o ~ ¢ R R
AV R 4

ORNL/CCIP--91/12

DE91 016775

MONTE CARLO SIMULATION OF A DYNAMICAL FERMION PROBLEM:
THE LIGHT q%3* SYSTEM

Received by ST

AUG 1 3 1qqi

G. Grondin

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apperatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or scrvice by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any ageacy thereol. The views

and opinions of authors cxpressed berein do ot necessarily state or reflect those of the
United States Government or any ageacy thereol.

10 be published in

Proceedings of Conference on Computational Quantum Physics
Nashville, Tennessee
May 22-25, 1991

|
|

’.
{.
|
»
33

3
5
%

ACOB-S40R2 1

|

;
|

|
|

:
-z
;,

e

. s'm

e “..

..

!‘ X -.4.
~a
~r



ORNL/CCIP/91/12
UTK/91/06
UTPT/91/15

MONTE CARLO SIMULATION OF A
DYNAMICAL FERMION PROBLEM:
THE LIGHT ¢’ SYSTEM
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and
Physics Division and Center for Computationally Intensive Physics,
Oak Ridge National Lahoratory, Oak Ridge, TN 37831-6373

We present results from a Guided Random Walk Monte Carlo simulation of
the light ¢24? system in a Coulomb-plus-linear quark potential model using an
Intel iPSC/860 hypercube. A solvable model problem is first considered, after
which we study the full ¢?¢? system in (J,I) = (2,2) and (2,0) sectors. We find
evidence for no bound states below the vector-vector threshold in these systems.

I. INTRODUCTION

The possible existence of light four-quark resonances (¢*g?, also referred to as
baryonia) was first suggested in studies of duality diagrams’ in the late 1960s. Through
the 1970s other models, including the MIT bag model? and potential models with
truncated color degrees of freedom, predicted that a rich spectrum of four-quark res-
onances should exist. This was not verified experimentally. The unphysical feature of
these models was thut tkey did not allow “fsll-apart” decays, so that the four-quark
system was not allowed to dissociate into two separate gf mesons. The binding im-
plicit in the models held the four quarks together as a single system and generated a
tower of excited states.

There is howevar experimental evidence for two multiquark mesons. The £,(975)
and a,(980) JPC = 0** resonances were discovered in the early 1960s*, and could
not easily be described as gg states. Thes: states were unusual because they were
just below KK threshold and coupled mor+ strongly to strange final states then to
nonstrange states, contrary to expectations for :};(ui + dd) P, q§ mesons. Following
carly suggestions by Jaffe and Johnson! tha! these might be four-quark baryonium



states, Weinsteir and Isgur® used the nonrelativistic quark model® in s variational
calculation of the four-quark system in spin-0, isospin-0 and -1 sectors, which led
them to identify the fo(975) and ao(980) with the loosely-bound K K states found in
this calculation. Other theoretical and experimental work (for example two-photon
decays’) also supported this conclusion. Weinstein and Isgur also found that the
light ¢’§* system in the spin-0 sector had no excited metastable states above these
“K K molecules” other than the two-meson continuum, which explained why no other
four-quark states were seen experimentally.

Approximate solutions of QCD and the four-quark problem have of course been
attempted using other methods. One very promising approach is lattice QCD, which
simulates the full theory in termr s of the QCD Lagrangian on a space-time lettice. This
lattice formaulation can be studied using Monte Carlo methods to estimate the masses
of low-lying states such as the x, p, and glueballs. However, these algorithms suffer
from a nonlocal equivalent action when applied to dynamical fermions; this leads to
slow updates and ;ehtively noisy simulations. The accuracy required to measure the
small binding energies expected if the four-quark ground state is a “molecule” of two
mesons (pethaps a few tens of MeVs) are not yet attainable using unquenched QCD
simulations.

