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We present results from a Guided Random WalJc Monte Carlo simulation of 
the light q2q2 system in a Coulomb-plus-linear quark potential model using an 
Intel iPSC/860 hypercube. A solvable model problem is first considered, after 
which we study the full q2q2 system in (J, I) = (2,2) and (2,0) sectors. We find 
evidence for no bound states below the vector-vector threshold in these systems. 

I. INTRODUCTION 

The possible existence of light four-quark resonances (f 2 ? 3 , also referred to as 
baryonia) was first suggested in studies of duality diagram*1 in the late 1960s. Through 
the 1970s other models, including the MIT bag model3 and potential models with 
truncated color degrees of freedom, predicted that a rich spectrum of four-quark res­
onances should exist. This was not verified experimentally. The unphysical feature of 
these models was that they did not allow "fall-apart" decays, so that the four-quark 
system was not allowed to dissociate into two separate qq mesons. The binding im­
plicit in the models held the four quarks together as a single system and generated a 
tower of excited states. 

There is howevrx experimental evidence for two multiquark mesons. The /o(975) 
and ^,(980) Jpc = 0 + + resonances were discovered in the early 1960s3, and could 
not easily be described as qq states. Thes; states were unusual because they were 
just below KK threshold and coupled mot*, strongly to strange final states than to 
nonstrange states, contrary to expectations for J-(tt« ± di) 3P0 qq mesons. Following 
early suggestions by JafTe and Johnson4 that these might be four-quark baryonium 



states, Weinstein and Isgur* used the nonrelativistic quark model6 :n a variational 
calculation of the four-quark system in spin-0, isospin-0 and -I sectors, which led 
them to identify the /o(975) and ao(980) with the loosely-bound KK states found in 
this calculation. Other theoretical and experimental work (for example two-photon 
decays7) also supported this conclusion. Weinstein and Isgur also found that the 
light q7q2 system in the spin-0 sector had no excited metastable states above these 
UKK molecules" other than the two-meson continuum, which explained why no other 
four-quark states were seen experimentally. 

Approximate solutions of QCD and the four-quark problem have of course been 
attempted using other methods. One very promising approach is lattice QCD, which 
simulates the full theory in tern s of the QCD Lagrangian on a space-time lattice. This 
lattice formulation can be studied using Monte Carlo methods to estimate the masses 
of low-lying states such as the IT, />, and glueballs. However, these algorithms suffer 
from a nonlocal equivalent action when applied to dynamical fermions; this leads to 
slow updates and relatively noisy simulations. The accuracy required to measure the 
small bindiig energies expected if the four-quark ground state is a "molecule" of two 
mesons (perhaps a few tens of MeVs) are not yet attainable using unquenched QCD 
simulations. 

Y.G.Liang tt of used lattice QCD Monte Carlo to search for light q2q2 resonances 
below vector-vector thresholds in (J , / ) = (0,0), (0,2), (2,0), and (2,2). Although 
they found possible evidence for a bound state in the {J, I) — (0,0) sector, they 
noted that its mass equals their TX threshold energy and hence may be an artifact 
dee to transitions to rw states. Their lattice was modest in sice at only 163 x 24 
sites and their quark masses were heavy compared to the physical situation. This 
demonstrates some useful properties of simulating a Hamiltonian potential model. In 
a potential model, we can set various Hamiltonian terms to aero to prevent transition 
to unwanted states and our quark masses can easily be set to currently accepted 
values. 

Another approach, which we follow in the present work, is to attempt a Monte 
Carlo simulation of "QCD-inspired" potential models, which are based on phenomeno-
logical interquark potentials and nonrelativistic dynamics. Since these models are not 
equivalent to QCD, care must be taken to insure that the relevant physics is incorpo­
rated, following which the model predictions can then be tested by comparison with 
the experimental spectrum of resonances. 

