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Abstract. Domain decomposition techniques appear a natural way to make good use of parallel 
computers. In particular, these techniques divide a computation into a local part, which may be 
done without any interprocessor communication, and a part that involves communication between 
neighboring and distant processors.

This paper discusses some of the issues in designing and implementing a parallel domain decom­
position algorithm. A framework for evaluating the cost of parallelism is introduced and applied to 
answering questions such as which and how many processors should solve global problems and what 
impact load balancing has on the choice of domain decomposition algorithm. The sources of perfor­
mance bottlenecks are discussed. This analysis suggests that domain decomposition techniques will 
be effective on high-performance parallel processors and on networks of workstations.

1. Introduction. Domain decomposition methods have become very popular in 
recent years. Of the many advantageous features claimed for these methods, the 
ability to be used on parallel computers is one of the most cited and least examined. 
In this paper, we discuss some of the issues in developing an efficient parallel domain 
decomposition algorithm and the reasons that domain decomposition is, in fact, a 
good approach for parallel computers. The paper starts by describing the structure of 
domain decomposition methods as it applies to parallel computing. Then, the realities 
of parallel computing are discussed, and a mathematical model for the additional terms 
in a time-complexity analysis of a parallel algorithm is described. A key feature of this 
model is its two-level memory structure. This two-level structure is shown to reflect 
the structure of many domain decomposition algorithms. Finally, the overheads and 
bottlenecks in these algorithms are discussed. For the reader who wishes the punchline 
in advance, there are two major points to this paper. First, domain decomposition 
algorithms with their two- (or three-) level structure efficiently match the two- (or 
three-) level structure of actual high-performance parallel computers. Second, the costs 
of interprocessor communication and load balancing are important and can effectively 
guide the design and implementation of domain decomposition algorithms.

For a more detailed examination of the time complexities of domain decomposition 
algorithms, see [6, 15]. For a sampling of results about parallel domain decomposition 
methods, see [1, 3, 7, 8, 9, 10, 11, 14, 16].

2. Structure of Parallel Domain Decomposition Methods. Domain de­
composition methods seem ideally suited for parallel computers. In their simplest 
form, each domain may be solved on a separate processor, yielding an apparently per­
fectly parallel algorithm. For a number of reasons, this is an illusion. Most important, 
any domain decomposition algorithm involves some communication or coordination 
between the computations on each domain; a typical case is shown in Figure 1.

The most important fact to notice in Figure 1 is that there are three levels: 
the domains themselves (shaded in gray), communication with neighboring domains 
(double headed arrows), and global communication (the wire frame connecting all of 
the domains). These levels correspond to the operations in a domain decomposition
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Fl(i. 1. Sample communication structure of domain decomposition algorithms

algorithm, which usually involves three kinds of computation. These computations 
are an interior solve, an evaluation of the matrix-vector product, and the computation 
of a small number of quantities over the whole domain (e.g., dot products, cross-point 
solutions). The efficiency of a domain decomposition method depends on how well 
these levels can be mapped onto a parallel computer. As we shall show, from the 
point of view of parallelism, it is the global communication part that has the largest 
impact on the available parallelism. Determining the best way to handle this part 
is the focus of this paper. No choice of method will eliminate some loss of parallel 
efficiency at this step.

These observations on communication requirements apply to both implicit and 
explicit algorithms, and to “asymptotic” domain decomposition (where the domains 
are chosen based on the local properties of the equations). For problems without a 
global part (the “wire frame” in Figure 1), load balancing is the biggest concern.

3. Realities of Parallel Computing. In a perfect world, parallel computers 
would be as easy to use as uniprocessor computers. Unfortunately, parallel computers 
represent a series of design compromises. Of course, any parallelism in the processor is 
an admission that a single processor could not be made that met desired performance 
or cost requirements. There are two principal places where parallelism is introduced 
in order to improve performance: processors and memory. The kind of connection 
between the processors and the memory is the primary basis for distinguishing among 
types of parallel processor. Common forms of processor-to-memory connection are 
shown in Figures 2 and 3. These two forms are distinguished by how much of the 
total memory each processor can access. In a shared-memory parallel computer, all 
of the memory is accessible to every processor. Communication between processors is 
carried out by writing and reading shared memory. In a distributed-memory parallel 
computer, only the memory attached to a processor is accessible by that processor. 
Communication between processors is carried out by sending messages from one pro­
cessor to another. In both kinds of parallel computer, it takes more time to access a 
memory location that is “far away.” The penalty for accessing faraway memory can 
be large; actual values range from a factor of 3 (on a network-baaed shared-memory 
machine) to several orders of magnitude (on a distributed-memory machine). Thus,
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FKi. 2. Shared memory. A bus-based machine is shown in (a) and a network-based machine is shown 
in (b).

