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Abstract

A broad range of mathematical modeling errors of fluid flow physics and numerical
approximation errors are addressed in computational fluid dynamics (CFD). It is strongly
believed that if CFD is to have a major impact on the design of engineering hardware and flight
systems, the level of confidence in complex simulations must substantially improve. To better
understand the present limitations of CFD simulations, a wide variety of physical modeling,
discretization, and solution errors are identified and discussed. Here, discretization and
solution errors refer to all errors caused by conversion of the original partial differential, or
integral, conservation equations representing the physical process, to algebraic equations and
their solution on a computer. The impact of boundary conditions on the solution of the partial
differential equations and their discrete representation will also be discussed. Throughout the
article, clear distinctions are made between the analytical mathematical models of fluid
dynamics and the numerical models. Lax’s Equivalence Theorem and its frailties in practical
CFD solutions are pointed out. Distinctions are also made between the existence and
uniqueness of solutions to the partial differential equations as opposed to the discrete
equations. Two techniques are briefly discussed for the detection and quantification of certain
types of discretization and grid resolution etrors.
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Introduction

Quantifying the level of confidence, or accuracy, of computational fluid dynamics (CFD)
codes and numerical simulations has recently received increased levels of attention in the
research and engineering application literature. Both CFD researchers and users of CFD codes
are asking more critical and detailed questions concerning the accuracy and range of
applicability of CFD code predictions. This trend is welcomed because it shows that CFD is
beginning to mature from a research exercise to a useful tool that impacts the design of
engineering hardware and flight systems. Ten years ago the National Research Council
committee chaired by Richard Bradley! summarized the two pertinent stages of CFD
development. Stage IV, “Learning to Use Effectively,” is characterized by “changing the
engineering process” and “value exceeds expectation.” Stage V, “Mature Capability,” is
characterized by “entrenched, cost effective” process. Delineation between these two stages is
marked by “Most analysis done without supporting experimental comparisons.” Using these
definitions, most of us would agree that CFD is definitely not in Stage V.

A clear parallel can be drawn between the progress of CFD capability and the history of
numerical solutions of ordinary differential equations (ODEs), specifically, the simulation of
electrical analog circuits. Until twenty or thirty years ago, the response of complex analogue
circuits was determined by bread-board experiments. Since that time, the numerical simulation
capability, in both hardware and software, for solving ordinary differential equations has
completely changed the technology and design process. Designers now do few, if any, bread-
board experiments, but they fundamentally rely on numerical simulation of the response of
circuits. ODE solution codes are clearly in Stage V, as defined by the National Research
Council. Today the key issues in circuit simulation are related to characterization of electrical
components as a function of voltage, current, temperature, electric field, and environmental
parameters. Progress to Stage V for ODE solvers has been rapid for three reasons. First, the
mathematical complexity of solving ODEs is, in general, miniscule compared to partial
differential equations (PDEs). Second, the complexity of fluid flow physics contained in the
Navier-Stokes equations is significantly more involved than the physics associated with ODE:s.
And third, geometry does not enter the problem for one independent variable of ODEs,
whereas in PDEs, geometry is fundamental to the description of the problem.

During the last few years, new technology development concepts and terminology have
arisen that take advantage of the increased capability of numerical simulations. Terminology
such as “virtual prototyping” and “virtual testing” are now being used by those in engineering
development to describe numerical simulation for design, evaluation, and “testing” of new
hardware and even entire systems. This trend is driven by increasing competition in many
markets, such as aircraft, automobiles, propulsion systems, and consumer products. The need
to decrease the time and cost of bringing products to market is intense. Another reason for this
new trend is the high cost and time required for testing laboratory or field components and
complete systems. The safety aspects of the product or system represent an important,
sometimes dominant, element of testing or validating numerical simulations. The potential legal
and liability costs of hardware failures can be staggering to a company, the environment, or the
public. Examples of increasing levels of impact are: wave induced structural failure of an



offshore oil platform, fire spread in a commercial aircraft accident, pressure vessel failure of a
nuclear power plant, and accidental detonation of a nuclear weapon in a fire environment. In
CFD research simulations, however, the impact of an inaccurate or misleading numerical
simulation in a conference paper or a journal article is commonly nil.

The terminology, philosophy and methodology of building confidence in CFD code
predictions is proving to be a very difficult and complex issue. The issues have been discussed
and debated in the literature and within various engineering societies for several years. The
Institute of Electrical and Electronics Engineers (IZEEE)2 and the American Nuclear Society3
first studied the terminology and procedures of code verification and validation. In the late
1980’s a NASA ad hoc committee was formed and they produced a detailed definition of code
calibration and validation. In the early 1990’s the International Organization for
Standardization (ISO)5, the American Institute of Aeronautics and Astronautics Committee on
Standards, and the American Society of Mechanical Engineers also became involved in the
issue. Because of the far reaching effects on hardware design, economic competitiveness,
government contracting, commercial software, product liability, etc., we believe these matters

should be debated in these forums. For a review of some perspectives on this issue see Refs.
6-8.

The present article avoids the debate on terminology and concentrates on the fundamental
issues of mathematical modeling of fluid dynamics and the numerical solution of the resulting
equations. This article uses the following definitions: verification is “solving the equations
right”; and validation is “solving the right equations.””-2-11 The essence of these simple
definitions is that verification only deals with the accuracy of the solution of the assumed
mathematical model. Validation deals with the accuracy of the solution as it relates to the real
world, i. e., experimental data. Within these broad terms this article addresses a wide variety of
physical modeling, discretization, and solution errors. By physical modeling is meant the
analytical mathematical equations that are used to describe a physical process or characteristic.
Discretization errors refer to all errors caused by conversion of the original partial differential,
or integral, conservation equations representing the physical process, to algebraic equations.
Boundary conditions for both the partial differential equations and the discretized equations will
be discussed. Throughout the article, clear distinctions are made between the analytical
mathematical models of fluid dynamics and the numerical models. Lax’s Equivalence Theorem,
which is concerned with the convergence of the solution of the discrete equations to the
solution of the partial differential equations, is discussed. Comments are also made concerning
the existence and uniqueness of solutions for both the partial differential equations and the
discrete equations. A few techniques are suggested for the detection and quantification of
certain types of discretization and solution errors. The goal of this article is to raise, or
resurrect, many fundamental issues and questions that impact simulation verification and
validation; not to suggest solutions for all of them.