Other Monte Carlo studies of the four-quark system in potential models have 
appeared in the literature, albeit with important simplications. Carlson, Heller, and 
Tjon* studied fbur-quark systems in which the two quarks were heavy (c and b) and 
the antiquarks were light (fi and i). They carried out a Green's Function Monte 



Carlo (GFMC) simulation of the Born-Oppenheimer approximation to the bag model 
and found that the four-quark system was lighter than two separate mesons (i.e. a 
bound state is present). Note however the the four-quark system was again not 
allowed to decny into two mesons by their Ansatz - this is what originally led to the 
erroneous prediction of many four-quark resonances. Carlson and Pandeharipande10 

used Variational Monte Carlo and GFMC to study light (« and d) multiquark states 
in a strong-coupling QCD flux-tube potential model. They found no bound states, 
not even for six quarks; since the deuteron exists, their results imply that either 
their QCD flux-tube model is an inadequate description of multiquark states or their 
solution is inaccurate. A possible source of error is that this model mixes tite two 
distinct color basis states only at fourth order in the flux-tube breaking Hamiltonian. 
This mixing between color ground-state basis vectors may be too weak, so that one 
finds no binding in systems with more than three quarks. (This problem does not 
arise in meson and baryon states, which have unique color states.) 

In the next section we briefly describe the QCD-inspired quark potential model 
and discuss some of the relevant physW of the four-quark system. This is followed 
by a description of the Guided Random Walk (GRW) Monte Carlo algorithm and 
the modifications which we implemented for our simulation of dynamical fermions. 
In the fourth section, a simple model Hamiltonian will be introduced and solved as a 
test case, following which we quote results for the full four-quark problem. 

II. THE HAMILTONIAN 

We employ a QCD-inspired quark potential model which has been very successful 
in describing meson and baryon physics6'1 1. The success of Weinstein and Isgur's 
description of the /o(975) and ao(980) as KR bound states also motivates farther 
study of the model as applied to q*q2 states. The Hamiltonian is given by 

B=x>,+2-j+Dt/+v:jf), (i) 
where 

l & / - - ( t f + j K , ) # , , . / i (2) 

contains constant and linear confining terms, and 

Kh-V^ + V^ + V" (3) 
is a one-gluon-exchange term with 

viL'r*-** ( 4 ) 



ind 
[Ba­vZ-~fe3.S.^)+V£]Fi.F,. (5) 

These terms suffice for a surprisingly accurate description of light aonreiativistic 
hadron spectroscopy. We choose to neglect the usually unimportant tensor and spin-
orbit terms, Vf'„ and V^, because their contribution to a dominantly S-wave ground 
state is expected to be much smaller than that of the spin-spin term. 

Since we are simulating a Schrodinger equation numerically, the delta-function 
must be smoothed if we are to obtain a physically realistic spectrum. Our replacement 

can also be motivated as a "smearing" of the delta-function caused by Zitterbewegung. 
It is also necessary to regulate the color Coulomb term Vconi a * contact. We substitute 

1 f j r>hx 

\ £ 0 < r < f c . (7) 

where hz is the spatial lattice size, which we subsequently extrapolate to zero. 
For the present we consider only light u and d quarks in the equal-mass limit. We 

must construct totally antisymmetric four-quark states, which are products of spatial 
(VO, spin (x). flavor (4>), and color (C) wavefunctions. Each carries a subscript S 
or A, which denotes a symmetric or antisymmetric state under exchange of quarks 
(labelled 1 and 2) or untiquarks (labelled 3 and 4). 

