Transfer 
Separate-Effects Program, whld1 ls part of the overall light-water 
reactor safety research program of the Nuclear Regulatory Commission. 
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(Figure 8), each thermocouple at the outer sheath is modeled with 

two quadrilateral elements that are assigned the appropriate material 

properties of BN or MgO .and the same total cross sectional area as the 

in situ circular sheaths. Those in the center of the rod are not used 

to drive the inverse computation and are not included in the finite 

element discretization. 

The thermophysical properties of thermal conductivity k and specific 

heat c are temperature dependent for each material in the rod. Except for 

the thermal conductivities of MgO and BN, these properties are determined 

for each material as a function of temperature from an optimum polynomial 

fit to available data, as given in Reference [2]. The thermal conductivi-

ties for the MgO and BN depend on packing density and must be determined 

in situ as part of the rod calibration procedure [16] prior to each test. 

The first numerical example 5 was selected to evaluate the perfor-

mance of the technique in solving the inverse problem for the finite 

element model of Figure 8. A standard initial-boundary value solution 

was obtained from the finite element .formulation (8) - (12) using the 

prescribed surface heat flux function 

q (8, t) 47 •. 31 + 126.2[sin(~{8 - 2TTt})] 2
+l2t watts/cm2 

0 < t ~ .1.0 (40) 

a constant heat generation rate Q = 5274 watts/cm3 , a time step ~t = .01 

secs, and initial center rod temperature T t = 441.2°C. From this cen er 

d.irect solution, the temperature transients of Figure 9 were calculated 

5The inverse calculations presented in this section were performed 
using TOLl = .001, equation (19); B = 0.5, equation (25); TOL2 = 0.05, 
equation (35). 
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STAINLESS STEEL BORON NITRIDE 

Figure 8. Two-dimensional finite element model of heater rod 
cross section (THTF bundle 3 FPS): 126 elements; 
28.8 nodes 
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at the thermocouple locations 1 through 6 of the discrete model (Figure 8). 

With the thermocouple transients of Figure 9 serving as input, two different 

inverse analyses were performed in an attempt to reproduce the surface flux 

boundary condition (40). The first analysis utilized input data from only 

three of the thermocouples (L = 3),· those numbered 1, 3, and 5 in Figure 8, 

while the second utilized data from six thermocouples (L 6) •. The 

analysis interval consisted of only one time step (J = 1). Results from 

the two inverse analyses are compared with the known direct solution in 

Figures 10 and 11 at different times. Throughout the transient, the 

inverse analysis using six active thermocouples consistently produced a 

good approximation of both the surface flux function (40) and the surface 

temperatures. As illustrate.cl in Figure 10, the solution using three active 

thermocouples was not as successful in approximating the s.urface variables 

at those times when the localized perturbation in the surface· flux was not · 

"near" an active sensor. This example demonstrates that, within practical 

limits, the prediction of surface conditions is improved as the ~umber 

of thermocouple sensors per unit length of contour is increased. 

In the second numerical example, the inverse formulation is 

applied to actual thermocouple transients taken from a representative 

test of ORNL's single-rod test apparatus. 6 The heater power input to 

the rod during the period of the transient considered here is essentially 

3 constant at Q = 5300 watts/cm • Figure 12 illustrates the time-history 

of the thermocouple temperatur.es recorded by the active BN-filled 

6The single~rod test facility [l] at ORNL is used primarily to 
qualify heaters for the large rod bundle loop and to obtain blowdown heat 
tr.ansfer results for a single rod in an annular geometry. The test data 
utilized in this example.were recorded during blowdown FCTF 79-1~6 at 
axial level D in the heater rod. 
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sensors (1, 3, and 5 in Figure 8) and by the one active center·thermo­

couple. The acquisition interval for these data is ~t = 0.01 secs. Irt 

the same figure, the temperatures computed at the BN thermocouple locations 

in an inverse solution (for ~t = 0.01 secs and J = 2) are compared with 

the input data; the error is not discernible on the scale. of these plots. 

Because the center thermocouple data are not used in the inverse computa­

tion, comparison of these data with the computed center rod temperatures 

permits an evaluation of the rod finite element model. This comparison 

can be only approximate due to uncertainty in the precise orientation of 

the _center thermocouple assembly and to the absence of appropriate 

material modeling of the assembly in the discretization. Agreement 

between the measured ·and computed values is generally goqd, although 

·a slight divergence appears at time t ~ 5.75 secs when gradients and 

time rates of temperature become pronounced in the center of the rod. 