Sources of Simulation Error

To assess conceptually the accuracy of CFD solutions, one must recognize that CFD




regularly addresses significantly more complex mathematical issues than analytical methods.
Whether they are dealt with accurately or not, is the topic of this article. The accuracy required
of a simulation, however, depends on the requirements of the particular simulation. Most
researchers and users of CFD codes view CFD as an extension, or outgrowth, of traditional
analytical methods in mathematical physics. Analytical methods, i.e., closed form, exact or
perturbation solutions to the equations of interest, are built on well defined, very reproducible,
and rigorous methods of mathematical analysis. As is well known, the dominant shortcoming
of analytical methods is that they address a much narrower range of fluid dynamics than
computational methods. The accuracy of analytical predictions fundamentally depends on the
accuracy of the mathematical model of the physics. The rigor and accuracy of the mathematical
methods is rarely an issue. CFD prediction accuracy, on the other hand, additionally depends
on the equivalence of the discrete model to the continuum model and the accuracy of the
solution of the discrete model. We have become convinced that clearly separating the
mathematics of the discrete model and the continuum model fundamentally aids in identifying
sources of error.

To better understand the accuracy of CFD predictions, the fundamental sources of errors,
or inaccuracies, must be identified and addressed. Error sources in numerically simulating
physical phenomena described by partial differential equations can be grouped into four broad
categories:

* Physical modeling errors

* Discretization and solution errors
* Programming errors

* Computer round-off errors

The present article delineates and discusses the first two types of errors, but ignores
programming and computer round-off errors. The first two categories are subdivided further in
the following sections and each is discussed. The above categories are appropriate for any
conservation laws described by partial differential equations, e. g., heat conduction, solid
dynamics, structural dynamics, electrodynamics, and neutron transport. The present
discussion, however. will be limited to continuum fluid dynamics with emphasis on
Newtonian fluids. Other approaches in fluid dynamics, such as molecular dynamics, direct
simulation Monte Carlo. and lattice gas methods, are not considered in this article.

Physical Modeling Errors

Physical modeling errors are those caused by inaccuracies in the mathematical model of the
physics. These errors are completely separate from numerical ones. The errors in question are
further subdivided into three additional categories associated with: the partial differential
equations describing the flow; the auxiliary (or closure) physical models; and the boundary
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conditions for all of the partial differential equations. All three of these sub-categories are
discussed to stress the evaluation of physical modeling limitations, as opposed to numerical
solution limitations, when conducting a CFD simulation. Too often, difficulties in detecting
and eliminating CFD simulation errors, whether in code V&V activities or in day-to-day
simulations, are due to a failure to consider each error source separately. Indeed, in large
computer codes most code developers seldom segregate the continuum physical model from the
discrete model. For example, a new boundary condition may be tried in the code without any
thought of how this might relate to a change in the continuum boundary conditions.

Partial Differential Equations of Fluid Dynamics

The governing equations for fluid flow can be formulated with various assumptions and the
analyst is usually interested in using the simplest form that is appropriate for the problem being
solved. The starting point for the following discussion is the compressible form of the
unsteady Euler equations and then the governing equations are expanded to include more
complex physics. As the complexity of the physics increases, more information is required in
the modeling and more uncertainty is introduced into the partial differential equations. The

following list is not comprehensive, but does address the more common areas of fluid
dynamics.

Inviscid Flow: The partial differential equations that govern the flow of a compressible,
inviscid, continuum fluid can be developed from the conservation laws of mass, momentum,
and energy. The resulting equations are expected to be valid for all flows except when the size
of the flow region of interest is of the same order as a characteristic length of the molecular
mean free path. These same equations can be developed with the Chapman-Enskog expansion
method from the kinetic theory of gases.12 The first term in the expansion gives the Euler
equations while the second term in the expansion gives the Navier-Stokes equations. The
Chapman-Enskog approach is valid for flows that are collision-dominated and is not
appropriate for rarefied flows as previously indicated. These equations are completed with the
models for the fluid thermodynamic properties and the equation of state employed. Additional
limitations on the physical model are imposed by these auxiliary equations.

Viscous Flow: The Navier-Stokes equations include the viscous and heat conduction
properties of the fluid and require information on the transport property coefficients for the
shear viscosity, bulk viscosity, and the thermal conductivity. These equations have the same
limitations as the inviscid equations, in addition to limitations of the models for the transport
properties. The Navier-Stokes equations can be used to determine the flow structure in weak
shock waves. Convincing agreement with experimental data has been obtained for low Mach
numbers. 13 The Navier-Stokes equations for a liquid with no-slip boundary conditions can be
used to determine the flow in small channels of height larger than approximately ten molecular
diameters. 14 For gases at low density, slip and temperature jump boundary conditions are
required. At lower densities, the continuum approach becomes unsalvageable.

Gas with Vibrationally Excited Molecules: For gases at elevated temperatures the
vibrational energy levels of the molecules become excited and this results in the specific heats
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of the gas becoming a function of temperature. For air, this effect becomes important at
temperatures above about 700K. This additional physics requires a vibrational rate equation if
nonequilibrium effects are important or at high gas densities an equilibrium assumption can be
used. For flow in a hypersonic wind tunnel nozzle, this additional physics is required for
accurate flow predictions. A good example of this type of model is given by Canupp et al. 15

Inert Gas Mixtures: The governing equations for a mixture of perfect gases are developed
from the theory of gas kinetics12 and these equations are well known. The gas mixture
equations are nearly the same as the Navier-Stokes equations except a conservation of species
equation is added for each species, the energy equation has an additional term due to diffusion
of species, and the viscosity and thermal conductivity transport properties of the mixture are
required. In addition, the diffusion velocity of the species is required. The complete theory
accounts for diffusion due to concentration, temperature and pressure gradient in the flow.
Because this theory is rather complex and computationally expensive, most CFD codes use
some approximations, such as; binary diffusion coefficients being used rather than multi-
component diffusion coefficients; thermal and pressure diffusion being neglected; or
approximate mixture rules for determining the viscosity and thermal conductivity of the gas
mixture being employed. Significant errors can occur if the appm{Jriate physics are not
included; for example, expansion of gas mixtures in a rarefied jet10 requires that pressure
diffusion effects be included in the diffusion model.