Y.G.Liang et af used lattice QCD Monte Carlo to search for light g3 resonances
below vertor-vector thresholds in (J,I) = (0,0), (0,2), (2,0), aad (2,2). Although
they found possible evidence for & bound state in the (J,I) = (0,0) sector, they
noted that its mass equals their xx threshold energy and hence may be an artifact
due to transitions to xx states. Their lattice was modest in size at only 16° x 24
sites and their quark masses were heavy compared to the physical situaticn. This
demonstrates some useful properties of simulating a Hamiltonian potential model. In
a potential model, we can set various Hamiltonian terms to sero to prevent transition
to unwanted states and our quark masses can casily be set to currently accepted
values.

Another approach, which we follow in the present work, is to attempt a Monte
Carlo simulation of “QCD-inspired” potential mode's, which are based on nhenomeno-
logical interquark potentials and nonrelativistic dynamics. Since these models are not
equivalent to QCD, care must be taken to insure that the relevant physics is incorpo-
rated, following which the model predictions can then be tested by comparison with
the experimental spectrum of resonances.

Other Monte Carlo studies of the four-quark system in potential models have
appeared in the literature, albeit with important simplications. Carlson, Heller, and
Tjon® studied four-quark systems in which the two quarks were heavy (c and 5) and
the antiquarks were light (G and d). They carried out a Green’s Function Monte



Carlo (GFMC) simulation of tke Born-Oppenheimer approximation to the bag model
and found that the four-quark system was lighter than two separate mesons (i.c.
bound state is present). Note however the the four-quark system was again not
allowed to decay into two mesons by their Ansatz — this is what originally led te the
erroneous prediction of many four-quark resonances. Carlson and Pandeharipande!®
used Variational Monte Carlo and GFMC to study light (u and d) multiquark states
in a strong-coupling QCD flux-tube potertial model. They found no bound states,
not even for six quarks; since the deuteron exists, their results imply that either
their QCD flux-tube model is an inadequate description of multiquark states or their
solution is inaccurate. A possible source of error is that this model mixes tue two
distinct color basis states only at fourth order in the flux-tube bresking Hamiltonian.
This mixing between color ground-state basis vectors may be too wesk, so that one
finds no binding in systems with more than three quarks. (This problem does not
arise in meson and baryon states, which havc unique color states.)

In the next section we briefly describe the QCD-inspired quark potential model
and discuss some of the relevant physirs of the four-quack system. This is followed
by a description of the Guided Random Walk (GRW) Monte Catlo algorithm and
the modificatioas which we implemented for our simulation of dynamical fermions.
In the fourth section, a simple model Hamiltonian will be introduced and solved as a
test case, following which we quote results for the full four-quark problem.

II. THE HAMILTONIAN
We employ a QCD-inspired quark potential model which has been very successful
in describing meson and baryon physics®!!. The success of Weinstein and Isgur'’s
description of the f5(975) and ao(980) as KK bound states also motivates frrther
study of the model as applied to ¢?§* states. The Hamiltonian is given by

N i Gy
H=Y (mi+ %)+ Y (Vo + Vi), (1)
=l 2"" (24}
Where
Vi, =~(C+3bei)Fi-Fy (2)

contains constant and linear confining terms, and

Vels = Viou + Ve + Vi (3)
is a one-gluon-exchange term with

Véﬁu=?ﬂ-fj (4)

J



and
R L | F.F
hyp = r.n‘,_;x, _5' TS (r.,) + Vien| Fo - Fl’ (5)
These terms suffice for a surprisingly accurate description of light nonrelativistic
hadron spectroscopy. We choose to neglect the usually unimportant tensor and spin-
orbit terms, V,2, and V.1, because their contribution to a dominantly S-wave ground
state is expected to be much smaller than that of the spin-spin term.
Since we are simulating a Schrodinger equation numerically, the delta-function
must be smoothed if we are to obtain a physically realistic spectrum. Qur replacement
3
2 2

; oy
6J("u) - 'T,IE cxp(-a',,,r,-,- (6)

can also be motivated as a “smearing” of the delta-function caused by Zitterbewegung.
It is also necessary to regulate the color Coulomb term V) at contact. We substitute

1_. } r>h, e
r L 0<r<h, g

where h, is the spatial lattice size, which we subsequently extrapolate to zero.