Figures 13 - 15 illustrate the computed time history of surface 

conditions at node q
3 

in Figure 8 for a time step ~t = 0.01 secs and 

three different analysis intervals. The results for one time step in 

the analysis _interval, J = 1 (Figure 13), indicate that the measured data 

of Figure 6 require the use of future temperatures to reduce oscillations 

in the computed values. The solution using two time steps, J = 2 (Figure 

14), removes much of the "noise" from the flux time history without 

severe rounding of rapid changes that begin at time t ~ 5.5 secs. The 

results for J = 3 (Figure 15) lead to additional smoothing of the solution 

and illustrate the tendency to "round off" rapid changes as J is increased. 

For the finite element model of Figure 8 and a selected time step of 

~t = .01 secs, the use of one future temperature appears optimal for 
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reducing oscillations. Figure 16 compares the surface conditions at 

time t = 5.85 secs for the above three solutions. 

In the experimental apparatus that produced ~he thermocouple 

transients of Figure 12, the heater rod surface is exposed to a transient 

two.,...phase flow that is primarily parallel to the rod axis. At'point (a) 

in Figure 12 (time t 5.65 secs), the entire surface of the rod cross 

section has departed from nucleate boiling; at point (b) (time t = 5.80 

secs), part of the surface experiences a "rewet" with an accompanying 

drop in temperature; at ( c) (time t = ::5 •· 95 secs) the entire surface is · 

in transition to film boiling. Contour. plots in Figure 17 illustrate 

the change in temperature distribution for the cross section of the 

rod during this portion of the transient. 
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TEMPERATURE 
1°c1 

A 230 
B 260 
c .290 
D 320 
E 350 
F. 380 

~ 

TIME= 5.80 
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Figure 17. Experimental case: Temperature contours (deg C) 
(a) time 5.65 sec 
(b) time 5.80 sec 
(c) time 5.95 sec 



VI. SUMMARY AND CONCLUDING REMARKS 

This report has presented a two-dimensional formulation of the 

inverse heat conduction problem that is applicable to composite bodies 

with temperature-dependent thermophysical properties. The formulation, 

based on a finite element heat conduction model and a generalization of 

Beck's one-dimensional nonlinear estimation procedure, was implemented 

in the digital computer program ORMDIN. Applications of program ORMDIN 

to an electrically heated c.omposite rod were examined in the study. In 

the first example, a conventional initial-boundary value solution, with 

a known surface heat flux, was used as input for the inverse calculation. 

The computed surface heat flux was compared with the imposed heat flux 

for two different thermocouple configurations. Th.ese comparisons indicate 

that, within practical limits, the approximation of surface conditions is 

improved as the number of thermocouple sensors per unit length of contour 

is increased. Finally, the technique was applied to experimentally 

determined temperature transients recorded at thermocouple sensors in 

the interi.or of the rod. The results presented here demonstrate that 

the inverse formulation is capable of successfully treating experimental 

data. Consideration of future temperatures in calculating surface condi­

tions permits the use of small time steps while avoiding severe oscilla­

tions or numerical instabilities due to errors in measured data. 
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INTRODUCTION 

Program ORMDIN is designed primarily to perform a transient two-

dimensional nonlinear inverse heat conduction analysis of the THTF bundle 3 

heater rod depicted in Figure 7. However, the program can be applied to 

other cylindrical geometries for which the thermophysical properties are 

prescribed functions of temperature.· The program assumes that discretized 

temperature histories are provided at three thermocouple locations in the 

interior of the cylinder, corresponding to the case L = 3 ·in Section IV. 7 

Concurrent with the two-dimensional analysis, ORMDIN also generates one-

dimensional solutions for each of the three thermocouple radial planes 

using a computational model described in Appendix B. 

Program 6RMDIN uses an in-core solution technique and allocates 

storage in_ unlabeled common dynamically during the different phases of the 

solution. The dimension of unlabeled common is adjusted in program MAIN 

to provide sufficient storage for the problem under <;·onsideration. 

Storage allocation is checked in each phase of the solution to ensure 

that the maximum is not exceeded. If sufficient storage is not available, 

an error message is printed that specifies the required dimension of 

unlabeled common for that phase of ·the solution and execution is 

terminated. 

In the user instructions that follow, each card or group of cards is 

ideutlflt!u Ly the format used on the card(s), thP names of the variables, 

the meaning or the variable·s and note.8. 

7A second version of ORMDIN has been developed to treat both the 
cases L = 3 and L = 6. 