Chemically Reacting Gas: For gas mixtures with chemical reactions, the inert gas mixture

" equations are appropriate when a production term is added to the conservation of species
equations. The production terms are readily determined after the chemical model has been:
specified. The chemical model requires that the chemical species be determined and the
chemical reactions must be identified. For each chemical reaction used in the model, the
forward and backward reaction rates must be known. For air, a reasonable chemical model has
been determined while for other gas mixtures the chemical models range from well established
to poorly known. The chemically reacting gas model is required for air when the gas
temperature is greater than approximately 2000K and the density is sufficiently low that the
reaction rate times are less than the characteristic flow times. At higher densities the chemical
equilibrium assumption can be employed and the conservation of species equations are replaced
with conservation equations for the chemical elements if the element composition of the mixture
varies spatially.

Transitional/Turbulent Flow: The previous flow models have assumed the Reynolds
number is sufficiently low that the flow is laminar. The theory for predicting when the flow
transitions to turbulent flow is an area of considerable fluid dynamics research. However, even
reliable engineering techniques for predicting transition are presently lacking. A new approach
to simulate transition introduces additional modeling to predict the stability of the flow using
the Parabolized Stability Equations.17 This technique requires the solution of additional PDE’s
and has the potential of providing a technique to predict the beginning of transition.

A large number of turbulence models have been developed, with the greatest effort devoted
to the incompressible and low speed flow cases. When averaging methods are utilized, such as
Reynolds averaging, the governing equations will have additional terms introduced. In the
conservation of momentum equation, Reynolds stress terms are added. In the conservation of
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energy equation, a new term results from the diffusion of the total energy due to turbulent
motion. In the conservation of species equation, a new term results from the turbulent mass
transfer. The modeling of these additional terms is performed at different levels of
approximation, which can require algebraic expressions in their simplest form, and solutions of
additional partial differential equations in their most complex form. For turbulent reacting
flows, Probability Density Function methods, or similar techniques, have been developed but
are not always sufficiently accurate. The evaluation of accuracy and limitations of the various
models is an ongoing activity of the turbulence modeling community. Turbulence modeling is
the single most important limitation to obtaining accurate simulations to many flows of
engineering interest.

Additional Physical Phenomena: There are additional physical phenomena of increasing
complexity that can be included in flow models, such as; thermal nonequilibrium, ionized
flows, radiative energy transfer in gases, and multi-phase mixtures. These areas are not
addressed because they introduce significantly increased levels of complexity in their own
right. When these elements of physics are coupled with the previously discussed fluid physics,
one ventures beyond the scope of this article. This is not to say that CFD simulations in these
coupled fluid physics areas are futile. We simply recognize that the physical model unknowns
and errors in these numerical simulations can dominate the discussion instead of
complementing it. Theoretical derivation of the governing equations for many complex flow
phenomena has not been adequately developed as yet.

Temporal and Spatial Characteristics: Beyond the fluid physics modeling issues, there are
two other key areas characterizing the partial differential equations; temporal nature and spatial
dimensionality. Most CFD practitioners think of these areas as unrelated, but recent work is
pointing out that they are more closely related than generally thought.lg'22 It is common for a
CFD analyst to presume that a steady-state solution exits for a given physical model. This
assumption is separate from the issue that a steady-state solution is known not to exist for a
model, but one kopes that one exists for the discrete equations. It is well known that above a
critical Reynolds number most steady flows become unsteady, but remain laminar up to some
higher Reynolds number.

A classical flow that demonstrates both unsteady and steady behavior is low Reynolds
number flow perpendicular to a long circular cylinder. For Reynolds numbers less than 49 the
flow has been shown experimentally to be steady and two-dimensional. 18,19 For Reynolds
numbers between 49 and 180, only two-dimensional, unsteady flow exists. For Reynolds
numbers above 180, it is believed that only three-dimensional, unsteady flow exists. Recent
computational work by Mittal and Balachandar20 has shed light on this issue. They computed
the flow at a Reynolds number of 525 using both a two-dimensional and a three-dimensional
simulation. They found that both solutions converged to a periodic solution, but the mean drag
coefficient for the 2-D simulation was 1.44 while the 3-D simulation produced a value of 1.24.
Experimental measurements yield a value very near their 3-D simulation value. The point of
this example is three fold. First, a 2-D unsteady physical modeling assumption seems to be
appropriate and produces reasonable computational results, but it has no relationship to reality.
Second, these feature are separate from differing convergence characteristics depending on the
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grid resolution of the discrete formulation. Third, be aware that this is a relatively simple flow
compared to the complex flow physics discussed above. With the change of one parameter
(Reynolds number), over a relatively small range, three fundamentally different flow fields, i.
e., solutions to the Navier-Stokes equations, emerge. Other flow field examples with this
character have been recently appeared in the literature.21,22

Auxiliary Physical Models

Auxiliary physical models complete the equation set needed to describe the flow of interest.
These auxiliary models may be given by a variety of equation types, from very simple algebraic
equations to nonlinear partial differential equations.

Equation of State: The simplest equation of state is the relation for a perfect gas where the
pressure is a function of the density, temperature, and molecular weight. The molecular weight
is considered constant for this case. For air, this relation begins to become inaccurate at
temperatures above about 700K, where vibrational excitation of the molecules begins. The
perfect gas relation is valid at low pressures and becomes inaccurate at a pressure above
approximately 10 atmospheres. For a mixture of ideal gases, the form of the equation of state
remains the same, except the molecular weight is determined from the mass fraction and
molecular weight of all of the species present. If the gas model uses the species conservation
equations, then the equation of state should provide accurate results. If the gas is assumed to be
in chemical equilibrium, then errors can be introduced into the equation of state if the
equilibrium assumption is not satisfied.