For the present we consider only light u and d quarks in the equal-mass limit. We
must construct totally antisymmetric four-quark states, which are products of spatial
(¥), spin (x), flavor (¢), and color (C) wavefunctions. Each carries a subscript S
or A, which denotes a symmet‘ric or antisymmetric state under exchange of quarks
(labelled 1 and 2) or watiquarks (labelled 3 and 4).

There are two “natural” color bases which we might employ (see Figure 1). The
(|113124), |114123)) basis corresponds to the “color flux lines” that can be drawn for
a system of two separzte mesons; this is the more physical basis if we expect the
four-quark system to be molecule-like or unbound. These two |1,1) basis states are
not orthogonal in color space, and this complication leads to nondiagoaal kinetic
terms which are not easily simulated by the GRW algorithm. We therefore use the
orthogonal basis (]3;231:),1612634)) in which the fermion symmetry is explicit; inter-
pretation of the results in terms of color-singlet meson states is, unfortunately, rather
more difficult in this basis. The relation between the two bases is

[113124) = \/§|§|z3u) + ‘/glﬁngu), (8)

1 ._ 2 ..
[114123) = — /;|3|z334) + ‘/;lﬁzzﬁu)-




9 g4 U g
O—-c—. })
q g2 q. q2 ds
(13124), [114123)) {1312334), [612634))

FIG.1. Color bases. .

From four spin- objects with no orbital excitation we can consiruct states with
total spin J = 0, 1 and 2. We neglect orbital angular momentum in Yisting the possible
J values because dominantly S-wave bound states are most likely a priori. We shall
first consider the J = 2 case. These states have a symmetric spin wavefunction xs,
and are diagonal in the spin-spin Hamiltc sien,

1

$i-85;\0 =2,Ja) = 54- W =2,Jn). )

The flavor wavefunctions have total isospin / = 0, 1, or 2. Here we consider
only I = 0 and I = 2, which are totully symmetric or antisymmetric under identical
fermion exchange. The I = 1 states, in contrast, have opposite exchange symmetry
for the quarks and antiquarks. This more complicated symmetry requires a more
complicated spatial wavefunction to maintain the overall fermion antisymmetry. (The

color and spin states are already fixed.)
’ Finally, the spatial wavefunction ¥(Z,§,) can be shown to have definite sym-
metry in £ and § under identical fermion exchange. Figure 2 shows the definition
of these Weinstein-Isgur coordinates; the center-of-mass coordinste can be factored
out of the Hamiltonian and need not be considered. The separation between the
center-of-mass coordinates of specified ¢ pairs is given by the coordinate Z {or §); if
the two-meson system is unbound, then the expected £ or § must diverge. ‘

9 9 N 94 N ds
I o m N B
S F & o—1 e e 7 &
E] 92 s 92 92 25

FIG. 2. Spatial coordinates.



To illustrate the spatia! symmetry of ¢, consider the (J,I) = (2,2) system; we
specialize to the p*p* sector, which has flavor and spin states |¢s) = |uudd) and
fxs) =1 TTTT). One might a priort consider writing the state as ¥(z,y, Z)|1,512,),
but this does not give a correctly symmetrized state. If we apply identical-fermion
excharge symmetry to the ground-state wavefunction (which we denote by |p*p*) for

simplicity), we :an rewrite it as

lo*p*) = (VZ.5, ) + (- % -§, ) ILislas) £ ($(§,7, 2) + (7, —£, D)) [Lualza);
(10)

the + determines the symmetry of the wavefunction under exchange of one pair
of quarks or antiquarks. For |p*p*) we must chose the minus sign but in the
(J,I) = (2,0) sector we can find an antisymmetric flavor function which allows the
positive sign. For the negative case in (10) we can rewrite the state as

le*p*) = \/:-1;1(15(5, ¥, 2)[312334) + ‘/gxlm(f,i,f)lﬁnau)- (11)

