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ABSTRACT 

An overview of the computer code TOPAZ (Transient-One- Dimensional Pipe 
Flow Analyzer) is presented. TOPAZ models the flow of compressible and incom- 
pressible fluids through complex and arbitrary arrangements of pipes, valves, flow 
branches and vessels. Heat transfer to and from the fluid containment structures 
(i.e. vessel and pipe walls) can also be modeled. This document includes discussions 
of the fluid flow equations and containment heat conduction equations. The model- 
ing philosophy, numerical integration technique, code architecture, and methods for 
generating the computational mesh are also discussed. 
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Nomenclature 

Symbol 
A 

NMAX 

Description 
Flow cross-sectional area 
Control volume heat transfer area 
Heat conduction characteristic length 
Isentropic sound speed 
Solid specific heat 
Fluid specific heat a t  constant pressure 
Fluid specific heat at constant volume 
Flow hydraulic diameter 
Vector of residuals 
Friction factor 
Gravitational acceleration 
Net rate of incident radiation per unit area 
Enthalpy per unit mass, convective heat transfer coefficient 
Integer denoting a fluid control volume (fluid control 
volume node), also fluid inertia constant defined by 
equation (ID- 1 1) 
Integer denoting a fluid stream tube (fluid 
momentum node) 
Integer denoting a solid heat conduction control 
volume (solid heat conduction node) 
Thermal conductivity 
Average thermal conductivity 
Fluid control volume length 
Fluid control volume mass 
Integer denoting a computational node, variable, 
or equation 
The maximum number of computational nodes, variables, 
or equations 
Fluid pressure 
Fluid Prandl number 
Rate of heat transfer per unit area from the 
containment t o  the fluid 
Rate of heat generation per unit volume 



Fluid entropy per unit mass 
Raleigh number 
Reynolds number 
Time 
Temperature 
Internal energy per unit mass 
Fluid velocity 
Fluid choking velocity 
Volume 
Fluid mass flow rate 
Vector of dependent variables 
Vector of dependent variable time derivatives 
Elevation 
Absorptivity 
Emissivity 
Tube wall relative roughness 
Fluid dynamic viscosity 
Stefan-Boltzmann constant 
Density 



I. Introduction 

The purpose of this document is to present an overview of the computer code 
TOPAZ (TRANSIENT-ONE-DIMENSIONAL-PJPE FLOW ANUYZER). TOPAZ 
was developed to help fulfill a need for a highly general code capable of modeling flow 
through complex and arbitrary arrangements of pipes, flow branches, and vessels. 
Although TOPAZ was originally designed to model thermohydraulic phenomena in 
solar central receivers [I, 21, its application has since been expanded to include a 
broad range of non-solar heat transfer/ fluid flow problems of interest to Sandia. 
Features of TOPAZ include the following: 

One-dimensional, transient modeling of internal fluid flows 
Two-dimensional, transient modeling of heat conduction in fluid 
containment structures (vessel and pipewalls) 
Coupling between fluid flow and containment heat conduction 
calculations 
Capability of modeling incompressible flows, including thermally 
compressible flows for which fluid properties vary with temperature. 
Capability of modeling compressible flows and associated phenomena 
including flow choking and the propagation of shock and rarefaction 
waves 
Capability of linking flow domains together to  form arbitrary 
arrangements of pipes, valves, flow branches and vessels. 
Capability of modeling a wide variety of flow and heat conduction 
boundary conditions; including arbitrary user-specified boundary 
conditions 
Capability of including user-specified control equations (i.e., 
any equations which describe a functional relationship between time, 
space, and the dependent variables in the system model) 
Capability of applying a number of constitutive models (e.g. heat 
transfer coefflcients, form loss factors, friction factors, etc.) 
including user-specified models 
A high degree of code modularity which permits the addition of 
new fluid and solid properties, constitutive models, and boundary 
conditions as the need arises 
Fully implicit integration of all model equations without operator 
splitting, i.e., the same numerical technique is uniformly applied 
to  all equations. 