it is important to manage the use of memory in order to achieve good efficiency. The 
best approach is to understand the sources and relative sizes of the costs; this can be 
done in a relatively simple way by modeling the cost of communicating information 
between processors.

A number of metrics for measuring the performance of a parallel algorithm have 
been proposed. The simplist are efficiency, defined as Ep = Ti/(pTp), and speedup, 
defined as Sp = Ti/Tp. Here, Ti is the time to execute an algorithm on a single 
processor, and Tp is the time to execute the same algorithm on p processors. At 
the very least, we wish dSp/dp > 0 (otherwise, adding processors slows down the 
computation). A perfectly parallel algorithm has i? = 1. It is important to note that 
since T\ and Tp refer to the same algorithm, neither speedup nor efficiency is a reliable 
indicator of quality. For example, by picking a poor, computation-intensive algorithm, 
the efficiency can be made very close to one. Perhaps the best measure of efficiency 
would have T\ refer to the best algorithm on a single processor. Unfortunately, it is 
difficult to get any agreement on what the best algorithm for any problem is.

3.1. The Important Parameters. In analyzing the time complexity of a par­
allel program, there are two new major costs. One is communication, and the other is 
load balancing. For most distributed-memory computers, communication costs may 
be modeled as

s -f rn,
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Fl<;. 3. Distributed memory

where s is the start-up time, r is the time to transfer a single word, and n is the 
number of words. For a bus-oriented shared-memory computer, the cost is roughly

rn
min(fc,p)’

where k is the maximum number of simultaneous requests on the bus [13].
It is convenient to express the times s and r relative to the cost to do a single 

floating-point operation (/), and we will do so throughout this paper. For many (but 
not all) distributed-memory parallel computers,

5 > r > /.

Note that this gives a very clear two-level structure to memory. Local memory may 
be accessed quickly (typically with time approximately /). Global memory, that is, 
memory on another processor, can be accessed only at much greater cost (5 > /).

3.2. Load Imbalances. In any parallel computation where the parallel proces­
sors must coordinate their work, it is difficult to keep all processors busy all of the 
time. Often, some processors have to wait for others to finish their work before they 
can proceed with their next task. For example, consider the case where p — 1 pro­
cessors have work Wi and the last has work W2 > Wi. The best possible speedup is 
then

Sp
(P - 1)^! + W2

w2

1 + (p- 1)
Wi
W

Because the smallest practical unit of work is not a single arithmetic operation, but a 
“module” or “subroutine,” it becomes increasingly difficult to keep the range of work 
small as the scale of parallelism increases.

4. Unavoidable Overhead. It is natural to ask whether an efficient, perfectly 
parallel algorithm for solving partial differential equations (PDFs) numerically exist. 
Unfortunately, there is no such algorithm. Worley [17] has shown that perfectly par­
allel algorithms for PDFs do not exist and that, for a given accuracy, there is a lower 
bound on the time it will take to achieve this accuracy. It is important to note that 
this is not a bound on speedup: by adding more purely local work, speedup can be 
made arbitrarily close to 1.
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In practice, this overhead shows up as local communication, global communication, 
and coordination. Each of these may be traded off against the others, though with 
potentially great cost. For example, by using only local communication such as in a 
relaxation algorithm, the cost per iteration may be kept independent of the number 
of processors, but the algorithm will require more iterations to compute the solution. 
Asynchronous algorithms do away with the coordination cost, but again at a penalty 
in iteration count. Thus the true goal in the design of a parallel algorithm for solving a 
PDF is to achieve the most efficient combination of these overheads, where efficiency 
is in terms of minimum elapsed time. Domain decomposition algorithms are good 
candidates for efficient parallel algorithms because their structure matches that of 
parallel computers.