This uses the color basis (|312314),[612634)) and introduces the symmetrized combi-

nations
¥s(£,5,5) = ($(£,,5) + ¥{~%,-4,5) + (55, D) + ¥(~4,-£,9), (12)

Va(E,§, 5) = (W&, 5) + ¥(~%,-7,5) — (7,7, 9) + ¥(-7, -, 7).

Equation (12) explicitly shows the symmetry of s and ¥4 under (Z,y) interchange,
and also shows that Y5(Z,7, 2) = ¥s(—Z, —¥, 2) and Yu(,7, 7) = Yu(-Z, —¥, 7).

III. THE GUIDED RANDOM WALK ALGORITHM

The guided random walk (GRW) Monte Carlo algorithm was introduced by
Barnes, Daniell, and Storey'? as an alternative to branching algorithms. The earlier
versions of GRW considered systems having either continuous'? or discrete!® degrees
of freedom but did not consider systems with both in the same Hamiltonian (for a
summary of both versions see Barnes'!). The modified GRW algorithm presented
here allows the simulation of systems having both types of state.

First consider an unguided RW method based on a Euclidean form of the
Schrodinger equation; on taking it — 7 it becomes a diffusion equation,

~he- () = H I¥(r)). (13)


file:///uudd

Such s diffusion equation can then be simulated by generating random walks on a
space-time lattice (Figure 3), as first proposed by E.Fermi'?, and weighting each walk
with an appropriate factor. (This is similar to the e weight in path integrals.) In
the limit h,, A, — 0 with h, A? constant, the weighted RW process can be made
equivalent to the diffusion process (13). In a simulation of the diffusion equation (13),
the ground-state wavefunction and energy are generated in the large-r limit, as can
be seen from an eigenmode expansion of the initial wavefunction. We assune that
the initial wavefunction has a nongero overlap with the true ground state,

¥(0)) =3 calvn), (14)
so that

W(r) = 3 ealbn) ™", (75)

which implies
lim [9(r)) = co ™5 o) + Ofe (B0, (16)
An unweighted random walk simulates a diffusion equation with no potential. To
include a potential, each walk is given a weight which is determined by the potential
V and the path of the walk. The ground-state energy and wavefunction are found
using the expected weight and & weight-factor histogram. In the unguided algorithm
these weights have widely scattered values (again see Barnes'!); the wider the scatter

of the weights, the greater the computational effort required to achieve s prescribed
statistical accuracy.

FIG. 3. A random walk on the lattice.



The GRW algorithm attempts to improve the statistical accuracy by introducing
a trial “guiding” wavefunction, which guides the walks into regions where the ground-
state ¥, is expected to be large. The guiding wavefunction does not introduce a bias in
the determination of the ground-state ensrgy or matrix elements, since a generalized
weight is introduced which compensates for the effects of the guidance. Formally the
algorithm used here is essentially that of Barnes and Daniell'’; only a few changes
are required for our simulation.

The walk is performed on a lattice (with coordinate resolution k,) in the con-
figuration space Z = (z,,S); z, is the ¢°¢’ (Z,v, Z) coordinate space, and S is the
color @ isospin @ spin state (only two such states are present). At each time step 4.,
the probability to go from Z at time 7 to Z’ at time 7 + R, is written as

Pr—z =tz—zh, (17)
with h, determined from conservation of probability,

Y pzz =1 (18)