This report will provide the reader with an overall view of TOPAZ capabilities. 
Section ][I of the report will focus on the coding and modeling philosophy. A 
discussion of the assumptions used in generating heat transfer and fluid flow models 



is also presented. Discussions of the fluid conservation equations and containment 
heat conduction equations are given in Sections 1II and IV respectively. The concept 
of a TOPAZ computational mesh will be introduced in Section V. Methods of 
generating such meshes will also be discussed. Section VI contains a discussion of the 
fully implicit numerical technique used to  solve the TOPAZ model equations. The 
overall TOPAZ code architecture will be described in Section VJI. Future activities 
associated with the further development of TOPAZ and its applications will be 
discussed in Section VIII. 

In preparing this document an effort was made to present a TOPAZ overview. 
Rather than dwelling on any one particular facet of the code, all aspects of the code 
are discussed in a general way. Readers interested in specific details are urged to 
consult the references listed in Section X. Moreover, this report is not a user's manual 
for TOPAZ. Specific calculational results using TOPAZ will not be presented. Such 
information will be documented separately in future reports. 



. TOPAZ Coding and Modeling Philosophy 

1. Similaritv with LOCA Codes 

The nuclear power industry has developed a number of highly general computer 
codes for modeling internal flows through complex piping networks. The motiv* 
tion behind such code development has been the need to model events such as 
the postulated 'loss of coolant accident' (LOCA) in nuclear reactors. A LOCA is 
an off-design emergency situation in which a primary or secondary coolant line or 
component ruptures. For most reactors the coolant is high temperature, high pres- 
sure water which experiences blowdown (nearly instantaneous boiling via reduced 
pressure) when the rupture occurs. A major concern in a LOCA is that insufficient 
coolant will remain in the system resulting in a partial core meltdown. The LOCA 
codes are designed to predict the duration of blowdown events and the functioning 
of emergency systems. 

Most notable among the family of LOCA codes are RETRAN [3], a code 
developed under private EPRI funding, and the RELAP [4,5] family of codes 
developed primarily with NRC funding. With the exception of RELAP5, these 
codes deal exclusively with equilibrium water-steam flows. RELAP5 has been 
extended to treat nonequilibrium water-steam mixtures. 

The LOCA codes enable the user to model fluid flow using one-dimensional, 
transient conservation equations (continuity, momentum, and energy), which are 
partial differential equations with time and axial distance as the independent vari- 
ables. The equations are discretized in space using a special displaced mesh upwind 
differencing scheme. This differencing permits the modeling of branching flows 
as well as single stream flows. Because of this important feature it was decided 
to employ the same type of spatial differencing scheme in the TOPAZ fluid flow 
modeling. 

In many ways TOPAZ has been modeled after the existing LOCA codes. This is 
particularly true with regard to the modeling of fluid flow. Despite these similarities 
TOPAZ retains a number of features which are not found in the openly available 
versions of LOCA codes. For example: 

a A fully implicit numerical solver DASSL [6] is used to integrate 
all model equations in time. 



Flows are not restricted to water-steam. 
Any incompressible or compressible fluid for which complete 
thermodynamic data is available can be modeled. At this 
writing, properties for the following fluids are "hardwired" 
into the code: air, the hydrogen and helium isotopes, 
molten salt, and liquid sodium. 

a A variety of special boundary conditions are available. 
a Transient heat conduction in the fluid containment is 

modeled in two dimensions rather than one. 
Code modularity permits addition of new boundary conditions, fluid 
properties, equations of state, and constitutive relationships (e.g. 
heat transfer correlations, etc.) as the need arises. 
Specialized reactor component and reactor kinetics 
models are not hardwired into the code. 

An effort has been made to develop TOPAZ for the purpose of modeling general 
fluid flow/heat transfer situations. Wherever possible, useful LOCA code modeling 
techniques have also been incorporated. 