Thermodynamic properties: The thermodynamic properties of many individual chemical
species have been calculated with the theory of statistical thermodynamics from a first
principles approach. The specific heat at constant pressure, enthalpy, and internal energy are
usually determined as a function of temperature. These results are tabulated for a large number
of species over certain temperature ranges and the results are usually considered to be accurate
for chemical species that have been studied. Errors can be introduced as these properties are
approximated with curve fits. A review of the thermodynamic properties of an 11-species air
model has been given by Gupta, et al.23 Thermodynamic properties for gas mixtures can be
determined from the species thermodynamic properties and the gas mixture composition. If the
gas is assumed to be in chemical equilibrium and the element composition fixed, then the
composition is required to be determined only once for a range of temperatures and densities.
Curve fits of the thermodynamic properties of equilibrium air have been developed by
Tannehill24 and Liu and Vinokur23. It was found that slight discontinuities in the Tannehill
curve fits can cause numerical convergence proble:ms.26

Transport properties: The basic governing equations require a model for the stress tensor.
For gases, the stress tensor is the Newtonian form while the physical behavior of some liquids
can be more complex and require a non-Newtonian stress model. For example, for polymeric
liquids the non-Newtonian constitutive equations are reviewed in the article by Bird.27 For the
simplest Newtonian flow models the shear viscosity, bulk viscosity, and the thermal
conductivity for the fluid are required. For a mixture of perfect monatomic gases, the bulk
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viscosity coefficient is zero and this is the usual assumption used in CFD codes. This
assumption is not appropriate for acoustic motions and in the interior of shock waves. For air
and a perfect gas assumption, the viscosity is usually approximated with the Sutherland law.
The relation is accurate for temperatures between 100K and 2000K. At lower temperatures,
Keyes’ viscosity relation should be used.28 The thermal conductivity is typically obtained from
the assumption of a constant Prandtl number and a constant specific heat. Errors in the thermal
conductivity start to occur at temperatures above about 700K. For flows with a mixture of
chemical species, the viscosity, frozen thermal conductivity, and binary diffusion coefficients
are determined from the kinetic theory of gases. Curve fits for these properties for air species
have been given by Gupta, ez al.23 These properties are believed to be of reasonable accuracy,
but an estimate of the error in these models is not available. The transport properties of the gas
mixture are usually determined from approximate mixture rules, rather than the complete
relation from the kinetic gas theory. For air with sublimation products of graphite, for example,
Ryabov2? has determined that the error in the mixture viscosity is less than 5%, while the error
in the frozen thermal conductivity is less than 10%. Ryabov indicates that the Kendall
approximation for binary diffusion coefficients gives errors below 11.5%. The impact of these
errors on flow results does not appear to have been evaluated.

Chemical model, reactions, and rates: The accuracy of chemical models is usually
determined by the extent of research devoted to the particular gas model. Also, many models
for a gas, or gas mixtures, are a simplification of a more complete model in order to obtain
reasonable computation times. For air, sufficient knowledge is available to decide the
appropriate species to include and what reactions are necessary. There are generally large errors
in the reaction rates for the various chemical reactions, but several models have evolved as
standards for air.30 The accuracy of the simpler chemical models decreases at higher
temperatures, however. When the flow of a new gas or gas mixture is being calculated, the
chemical model needs careful evaluation to determine if accurate results are being obtained.

Turbulence model: The accuracy of turbulence models must be determined with
experimental results for a wide range of Reynolds number, Mach number, flow and shear layer
geometries, pressure gradients, and possibly other flow physics, such as combustion and
multiphase flow. Recently, direct numerical simulation has provided useful information for
model evaluation, complimenting experimental data. The direct numerical simulation results
have been limited to low turbulence Reynolds number flows and to very simple flow
geometries. The evaluation of turbulence models requires a variety of experiments which test
the ability of the model to simulate turbulent flows of increasing flow complexity. Presently,
turbulence models can be best evaluated with the benchmark test cases developed at the
Stanford Conferences on turbulent flows.31 These experiments have been carefully picked as
the best available, as far as their accuracy and specification of flow conditions required to
perform numerical simulations. Also, a variety of experiments are required to test gas models
for different levels of complexity; for example, incompressible flow, compressible flow,
hypersonic flow, multi-component gas mixtures, reacting gas mixtures, two-phase flow, etc.
Many codes use wall functions to remove the requirement of a fine grid near walls needed to
resolve rapidly varying turbulence model quantities. The wall function approach can reduce the
required number of mesh cells by a factor of two. For some flows, for example, near boundary
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layer separation and in separated regions, the velocity profile near a Wall is not adequately
represented with a logarithmic region. For these case, the wall function approach can introduce
significant errors and is not reliable for skin friction and heat transfer predictions.

Boundary Conditions for the Partial Differential Equations

The boundary conditions required for the solution of the governing partial differential
equations and the auxiliary equations have received limited attention in fluid dynamics. As
pointed out by Oliger and Sundstrom32 nearly twenty years ago, discretization of the boundary
conditions has been studied before the appropriate boundary conditions have been established
for the partial differential equations. Only after difficulties with computational boundary
conditions have arisen, has there been interest in understanding the appropriate boundary
conditions that should be used. The article by Oliger and Sundstrom is one of the few
investigations that treat determination of the boundary conditions for fluid dynamics equations
(mostly inviscid flows) to ensure a well-posed problem. As these authors point out, one cannot
expect reasonable numerical solutions unless the correct PDE boundary conditions have been
approximated. It seems this lack of attention to what are the correct boundary conditions for the
partial differential equations has worsened in the last twenty years. Recently, however, the tide
seems to be turning 3-36,

There are three types of boundaries that occur: wall boundaries, open boundaries, and free
surfaces. The various conditions specified at these boundaries will now be discussed.

Wall Boundary Conditions: These conditions generally have clear physical significance
and the appropriate boundary conditions are easier to determine. For example, for continuum
flow at a rigid, non-porous wall, one commonly has the simple conditions; velocity
components are zero at the wall and the fluid adjacent to the wall is at a specified temperature,
i. e., the known wall temperature. A slightly more complex boundary condition is a statement
of a normal gradient to the wall. This type of boundary condition requires information from the
flow solution, i. e., the interior of the solution domain. What additional condition must be
added: the normal momentum equation or the zero pressure gradient normal to the wall? For
near noncontinuum flows, there is velocity slip and temperature jump at a wall that must be
modeled. It is more difficult to specify the appropriate wall boundary conditions for the
chemical species equations because the heterogeneous chemical reactions of the gas species at
the wall must be modeled. Some related open questions are:

» What are the proper turbulence conditions for a porous wall?
* At what length scale do the individual jets of a porous wall have to be modeled?

» At what length scale should the irregularities of a rough wall be modeled in a
Reynolds Averaged Navier-Stokes formulation?