I. HEADING.CARD (10A8) 

Notes Columns 

1 - 80 

II. MASTER CONTROL CARDS 

.Card 1 (4I5, 2Fl0.3, 

Notes Columns 

1/ 1 - 5 

· l/ 6 - 10 

2/ 11 - 15 

3/ 16 - 20 

3/ 21 - 30 

4/ 31 - 40 

41 - 45 

46 - 50 

5/ 51 - 55 

6/ 56 - 60 

6/ 60 - 65 

52 

Variable 

HED(lO) 

.5I5) 

Variable 

NUMNPl 

NUMFDN 

NUMNP2 

NSTE 

DT 

TS TART 

IPRT 

IPRD 

IPLT 

IRINT 

MOD EX 

Entry 

Enter the master heading information. 
for use .in labeling the output 

Entry 

Total number of nodal points for one­
dimensional finite element model 

Total number of nodal points for one­
dimensional finite difference model 

Total number of nodal points for two­
dimensional finite element model 

Number of solution time steps 

Time step increment 

Time at solution start 

Print control for computed temperatures 
at nodal points for two-dimensional 
.model 

EQ.O: 

EQ.l: 

Print temperatures only at 
nodal points in thermocouple 
radial planes 
Print temperatures at all 
nodal points 

Print control for input thermocouple· 
temperatur"e data 

EQ.O: Do not print thermocouple 
data 

EQ.l: Print thermocouple data 

Option to save variables for plotting 
EQ.O: No 
EQ.l: Yes 

Interval for saving.restart informa­
tion 

EQ.O: Default set to 9999 

Solution mode 
EQ.O: Execution 
EQ.l: Restart 
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II. MASTER CONTROL CARDS (Contd.) 

Card 1 (Contd.) 

NOTES/ 

1/ See Appendix B for ·.a description of the one-dimensional 
model.. NUMNPl controls the number of Card 6-type cards 
to be read. NUMFDN controls the number of cell radii 
read from Card 7. 

2/ · NUMNP2 controls the number of Card 8-type cards to be 
read. 

3/ The solution domain is determined by [TSTART, TSTART + 
NSTE*DT]. 

4/ TSTART is the solution time corresponding to the initial 
condition. If MODEX.EQ.l, set for a restart, TSTART.EQ.O 
can be used and the correct value of TSTART will be read 
from the restart file. 

5/ When IPLT.EQ.l, the solution variables listed below are 
·saved on Units 3 and 4 for each time step. Each record 
is written using an unformatted WRITE statement. 

Unit Variable 

3 TIME 

(TCQ(I),I=l,5) 

(TEMP(NTCN(J),1),J=l,3) 

TCTR 

(TEMP(NN(J),l),J=l,3) 

TSA 
SFA 

(SFX(I),I=l,3) 

TIME 

(TEMP(LWT(I),l),FLUX(I), 
I=l,NBPl) 

(TEMP(ID(I),l),I=l,NP) 

Definition 

Time t 

Measured data 

Computed thermocouple 
temperatures 

Computed center rod . 
temperature 

Surface temperature at· 
TC radial planes 

Average surface tempera­
ture and surface flux at 
TC radial planes 

Computed surface flux at 
TC radial planes 

Time t 

Temperature and heat 
flux at surface nodes 

Nodal temperatures 
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II. MASTER CONTROL CARDS (Contd.) 

Card 1 (Contd.) 

6/ When restart information is being saved every IRINT time 
·steps, the ·restart information from the last save is over­
written. Unit 2 serves as the output file for saving 
information. To execute the program in restart mode·, set 
MODEX.EQ.l and change the JCL so that the Unit 2 output 
from the previously saved solution can be read by the 
program from Unit 1. 

Card 2 (3I5, Fl0.4) 

Notes Columns Variable 

1 - 5 ISREFK 

6 - 10 IEQUIT 

11 - 15 ITEMAX 

16·- 25 TOLl 

Card 3 (3I5) Nodal Temperature 

Notes Columns Variable 

1/ 1 - 5 NPB(l) 

6 - 10 NPB(2) 

11 - 15 NPB(3) 

Entry 

Number of time steps between reforma­
tion of conductivity matrix. Every 
ISREFK steps, a new [S] matrix is 
formed (see equation (16)) 

EQ.O: Default, set to "l" 

Number of time steps between equilib­
rium iterations (see equations (14) -
(17)) 

EQ.O: Default, set to "l" 

Maximum number of equilibrium 
iterations permitted (see equations 
(15), (16), (18)) 

EQ.0: Default, set to "15" 

Relative tolerance used to measure 
equilibrium convergence (see 
equation (19)) 

EQ.O:. Default, set to "l.E-3" 

Printout Card 

Entry 

Number of nodes in radial plane 1 
for condensed.printout 

Number of nodes in radial plane 2 
for condensed printout 

Number of nodes in radial plane 3 
for condensed printout 
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II. MASTER CONTROL CARDS (Contd.) 

Card 3 (Contd.) 