Typically, hundreds of manyears are expended in developing a single LOCA 
code. Much of this development centers around making the code "user-friendly" 
while still retaining generality. LOCA code users set up their models exclusively 
through a single input data file or deck. User reprogramming of the code is seldom, 
if ever, done; yet, the code can be used to model arbitrary arrangements of pipes, 
branches and vessels. 

In order to  incorporate this kind of generality, TOPAZ was developed to be 
used in conjunction with a Fortran driver program. The driver program is intended 
to take the place of an extensive (and expensive) user-friendly interface. A typical 
driver program severely restricts the modeling to a specific class of problems. The 
code DRAC [2], for example, is a TOPAZ driver program which models a specific 
class of fluid flow- heat transfer problems associated with solar receivers. Although 
DRAC is user-friendly, its application is restricted to a specific set of boundary 
conditions and flow geometry. 

Developing TOPAZ to be used in conjunction with a driver program was 
considered a practical alternative to writing a code with a completely general but 
prohibitively expensive user-friendly interface. Discussions relating to how the 
driver program fits into the TOPAZ code architecture are presented in later sections 
of this report. 



2. TOPAZ Verification 

# 

% In order for TOPAZ and any related user-friendly driver programs to be of 
value, their development must be closely linked to a program of code verification. 
This verification can be accomplished by comparing TOPAZ calculations to three 
sources: 

a Predictions with known analytical solutions 
a Other code calculations 
a Laboratory experiments 

For many simple problems (e.g. two-dimensional heat conduction, propagation 
of shock and rarefaction waves, simple one-dimensional-steady flows, etc .) analyti- 
cal solutions are available for direct comparison with TOPAZ predictions. For 
more complicated geometries, it may be necessary to rely on comparisons with in- 
dependently developed codes. Although such code comparisons result in increased 
confidence, true code verification depends on direct comparison with well controlled 
experiments. This is particularly true when the purpose of such comparisons is to 
evaluate a new constitutive model (form loss model, heat transfer correlation, etc.) 

A considerable amount of TOPAZ code verification has already taken place (e.g. 
reference 121). Future verification of form loss models, vessel heat transfer models, 
and the flow branching model will rely heavily on the availability of experimental 
data. Much of this data has yet to be obtained. Until it is, many applications of 
TOPAZ (or any similar code) must be regarded as experimental. 

3. Modeliner Assum~tions 

In order to understand the extent to which the physics of fluid flow and heat 
transfer are being resolved in TOPAZ, it is useful to list the modeling assumptions: 

a Fluid flow is treated as one-dimensional and transient. 
a Fluid flow is either incompressible or compressible with all 

local fluid properties a function of the local thermodynamic state. 
a Heat conduction in the flowing fluid is neglected. 
a Multi-dimensional, transient effects associated with convective 

heat transfer from the containment to the flowing fluid are 
treated using one-dimensional quasi-steady, locally-applied 
heat transfer correlations. 
Multi-dimensional, transient effects associated with fluid-pipe 
wall friction are accounted for using one-dimensional 



quasi-steady, locally-applied friction-factor correlations. 
Multi-dimensional, transient effects associated with changes in 
direction (restrictions, branches, tube bends, etc.) are accounted 
for using one-dimensional quasi-steady, locally-applied, form-loss correlations. • 

Flowing fluids are non-reacting and do not mix with flowing 
fluids of different species. 
Viscous dissipation is neglected in the fluid energy equation. 
Heat conduction in the fluid containment (pipe and vessel walls, 
etc.) is assumed to be two-dimensional and transient. 
The effect of containment property variations due to temperature 
are included 
The effect of standard gravitational acceleration (e.g. 1 g 
fluid head effects) is included in the fluid flow modeling. 
However, time and directional dependent body forces, such 
as those resulting from angular rotation or linear 
acceleration of the piping and vessel configuration are not 
accounted for at this time. 