There are two "natural" color bases which we might employ (see Figure 1). The 
(Ui3l2-i)i|lnl23)) basis corresponds to the "color flux lines" that can be drawn for 
a system of two separr.te mesons; this is the more physical basis if we expect the 
four-quark system to be molecule-like or unbound. These two |1,1) basis states are 
not orthogonal in color space, and this complication leads to nondiagoaal kinetic 
terms which are not easily simulated by the GRW algorithm. We therefore use the 
orthogonal basis (|3~)23M)«|6|26YI)) in which the fermion symmetry is explicit; inter­
pretation of the results in terms of color-singlet meson states is, unfortunately, rather 
more difficult in this basis. The relation between the two bases is 

\U»lu) = \J\ |3IS3M) + >j\ |6„ffM)f (8) 

Unl7l) = - t / j |5|23M> + J3 16.20*). 
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FIG. 1. Color bases. 
From four spin-5 objects with no orbital excitation we can construct states with 

total spin J = 0,1 and 2. We neglect orbital angular momentum in lifting the possible 
J values because dominantly S-wave bound states are most likely a priori. We shall 
first consider the J = 2 case. These states have a symmetric spin wavefunction xs, 
and are diagonal in the spin-spin Hamiltciian, 

SiSj\J = 2,Jm) = ^\J = 2yJm). (8) 

The flavor wavefunctions have total isospin / = 0, 1, or 2. Here we consider 
only 7 = 0 and 1 = 2, which are totally symmetric or antisymmetric under identical 
fermion exchange. The 1 = 1 states, in contrast, have opposite exchange symmetry 
for the quarks and antiquaries. This more complicated symmetry requires a more 
complicated spatial wavefunction to maintain the overall fermion antisymmetry. (The 
color and spin states are already fixed.) 

Finally, the spatial wavefunction V»(*,y,*) can be shown to have definite sym­
metry in x and y under identical fermion exchange. Figure 2 shows the definition 
of these Weinstein-Isgur coordinates; the center-of-mass coordinate can be factored 
out of the Hamfltonian and need not be considered. The separation between the 
center-of-mass coordinates of specified qq pairs is given by the coordinate x (or y); if 
the two-meson system is unbound, then the expected x or y must diverge. 

9i «< ?i ?< f t 9* 

M 3C W 
«J 93 ?a ?2 * 3 

FIG. 2, Spatial coordinates. 



To illustrate the spatia1 symmetry of ip, consider the [J, I) = (2,2) system; we 
specialize to the p*p* sector, which has flavor and spin states \4>s) = \uudd) and 
IX'.v) = I TTTT)- One might a prion consider writing the state as ^(x,y,£) | l 1 3 l ? . , ) , 
but this does not give a correctly symmetrized state. If we apply identical-fermion 
exchange symmetry to the ground-state wavefunction (which we denote by \p+p+) for 
simplicity), we :an rewrite it as 

| , V ) = (V'(x,y,f) + V'(-x,-y,f)) | i . : , l2,)± (tf(y.*,i) + * ( - y , - x , i ) ) | i w i M ) ; 

(10) 

the ± determines the symmetry of the wavefunction under exchange of one pair 
of quarks or antiquaries. For \p*p*) we must chose the minus sign but in the 
(J, I) - (2,0) sector we can find an antisymmetric flavor function which allows the 
positive sign. For the negative case in (10) we can rewrite the state as 

I P V ) = y ^ s ( * , y ; i ) | 3 , 2 3 « ) + y ! ^ ( * , y , i ) | 6 „ 6 „ ) . (11) 

This uses the color basis (|3i733^), I612634)) and introduces the symmetrized combi­
nations 

*s(*. y, *) = (W*> y. *) + <*{-*. - y , zj) + (^(y, £, I) + * ( - y f - £ , £)), (12) 

V^(*,y,iO = (^(x,y,f) + y ' ( -x , -y ,z) ) - ( W t X , * ) + ^ ( - y , - x , z ) ) . 

Equation (12) explicitly shows the symmetry of i/>s and i>A under (x,y) interchange, 
and also shows that 1>s(z,y,z) = i k ( - x , - y , i ) and Vu(*,y,i) = l M - x , - y , i ) . 

III. THE GUIDED RANDOM WALK ALGORITHM 

The guided random walk (GRW) Monte Carlo algorithm was introduced by 
Barnes, Daniell, and Storey13 as an alternative to branching algorithms. The earlier 
versions of GRW considered systems having either continuous12 or discrete13 degrees 
of freedom but did not consider systems with both in the same Hamiltonian (for a 
summary of both versions see Barnes1''). The modified GRW algorithm presented 
here allows the simulation of systems having both types of state. 

