
H sm ANL/CP—73910

PARALLEL COMPUTING AND DOMAIN DECOMPOSITION SEj

WILLIAM GROPP*

DE9I 017967

Abstract. Domain decomposition techniques appear a natural way to make good use of parallel
computers. In particular, these techniques divide a computation into a local part, which may be
done without any interprocessor communication, and a part that involves communication between
neighboring and distant processors.

This paper discusses some of the issues in designing and implementing a parallel domain decom­
position algorithm. A framework for evaluating the cost of parallelism is introduced and applied to
answering questions such as which and how many processors should solve global problems and what
impact load balancing has on the choice of domain decomposition algorithm. The sources of perfor­
mance bottlenecks are discussed. This analysis suggests that domain decomposition techniques will
be effective on high-performance parallel processors and on networks of workstations.

1. Introduction. Domain decomposition methods have become very popular in
recent years. Of the many advantageous features claimed for these methods, the
ability to be used on parallel computers is one of the most cited and least examined.
In this paper, we discuss some of the issues in developing an efficient parallel domain
decomposition algorithm and the reasons that domain decomposition is, in fact, a
good approach for parallel computers. The paper starts by describing the structure of
domain decomposition methods as it applies to parallel computing. Then, the realities
of parallel computing are discussed, and a mathematical model for the additional terms
in a time-complexity analysis of a parallel algorithm is described. A key feature of this
model is its two-level memory structure. This two-level structure is shown to reflect
the structure of many domain decomposition algorithms. Finally, the overheads and
bottlenecks in these algorithms are discussed. For the reader who wishes the punchline
in advance, there are two major points to this paper. First, domain decomposition
algorithms with their two- (or three-) level structure efficiently match the two- (or
three-) level structure of actual high-performance parallel computers. Second, the costs
of interprocessor communication and load balancing are important and can effectively
guide the design and implementation of domain decomposition algorithms.

For a more detailed examination of the time complexities of domain decomposition
algorithms, see [6, 15]. For a sampling of results about parallel domain decomposition
methods, see [1, 3, 7, 8, 9, 10, 11, 14, 16].

2. Structure of Parallel Domain Decomposition Methods. Domain de­
composition methods seem ideally suited for parallel computers. In their simplest
form, each domain may be solved on a separate processor, yielding an apparently per­
fectly parallel algorithm. For a number of reasons, this is an illusion. Most important,
any domain decomposition algorithm involves some communication or coordination
between the computations on each domain; a typical case is shown in Figure 1.

The most important fact to notice in Figure 1 is that there are three levels:
the domains themselves (shaded in gray), communication with neighboring domains
(double headed arrows), and global communication (the wire frame connecting all of
the domains). These levels correspond to the operations in a domain decomposition

* Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
Email: gropp@mcs.anl.gov. This work was supported by the Applied Mathematical Sciences subpro­
gram of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

o
0) —) 2
00 c
H
oz
0m
H
1
C/)
o
o
oc
2 m z
£0
Cz
1
H

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Fl(i. 1. Sample communication structure of domain decomposition algorithms

algorithm, which usually involves three kinds of computation. These computations
are an interior solve, an evaluation of the matrix-vector product, and the computation
of a small number of quantities over the whole domain (e.g., dot products, cross-point
solutions). The efficiency of a domain decomposition method depends on how well
these levels can be mapped onto a parallel computer. As we shall show, from the
point of view of parallelism, it is the global communication part that has the largest
impact on the available parallelism. Determining the best way to handle this part
is the focus of this paper. No choice of method will eliminate some loss of parallel
efficiency at this step.

These observations on communication requirements apply to both implicit and
explicit algorithms, and to “asymptotic” domain decomposition (where the domains
are chosen based on the local properties of the equations). For problems without a
global part (the “wire frame” in Figure 1), load balancing is the biggest concern.