NOTES/ 

1/ These nodes of-the 2-D model are selected near a thermo­
couple radial plane to give a· condensed printout of the 
radial plane temperature profile for easy comparison with 
the 1-D model profile. 

Card 4 (3I5, 3Fl0.0) Inverse Control Card 

Notes 

1/ 

2/ 

1/ 

4/ 

5/ 

NOTES/ 

Columns Variable 

1 - 5 KTER 

6 - 10 NLAG 

11 - 15 ISF2 

16 - 25 BETA 

26 - 35 TOL2 

36 - 45 EPSH 

Entry 

Maximum number of iterations per­
mitted on surf ace heat flux q (see 
equation (32)) 

Number of time steps used in analysis 
interval (parameter "J" of equation 
(27)) (NLAG.GE.l) 

Mode of initializing 2-D surface 
flux vector q 

EQ.O: 1-D approximation 
EQ.l: 2-D extrapolation 

Factor used to .increment q in the 
advanced time intervals, equation 
(25) 

Convergence tolerance for heat flux, 
inequality (35) 

Perturbation factor for heat flux 
(parameter :\ or equation. (30)) 

1/ KTER is the maximum number of iterations allowed in the 
minimization procedure for the sum of ·squares function of 
equation (27). If the index Hof equation (32) exceeds 
KTER, a message is printed and execution is terminated. 

2/ If ISF2.EQ.O, the heat flux vector q computed by the 1-D 
model is used as the first approximation in the subsequent 
2-D calculation. If ISF2.EQ.l, and this is the recommended 
option, the vec·tor q is approximated by a linear extrapo­
lation of the 2-D solutions in the previous time steps 
according to equations (24) ~ (26). 
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II. MASTER CONTROL CARDS (Contd.) 

Card 4 (Contd.) 

3/ For the model of Figure 8, ·BETA.EQ.0.5 is recommended. 

4/. For the model of Figure $, TOL2.EQ.0.05 is recommended. 

5/ For the model of Figure 8, EPSH.EQ.1.E-3 is recommended. 

III .• · NODAL POINT DATA 

Card 5 (6I5) 

Notes Columns Variable 

1 - 5 NTCN(l) 

6 - 10 NISE(l) 

11 - 15 . NTCN(2) 

16 - 20 

21 - 25 

26 30 

NISE(2) 

NTCN(3) 

NISE(J) 

Entry 

2-D global node number of thermo­
couple in radial plane 1 

2-D global node number of surface 
heat flux node in radial plane 1 

Plane 2, etc. 

Plane 3, etc. 

Card 6 (Al, I4, Al, I4, 2Fl0.0, I5) 1-D Nodal Point Data for Finite 
Element Discretization 

Notes Columns Variable 

1/ 1 IT 

2 - 5 

6 JPR 

Entry 

Symbol describing the coordinate 
system for node N 

EQ. : C~rtesian (X, Y, Z) 
EQ.X: X-cylindrical 

Node number; GE.l and LE.NUMNPl 
· (see Card 1) 

Print suppression flag (ignored 
unless N.EQ.l) 

EQ. : No suppression 
EQ.A: Suppress ordered ·list of 

node coordinates 
EQ.B: SupI>ress list of equation 

numbers 
EQ.C: Both A and B above 
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NODAL POINT DATA (Contd.) 

Card 6 

Notes 

2/. 

3/ 

NOTES/ 

Card 7 

Notes 

1/ 

NOTES/ 

(Contd.) 

Columns 

7 10 

11 - 20 

21 - 30 

31 - 35 

Variable 

ID(N) 

Y(N) 

Z(N) 

KN 

Entry 

Leave blank 

Radial coordinate of 1-D finite 
element n.ode (inches) 

Leave blpnk 

Node number increment for nodal data 
generation 

EQ.O: No generation 

1/ The X-cylindr.ic.al coordinate system has coordinate pairs 
(r,8), see Figure 4. 

2/ The correct values for ID are computed internally in the 
program. 

3/ If the sequence of node numbers N being input by cards 
has missing numbers and KN is specified as positive, then 
the program will generate nodes by linear interpolation 
between the nodes bracketing the missing sequence. Node 
numbe~s will be assigned to these nodes by incrementing 
from the first node number in the sequence in steps of 
KN. Fewer input cards are thus required. 

(8Fl0.5) 

Columm; 

1 - 10 

11 - 20 

Variable 

RC(2) 

RC(3) 

etc. 

RC(N) 

~ntry 

Radius of finite difference cell 2 
(inches) 

Radius of finite difference cell 3 

Radius of finite difference cell 
N.EQ. NUMFDN + 2 

1/ See Appendix B for a description of the one-dimensional 
finite difference model. 
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III. NODAL POINT DATA (Contd.) 
.. 