* What are the appropriate wall boundary conditions when vibrational nonequilibrium
effects are included in the gas model with a separate vibrational temperature?
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Two additional sources of error related to wall boundary conditions are inaccurate
representation of the wall geometry, and boundary discontinuities, or mathematical
singularities. Inaccurate wall geometry refers to the difference between the actual physical
geometry and its computational representation, i.e., fidelity of the computational to the physical
geometry. Examples of these are the following: physical hardware not accurately fabricated to
specifications; inaccurate CAD/CAM representation of a surface; and lack of surface roughness
specification for a turbulent flow simulation. Discontinuities in the boundary conditions occur,
for example, where a wall can change from solid to porous with a step change in the surface
normal velocity. There is also a discontinuity at the intersection of a sliding wall and a fixed
wall; for example, the classic driven-cavity problem. Another example is the singularity at the
stagnation point on an axisymmetric blunt body in a cylindrical coordinate system. For the
PDE:s these singularities can usually be dealt with, such as with one sided limits and integrals,
because of continuum mathematics. For discrete mathematics, however, singularities and
discontinuities present very difficult numerical approximation issues.

Open Boundary Conditions: These are conditions that are specified along a boundary, or
portion of a boundary, where there is “free” (i. e., unrestricted) inflow and/or outflow. We
describe this type of boundary as free, simply to distinguish it from inflow or outflow through
a porous wall discussed above. These types of boundary conditions typically result from a
requirement that numerical solutions be obtained over a limited region of the flow domain. In
this sense, errors associated with these boundaries could be considered to be associated with
boundary conditions for the discretized formulation. However, this is not always the case. If
one were simulating the flow over a model in a wind tunnel, then the exact inflow boundary
conditions must be given by a specification of appropriate dependent variables in the partial
differential equations and auxiliary equations at, say, the beginning of the test section. We say
appropriate because specifying all dependent variables will cause an inconsistency with the
PDEs and the auxiliary equations. The dependent variables would have to be measured
spatially and possibly temporally if, for example, turbulence quantities were needed. This level
of detailed knowledge, or calibration, of wind tunnels does not presently exist. It has also been
found that specified flow quantities are commonly not consistent with the partial differential
equations on the interior of the solution domain and, as a result, rapid changes occur in
variables downstream from the inflow boundary.

It was recently stated by Sani and Gresho,34 and we fully agree, that boundary conditions
at open boundaries are often the most difficult and elusive aspect of mathematical modeling.
The number of physical boundary conditions required, and allowed, at an open boundary is
determined from an evaluation of the characteristics of the governing partial differential
equations. The number of physical boundary conditions must be the same as the number of
characteristics of the governing equations entering the computational domain. If the flow is
locally supersonic, there is no upstream influence and accurate boundary conditions can be
specified without much difficulty. Inflow, more specifically upstream, boundary conditions
can typically be much closer to the region of interest than outflow, or downstream, boundary
conditions. For subsonic flow over an isolated body, the boundary conditions should be
applied at infinity where the flow is uniform and known. If the downstream location of the
computational boundary is not located sufficiently far downstream, some flow may be re-
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entering the computational domain. Re-entrant flow boundary conditions may be expedient for
obtaining solutions, but we have not seen any approaches mathematically justified for PDEs or
for difference equations. More will be said on this topic when discretization errors are
discussed.

Free Surface Boundary Conditions: This case is more general and far more complex than
the wall case. The development of the appropriate physical relations has been presented by
Batchelor.37 The general approach considers the relations that must be satisfied at the
boundary between two media. At this interface the temperature of the two materials is the same
and the heat flux normal to the boundary is equal on both sides. A balance of stress at the
boundary with the effect of surface tension taken into account results in two transition
relations. In addition, the normal component of velocity is continuous across a material
boundary separating a fluid and another media and there can be mass transport at the boundary.
The boundary condition relations require a value of the surface tension for the materials
involved. Also, these boundary conditions can become quite difficult to apply if the interface
becomes unstable with large movement. For example, it is well known that the Rayleigh-
Taylor instability occurs when a heavy fluid is above a light fluid in a gravitational field.

Discretization and Solution Errors

Discretization errors are those caused by the numerical replacement, or discrete mapping, of
the partial differential equations, the auxiliary physical models, and the continuum boundary
conditions into algebraic equations. Solution errors refer to the errors in the computer solution
of the complete set of the discrete, i. e., algebraic, equations. Errors generated by or associated
with each of these sub-categories is now discussed.

Discretization of the Partial Differential Equations

The reformulation of the partial differential equations into algebraic equations that
accurately represent the original equations is a bigger, more problematic, mathematical step
than is generally recognized. The formal mathematical theorem relating the differential and
difference equations is known as Lax’s Equivalence Theorem (LET).38-40 The theorem is
built upon two requirements of the discrete method; consistency and stability of the method. A
discrete method is consistent if it can be analytically shown that as the discretization size
approaches zero, the difference equations are equal to the differential equations. This can be
written as

Consistency Definition: Alii)n0 0@ = 0D

where §,® represents the system of finite difference equations (which includes any method for
discretizing the partial differential equations), o represents the original system of partial
differential equations of the mathematical model, and A represents the size of all discretized
independent variables. A numerical method is stable if it can be analytically shown that as the
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solution is marched in time, or is iteratively solved, the solution remains bounded. One can
write this as

Stability Definition: nh_r)nmﬂ DR — D, ﬂ< N

where @) represents all dependent variables of the system of equations at time n for a fixed
mesh size A, O3 A Tepresents arbitrary initial values of the dependent variables, and N is an
arbitrary constant.

It can be proven mathematically that the above conditions are necessary and sufficient for
the solution of the discretized system of equations to be identical to that of the partial
differential equations, for linear problems. This proof is the foundation of the numerical
solution of partial differential equations. The fact that LET provides necessary and sufficient
conditions only for linear PDEs is not widely recognized. There seems to be some
understandable reasons for this. In Richtmyer and Morton’s classical text, 38 the qualification
to linear problems was not mentioned. Some modern texts39:40 clearly make the point that the
theorem applies to linear problems. For nonlinear problems, consistency and stability of the
numerical method are necessary, but not sufficient, for convergence of the numerical solution
to the continuum solution. Although the mathematical bedrock of numerical solutions is much
thinner than generally believed, the difficulties and hindrances to progress in CFD also stem
from other sources. Some difficulties are practical in nature and some are implementation
issues. In the following we discuss some of these issues.

Approximate Consistency and Stability Analyses: Consistency and stability proofs of
numerical methods are predominantly developed for very simple model problems, neverona
“real” nonlinear problem. The model equations are always linearized equations and uncoupled
from any other equations. For example, the most commonly used models are one-dimensional
versions of the wave equation, heat conduction equation, and viscous Burger’s equation.
These simple, linearized, uncoupled, one dimensional equations do not exhibit the astounding
spectrum of solutions exhibited by the Navier-Stokes equations (vortices cannot exist in one-
dimension, for example). If additional complex physics such as gas mixtures, turbulence, and
reacting flow are included, it is clearly seen that these model equations are far removed from
real world problems. The reason for the elimination of these real world complexities, of
course, is that the difference equations resulting from the analysis are nonlinear, just as the
original partial differential equations, and cannot be completely analyzed mathematically.