3. Realities of Parallel Computing. In a perfect world, parallel computers
would be as easy to use as uniprocessor computers. Unfortunately, parallel computers
represent a series of design compromises. Of course, any parallelism in the processor is
an admission that a single processor could not be made that met desired performance
or cost requirements. There are two principal places where parallelism is introduced
in order to improve performance: processors and memory. The kind of connection
between the processors and the memory is the primary basis for distinguishing among
types of parallel processor. Common forms of processor-to-memory connection are
shown in Figures 2 and 3. These two forms are distinguished by how much of the
total memory each processor can access. In a shared-memory parallel computer, all
of the memory is accessible to every processor. Communication between processors is
carried out by writing and reading shared memory. In a distributed-memory parallel
computer, only the memory attached to a processor is accessible by that processor.
Communication between processors is carried out by sending messages from one pro­
cessor to another. In both kinds of parallel computer, it takes more time to access a
memory location that is “far away.” The penalty for accessing faraway memory can
be large; actual values range from a factor of 3 (on a network-baaed shared-memory
machine) to several orders of magnitude (on a distributed-memory machine). Thus,

2

MemoryMemory Memory Memory'

(a)

Network

(b)
FKi. 2. Shared memory. A bus-based machine is shown in (a) and a network-based machine is shown
in (b).

it is important to manage the use of memory in order to achieve good efficiency. The
best approach is to understand the sources and relative sizes of the costs; this can be
done in a relatively simple way by modeling the cost of communicating information
between processors.

A number of metrics for measuring the performance of a parallel algorithm have
been proposed. The simplist are efficiency, defined as Ep = Ti/(pTp), and speedup,
defined as Sp = Ti/Tp. Here, Ti is the time to execute an algorithm on a single
processor, and Tp is the time to execute the same algorithm on p processors. At
the very least, we wish dSp/dp > 0 (otherwise, adding processors slows down the
computation). A perfectly parallel algorithm has i? = 1. It is important to note that
since T\ and Tp refer to the same algorithm, neither speedup nor efficiency is a reliable
indicator of quality. For example, by picking a poor, computation-intensive algorithm,
the efficiency can be made very close to one. Perhaps the best measure of efficiency
would have T\ refer to the best algorithm on a single processor. Unfortunately, it is
difficult to get any agreement on what the best algorithm for any problem is.

3.1. The Important Parameters. In analyzing the time complexity of a par­
allel program, there are two new major costs. One is communication, and the other is
load balancing. For most distributed-memory computers, communication costs may
be modeled as

s -f rn,

3

MemoryMemoryMemoryMemory

Network

Fl<;. 3. Distributed memory

where s is the start-up time, r is the time to transfer a single word, and n is the
number of words. For a bus-oriented shared-memory computer, the cost is roughly

rn
min(fc,p)’

where k is the maximum number of simultaneous requests on the bus [13].
It is convenient to express the times s and r relative to the cost to do a single

floating-point operation (/), and we will do so throughout this paper. For many (but
not all) distributed-memory parallel computers,

5 > r > /.

Note that this gives a very clear two-level structure to memory. Local memory may
be accessed quickly (typically with time approximately /). Global memory, that is,
memory on another processor, can be accessed only at much greater cost (5 > /).

3.2. Load Imbalances. In any parallel computation where the parallel proces­
sors must coordinate their work, it is difficult to keep all processors busy all of the
time. Often, some processors have to wait for others to finish their work before they
can proceed with their next task. For example, consider the case where p — 1 pro­
cessors have work Wi and the last has work W2 > Wi. The best possible speedup is
then

Sp
(P - 1)^! + W2

w2

1 + (p- 1)
Wi
W

Because the smallest practical unit of work is not a single arithmetic operation, but a
“module” or “subroutine,” it becomes increasingly difficult to keep the range of work
small as the scale of parallelism increases.

4. Unavoidable Overhead. It is natural to ask whether an efficient, perfectly
parallel algorithm for solving partial differential equations (PDFs) numerically exist.
Unfortunately, there is no such algorithm. Worley [17] has shown that perfectly par­
allel algorithms for PDFs do not exist and that, for a given accuracy, there is a lower
bound on the time it will take to achieve this accuracy. It is important to note that
this is not a bound on speedup: by adding more purely local work, speedup can be
made arbitrarily close to 1.