7

Each walk is assigned a weight factor W, which is given by

Win = Wdiag . wlrany (19)
Weiag = exp {— / (Vo(Z(T')) -2 fz-.z-) df'}.
0 z'#2
Z'|H; |2
Wean= ] (_u’_l_z) :
trensitions rz-.2z
Z=2'9gZ

where H = Ho + H;, and Hy(Z) = Vo(Z) = (Z| Hp |Z). (By definition Hj is diagonal
and H; is off-diagonal in state space.)
Previously Barnes'¢ chose to specialise rz_.z to a particular form in terms of &
“guiding wavefunction” ¢,,
- (218, 7 ¥Z)
rz-z (Z'|H:,2) %(2) (20)
This form simplifies Wi,an, and in the “perfect guidance” case in which v, is equal
to the true ground-state wavefunction, sets the diagonal weight exactly equal to
exp(—Eyr). As the energy is determined from the r-dependence of Wiy, equa-
tion (20) makes W,.., & function of Z only, and it can therefore be discarded in
energy measurements. In practice, the true ground-state wavefunction is not known
and is approximated by a parametrized guiding wavefunction ¢,; we then vary the




parameters of ¥, and search for a minimum of the variance of the diagonal weights.
(Zero variance in Wy,,, indicates that ¢, actually equals an energy eigenstate wave-
function.) In this ¢°¢° problem, however, the right hand side of (20) is not always
positive dcfnite, whereas the stepping probability r;__,.h, must be. To force rz_ 5

to be positive we instead choosv

_ ' ¥s(2)
e = |- 218012) 2], (1)
which requires
_ [¢2(0) o
W(run = ¢,(Z(T)) m“gau g ( (Z ' HI IZ)) . (22)

This form allows a dynamical generation of the wavefunction’s nodal structure, since
both positive and negative weights ace generated by the algorithm if some (2’| H, |Z)
matrix elements are positive. It also retains the zero-variance property for ¢, = ¢,
which r;__; defined by (20) possessed for negative definite or zero (2’| H |2Z).

The ground-state energy is estimated from the 7-dependence of the average sign-

weighted «tiagonal weight

i transitions
ZI~2'y2

(wa..sisn(wm))=Niwi{w;;., Il sign(- (21 4, IZ))]; (23)

Lim (Weiag() sign(Wiran)) o exp(— Eor). (24)

Unbiased matrix elements can in principle be determined from W, (sec Barnes!'!),
although we shall only consider energies here.

If we evaluste equation (24) directly, the statistical error in the energy could
be large, due to cancellations between negative and positive weights. As the energy
is determined from the r-dependence of the expected weight alone, we can multiply
the final histogram of weights by any function of the coordinate Z (which we call a
“masking function”) to reduce the fraction of negative weights and hence to increase
the statistical accuracy in the energy. We normally attempt to approximately repro-
duce the nodal structure of ¥, in the masking function. Note however that no bias
will result if the nodal structure of the masking function is not identical to that of
¥o- (Actually in this problem we do know the exact nodes, which we will discuss
subsequently.)

The implementation of the code is parallel, in that we run n copies of the program,
each generates a set of walks on its own “node” (CPU), and the resulting weights are




summed at the end of the run. [t is possible to run one program per node because
the algorithm has very small memory requirements; this avoids the complications of

internode communication.

IV. RESULTS

Before considering the full Hamiltonian (1), we first consider an analytically-
solvable Hamiltonian which is very similar to that introduced by Weinstein and Isgur®.

Our test problem is defined by

7 K’ 2 2 2 1 2, 2y, 1 2| (10
Bu=tm - 5= (V34 U3+ V) 4 (200 +¥) + 5(4):

m 01
1 2 2[01
+2k,.(y —z)(lo), (25)
whereas the test problem of Weinstein and Isgur® instead substitutes
; . 4
VotV — ~(C+ 5(2 k+%))F; - F;, (26)

in (1), which produced an intractable Hamiltonian. Our solvable H, is their (26)
without a diagonal term. The energy of a general eigenstate of Hy is

+\/2k + k(251 + 272 + 23 + 3) + VAK(2k, + 2k, + 2k + 3)) , (27)

= —',;J m(2k — k) (28)
, ! \/m(2k + ky)
Vm(4k).