4.1. The cross-point problem. The global cross-point problem is source of 
both the algorithmic efficiency of many domain decomposition algorithms and the 
parallel inefficiency. In this section, the behavior of various approaches to solving the 
global cross-point problem is analyzed.

4.2. Duplicate work. One sometimes surprising feature of parallel algorithms 
is the fact that it is sometimes more efficient for many processors to compute the same 
result (a redundant computation) than to have one processor compute and distribute 
that same result. It turns out that the solution of the cross-point system in domain 
decomposition algorithms can be such a case. In fact, many of the issues in analyzing 
a parallel algorithm are illustrated by finding an answer to the question, “How should 
the cross-point grid system be solved?”

There are, of course, an great many ways to solve the cross-point system. Some 
obvious possibilities are

1. in parallel,
2. on one processor,
3. on all processors separately, and
4. on a subset of processors.

Naturally, the answer to the question will depend not only on the details of the parallel 
computer but also on the particular choice of numerical algorithm. To cover the 
most ground, we shall consider several different numerical algorithms for solving the 
linear system. Also, for concreteness we shall consider an n x n grid of cross-points 
and a distributed-memory parallel computer with p processors. Note that since the 
cross-point system will probably be small relative to the size of the parallel processor 
(probably n2 = p), results that are for n/p —► oo may be misleading.

4.3. All or one. Let us first look at the question of solving the cross-point system 
on all the processors in parallel, or solving the problem in serial on one (or more) 
processors. The critical point here is that there is a tension between communication 
and computation. We can look at the minimum costs to communicate the data first, 
and then compare with the computational costs.

If each processor solves the cross-point system, the only communication is the 
collection of the right-hand-sides. This is illustrated in Figure 4. The communication 
takes time

Texch = (5 + n2r) log p.

If we use banded Gaussian elimination on the each processor to solve the system of
5
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Fig. 4. On all processors. A parallel solve looks like this, except the solve and exchange steps are 
intermixed.

equations, the total cost is

'^'serial « n3 + (s + n2r) logp.

Now, consider using parallel banded Gaussian elimination. The cost for this is 

Tparallel > n3/p + 2(p - 1) + y r^ ,

where important load-imbalance effects have been ignored. (See [4, 12] and references 
there for a detailed discussion of the time complexity of parallel banded Gaussian 
elimlination. The time here is for only the solve and does not include the cost of 
factorization.)

For the parallel solve to be faster, we need

n3/p + 2(p - 1) + —rj < n3 + (s + n2r) logp.

The high communication cost of the parallel solver will often overwhelm the reduced 
computation. For example, consider the case of one cross-point on each processor: 
n2 = p. Then we would need

n -f 2(n2 — l)(s + r) < n3 -f (s -|- n2r)2 log n.

For parallel computers with large s, this is very roughly

2n2s < n3 + 2(s + n2r)logn.

This inequality will not be satisfied if both n2s > n3 and n2s > 2(s + n2r)\ogn. 
The first is just s > n = ^/p, which is true for most distributed-memory computers. 
The second is roughly s > rlogp, which is again true for most distributed-memory 
computers. Thus, for this relatively small system of equations, it is slower to use many 
processors than to use one processor.
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Fig. 5. Comparison of serial and parallel banded Gaussian elimination. The solid line is the time for 
the parallel algorithm; the dashed line is the time for the uni-processor algorithm on each processor.

If a method other than banded Gaussian elimination is used, then the analysis 
must be repeated. Note, however, that a sufficient condition for the solve on a single 
processor to be more efficient is for

Tserial ^ '^-'parallel communication •

For example, if multigrid (V cycle) is used instead of banded Gaussian elimination, 
each half-cycle requires log(n) communication steps, with the \th step sending data a 
distance of 2' (see [2] for a discussion of the time complexity of parallel multigrid). If 
there are / cycles, the time will be roughly

log n
Tparallel communication ~ ^ , (^ "b 2 r)) — /(s log 71 -)- TIT"),

i=0

and the serial time will be

Tserial = + (s + Tl2r) log 7Z.

Comparing these, we see that for the parallel version to be faster, we need

I(s log n + nr) < In2 + (5 -f n2r) log n.