Card 8 (Al, I4, Al, I4, 2Fl0.0, I5) 2-D Nodal Point Data 

Notes 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

NOTES/ 

Columns Variable 

1 IT 

2 - 5 N 

6 JPR 

7 - 10 ID(N) 

11 - 20 Y(N) 

21 - 30 Z(N) 

31 - 35 KN 

1/ See notes for Card 6. 

Entry 

Symbol describing the coordinate 
system for this node 

EQ. : Cartesian (X, Y, Z) 
EQ.X: X-cylindrical 

Node number 
G E.l and LE NUMNP2 

Print suppression flag (ignored 
unless N.EQ.l) 

EQ. : No suppression 
EQ.A: Suppress ordered list of 

riode coordinates 
EQ.B: Suppress list of equation 

numbers 
EQ.C: Both A and B above 

Leave blank 

x (or r) coordinate (inches) 

y (or 8) coordinate 

Node number increment for node data 
generation 

EQ.O: Nu generation 

Card 9 (16I5) Thermocouple Radial Plane Nodes Card 

Notes Columns Variable Entry 

1/ 1 - 5 IAZ(l,l) Global node number of the first node 
on radial plane 1 

6 - 10 IAZ(2,l) Global node number of the second 
node on radial plane 1 

etc. Continuing on next card if necessary 

1/ 1 - 5 IAZ(l,2) Global node number of the first node 
on radial plane 2 

etc. as above 
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III. NODAL POINT DATA (Contd.) 

Car.d 9 (Contd.) 

Notes 

1/ 

NOTES/ 

Columns Variable 

1 - 5 IAZ(l,3) 

etc. 

Entry 

Global node number of the first node 
on radial plane 3 

as above 

1/ The program expects to read NPB(I) nodal points for radial 
plane I, I = 1, 3, as described in the notes for Card 3. 

·IV. ELEMENT DATA 

Card 10 (IS) One-Dimensional Elements Card 

Notes 

1/ 

NOTES/ 

Card 11 

Notes 

1/ 

1/ 

1/ 

2/ 

3/ 

Columns Vari~ble Entry 

1 ...., 5 NUMEl Number of elements in 1-D model 

1/ NUMEl is the.number of elements iri the 1-D finite element 
model described in Appendix B. 

(6I5) Individual 1-D 

Columns Variable 

1 - 5 M 

6 - 10 II 

11 - 15 JJ 

16 - 20 MTYP 

21 - 25 KG 

26 - 30 KQ 

Element Card 

Entry 

1-D. conduction element ·number 

Left node number 

Right node number 

Material type 

Node generation increment for 
missing element 

Internal heat generation flag 
EQ.O: No internal heat generation 
EQ.l: Yes 
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IV. ELEMENT DATA (Contd.) 

Card 11 (Contd.) 

NOTES/ 

1/ The one-dimensional finite element conduction model is 
described in Appendix B. 

2/ The variable MTYP describes the material from the material 
model library listed below that is used to determine 
thermophysical properties for the element M. 

Material Model Library: 

MTYP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Material 

Annular boron nitride 
Core boron nitride 
Chromel-alumel 
Inconel 600 
Magnesium oxide (80% theoretical density) 
316 stainless steel· 
TC composite I (jun,ction) 
TC composite II (nonjunction) 
TC composite III (center grouping) 
User defined material 

Optimum polynomial functions of temperature for the heat" 
capacity and thermal conductivity of material models 
1 through 9'have been incorporated into ORMDIN •. For 
material models 1 and 2 (annular and core boron nitride), 
the effective thermal conductivity must be determined 
in situ·as part of a rod calibration procedure described 
in Reference [16]. The coefficients obtained from this 
calibration procedure are input on Cards 20 and 21. 
Material model 10 is included ·to permit the user to 
input temperature function.data for heat capacity and 
thermal conductivity on Cards 22 - 25. 

3/ Elements must be input in increasing element number 
order. If card$ for elements (M + 1, M + 2, ••• , M + J) 
are omitted, these "J" ·missing elements are generated using 
MTYP of element "M" and by incrementing the node numbers 
of successive elements with the value "KG"; KG is taken 
from the first ·card of t.he element generation sequence 
,(Le., from the "Mth" element card). 
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IV. ELEMENT DATA (Contd.) 

Card 12 (1615) (Skip if NUMFDN.EQ.O on Card 1) 

Notes 

1/ 

NOTES/ 

Columns Variable 

1 - 5 MATFD(3) 

6 - 10 MATFD(4) 

etc. 