4

In practice, this overhead shows up as local communication, global communication,
and coordination. Each of these may be traded off against the others, though with
potentially great cost. For example, by using only local communication such as in a
relaxation algorithm, the cost per iteration may be kept independent of the number
of processors, but the algorithm will require more iterations to compute the solution.
Asynchronous algorithms do away with the coordination cost, but again at a penalty
in iteration count. Thus the true goal in the design of a parallel algorithm for solving a
PDF is to achieve the most efficient combination of these overheads, where efficiency
is in terms of minimum elapsed time. Domain decomposition algorithms are good
candidates for efficient parallel algorithms because their structure matches that of
parallel computers.

4.1. The cross-point problem. The global cross-point problem is source of
both the algorithmic efficiency of many domain decomposition algorithms and the
parallel inefficiency. In this section, the behavior of various approaches to solving the
global cross-point problem is analyzed.

4.2. Duplicate work. One sometimes surprising feature of parallel algorithms
is the fact that it is sometimes more efficient for many processors to compute the same
result (a redundant computation) than to have one processor compute and distribute
that same result. It turns out that the solution of the cross-point system in domain
decomposition algorithms can be such a case. In fact, many of the issues in analyzing
a parallel algorithm are illustrated by finding an answer to the question, “How should
the cross-point grid system be solved?”

There are, of course, an great many ways to solve the cross-point system. Some
obvious possibilities are

1. in parallel,
2. on one processor,
3. on all processors separately, and
4. on a subset of processors.

Naturally, the answer to the question will depend not only on the details of the parallel
computer but also on the particular choice of numerical algorithm. To cover the
most ground, we shall consider several different numerical algorithms for solving the
linear system. Also, for concreteness we shall consider an n x n grid of cross-points
and a distributed-memory parallel computer with p processors. Note that since the
cross-point system will probably be small relative to the size of the parallel processor
(probably n2 = p), results that are for n/p —► oo may be misleading.

4.3. All or one. Let us first look at the question of solving the cross-point system
on all the processors in parallel, or solving the problem in serial on one (or more)
processors. The critical point here is that there is a tension between communication
and computation. We can look at the minimum costs to communicate the data first,
and then compare with the computational costs.

If each processor solves the cross-point system, the only communication is the
collection of the right-hand-sides. This is illustrated in Figure 4. The communication
takes time

Texch = (5 + n2r) log p.

If we use banded Gaussian elimination on the each processor to solve the system of
5

- Solve

-Exchange

Fig. 4. On all processors. A parallel solve looks like this, except the solve and exchange steps are
intermixed.

equations, the total cost is

'^'serial « n3 + (s + n2r) logp.

Now, consider using parallel banded Gaussian elimination. The cost for this is

Tparallel > n3/p + 2(p - 1) + y r^ ,

where important load-imbalance effects have been ignored. (See [4, 12] and references
there for a detailed discussion of the time complexity of parallel banded Gaussian
elimlination. The time here is for only the solve and does not include the cost of
factorization.)

For the parallel solve to be faster, we need

n3/p + 2(p - 1) + —rj < n3 + (s + n2r) logp.

The high communication cost of the parallel solver will often overwhelm the reduced
computation. For example, consider the case of one cross-point on each processor:
n2 = p. Then we would need

n -f 2(n2 — l)(s + r) < n3 -f (s -|- n2r)2 log n.

For parallel computers with large s, this is very roughly

2n2s < n3 + 2(s + n2r)logn.

This inequality will not be satisfied if both n2s > n3 and n2s > 2(s + n2r)\ogn.
The first is just s > n = ^/p, which is true for most distributed-memory computers.
The second is roughly s > rlogp, which is again true for most distributed-memory
computers. Thus, for this relatively small system of equations, it is slower to use many
processors than to use one processor.

6

70000

60000

50000

10000

Fig. 5. Comparison of serial and parallel banded Gaussian elimination. The solid line is the time for
the parallel algorithm; the dashed line is the time for the uni-processor algorithm on each processor.

If a method other than banded Gaussian elimination is used, then the analysis
must be repeated. Note, however, that a sufficient condition for the solve on a single
processor to be more efficient is for

Tserial ^ '^-'parallel communication •

For example, if multigrid (V cycle) is used instead of banded Gaussian elimination,
each half-cycle requires log(n) communication steps, with the \th step sending data a
distance of 2' (see [2] for a discussion of the time complexity of parallel multigrid). If
there are / cycles, the time will be roughly

log n
Tparallel communication ~ ^ , (^ "b 2 r)) — /(s log 71 -)- TIT"),

i=0

and the serial time will be

Tserial = + (s + Tl2r) log 7Z.