For p = n2, this reduces to

I(s log n nr) < In2 + (s -(- n2r) log n,

or roughly

7s log n < In2

or

s <
n  2p 

log n log p
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While this is a less severe constraint than Equation 4.3, it is still a stringent require­
ment, and one that most distributed memory parallel computers do not meet.

Thus it can be cheaper to do duplicate work. (An intermediate choice is suggested 
by Figure 5—use clusters of po < P processors.) The problem here is the communica­
tion time; a method requiring less computation may not require less communication, 
thus reducing the method’s parallel efficiency. Another way to look at the situation 
is that there is not enough data per communication. A similar computation can be 
carried out to decide whether to factor the problem, when using Gaussian elimination, 
on all or some of the processors.

4.4. Overlapped Work. Once we have decided that it is better to solve each 
cross-point problem on a single processor, we must ask whether it is better to solve 
on a single processor and distribute the results to the other processors, or solve the 
identical problem on all of the processors. Intuitively, we might expect to be able to 
accomplish some other “useful” work on the other processors if we solve the cross-point 
problem on a single processor. This is illustrated in Figure 6. However, this requires 
us to distribute the solution that is computed on the single processor, and we shall 
see that this can be a significant cost. The cost has two components: balancing the 
work and sharing the results of the cross-point grid solution.

An example of a method that allows the overlap of the solution of the cross-point 
problem and other work are the additive methods, such as the additive Schwarz method 
[5]. These methods allow all of the subproblems to be solved in parallel, seemingly 
avoiding any coordination overhead. However, different phases of this computation 
have differing loads:

• Solves—one processor has the cross-point system in addition to local solves.
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• Matrix multiply, dot products, updates—work is proportional to the number 
of mesh points.

While the differing loads presented by these two phases are an important consideration 
(see Figure 7), we shall analyze only the additional communication cost incurred by 
having only one processor solve the cross-point system.

4.5. Distributing the solution. Let the cross-point system be solved with an 
optimal method:

Taoive — cn .

The total cost to solve the cross-point problem on one processor and distribute is 
(summed over all processors)

ZpTcoii + Tsoive.

If each processor solves the same cross-point problem, the total time is

p(.Tcou + T,0ive).

Less total time is consumed in solving the cross-point problem if

This is true if

p — 1
TCoii < T30ive.

(s + rn2) logp < 

r < 

<

fp-vj cn2
V p .
fp-r) C
V p .) logp

c s
logp n2

Since s/n2 is likely to be small, this depends critically on c. For fast enough solvers, 
the cost of moving the data around can exceed the cost of solving the cross-point 
system (particularly if an approximate solution can be used). Thus, there may be no 
savings in overlapping the work of the cross-point system with other work.

It is also important to note that even if the above analysis suggests that it is best 
to solve the cross-point system on one processor, Figure 7 shows that there can be 
an additional cost. Since the application of the preconditioner contains an operation 
on the cross-point system but the formation of the matrix-vector product does not, it 
is impossible statically to equally distribute the computational load across all of the 
processors. The amount of imbalance depends on details of the algorithm and should 
be considered in chosing an implementation strategy.

5. Domain Decomposition on Networks. Now that we have a description 
of domain decomposition as appropriate for computers with two-level memory hier­
archies, we can look at other computer architectures that might be appropriate for 
domain decomposition algorithms. An obvious candidate is a network of workstations. 
A network of 50 workstations can have significant computing power (at 4 megaflops 
each, such a network has an aggregate power of 200 megaflops), but, more important,

9



Fl<;. 7. Sample load distribution when one processor solves the cross-point problem. Dark gray indi­
cates communication fan exchange of data), light gray idle or wasted time, “coarse" the solution of 
the cross-point problem, and “fine” operations on the subdomains.

such a network has a very large amount of physical memory. For example, with a 
mere 16 megabytes of memory per workstation, a 50-workstation network will have 
800 megabytes of physical memory. Thus, a modest-sized network of workstations has 
enough memory and computational power to attack significant problems.

This is a good point to raise another issue. Why not use a single workstation 
and exploit virtual memory? (Another version of this question is, Why not let paral­
lelizing compilers figure out how to organize the algorithm?) The answer is that page 
thrashing reduces effective computation rate. This is illustrated in Figure 8, where the 
computation rates for a simple calculation on a workstation are shown. Knowledge 
of this effect (and effects related to cache memory) is important; it explains so-called 
superlinear speedup that is sometimes observed. An example is presented below.