First consider an unguided RW method based on a Euclidean form of the 
Schrodinger equation; on taking it —» r it becomes a diffusion equation, 

-hir Mr)) = H \+{T)) . (13) 

file:///uudd


Such a diffusion equation can then be simulated by generating random walks on a 
space-time lattice (Figure 3), as first proposed by E.Fermi15, and weighting each walk 
with an appropriate factor. (This is similar to the e~ 5 weight in path integrals.) In 
the limit kIt hr -» 0 with h. h\ constant, the weighted RW process can be made 
equivalent to the diffusion process (13). In a simulation of the diffusion equation (13), 
the ground-state wavefunction and energy are generated in the large-r limit, as can 
be seen from an eigenmode expansion of the initial wavefunction. We assume that 
the initial wavefunction has a nonzero overlap with the true ground state, 

so that 

which implies 

l^)) = Ec B |^)e- E - , 

Urn Mr)} = coe-*' |*>) + 0(e"< £''*>'). 

(J5) 

(16) 

An unweighted random walk simulates a diffusion equation with no potential. To 
include a potential, each walk is given a weight which is determined by the potential 
V and the path of the walk. The ground-state energy and wavefunction are found 
using the expected weight and a weight-factor histogram. In the unguided algorithm 
these weights have widely scattered values (again see Barnes14); the wider the scatter 
of the weights, the greater the computational effort required to achieve a prescribed 
statistical accuracy. 

1 
Walkl i 

r 

:::::: x:: 
. . . . . . / . . . X X 
: . : : : : : : \ 
. . . . . . . . / . ....... \K 
. . . . . . . . \ \ . ........ 2 

\ 

FIG. 3. A random walk on the lattice. 



The GRW algorithm attempts to improve the statistical accuracy by introducing 
a trial "guiding" wavefunction, which guides the walks into regions where the ground-
state V'n ' s expected to be Urge. The guiding wavefunction does not introduce a bias in 
the determination of the ground-state ensrgy or matrix elements, since a generalized 
weight is introduced which compensates for the effects of the guidance. Formally the 
algorithm used here is essentially that of Barnes and Daniell 1 3; only a few changes 
are required for our simulation. 

The walk is performed on a lattice (with coordinate resolution hx) in the con­
figuration space Z = (x,,S); x, is the q2q* (x,y,z) coordinate space, and S is the 
color ® isospin ® spin state (only two such states are present). At each time step hr, 
the probability to go from Z at time r to Z' at time r + hr is written ?s 

V/.-f = rz-z'hr (17) 

with hr determined from conservation of probability, 

^,Pz-~z> = 1-

Each walk is assigned a weight factor Wtnl which is given by 

Wlol = Wdtag Wlran, (19) 

Wdtag = exp J - £ \V0{Z{r')) - £ r M . J dr' , 

. «*.. n [-™r 
CrvfuUtom \ ' * — & I 
Z — Z'jZ 

where H = H0 + Hh and H0{Z) = V0(Z) = (Z\ H0 \Z). (By definition H0 is diagonal 
and Hi is off-diagonal in state space.) 

Previously Barnes 1 4 chose to specialise rz_z# to a particular form in terms of a 
"guiding wavefunction" i>gf 

r^r«-{Z'\Bt\Z)^^. (20) 

This form simplifies Wlran, and in the "perfect guidance" case in which ipt is equal 
to the true ground-state wavefunction, sets the diagonal weight exactly equal to 
exp(—Efjr). As the energy is determined from the r-dependence of W(oi, equa­
tion (20) makes Wtra„ a function of Z only, and it can therefore be discarded in 
energy measurements. In practice, the true ground-state wavefunction is not known 
and is approximated by a parametrized guiding wavefunction j>9\ we then vary the 