Comparing these, we see that for the parallel version to be faster, we need

I(s log n + nr) < In2 + (5 -f n2r) log n.

For p = n2, this reduces to

I(s log n nr) < In2 + (s -(- n2r) log n,

or roughly

7s log n < In2

or

s <
n 2p

log n log p

7

- Distribute

Other work ■ Solve

- Collect

Fit;. 6. On one processor

While this is a less severe constraint than Equation 4.3, it is still a stringent require­
ment, and one that most distributed memory parallel computers do not meet.

Thus it can be cheaper to do duplicate work. (An intermediate choice is suggested
by Figure 5—use clusters of po < P processors.) The problem here is the communica­
tion time; a method requiring less computation may not require less communication,
thus reducing the method’s parallel efficiency. Another way to look at the situation
is that there is not enough data per communication. A similar computation can be
carried out to decide whether to factor the problem, when using Gaussian elimination,
on all or some of the processors.

4.4. Overlapped Work. Once we have decided that it is better to solve each
cross-point problem on a single processor, we must ask whether it is better to solve
on a single processor and distribute the results to the other processors, or solve the
identical problem on all of the processors. Intuitively, we might expect to be able to
accomplish some other “useful” work on the other processors if we solve the cross-point
problem on a single processor. This is illustrated in Figure 6. However, this requires
us to distribute the solution that is computed on the single processor, and we shall
see that this can be a significant cost. The cost has two components: balancing the
work and sharing the results of the cross-point grid solution.

An example of a method that allows the overlap of the solution of the cross-point
problem and other work are the additive methods, such as the additive Schwarz method
[5]. These methods allow all of the subproblems to be solved in parallel, seemingly
avoiding any coordination overhead. However, different phases of this computation
have differing loads:

• Solves—one processor has the cross-point system in addition to local solves.

8

• Matrix multiply, dot products, updates—work is proportional to the number
of mesh points.

While the differing loads presented by these two phases are an important consideration
(see Figure 7), we shall analyze only the additional communication cost incurred by
having only one processor solve the cross-point system.

4.5. Distributing the solution. Let the cross-point system be solved with an
optimal method:

Taoive — cn .

The total cost to solve the cross-point problem on one processor and distribute is
(summed over all processors)

ZpTcoii + Tsoive.

If each processor solves the same cross-point problem, the total time is

p(.Tcou + T,0ive).

Less total time is consumed in solving the cross-point problem if

This is true if

p — 1
TCoii < T30ive.

(s + rn2) logp <

r <

<

fp-vj cn2
V p .
fp-r) C
V p .) logp

c s
logp n2

Since s/n2 is likely to be small, this depends critically on c. For fast enough solvers,
the cost of moving the data around can exceed the cost of solving the cross-point
system (particularly if an approximate solution can be used). Thus, there may be no
savings in overlapping the work of the cross-point system with other work.

It is also important to note that even if the above analysis suggests that it is best
to solve the cross-point system on one processor, Figure 7 shows that there can be
an additional cost. Since the application of the preconditioner contains an operation
on the cross-point system but the formation of the matrix-vector product does not, it
is impossible statically to equally distribute the computational load across all of the
processors. The amount of imbalance depends on details of the algorithm and should
be considered in chosing an implementation strategy.

5. Domain Decomposition on Networks. Now that we have a description
of domain decomposition as appropriate for computers with two-level memory hier­
archies, we can look at other computer architectures that might be appropriate for
domain decomposition algorithms. An obvious candidate is a network of workstations.
A network of 50 workstations can have significant computing power (at 4 megaflops
each, such a network has an aggregate power of 200 megaflops), but, more important,

9

Fl<;. 7. Sample load distribution when one processor solves the cross-point problem. Dark gray indi­
cates communication fan exchange of data), light gray idle or wasted time, “coarse" the solution of
the cross-point problem, and “fine” operations on the subdomains.

such a network has a very large amount of physical memory. For example, with a
mere 16 megabytes of memory per workstation, a 50-workstation network will have
800 megabytes of physical memory. Thus, a modest-sized network of workstations has
enough memory and computational power to attack significant problems.