MATFD(NUMFDN + 2) 

Entry 

Material model for cell 3 of the 
finite difference model 

Material for cell 4 

Material model for the outermost 
cell 

1/ See Note 2 of Gard 11 for a description of different 
material types and see Appendix B for a description of 
the finite difference model. 

Card 13 (815) Two-Dimensional Elements Card 

Notes Columns 

l/ 1 - 5 

2/ 6 - 10 

3/ 11 - 15 

4/ 16 - 20 

21 - 25 

5/ 26 - 30 

6/ 31 - 35 

7/ 36 - 40 

Variable 

NUME2 

ITYP2D 

MXNODS 

NINT 

NBYE 

NBND 

NSST 

INTR 

Entry 

Number of 2-D conduction elements 

Type of element 
EQ.O: Axisymmetric 
EQ.l: Plane 

Maximum number of nodes pet element, 
2-D model 

NumPrirAl integration order 
NINT.GE.l and LE.3 

Total number of elements with 
surface boundary 

Total number of nodes on the surface 
boundary with prescribed heat flux 

Number nf constrained nodes 

Boundary interpolation option 
EQ.O: Linear 
EQ.l: Nonlinear 



62 

IV. ELEMENT DATA (Contd. ) · 

Card 13 (Contd.) 

NOTES/ 

1/ Two-dimensional conduction element numbers begin with 11111
. 

and end with the total number NUME2 of conduction elements. 

2/ Use ITYP2D.EQ.l. 

3/ MXNODS limits the number of nodes that can be used to 
describe any of the elements in this group •. A minimum of 
4 and a maximum of 8 nodes can be used with the 2-D 
elements. 

4/ For rectangular elements, an integration order of 2 is 
suggested. If the elements are distorted, an integratio~ 
order of 3 should be used. 

5/ NBND is set equal to the total number of nodes of the 
finite element model that are positioned on the surface 
of the rod. 

6/ To generate the initial steady-state solut~on, the 
temperature must be constrained at one or more nodes. In 
the 2-D model, NSST nodes near the center of the rod are 
constrained to be equal to the initial center thermo­
couple temperature. The constrained node numbers are 
entered on Card 16. 

7/ Surface flux boundary conditions are computed by interpo­
lating the values of the surface flux qi, i = 1, 2, 3, at 
radial plane surface nodes. If INTR.EQ.O, the flux values 
qi are interpolated linearly. If INTR.EQ.l, the 
interpolation described by equation (37) is used. 

Card 14 (5I5) Individual 2-D Element Card 

Notes Columns Variable Entry 

1/ 1 - 5 M 2-D conduction element number 

2/ 6 - 10 IEL Number of nodes used to describe this 
element 

3/ 11 - 15 MTYP Material type (add 100 if surf ace 
element) 

1/ 16 - 20 KG Node. generation increment for 
missing elements 

. ' 
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IV. ELEMENT DATA (Contd.) 

Card 14 (Contd.) 

Notes 

NOTES/ 

Columns Variable 

21 - 25 KQ 

Entry 

Internal heat generation flag 
EQ.O: No internal heat generation 
EQ.l: Yes 

1/ Elements must be input in ascending element number order. 
If data cards for elements (M + 1, M + 2, ••• , M + J) are 
omitted, these "J" missing elements are generated using 
IEL and MTYP given on the card for element "M" and by 
incrementing node numbers of successive elements with the 
value "KG". The value of KG used for incrementation is 
taken from the Mth element card, and only the nonzero 
nodes appearing on the Mth element card are incremented 
when generating element data. The last element in the 
group cannot be generated and must be input. 

2/ The number of nodes of element "M" is defined by "IEL". 
However; all 8 entries from NOD(I) on Card 15 are read; 
if IEL.LT.8, the particular node locations not used in 
this element, need to be input as "O" in NOD(I). 
Figure 18 defines the input sequence .that must be 
observed for element node input. 

3/ See Note 2 of Card 11 for the available material types. 
If this element has an external boundary, add 100 to the 
value of MTYP. 

Card 15 (8I5) Element Connectivity Card 

Notes 

1/ 

NOTES/ 

Columns Variable 

1 - 5 NOD(l) 

6 - 10 NOD(2) 

etc. 

36 - 40 NOD(8) 

Entry 

Global node number for element node 
1 of element M from Card 14 

Global node number for element node 2 

Global node number for element node 8 

1/ See Figure 18 and Notes 1 and 2 of Card 14. 
IMPORTANT: Nodes 1, 2 (and 5, if included) must represent 

the surface nodP.R tor those elementi:> having an 
external boundary. 
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3 

4 

ELEMENT EXTERNAL 
BOUNDARY (IF 
APPLICABLE) 

1 

Figure 18. Element node number input sequence for 2-D.conduction 
elements 

•" 
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IV. ELEMENT DATA (Contd.) 