The cost of communicating between processors in a network of workstations can 
be modeled just as the distributed-memory parallel computers were above. The only 
difference is that the parameters s and r will probably be somewhat larger. To see how 
this communication cost affects the performance of domain decomposition algorithms 
on a network, consider a three-dimensional problem on an n x n x n mesh and the 
cost of computation of the matrix-vector product.

If we assume that the subproblems (each domain) fit in physical memory, the time 
to compute one iteration or step of the problem is

2(s + rn2) -f —,
P
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Fig. 8. Computation rates for a DAXPY operation as a function of vector length on a Sun SPARC- 
Station 1.

where the domain has been divided into n X n X n/p slabs. The speedup is

P 2(5 + rn2) + y’

so dSp/dp > 0. Thus, adding processors improves the performance. The one special 
case is p = 2; here, as long as

. 2 n32(s + rn2) < —,
P

the parallel version will be faster.
There is a more important effect that is related to the discussion of “page thrash­

ing” above. Let the problem be so large that it does not fit in the physical memory 
of a single processor. Then the time on a single processor may be modeled as

n3a,

where a > 1 represents the scaling of processor speed when a problem does not fit 
in memory (et is about 20 for the computation in Figure 8). Let the parallel version 
of the algorithm use enough processors so that the problem fits within the physical 
memory of the ensemble of processors. Then, for n = 100 (16-Mbyte workstation), 
the speedup is

n3a
2(s + rn2) + ^ 

ap
2p(s + rl04)/106 + 1 

ap
2 X 10-6(s + rlO4) + 1.

Even for large s and r, this is nearly ap, “superlinear” speedup.
This is one of a few situations where small degrees of parallelism are interesting— 

fitting a problem into memory that would not fit before. Otherwise it is better to use 
a single processor and wait a little longer.

11



6. DD and Block Methods. Block methods are methods that divide a problem 
into blocks and process one block at a time. Such approaches are important in getting 
the maximum performance out of many vector and matrix operations, including the 
solution of dense systems of linear equations. These methods do not reduce the actual 
number of floating-point operations that are used (in some cases, there are actually 
more operations performed). Instead, they reduce the number of times a data item is 
read from memory. Block methods are usually organized with a single level of blocks; 
the block sizes are chosen to match the fast memory of the target computer (cache or 
vector registers).

Thus, block methods can be considered a form of domain decomposition that has 
no special treatment of interfaces or global problems. Further, some of the program­
ming tools and methods that have been developed for block methods may be applicable 
to more general domain decomposition methods. In particular, domain decomposition 
methods can take advantage of very efficient block method routines to perform local 
operations such as matrix-vector product and solution of “interior” problems. Other 
programming tools (such as array sections) can be used to simplify the expression of 
domain decomposition algorithms.

7. Conclusions. In this paper we have looked at parallel computing applied to 
domain decomposition algorithms. The keys points to remember are that

• domain decomposition reflects computer hardware (memory hierarchy);
• since perfect parallelism is impossible, speedup can be a misleading measure 

of effectiveness; and
• time (and space!) complexities may be easily estimated.

As an example of these points, an analysis of the cost of a global cross-point solver 
suggests that even where the cross-point problem could be computed in parallel with 
other work, it may be less efficient to do so.

The analysis here also suggests a number of future research areas. Focusing on 
minimizing computer memory use suggests that single-precision preconditioners may 
be valuable. Some new RISC processors already have single precision performance 
that is as much as double the double-precision performance; domain decomposition 
methods may permit the use of this hardware with the preconditioner without loosing 
accuracy in the solution.

The highest-performance parallel computers of the future are likely to have more 
than two important levels of memory hierarchy. These may include cache (or vector 
registers), local memory, off-processor memory, and mass-storage memory (such as 
high-speed disks). Domain decomposition techniques may be used to make best use 
of this structure.

Domain decomposition is appropriate for both SIMD parallel computers and for 
networks of workstations. In particular, the large penalties for interprocessor com­
munication on networks of workstations represent an extreme case of the two-level 
memory structure for which domain decomposition is so suited.
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