(18) 



parameters of ^ , and search for a minimum of the variance of the diagonal weights. 
(Zero variance in Wj,„q indicates that V>« actually equals an energy eigenstate wave-
function.) In this q'q: problem, however, the right hand side of (20) is not always 
positive dcPnite, whereas the stepping probability r/^z'h-r must be. To force TZ-~Z' 

to be positive we instead chooso 

fz -z< = -{Z'\H,\Z) W) 
+.W 

which requires 

" I r a n — 
V-,(Z(0)) 

*,(Z(T)) 
[ I siZn(-(Z'\H,\Z)) 

(21) 

(22) 

This form allows a dynamical generation of the wavefunction's nodal structure, since 
both positive and negative weights are generated by the algorithm if some (Z'\ Hi \Z) 
matrix elements are positive. It also retains the zero-variance property for rl>g = ip0 

which rz~z> defined by (20) possessed for negative definite or zero (Z'\ Hi \Z). 
The ground-state energy is estimated from the r-dependence of the average sign-

weighted 'iiagonal weight 

(H^signW™)) = T/~ E"I WLg II «g°(- ffl *i l*» 
\ trtiuitioiw 

(23) 

r l h n ( H ^ i a j r ( r ) s i g n ( W < r a n ) ) oc e x p ( - £ , r ) . (24) 

Unbiased matrix elements can in principle be determined from WM (see Barnes 1 4), 
although we shall only consider energies here. 

If we evaluate equation (24) directly, the statistical error in the energy could 
be large, due to cancellations between negative and positive weights. As the energy 
is determined from the r-dependence of the expected weight alone, we can multiply 
the final histogram of weights by any function of the coordinate Z (which we call a 
"masking function") to reduce the fraction of negative weights and hence to increase 
the statistical accuracy in the energy. We normally attempt to approximately repro­
duce the nodal' structure of ^o in the masking function. Note however that no bias 
will result if the nodal structure of the masking function is not identical to that of 
V»0. (Actually in this problem we do know the exact nodes, which we will discuss 
subsequently.) 

The implementation of the code is parallel, in that we run n copies of the program, 
each generates a set of walks on its own "node" (CPU), and the resulting weights are 



summed at the end of the run. It is possible to run one program per node because 
the algorithm has very small memory requirements; this avoids the complications of 
intcrnode communication. 

IV. RESULTS 

Before considering the full Hamiltonian (1), we first consider an analytically-
solvable Hamiltonian which is very similar to that introduced by Weinstein and Isgur5. 
Our test problem is defined by 

*• " h - 2̂  (**'+ ̂ + V ? ) + 2 i < 2 * ) ( * ' + y2) + l™*'] ( J! ) 
+ 5 ^ - * > ( " ) • ( 2 5 ) 

whereas the test problem of Weinstein and Isgur5 instead substitutes 

KLi + Kh — -i° + \i\ krh))F> • ft. (26) 
in (1), which produced an intractable Hamiltonian. Our solvable H0 is their (26) 
without a diagonal term. The energy of a general eigenstate of H0 is 

E,jk=4m + — ^ (yjTh - fc„(2i, + 2t 2 + 2* 3 + 3) 

where 

+ ^ 2 * + kJJLjx + 2j2 + 2 j 3 + 3) + V^t(2ik, + 2fc, + 2fc3 + 3)) , (27) 

T i - ^ / m f * * - * . ) (28) 

72 = ^ ^ ( 2 * + ^ ) 

7 3 = — ^ m ( 4 * ) . 