The above assumptions give rise to the fluid flow and fluid containment heat 
conduction equations presented in Sections III and IV, respectively. 



- m. Fluid Flow Equations 

- 
I 1. Introduction 

The TOPAZ fluid flow equations consist of three integral conservation equa- 
tions for continuity, energy, and momentum. The equations presented here are 
given in the form of spacially discretized differential equations with time as the in- 
dependent variable. They can be derived directly from the fully compressible par- 
tial differential Navier-Stokes Equations using appropriate applications of Leibnitz 
Rule and Green's Theorm. A detailed derivation of these equations is rigorously 
presented in references [3] and [4]. 

Before presenting the conservation equations, it is useful to describe the com- 
putational mesh. As with most numerical solutions of the Navier-Stokes equations, 
TOPAZ modeling requires that the fluid domain be spacially discretized in order 
to eliminate space as an independent variable. Thus the three partial differential 
equations (PDE's) which describe the conservation of mass, energy, and momentum 
within the fluid domain are replaced by a much larger set of ordinary differential 
equations (ODE's) with time as the independent variable. The number of ODE's is 
directly proportional to the number of mesh points (nodes, cells, or control volumes) 

- -i used in discretizing the fluid domain. Naturally the finer the computational mesh, 
the better the ODE's approximate the behavior of the PDE's. 

The actual spatial discretization used in TOPAZ is commonly referred to as 
the 'displaced mesh' or 'control-volume, stream-tube' method. This discretization 
or discretizations similar to it, are used in virtually all nuclear reactor LOCA 
simulation codes [3, 4, 51 as well as many 2-D and 3-D transient codes used to 
describe flow and heat transfer in fluid domains. Basically the discretization method 
divides the fluid domain into a finite number of control volumes, where continuity 
and energy are conserved. Momentum is conserved at control volume interfaces 
(i.e., the boundaries between control volumes). 

The TOPAZ discretizations can best be understood through the aid of Figure 
1. The figure shows two control volumes and three control volume interfaces. In 
this particular case the fluid is flowing in a single stream through a channel having 
a jump in cross-sectional flow area. As will be illustrated later, this discretization 
can also be used in modeling flow branches and directional changes in the flow. 

For the situation depicted in Figure 1, the control volume I is bounded by lines 
connecting points 1, 2, 3, 10, 11, 12, 1 and control volume I+1 is bounded by lines - 
connecting points 3, 4, 5, 6, 7, 8, 9, 10, 3. The stream tube J bounded by lines 



Figure  1. TOPAZ S p a t i a l  D i s c r e t i z a t i o n  f o r  a  S i n g l e  Flow Stream 



connecting points 2, 3, 4, 5, 8, 9, 10, 11, 2 connects control volume I to control 
volume I+ 1. 

In general a control volume may have any number of stream tubes attached 
to it, but a stream tube can connect only two control volumes. The significance 
of this statement becomes more apparent in flow branching situations such as the 
one depicted in Figure 2. Control volume I3 has three stream tubes attached to it, 
namely 52, 53 and 54. However, all of the stream tubes shown (J l ,  52, 53, 54, 55, 
and J6) connect two control volumes. 

In the TOPAZ code and in most reactor LOCA codes (e.g. references 3-5) 
continuity and energy equations are written for control volumes and momentum 
equations are written for stream tubes. These equations, together with appropriate 
boundary conditions, initial conditions, constitutive relationships and fluid state 
equations completely describe the thermal-hydraulic behavior of fluids flowing in 
arbitrary networks of pipes, branches, and vessels. Such a model is of course 
restricted to the limitations of one-dimensional, transient analysis and the assump- 
tions set forth in the previous section. All two- and three-dimensional effects in the 
flow including fluid-containment heat exchange and pressure losses due to abrupt 
area changes, tube bends, and branching are accounted for through constitutive 
(empirical and semi-empirical) relationships. Some of these relationships are well 
documented and highly reliable such as the Moody friction correlation [7] and 
numerous forced convection heat transfer correlations for fully developed interior 
tube flow [8]. For the most part these relationships have been obtained for steady 
flow. In keeping with standard practice in one-dimensional, transient modeling, the 
steady relationships are used directly in the unsteady equations. Hence with regard 
to the application of the constitutive relationships, the flow is regarded as 'quasi- 
steady*. For most pipe flows of interest to Sandia the 'quasi-steady* assumption 
produces accurate results. Relaxation of the quasi-steady assumption, when neces- 
sary, can only be accomplished through combined analysis and experimentation. 
With the exception of a few studies such as reference [9] which examines the un- 
steady effects in tube wall friction, literature on this subject is surprisingly sparse. 
Codes such as TOPAZ together with careful experimentation could significantly 
advance the state-of-the-art in this area. 