This is a good point to raise another issue. Why not use a single workstation
and exploit virtual memory? (Another version of this question is, Why not let paral­
lelizing compilers figure out how to organize the algorithm?) The answer is that page
thrashing reduces effective computation rate. This is illustrated in Figure 8, where the
computation rates for a simple calculation on a workstation are shown. Knowledge
of this effect (and effects related to cache memory) is important; it explains so-called
superlinear speedup that is sometimes observed. An example is presented below.

The cost of communicating between processors in a network of workstations can
be modeled just as the distributed-memory parallel computers were above. The only
difference is that the parameters s and r will probably be somewhat larger. To see how
this communication cost affects the performance of domain decomposition algorithms
on a network, consider a three-dimensional problem on an n x n x n mesh and the
cost of computation of the matrix-vector product.

If we assume that the subproblems (each domain) fit in physical memory, the time
to compute one iteration or step of the problem is

2(s + rn2) -f —,
P

10

Time for dox Rote for

Fig. 8. Computation rates for a DAXPY operation as a function of vector length on a Sun SPARC-
Station 1.

where the domain has been divided into n X n X n/p slabs. The speedup is

P 2(5 + rn2) + y’

so dSp/dp > 0. Thus, adding processors improves the performance. The one special
case is p = 2; here, as long as

. 2 n32(s + rn2) < —,
P

the parallel version will be faster.
There is a more important effect that is related to the discussion of “page thrash­

ing” above. Let the problem be so large that it does not fit in the physical memory
of a single processor. Then the time on a single processor may be modeled as

n3a,

where a > 1 represents the scaling of processor speed when a problem does not fit
in memory (et is about 20 for the computation in Figure 8). Let the parallel version
of the algorithm use enough processors so that the problem fits within the physical
memory of the ensemble of processors. Then, for n = 100 (16-Mbyte workstation),
the speedup is

n3a
2(s + rn2) + ^

ap
2p(s + rl04)/106 + 1

ap
2 X 10-6(s + rlO4) + 1.

Even for large s and r, this is nearly ap, “superlinear” speedup.
This is one of a few situations where small degrees of parallelism are interesting—

fitting a problem into memory that would not fit before. Otherwise it is better to use
a single processor and wait a little longer.

11

6. DD and Block Methods. Block methods are methods that divide a problem
into blocks and process one block at a time. Such approaches are important in getting
the maximum performance out of many vector and matrix operations, including the
solution of dense systems of linear equations. These methods do not reduce the actual
number of floating-point operations that are used (in some cases, there are actually
more operations performed). Instead, they reduce the number of times a data item is
read from memory. Block methods are usually organized with a single level of blocks;
the block sizes are chosen to match the fast memory of the target computer (cache or
vector registers).

Thus, block methods can be considered a form of domain decomposition that has
no special treatment of interfaces or global problems. Further, some of the program­
ming tools and methods that have been developed for block methods may be applicable
to more general domain decomposition methods. In particular, domain decomposition
methods can take advantage of very efficient block method routines to perform local
operations such as matrix-vector product and solution of “interior” problems. Other
programming tools (such as array sections) can be used to simplify the expression of
domain decomposition algorithms.

7. Conclusions. In this paper we have looked at parallel computing applied to
domain decomposition algorithms. The keys points to remember are that

• domain decomposition reflects computer hardware (memory hierarchy);
• since perfect parallelism is impossible, speedup can be a misleading measure

of effectiveness; and
• time (and space!) complexities may be easily estimated.

As an example of these points, an analysis of the cost of a global cross-point solver
suggests that even where the cross-point problem could be computed in parallel with
other work, it may be less efficient to do so.

The analysis here also suggests a number of future research areas. Focusing on
minimizing computer memory use suggests that single-precision preconditioners may
be valuable. Some new RISC processors already have single precision performance
that is as much as double the double-precision performance; domain decomposition
methods may permit the use of this hardware with the preconditioner without loosing
accuracy in the solution.