Hia(2) = Hi, (/21 21) Ha (20 22) Biy (/270 23), (29)

where H(z) is a Hermite polynomial, then the energy eigenfunction correspondmg
to (27) is

where

7=

':"»I-

If we define

Wt = [ Ha(2)Hja(7) exp(—112" — 129") F Hja(Z)Hia(7) exp(~122* - 'ml’)]
o H.(£)H,2(F) exp(—m12* — 1ay’) £ Hja(£)Hia(§) exp(~122® — my?)
- Hy (D exp(—7.27). (30)




Our test {f,, has the same degrees of freedom as the full Hamiltonian (1), and also
Yias terms of cither sign off-diagonal. as is expected in a dynamical fermion problem.
It also has a “fall apart” solution; the ground-state wavefunction is independent of
the relative-separation coordinate £ when 2k = k,,.

Figure 4 shows the Euclidean-time dependence of the extracted ground-state en-
ergy with a fixed lattice size; in practice we increase 7 until evidence for r-dependence
has disappeared to the required accuracy, which indicates that contributions from ex-
cited states have become unimportant. We then extrapolate the energy to zero lattice
size at this value of 7, as shown in Figure 5. The algorithm evidently finds the -orrect
ground-state energy to our statistical ac:uracy of about 0.1 MeV. We used |¢gy0)
from (30) as our guiding wavcfunction for this simulation; this guiding function equals
the true ground state only when A, = 0, and we find accordingly that the variance of
the diagonal weights does indeed go to zero as A, — 0.

m=0.33 GeV, k=0.5 GeV/fmZ, k,=-1.0 SeVitm?

7, =0.0 fm % 1=1,=2.0588 fm 2, y=1

14 _ 1
N w=2 » h =020 fm, t =t 425 GeV”
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FIG. 4. E,(r) for the analytic test case.
See also the h,? extrapolation in Figure 5.
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FIG. 5. Eo(h.2) for the analytic test case.

One of our principal concerns in solving equation (1) with the GRW algorithm
is to insure that ¢, does not impose an incorrect nodal structure. In a general
multifermion problem the nodes are usually unknown. For this problem we can use the
cigenfunctions of Hj to exactly determine the nodes of the ground-state eigenfunction

of (1).

We will treat (1) as a perturbation Hy about (25); we must restrict the eigen-
function basis set of (30) to eigenfunctions for which §; + 12 + 63+ 51 + ja4iais
even, in order to satisfy the constraint ¢(Z,¥,2) = ¢¥(—Z, ¥, Z). Note that H; can
be written as

" _ [fl(::vgvi) f(z:y:i) , (31)
f(£,¥,2) £(2,¥,3)

where

f"'(fvivi)=IM(_£v _ivi) (32)



= fm(¥: 2, %)

and

f(fvivi)zf(—iv “i:z-) (33)
= —f(i»iv i‘)

From this focrn we can casily show that
(V’.‘-jbiﬁlh"ﬁ. n) =0. (34)

We may now apply perturbation theory in H; to determine properties of the
cigenstates of 7. Let the cigenstates of Hy be written as [n) with sigenvalue E,(0).
The cigenstates of H can then be written as

E = E(0) + AE(1) + X E(2) + --- (35)
. and
|¥) = [@0) + A&1) + A%|&a) + -+, (36)

" where |$) = |¥do0) snd (Bal8o) = Sno Vn. (We can also determine [¢5,,) by
. changing + to — where appropriate.) We need only determine the ground-state -
. wavefunction, since the GRW algorithm coaverges to that state. The perturbative
_results for E and |¥) are given by

E(n) = (%0l &/|€0-1) (37)

: and !