Hijix) s Hii(y/2^lzl)Hi,(sfclz2)Hit(jHzi)t (29) 

where Hfo) it a Hermite polynomial, then the energy eigenfunction corresponding 
to (27) is 

If we define 

l#fi.)-
tf.;i(«)tf>;j(y)exp(-7,z2 - 17V7) T Hj.,2iz)Hi.tl(y)exp(-i2X2 - 7 ,y J ) 

. # : i (* )# , :2 (y )exp( -7 i* 2 - 7JV 2 ) ± #/ : a0c)# . ; i (y)exp(-72* 2 ~ 7iJ/ 2). 
/ / < : , ( £ ) C x p ( - 7 , r ' ) . (30) 



Our test //,, lias the same degrees of freedom as the full Hamiltonian (1), and also 
\\ns terms of cither sign off-diagonal, as is expected in a dynamical fermion problem. 
It also has a "fall apart" solution; the ground-state wavefunction is independent of 
the relative-separation coordinate i when Ik - k„. 

Figure 4 shows the Euclidean-time dependence of the extracted ground-state en­
ergy with a fixed lattice size; in practice we increase T until evidence for r-dependence 
has disappeared to the required accuracy, which indicates that contributions from ex­
cited states have become unimportant. We then extrapolate the energy to zero lattice 
size at this value of r, as shown in Figure 5. The algorithm evidently finds the .orrect 
ground-state energy to our statistical ac:uracy of about 0.1 MeV. We used IV'ooo) 
from (30) as our guiding wavefunction for this simulation; this guiding function equals 
the true ground state only when hT - 0, and we find accordingly that the variance of 
the diagonal weights does indeed go to zero as hx —» 0. 

2 .790 

m=0.33 GeV, k=0.S G e V / f m 2 , k„=-1.0 5 e V / f m 2 

- 2 « 2 
7 = 0 . 0 fm , Y 2

, : Y J S 2 - 0 5 8 8 *»n . T 4= 1 

N r w = 2 1 4 , h x =0 .20 fm, t ^ ^ . ^ 2 . 5 G e V " 1 

-i , 1 r 

20 40 50 
t t (G .V 1 ) 

80 100 

FIG. 4. £„ (T) for the analytic teit case. 
See also the h,1 extrapolation in Figure S. 
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2) for the analytic test case. 
One of our principal concerns in solving equation (1) with the GRW algorithm 

is to insure that 4>g does not impose an incorrect nodal structure. In a general 
multifermion problem the nodes are usually unknown. For this problem we can use the 
eigenfunctions of H0 to exactly determine the nodes of the ground-state eigenfunction 
of (1). 

We will tre*t (1) as a perturbation Hf about (25); we must restrict the eigen­
function basis set of (3U) to eigenfunctions for which *i + *j + »3 + j \ + to + to >« 
even, in order to satisfy the constraint rlf{x,ytz) = tfi(-x, -y ,z ) . Note that Hi can 
be written as 

- r/i(*.y.-0 /(*.y.*) 
Hi = , 

. / (* ,y.*) /s(*.y.*). 
where 

(31) 

/»,(*, y, *) = /«»(-*. - y . *) (32) 



= fm(V,X,*) 

and 

/(x,y,z) = / ( - £ , - y , i ) (33) 

= -/(y»*>*)-

From this form we can easily show that 

<*}*l*#htf.J=0- (34) 
We may now apply perturbation theory in Hi to determine properties of the 

eigenstates of H. Let the eigenstates of H0 be written as |n*) with -igenvalue E„(0). 
The eigenstates of H can then be written as 

E = E(0) + XE{1) + \2E{2) + -. • (35) 

• and 

|*) = |#o)+A|* 1 ) + A 2 |* 2) + - . . , (36) 

where |* 0 ) = ll&ooo) *&d (*B|#o) = £*> Vn. (We can also determine |̂ ooo) b 7 
changing + to — where appropriate.) We need only determine the ground-state 
wavefunction, since the GRW algorithm converges to that state. The perturbative 
results for E and |¥) are given by 

£(n) = (*o|£/|*„-i> (37) 

and ~-
t 

I*.) = [E(0) - A]"'!/ - |*o)(*o|I [[H, - £(1)]|*„-,) \ 
+E(2)\*m.7) + ~- + E(n-l)\*l)\. (38) 

Using (34). we can easily show that the first- and second-order perturbative contri­
butions to the ground-state wavefunction are 