Additional, but related, simplifications of consistency and stability analyses are elimination
of: mixed classification partial differential equations, non-uniform grids, and boundary and
initial conditions. Stability analyses are never done on difference equations with mixed
classification, e. g., hyperbolic and elliptic. These mixed zones, however, very commonly
exist. For example, in every non-trivial supersonic flow problem modeled by the steady-state
Navier-Stokes equations, hyperbolic and elliptic regions exist adjacent to one another. In the
extremely rare event that a multi-dimensional stability analysis is conducted, a structured grid is
always assumed to be uniformly spaced. This assumption does not correspond to real world
problems. Boundary condition type and geometry can influence the stability of numerical
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methods. Only those analyses that include the discrete boundary conditions, along with the
discrete linearized equations, can provide the correct behavior of the numerical scheme.40

LET In Practice: The matching of solutions with difference and differential equations using
consistent and stable numerical methods applies only in the limit as the mesh and time step
approach zero. The reality, of course, is that all numerical solutions are obtained for finite grids
and time steps. Although this fact is obvious, it bears keeping in mind that the proof is a
theoretical construct. In practice, equality is never attained. Examples of the mismatch between
the two mathematical models are in order. The zone of influence of hyperbolic difference
equations can be very different from that of the differential equations. Consider two-
dimensional inviscid supersonic flow. In CFD solutions, the zone of influence of the difference
equations is always larger than that of the differential equations. This is because the zone of
influence in the CFD solution also depends on the difference method and the grid size. This
mismatch can have varying effects in the discrete solution. Note that this mismatch is separate
from a CFL condition on the time-like coordinate. As a second example, it has been found by
Yee et al#1-42 that finite difference solutions can exhibit a much wider range of dynamical
behaviour than their continuum counterparts. They have found that “the use of linearized
analysis as a guide to studying strongly nonlinear PDE:s is insufficient and can lead to
misleading results.” And finally, “In particular, when one tries to stretch the maximum limit of
the linearized allowable time step for highly coupled...nonlinear systems, most likely all of the
different types of spurious asymptotes (e. g. spurious steady states, periodic orbits, limit
cycles, or chaotic phenomena) can be achieved in practice depending on the initial conditions.”

A related numerical phenomena occurs in flow over slender bodies at a high angle of attack.
For this flow field, vortex patterns on the leeside of the body can be symmetric or asymmetric
depending on the angle of attack and freestream conditions. How the difference equations are
written and solved can also determine what flow field is obtained. Levy, Hesselin, and
Degani43 showed that the manner in which the left side of each difference equation is
formulated in the solution procedure impacts whether the steady-state result is symmetric or
asymmetric. Their studies indicate that the steady-state solution is not unique and there are at
least two solutions that can satisfy the right side of the difference equations. If the difference
form of the left side is not symmetric, spurious asymmetric results can be computed.

Spatial and Temporal Resolution: This category of error is the most well recognized of the
discretization errors and is unquestionably the most important. This error, also referred to as
truncation error, is due to finite resolution in the spatial and temporal discretization. In the past,
finite difference analyses rarely attempted to estimate the magnitude of this error on the results
computed. Finite element methods seem to have a better record of addressing this issue. A
strong initiative by individuals such as P. J. Roache, K. N. Ghia, F. M. White, C. J. Freitas
and others has raised the importance of addressing grid convergence in CFD solutions. The
enforced discipline through organizations such as the ASME and the AIAA and its publications
was desperately needed for the maturation of numerical simulations. Because of the importance
of this topic and because effective measures can be taken to control it, this matter will be
addressed in in Section V: Detection and Estimation of Errors.
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Discretization of the Auxiliary Physical Models

If the auxiliary physical model equations are linear algebraic expressions, which can be
solved directly, then the errors are of the magnitude of the computer round-off and are
generally very small. An example is the equation of state for a perfect gas. If the algebraic
expressions are nonlinear in the unknowns, then some linearization technique, typically an
iterative technique, is required for solution (note that by the term “algebraic” we also include
transcendental equations). Errors can occur if the iteration is not sufficiently converged on each
occasion it is used; convergence error will be discussed later. An example of a nonlinear
auxiliary equation is the determination of the equilibrium chemical composition for a mixture of
chemical species. Thermodynamic and transport properties for real gases are approximated
with table look-up/interpolation or curve fits. The required accuracy of the approximations to
these properties has not been established and, surprisingly, for many cases in the past, the
approaches resulted in large errors. Clearly these errors can be reduced by more accurate
interpolation techniques, but the data storage requirements are significantly increased with
probable increases in computer time. The errors in the approximation of the individual
properties of the chemical species must be compatible with the errors being introduced in the
techniques used to approximate the gas mixture properties. Careful evaluation of accuracies
required for thermodynamic and transport properties used in flow simulations and the impact
on fluid dynamic predictions have not been performed.

Probably the most important auxiliary model used in CFD is the turbulence model; yet
accurate models for a wide range of conditions are not available. For algebraic models, the
primary error source is the determination of some flow field feature needed in the calculation,
e. g., the magnitude of a turbulent length scale. The reliable determination of the appropriate
length scale has proven to be difficult for a wide variety of shear layer geometries. By far the
most difficult and computationally intensive, however, is the calculation of turbulent transport
variables using two-equation turbulence models, or Reynolds stress models. The discretization
error of these type of PDEs has been discussed above, and will be addressed later.