/ |#.) = [E(0) — Ho]'[I ~ %0} (%al] [[Hr ~ E(1))i#n-1)
+E(2)|®n-2) +---+ E(n ~1)|®,) ]. (38)

Using (34, we can easily show that the first- and second-order perturbative contri-

: butions to the ground-state wavefunction are

; [n*)(n* | H1l%o)
i ’1 =
1 )= X 0 - £

(39)

18;) = : z ’"ﬂ("ﬂ(ﬁl - E(l))'m+)(m+igl|§0) )

o2 (E0) =~ EL(0)(E() - EA(0)) o) |



Neither of these has a contribution from the {|n )} states. One may prove by in-
duction that no jd,) has a contribution from the {|n ")} states'®. The ground-state

wavefunction may therefore be written as

Wy - 0%) + ) culn”). (41)
n g
Using (30) and letting S - %(‘71 +71)and D = %(‘72 - 71), we find that the node
in the upper coniponent of {41) is determined by

0 = 2sinh(D(z” - y°)) + Y ¢ yu [Hoa (2) H,o(§) exp(D(2? - 7))

ey k

- Hya(2)H.(§) exp(- D(z* - ¥7))] Hial2)- (42)

As D # 0 in general, this equation is only satisfied by £ + §¥ = 0, or equivalently by
z? — y? = 0. If we now consider finding the eigenvectors of H; alone, we can use the
eigenfunctioas (30) as the bhasis e genvectors, since they span the configuration sp_:e
and satisfy the symmetry requirement (12) for eigenvectors of H;. The ground-state
cigenvector can thereiore be written in the form (41), which implies that the nodes
of the ground-state eigenfunction of (1) are given by z? — y?* = 0. This motivates
our choice of the ground-state eigenfunction of H, as the trial wavefunction ¥, in the
simulation of (1), as this ¥, has this nodal structure.

The Euclidean-time dependence of the ground-state energy estimate for (1) in
the (J,I) = (2,2) sector is shown in Figure 6. The values of the parameters were
determined in a fit to light meson spectroscopy’?, and are similar to the conventional
quark model values. The lattice energy extrapolation gives a value for the four-quark
ground-state energy which equals that of two free mesons to within =~ 5§ MeV. Pre-
liminary results for the ground-state energy in the (J,I) = (2,0) sector leads to a
four-quark ground-state energy equal to that of two free mesons to within =~ 10 MeV.
Thus we conclude that there are nv bound states in the I = 2 (p*p*) and I = 0
(pp + ww) sectors of the nonrelativistic quark potential model to within an accuracy
of 10 MeV. The former result is consistent with the lattice QCD results of Y.G.Liang
et af in the (J,I) = (2,2) sector.
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FIG.6. Ey(k.?)in the (J,I) = (2,2) sector (p*p* quantum numbers).
The point at the origin is extrapolated from a linear fit in A.2.

V. CONCLUSIONS

We have applied an extension of the GRW Monte Carlo algorithm to a dynamical
fermion problem, the ¢>§® system. The extended algorithm allows the simulation of
systems having both continuous and discrete degrees of freedom, and is applicable
to Hamiltonians with both positive and negative off-diagonal matrix elements, as
characteristically occur in dynamical fermion problems.

We first applied the algorithm to an analytically solvable test problem which
has many of the properties of the full four-quark Hamiltonian. From the solution
of the test problem we demonstrated that the node of the four-quark ground-state
wavefunction is given by z° — y* = 0. Emplcying this in our choice of guiding wave-



function, we used the Monte Carlo algorithm to estimate the ground-state energies of
che (J.1)  (2,2) and (2,0) light four-quark systems in a Coulomb-plus-linear quark
potential model.

We find evidence for no bound states of two light vector mesons in the channels
studied (J 2, p*p'yp p ., ww, p-p, ..) in the nonrelativistic quark potential
model. The mass of the four-quark state was found to equal that cf two free mesons
to within our statistical errors of about 5 MeV for I = 2 and about 10 MeV for
I = 0. We Lope to improve this measurement in future and to extract an equivalent
potential between vector meson pairs, which should be useful in the study of final

state interactions ir. these systems.
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