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PROTUN ACCUMULATOR RING INJECTION STUDiES*
R. K. Cooper and V. K. Neil

University of Califrrn’a

Los Alamos Scientific Laboratory and Lawrence Livermore Laboratory

1. INTRODUCTION

Protons may be created in an accelerator or storage ring by stripping electrons from
neutral hydrogen atoms that have been injected into the machine. Because Liouville's theorem
is violated by this type of injection, particles may be continually injected into a region of
phase space that is already populated, and the density in that region increases with time.

The purpose of this work is to investigate computationally the evolution of the distri-
bution of particles in longitudinal phase space during such an injection process. We consider
a storage ring operating below the transition energy. The variables considered are u = AE/Eo
(i.e., the deviation in energy divided by the reference energy Eo) and the phase ¢ = h(0 - wot)
in which h is the harmonic number, 6 the azimuthal position, and w, the circulation fre-
quency for particles with energy Eo' The Vlasov equation is integrated numerically to deter-
mine the function Y(t,¢,u) that represents the distribation of particles in v - u space
at time t. Two calculations are performed.

In the first calculation an rf cavity is present in the ring and particles are injected
into the stakle phase region once each revolution. The purpose of this c¢alculation is to
dete™minz the rf voltage neccssary to overcome the longitudinal self-forces and contain the
particles within the region of stable phase. In the second calculation the rf is turned off,
so that we are treating the spreading in azimuth of the injected particles (i.e., de-bunching).
The de-bunching occurs because of the initial energy spread and tho action of the self-forces.
One purpose of the calculation is to determine the total cnergy spread after a given number of
revolutions. Another purpose is to elucidate the effect of finite resistance in the vacuum
tank walls. For sufficiently high current, the finite resistance can cause bunching of a beam
that is initially uniform in azimuth. Therefore it might be experted that the finite resistance
would inhibit or prevent de-bunching once the number of particles injccted rcaches some thresh-
old, and thau this threshold would depend upon the energy sprcad in the beam.

2. THE MODEL

Quantities appearing in the Vlasov cquation include n = vy - Y

~

- .,, . i
. with Wt the
transition value of y for the ring, R = circumference/2w, the peak rf voltage V, the

azimathal self-eclectric ficld &, and the dimensionless time 7 = W t. In terms of these
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l'Vn'iables the Vlasov equation takes the form

aT 2 oY du
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The right hand side of this equation is the source term that represents the injection of
particles. The particular form chosen is
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with
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The quantity o in Eq. (3) represents a shift from a centered distribution in ¢. This shift
occurs during transport of the beam to the ring.

The LAMPF 800 MeV linac is taken as the source of particles for the ring, thus we take
Y = 1.85. When used as an injector for the ring, the output of LAMPF should be micropulses
of ~200 ps duration separated by 5 ns and containing 5 x 108 particies. The anticipated
value of Ap/p is of the order of 10-3. We choose ¥, = 0.2 and u, = 7 x 10_4 in Eq. (3)

The model of the ring has a circumference of 75.4 m so that the rf operates on the 60th harmoni
in order to be synchronous with the incoming bunches. A value of 0.1 is used for n. The
normalization of & is such that 5 108 particles are injected into each bucket each turn.

The model of the beam used in calculating the electric self-field assumes that the
particles are confined to the surface of a cylinder of radius a = .01 m, concentric with the
vacuum pipe of radius b = .05 m. (For calculation of clectric field cffects the curvature of
the machine is neglected.) The surface charge density is related to the distribution function

through the relation

Adv) =e£-ijdu
This charge density is Fourier analvzed as

X)) = Y zneI“”

Ir a perfectly conducting pipe this charge density gives rise to a longitudinal olectric ficld

acting back on the particles:
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where Io and Ko are modified Bessel functions with argument ecither nha/YR or nhb/yR as
indicated by a second subscript. If the arguments of the Bessel functions can all be taken

to be small, then this expression reduces to

° yam

which is a more familiar form.
To include the effects of finite conductivity on the particle motion, the magnetic field

at T = b is calculated as though the pipe were perfectly conducting. This field is expressed
as
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Fach Fourier component of this field can be thought of as prodvcing at the wall a component of
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a longitudinal electric field given by

e = (13%i) —TL—
n M08
in which o is the conductivity of the wall material (o = 1.1 x 106 mho/m), Gn is the skin

depth of the ath harmonic of the field (Gn = JZ/hnmouoo). and the lower sign is taken
for n < 0. This electric field evaluated at the beam is then given by
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The computer code calculates tha electric fields &0 and &1 once per turn. The number
cf time steps n. per turn is chosen to satisfy the more stringent of the stability criteria

for the finite difference scheme uscd:
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The finite difference equations are those of the simple "upstream-downstream' method :
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where in the bracketed expressions the upper expression is to be used if the subscripted factor
in front of the brackets is positive. The Kronecker deltas indicate that the source term is
added to the distribution function once per revolution. The effect of the rf voltage is taken
into account once per turn, immediately after injecting a new bunch of particles. This calcu-
lation amounts to a shift in the distribution function along the lines ¢ = constant by the

amount

- si
eVrf in ¢

3. RESULTS
Figure 1 shows the initial distribution function (= the source function) used for all
calculations. The horizontal axis is ¢, varying from -m to 7™ in 128 steps. The axis
extending into the plane of the figure is the u axis, varying from -3u, to 3u_ in 30 steps.
The rf voltage required may be estimated by assuming that after a large number of turns we
have A(¢) of the form

A(w) = A (1 + cos v) ,

and employing the approximate relation Eq. (5). We find the maximum &(y¢) to be such that
Z"R&max ~40 kV after 200 injected turns. The total voltage Ve required to contain a
distribution with half-height AE/Eo is given by the relation
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For AE/E = 7 & 10_4 and the parameters used above, we find Vc ~10 kV, so that the applicd
voltage should be of the order of 50 kV.

Figure 2 is the solution after 200 turns of injecction with 100 kV o€ applied rf. This
voltage appears to be not quite sufficient to contain all the particles injected, as can he
seen from the finite valuc of the -distrihution function at tw. Ilowever, there is considerable
numerical diffusion inherent in the finite differencing scheme. This diffusion (which is not
physical) could possibly account for particles recaching the I'yundaries at ¢ = *w. A more

sophisticated differencing scheme may be emplcyed in future caiculations.



Figures 3 and 4 show the distribution function after 100 and 200 injected turns, respec-
ively, with no external voltage applied. The bunches can be seen to be well distributed in
zimuth, the desired behavior, even though the injection method, which injected bunches directl:
n top of other bunches, was the least conducive to a rapid azimuthal de-bunching. No effects
f the finite resistance are apparent. The distribution has spread in u to the extent that the
alf width at half maximum is ~Zuo. Simple analytic theory pr?dicts that this energy spread
s sufficient to suppress the longitudinal resistive wall instability in an azimuthally uniform
eam with much higher circulating current tha.. is present here after 200 turns. This calcula-

ion will be contirued to 1000 turns using a better differencing scheme.
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Fig. 1. The Initial Distribution Function Fig. 2. The Distribution Function After
200 Turns with 100 kV RF Voltage



Fig. 3. The Distribution Function After Fig. 4. The Distribution Function After
100 Turns, Nc RF 200 Turns, No KF