Discretization and Implementation of Boundary Conditions

The boundary conditions for the difference equations, whether they are for wall, open, or
free surfaces, must provide independent, but yet consistent, information for the solution of the
PDE:s. Over-specification of the discrete boundary conditions (BCs) can cause divergence of
the iterative, or temporal, solution. Under-specification of the BCs will cause the solution not
to converge, i e., wander about, or to converge to different solutions depending on
arbitrary features, such as initial conditions, grid size, relaxation parameters, etc. This perfect
balance between over- and under-specification of knowledge on boundaries is much more
difficult to obtain for difference equations than it is for PDEs. We do not fully understand why
this balance is more precarious for discrete equations, but we will suggest some conceptual
reasons. In continuum mathematics, the PDEs are fully coupled to the boundaries. No
discrepancy, inconsistency, or mismatch is tolerated for the existence of a solution. In
difference equations, however, the coupling is weaker and it depends on a variety of numerical
parameters, such as the iterative algorithm, spatial differencing scheme, grid size, and
numerical smoothing parameters. Recent work in numerical boundary conditions supports our
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explanation.34’44

Implementation of Dirichlet boundary conditions are usually straightforward. Neumann and
mixed boundary conditions require that a difference method be used at the boundary. This
method is usually of the same order accuracy as the spatial differencing method so that a
globally consistent order is obtained for the scheme. However, only a grid refinement study
will establish that the overall order of the complete numerical scheme is as expected. It should
be noted that very few researchers have demonstrated the overall, or global, order of their
simulation.

The most difficult type of boundary condition to implement is the open BC. The entire
issue of inflow and outflow boundary conditions in now being studied in more depth than in
the past. An excellent summary and, we believe, required reading on the subject of open
boundary conditions for incompressible Navier-Stokes equations is given by Sani and
Gresho.34 This article clearly shows that there are more questions than answers on the
implementation of open boundary conditions, even for the relatively simple physics of steady,
incompressible laminar flow. Concerning open boundary conditions, they state, “Nature is
usually silent, or in fact perverse, in not communicating the appropriate ones.” Also, “The
boundary conditions on such open portions of the boundary are a necessary evil ... We believe
that there are no ‘true’ open boundary conditions, thus explaining Nature’s silence. We also
believe and may demonstrate herein that perhaps nowhere else do theory and practice seem to
clash so much.” Sani and Gresho also introduced the term “fuzzy boundary conditions” to
suggest the existence of numerical BCs that produce good numerical solutions, but if one takes
the analytical limit as A — 0 of these BCs, one obtains unacceptable/incompatible BCs for the
PDE:s.

The vast majority of effort in the formulation and development of numerical boundary
conditions has been directed toward steady flow conditions. As CFD matures, the need for
reliable and accurate unsteady boundary conditions will become more important. Additionally,
when dealing with more complex flow physics, such as chemically reacting flows, multi-phase
flows, and flows with radiative energy transport, accurate numerical boundary conditions will
prove much more difficult.

Solution of the Discrete Equations

The error in the computer solution of the discrete model equations is referred to as the
discrete solution error; sometimes this is referred to as the iterative convergence error and it can
occur for either steady-state or unsteady simulations. This error is defined as the difference
between the exact solution to the discrete equations and the approximate, i. e., computer,
solution obtained. The round-off error due to the finite precision of the the computer could also
be included here, but it is commonly thought of as a separate category.

Often one reads, for example, that the global iteration toward a steady state solution was
performed until there was a small change in the variables between the iterations. This type of
test will not always produce accurate results because the magnitude of the change between
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iterations depends on the time step, or relaxation parameter, and also on the present
convergence rate of the solution. A more accurate and reliable approach is to write the
difference equations in delta form and then compute the residual (right hand side of the
equation) for each equation in the system at each point in the grid. At the start of the iteration,
the dependent variables do not satisfy the difference equation and the residual is non-zero over
much of the grid. As the iteration proceeds, the residual for all difference equations and at all
spatial locations is driven to machine zero. Although this level of solution accuracy is
computationally intensive and probably not required for all simulations, it is highly
recommended that this iterative convergence be demonstrated on coarse grid solutions. Another
approach has been suggested by Ferziger and Peric’4> which estimates the solution
convergence as the iterative process is performed.

For transient flow simulations, at each time step the difference equations must be iterated to
convergence for implicit schemes so that the iterative error is much smaller than the temporal
discretization error. On finite volume schemes, for example, conservation of mass,
momentum, and energy can be violated with inadequate iterative convergence at each time step.
When the temporal and spatial step sizes are decreased, the iterative solution at each time step
could require more iterations be performed to obtain smaller iterative errors. Some numerical
schemes can require no iterations when an alternating direction implicit scheme is used, while
many iterations are required when a Jacobi iterative solution is used. The solution technique
used for the sparse matrix solver determines the iterations required. The iterative behavior at
each time step also depends on how the governing equations are solved. For example, with a
segregated approach, each dependent variable is solved from a separate difference equation and
is solved one at a time sequentially. With a coupled approach, all dependent variables are
solved for simultaneously from all of the difference equations. The behavior of the iterative
solution technique at each time step must be understood so that no significant iterative
convergence errors are introduced into the solution procedure.

Detection and Estimation of Errors

The following section suggests methods for detecting and quantifying certain types of
discretization errors. Some of these methods are similar to the types of error detection and
control methods incorporated in modern software packages for solving ordinary differential
equations. Modern ODE solvers are extraordinarily adaptive at controlling accuracy,
maintaining numerical stability. and are very robust; features that are clearly lacking in most
CFD codes.

Discretization Errors

Analytical solutions to the PDEs of interest provide an extremely valuable tool in
demonstrating code verification. At the present time, use of analytical solutions in code
verification seems to be distinctly out of favor in the CFD community. There are a surprisingly
large number of exact and approximate, but highly accurate, analytical solutions to special
cases of the Euler and Navier-Stokes equations#0-30, Possibly the reason for lack of interest

-22 -




and familiarity with analytical solutions among many CFD code developers is the lack of
exposure to these methods in modern graduate education.

During the last several years a novel approach has been used to obtain exact solutions to
equations very similar to the Navier-Stokes equations. In the approach developed by Steinberg
and Roache,d1 a specific form of solution function is assumed to satisfy the PDE of interest.
This function is inserted into the PDE and all the derivatives are analytically computed using
symbolic manipulation software, such as MACSYMA™. The equation is simplified, and all
remaining terms resulting in inequality between both sides of the equation are grouped into a
forcing function term. This term is then considered to be simply added to the original PDE so
that the assumed solution function satisfies the new PDE exactly. For example, in the Euler or
Navier-Stokes equations this term can be considered to be a source term. The boundary
conditions for the new PDE are considered to be either the value of the solution function on the
boundary (Dirichlet condition), or a Neumann condition that can be analytically derived from
the solution function. A good description for these constructed analytical solutions is
manufactured solutions.