The highest-performance parallel computers of the future are likely to have more
than two important levels of memory hierarchy. These may include cache (or vector
registers), local memory, off-processor memory, and mass-storage memory (such as
high-speed disks). Domain decomposition techniques may be used to make best use
of this structure.

Domain decomposition is appropriate for both SIMD parallel computers and for
networks of workstations. In particular, the large penalties for interprocessor com­
munication on networks of workstations represent an extreme case of the two-level
memory structure for which domain decomposition is so suited.

REFERENCES

[l] P. E. R.ioiistad, J. RiiakkiiUS, and A. Hvids'I’KN, Parallel substructuring algorithms in struc­
tural analysis, direct and iterative methods, in Fourth International Symposium on Domain
Decomposition Methods, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Periaux, and O. B.
Widlund, eds., Philadelphia, 1991, SIAM, pp. 321-340.

12

[2] T. Oman and R. Scimikihkii, Parallel networks for multigrid algorithms: Architecture and
complexity, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 698-711.

[3] Ti. Co ws A it and M. F. WlIKKI.KIt, Parallel domain decomposition method for mixed finite ele­
ments for elliptic partial differential equations, in Fourth International Symposium on Do­
main Decomposition Methods, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Periaux, and
O. B. Widlund, eds., Philadelphia, 1991, SIAM, pp. 358-372.

[4] J. Dongaiuia and T,. Jomnsson, Solving banded systems on a parallel processor, Pa.ral]e\ Com­
puting, 5 (1987), pp. 219-246.

[5] M. Diiy.ia and O. B. Wujmjnd, An additive variant of the Schwarz alternating method for the
case of many subregions, Tech. Rep. TR 339, NYU, Courant Institute, December 1987.

[6] W. D. G 1101*1* and D. F,. Kk.YKS, Complexity of parallel implementation of domain decompo­
sition techniques for elliptic partial differential equations, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 312-326.

[7] -------- , Domain decomposition on parallel computers, Impact Comput. Sci. Eng., 1 (1989),
pp. 421-439.

[8] -------- , Domain decomposition on parallel computers, in Second International Symposium on
Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux, and O. Widlund,
eds., Philadelphia, 1989, SIAM, pp. 260-268.

[9] -------- , Parallel domain decomposition and the solution of nonlinear systems of equations, Math­
ematics and Computer Science Preprint MCS-P186-1090, Argonne National Laboratory,
October 1990.

[10] -------- , Parallel performance of domain-decomposed preconditioned Krylov methods for PDEs
with adaptive refinement, MCS-P147-0490, Argonne National Laboratory, Mathematics and
Computer Science Division, May 1990. To appear in to SIAM J. Sci. Stat. Comp, as Parallel
Performance of Domain-decomposed Preconditioned Krylov Methods for PDEs with Locally
Uniform Refinement.

[11] M. Ha<;ii<><) and W. Piiohkuiiowski, Parallel efficiency of a domain decomposition method,
in Second International Symposium on Domain Decomposition Methods, T. F. Chan,
R. Glowinski, J. Periaux, and O. Widlund, eds., Philadelphia, 1989, SIAM, pp. 269-281.

[12] L. Jomnsson, Solving narrow banded systems on ensemble architectures, ACM Trans. Math.
Softw., 11 (1985), pp. 271-288.

[13] H. JoitDAN, Interpreting parallel processor performance measurements, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. s220-s226.

[14] D. F,. Kk.YKS, Domain decomposition methods for the parallel computation of reacting flows,
Comput. Phys. Comp., 53 (1989), pp. 181-200.

[15] D. F,. Kkyks and W. D. GltOI’l’, A comparison of domain decomposition techniques for elliptic
partial differential equations and their parallel implementation, SIAM J. Sci. Stat. Comp., 8
(1987), pp. sl66-s202.

[16] -------- , Domain decomposition techniques for the parallel solution of nonsymmetric systems of
elliptic boundary value problems, Appl. Num. Math., 6 (1990), pp. 281-301.

[17] P. H. Woill.KY, Information requirements and the implications for parallel computation, Tech.
Rep. STAN-CS-88-1212, Computer Science Department, Stanford University, June 1988.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