, # l > ~ £ m-E^Y ( 3 9 ) 

and 

.* \ _ v- v i»+)(»*i(*/-g(i))N+)(m*|g/i*o) (4~ j 
; 5 . & (*(o)-A(o))(«(o)-ft.(o)) ' {V})\ 



Neither of these has a contribution from the {\n ) } states. One may prove by in­
duction that no |«I»„) has a contribution from the {\n ) } s ta tes 1 0 . The ground-state 
wavefunction may therefore he written as 

I*; - | 0 + ) 4 £ > > * ) . (41) 

Using (30) and letting 5 ^(72 + 71) and D - £ ( 7 2 - 7 ! ) , we find that the node 
in the upper component of (41) is determined by 

0 = 2 s i n h ( D ( * 2 - y ' ) ) + £ c „ * [ f f > : I ( * ) 7 / > : 2 ( y ) e x p ( D ( x 2 - y2)) 
,,k 

-Hja{£)H.ll{y)txpl-D{z2 - y2))} Hk.j>{x). (42) 

As D ^ 0 in general, this equation is only satisfied by x ± y — 0, or equivalently by 
x2 — y2 = 0. If we now consider finding the eigenvectors of 77/ alone, we can use the 
cigenfunctioas (30) as tlte basis e genvectors, since they span the configuration sp. ;e 
and satisfy the symmetry requirement (12) for eigenvectors of 77/. The ground-state 
eigenvector can therefore be written in the form (41), which implies that the nodes 
of the ground-state eigenfunction of (1) are given by x7 — y2 = 0. This motivates 
our choice of the ground-state eigenfunction of 770 as the trial wavefunction rpg in the 
simulation of (1), as this i>g has this nodal structure. 

The Euclidean-time dependence of the ground-state energy estimate for (1) in 
the (J, I) = (2,2) sector is shown in Figure 6. The values of the parameters were 
determined in a fit to light meson spectroscopy 1 7, and are similar to the conventional 
quark model values. The lattice energy extrapolation gives a value for the four-quark 
ground-state energy which equals that of two free mesons to within ss 5 MeV. Pre­
liminary results for the ground-state energy in the (J, I) = (2,0) sector leads to a 
four-quark ground-state energy equal to that of two free mesons to within « 10 MeV. 
Thus we conclude that there are no bound states in the 7 = 2 (p+p+) and 7 = 0 
(pp + utw) sectors of the nonrelativistic quark potential model to within an accuracy 
of 10 MeV. The former result is consistent with the lattice QCD results of Y.G.Liang 
et at in the (7,7) = (2,2) sector. 
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V. CONCLUSIONS 

We have applied an extension of the GRW Monte Carlo algorithm to a dynamical 
fermion problem, the q*q2 system. The extended algorithm allows the simulation of 
systems having both continuous and discrete degrees of freedom, and is applicable 
to Hamiltonians with both positive and negative off-diagonal matrix elements, as 
characteristically occur in dynamical fermion problems. 

We first applied the algorithm to an analytically solvable test problem which 
has many of the properties of the full four-quark Hamiltonian. From the solution 
of the test problem we demonstrated that the node of the four-quark ground-state 
wavefunction is given by x1 - y- = 0. Employing this in our choice of guiding wave-



function, wo used the Monte Carlo algorithm to estimate the ground-state energies of 
ihe (J. I) (2,2) and (2,0) light four-quark systems in a Coul jmb-plus-linear quark 
potential model. 

We find evidence for no bound stales of two light vector mesons in the channels 
studied (J 2; p*p\ p p , u/u», p • p, ...) in the nonrelativistic quark potential 
model. The mass of the four-quark state was found to equal that cf two free mesons 
to within our statistical errors of about 5 Afe^ for / = 2 and about 10 AfeV for 
/ - 0. We hope to improve this measurement in future and to extract an equivalent 
potential between vector meson pairs, which should be useful in the study of final 
state interactions in these systems. 
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