Card 16 (16I5) Constrained Nodes Card 

Notes Columns Variable Entry 

1/ 1 - 5 LNST(l) Temperature constrained node 

6 - 10 LNST(2) Temperature constrained node 

etc. 

LNST(NSST) Temperature constrained·node 

NOTES/ 

1/ See Note 6 on Card 13. 

V. TIME FUNCTION DATA 

Card 17 (2I5) 

Notes 

1/ 

1/ 

NOTES/ 

Card 18 

Notes ._,_.-_,.-,, .. ..,_ 

1/ 

1/ 

Columns Variable 

1 - 5 NPTM 

6 - 10 NUN IT 

Entry 

Total number of points used to input 
the thermocouple data and internal 
heat generation data 

I/O unit for input of time function 
curves 

NPTM describes the total number of points (i.e., [ti, 
Ti(t.), Q(t.)] triplets) which define the time-thermocouple 
temp~rature

1

functions T~(t) of the inverse analysis and 
the time-internal heat generation function Q(t). NUNIT 
is the I/O unit number for the input of t:hese data. 
NUNIT.EQ.5 is used.for card input. 

(2F10. O) 

Columns Variable Entry 

1 - .10 RI Inner radius of heater annulus 
(inches) 

11 - 20 RO Outer radius of heater annulus 
(inches) 
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V. TIME FUNCTION DATA (Contd.) 

Card 18 (Contd.) 

NOTES/ 

Card 19 

Include 

Notes 

1/ 

NOTES/ 

1/ These radii are used to compute a density term for calcu­
lation of heat generation from the Q values input·on 
Card 19. See Note 1 of Card 17 for related information. 

(6Fl0.0 if NUNIT = 5; otherwise, unformatted) 
Time Function Data Card 

one card for each point I 1, 2, ... ' NPTM 

Columns Variable Entry 

1 - 10 TIMV(I) Time of measurement I (seconds) 

11 - 20 RV(l, I) Data for · thermocoupJe 1 (deg F) 

21 - 30 RV(2, I) Data for thermocouple 2 

31 - 40 RV(3, I) Data for thermocouple 3 

41 - 50 RV(4,I) Data for center thermocouple 

51 - 60 RV(5, I) Heat generation rate (Btu/hr-ft) 

1/ The following units are assumed for each input variable: 

Time - second 
Temperature - degree F 
Heat generation rate - BTU/hour/linear·foot of 

heater rod 

See Note 1 of Card 17 for related information. 

VI. MATERIAL MODEL DATA 

Card 20 (3Fl5.5) Material Model 1: Thermal conductivity coefficients 
for annular boron nitride 

Notes Columns 

1/ 1 - 15 

16 - 30 

31 - 45 

(Leave this card blank if material model l is not used) 

Variable 

CBNANN(l)} 

CBNANN(2) 

CBNANN(3) 

Entry 

Coefficients of temperature-thermal 
conductivity function for annular 
boron nitride 

" 



... 
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MATERIAL MODEL DATA (Contd.) 

Card. 20 (Contd.) 

NOTES/ 

1/ .The coefficients. of the thermal conductivity function 
for annular boron nitride are determined in situ as part 
of the heater rod calibration procedure described in 
Reference [16). 

Card 21 (3Fl5.5) Thermal conductivity coefficients for core boron 
nitride 

Notes 

1/ 

NOTES/ 

Columns 

1 - 15 

16 - 30 

31 - 45 

(Leave this card blank if material model 2 is not 
used) 

Variable 

CBNCOR(l)} 

CBNCOR(2) 

CBNCOR(3) 

Entry 

Coefficients of temperature-thermal 
conductivity function for· c·ore boron 
nitride 

1/ The comments·of Note 1, Card 20, also apply to the core 
boron-nitride material model 2. 

Card 22 (215) Control card for material model 10 (user-supplied model) 
(Leave card blank if material model 10 is not used) 

Notes 

i/ 

1/ 

NOTES/ 

Columns Variable 

1 - ) NCRIIO 

6 - 10 NAK 

Entry 

Total number nf points (i.e.; [T;_, c;] 
pairs) used to input the temperature­
specif ic heat function c(t) 
(NCRHO.LE.25) 

Total number of points (i.e., [Ti,ki] 
pairs) used to input the temperature­
thermal conductivity function k(T) 
(NAK.LE.25) 

1/ The specific heat and thermal conductivity are temperature 
dependent and are described by the discrete points 
entered on Cards 23 and 24. 
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VI. MATERIAL MODEL DATA (Contd.) 