To verify the CFD code using this technique, the computed source term and boundary
conditions are programmed into the code and a numerical solution computed. This procedure
verifies, albeit for a narrow range of physical modeling, a large number of numerical aspects in
the code, for example; the numerical method, differencing technique, spatial transformation
technique for grid generation, grid spacing technique, and coding correctness. Shih, Tan and
Hwang52 have taken this approach a step further and applied it to the incompressible Navier-
Stokes equations for laminar, two-dimensional flow. They have obtained an impressive exact
solution to the classical lid-driven cavity problem for an arbitrary Reynolds number. It is highly
recommended that incompressible Navier-Stokes codes be verified with this exact solution.

Grid Resolution Errors

The largest contributor to numerical solution error, and the one that has caused the most
inaccuracy in CFD solutions, is the one caused by inadequate grid resolution. It is ironic that
the quantification of this error is also the most straightforward. We believe the reason for this
paradox is simple: cost. The grid size used for a numerical solution is usually at the limit of
computer time or budgetary constraints; sometimes the grid used is simply considered “good
enough” for the simulation at hand. The computational cost, and to a lesser extent personnel
time cost, to carefully conduct a grid sensitivity study is roughly a factor of 4 larger for 2-D
problems and a factor of 8 larger for 3-D problems beyond an “acceptable” solution.
Consequently, grid resolution studies were rarely done until recently. We submit that our blunt
assessment of the situation is supported by simply examining the state-of-the-art in ODE
solvers. ODE solvers suffered the same paradox during their early years, but they are now the
shining example for accuracy and reliability for numerical solutions. The reason they have
progressed so rapidly in this regard is because the computer power required for their solution is
usually minimal compared to the solution of PDEs.

For finite difference methods, spatial discretization error is estimated using Richardson’s
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classical method, also known as “deferred approach to the limit” and “iterated extrapolation.”>3
Using Richardson’s extrapolation, one can write

D, ot = P4 + & AP + higher order terms in A

where @, is the exact solution to the PDE, @, is the numerical solution obtained using a
grid size of A, o is a constant for a given numerical solution, and p is the order of accuracy of
the numerical method. It is important to note that Richardson’s method applies not only to
computed dependent variables at all grid points, but also to solution functionals. Solution
functionals are integrated and differentiated quantities such as body lift and surface heat flux,
respectively. If p is known, then two numerical solutions with different grid sizes are required
to compute ®.,,., and o so that the discretization error can be estimated. The fine grid
solution need not be twice the number of grid points (in each coordinate direction) as the coarse
grid, but this is common practice and it provides a more accurate estimate. Roache4 has
developed a Grid Convergence Index (GCI), based on Richardson’s extrapolation, that
converts error estimates obtained from any grid refinement ratio into an equivalent grid
doubling estimate. He argues that using the GCI would help standardize the accuracy
evaluation of grid refined solutions.

Careful use and accurate estimation of error using Richardson’s method has been
documented only by a few researchers (see, for example, Refs. 11, 55-58). In most cases it
has been found that two solutions are insufficient to properly use Richardson’s method. The
reason three or more solutions are required is that from the first two solutions it may be found
that the demonstrated order of accuracy from the calculations does not match the formal, or
expected, accuracy of the method. This result can be caused by one of two reasons. First,
numerical inaccuracies or errors, such as excessive grid stretching, inaccurate implementation
of boundary conditions, and coding errors, cause a degradation in the global accuracy of the
method. Second, it is commonly found that insufficient grid resolution was used on the first
two solutions such that formal accuracy is not attained until finer grids are used. Until the
computed grid convergence rate from two individual solutions, with the same grid clustering,
matches the known (or previously demonstrated) order of accuracy of the code, Richardson’s
method cannot be used to estimate error. In addition, the accuracy must be demonstrated for
the parameters of interest, either local or global, and not simply be implied from other
parameters.

A final observation is made that apparently has not been pointed out in the literature
concerning the use of Richardson’s method in error estimation. By examining the grid
convergence plots of the researchers that have carefully used Richardson’s method an
interesting, but unsettling, feature is observed. Figure 1 shows a grid convergence plot for a
steady-state, three-dimensional, Navier-Stokes solution taken from Walker and Oberkampf.57
The convergence history is for a high Reynolds number, laminar, perfect gas, hypersonic flow
with a highly clustered grid in the boundary layer. The geometry is spherically blunted cone
with a slice on one side of the body at an angle of attack of 169. The acrodynamic normal force
coefficient, C, pitch moment coefficient, Cpy,, and the axial force coefficient, Ca, are each
shown for the conical and sliced portions of the body. The spatial differencing method is
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formally second order accurate, and has been demonstrated to be such in previous verification
computations, in the circumferential direction. It is seen that the grid fineness required to obtain
second order of accuracy of the code is also a grid that produces relative errors on the order of
0.1%. In other words, to demonstrate grid convergence using Richardson’s method one must
compute solutions with very fine grids that have relative errors on the order of 0.1%. We
suggest that the reason for this character is the large gradients in the boundary layer, i. e., the
nonlinear feature of the equations. If less accurate and less expensive solutions, say 10% error,
are desired in production CFD solutions, we have seen no evidence that Richarson’s method is
usable for moderate grid resolution in high Reynolds number flows.

Conclusions

In this article we draw a sharp distinction between physical modeling issues and numerical
formulation and solution issues. This perspective is rarely taken; in fact, the clear trend in large
scale numerical simulations is to homogenize the two issues. We believe additional merging of
these issues will lead to increased confusion as to the cause of inaccuracy and, as a result, loss
in confidence in numerical simulations. To achieve the level of maturity in CFD characterized
by “value exceeds expectation” and “most analysis done without supporting experimental
comparisons,” will require a much deeper understanding of fluid physics, its mathematical
modeling, and numerics; and their relationships.

Computational fluid dynamics, as other computational nonlinear physics, is still in an early
stage of development and application. The progress in CFD during the last thirty years is most
impressive. This progress has resulted because of advances in each contributing area; physical
modeling, numerical algorithms, grid generation, and computer speed. Highly accurate
simulations, however, have only been demonstrated for relatively simple problems in fluid
mechanics, problems that have only one type of nonlinear feature. Examples of these are steady
incompressible laminar flow over a backstep and steady inviscid supersonic flow over a blunt
body. When viewing the vast and dazzling array of complexity of fluid mechanics in nature,
we must conclude that a great deal of caution must be exercised in claiming confidence in
numerical simulations of processes involving multiple nonlinear physics that are highly
coupled.
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Figure 1: Grid convergence error in aerodynamic force and moment coefficients vs number of
circumferential grid points for a reentry vehicle (from Ref. 57)
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