Card 23 (2Fl0.3) Temperature function data for specific heat of 
material model 10 

Notes 

1/ 

1/ 

NOTES/ 

. (Skip this card if NCRHO.EQ.O) 

Columns Variable Entry 

1 10 TCRHO(I) Temperature at point, I,TI 

11 - 20 CRHO(I) Function value of specific heat at 
point I, c(TI) 

1/ Linear interpolation is used to compute the specific heat 
between the points input on this card. A total of NCRHO 
cards must be input, with temperature values TCRHO(I) in 
ascending order. The temperature interval _(TCRHO(l), 
TCRHO(NCRHO)) must contain all computed temperatures 
of t~e soltition. 

Card 24 (2Fl0.3) Temperature function data for thermal conductivity 
of material model 10 
(Skip this card if NAK.EQ.O) 

Notes Columns Variable Entry 

1/ 1 - 10 TAKINP(I) Temperature at point I, TI 

1/ 11 - 20 AKINP(I) Function value of thermal conductivi-
ty at point I, k(TI) 

NOTES/ 

1/. The general restrictions of Card 23 also apply to 
Card 24. 

Card 25 (Fl0.3) Density of material model 10 
(Skip this card if NCRHO.EQ.O) 

Notes Columns Variable Entry 

1 - 10 DIN Density· p of material model 10 

This concludes the card input to the program. 
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APPENDIX B 

ONE-DIMENSIONAL COMPUTATIONAL MODEL OF THE 

ELECTRIC HEATER ROD 

The one-dimensional computational model of the electric heater rod 

utilizes a combined finite element and finite difference discretization. 

In Figure 19, the region r .S. rp of the rod is partitioned by a set of 

·one-dimensional linear :Lsoparametric elements (the finite element model 

is described in [3]). The input thermocouple data TP(t) is used as a 

conventional boundary condition in this finite element formulation to 

p 
determine the temperature solution T(r,t) for r .S. r • To compute the 

solution in the region rp < r .S. a, the finite difference discretization 

described.in [2] is "grafted" onto the finite element model (FEM) at the 

outermost nodes NUMNPl-1, NUMNPl (NUMN.Pl is entered on Card 1). The 

finite difference model (FDM) consists of NTC = NUMFDN + 2 cells (NUMFDN 

is entered on Card 1), with the nodes for cells 1,2 of the FDM coinciding 

with nodes NUMNPl-1, NUMNPl of the FEM. The cell radii r 2 , r
3

, ••• , rNTC 

and cell material models are specified by the user on Card 7 and Card 12, 

r9spec tiveJ y; P.;:ir.h c:ell consists of only one material model. From 

Chapter II of [2L the cell radius r 1 is· computed by the program 

from 

(Bl) 

and the remaining nodal radii r 3 , r 4 , ••• , rNTC from 

(B2) 

I 1, NUMFDN. 
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For a given time (i)6t, it is assumed that the temperatures at all 

nodes of the one-dimensional model are known. To determine the values 

at time (i+l)tit, the FEM is first solved using the boundary condition 

T(i+l)6t at r = 
p 

r •· . With the temperatures at the FDM nodes 1, 2 thus 

determined, the (P)th iterative estimate of the remaining nodal values 

.is computed from the equation (see Figure 19-b) 

b(P-1) (P) (P) T . - b(P) T(P) 
TI+l;(i+l)6t - d I+l I I;(i)6t I-1 I-l;(i+l)tit 

+ (bi1') + d(P) + b (P-1) (P) 
I I+l TI;(i+l)6t 

I = 2, NTC-1 

which is derived from equations B.9 of [2). The temperature-dependent 

coefficients in (B3) are given by 

2 

2 

d = 
I 

2 2 
pc1(rI - rl-1) 

tit 

The estimate for the FDM nodal temperatures T3 , ••• , TNTC is corrected 

iteratively using (B3) until the incremental change in temperatures 

satisfies a convergence criterion analogous to that of equation (19). 

(B3) 

(B4) 

(BS) 

(B6) 



•• 
•' 

72 

Finally, the surface heat flux is approximated from the relation 

2aq (i+l)LYt = bNTC-1 (TNTC; (i+l)tit 

(B7) . 

which is derived ~rom equation B.69 of [2]. The surface temperature is 

calculated from equation B.72 of [2], which is given by 

TSURF; (i+l)tit = TNTC;(i+l)~t -
I 

(BS) 

When ISF2 = 0 is entered on Card 4, the surface flux values computed from 

equation (B7) at the three thermocouple radial planes are used as initial 

estimates in the two-dimensional discretization given by equation (23). 

l 
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