The next three subsections in this chapter present the conservation equations 
used in TOPAZ fluid flow modeling. As mentioned previously their complete deriva- 
tion is presented in references [3] and [4]. The spacially discretized conservation 
equations have been modified somewhat to suit the particular needs of this study. 
These modifications will be discussed in detail. 

It may be useful for the reader to view the fluid flow model as a system of three 



F i g u r e  2. TOPAZ S p a t i a l  D i s c r e t i z a t i o n  f o r  a  Flow Branch 



equations (continuity, energy and momentum) solved for three dependent variables: 
pressure, P, internal energy per unit mass, u, and mass flow rate W. The state of 
the fluid at any point in the flow is uniquely determined by the two thermodynamic 
variables P and u, i.e. p = p (P,u), T = T(P, u), etc. By formulating the equations 
in terms of P and u, calculations in two-phase as well as single-phase flow are 
straightforward. The state of the fluid in all phase regions (subcooled, saturated, 
and super heated) are uniquely determined by P and u. Such would not be the case 
if, say, P and T were selected as the fluid model dependent variables. 

The final section in this chapter presents a brief discussion of the 
constitutive and property relations required to complete the fluid flow modeling. 

2. Fluid Continuity Equation 

Continuity of flow for an arbitrary control volume can be expressed as 

(111 - 1) 

Simply stated equation (IJ.I-1): says that the time rate of change of mass within 
a control volume I is equal to the net mass flow rate into the control volume. WJ 
represents the mass flow rate (pAv) evaluated at a momentum node (stream tube) 
J. If a flow stream exits the volume, WJ would take on a negative sign. Hence 
continuity for volume I3 in Figure 2 can be written as 

In the TOPAZ code, equation (III-1) is expressed in terms of thermodynamic 
state variables, hence 

( I I I  - 3) 



The final form of the TOPAZ mass balance then becomes 

(111- 4 )  

The primary advantage of such a formulation is that no modifications need be 
made in treating compressible or incompressible flows. For an i~lcompressible fluid 
the property (8) is zero. 

U 

3. Fluid Energy Equation 

Conservation of energy for an arbitrary control volume can be expressed as 

(111 - 5 )  

Stated simply equation (m-5) says that the time rate of change of kinetic and 
internal energy within a control volume I is equal to the rate of heat transfer into 
the control volume, Q,, from the fluid containment plus the volumetric rate of heat 
generation, Vq, ,  within the control volume plus the net rate of convected energy 
(sum of internal energy, flow work, kinetic energy and gravity work) into the control 
volume. 

A few words are required regarding how and where the various properties are 
evaluated in the flow. As previously stated W j  is the mass flow rate evaluated at 
the center of a stream tube. The mean control volume velocity vr = WI/pIAI 
where WI is the mean control volume mass flow rate. A number of methods are 
available for calculating WI [3,4,5] in terms of the Wj's. For a single stream flow 
(Figure 1) all these methods collapse to a form which states that WI is the sum of 
the upstream and downstream Wj's divided by 2 ,  i.e., the arithmetic average. For 
a control volume with three or more adjacent stream tubes TOPAZ employs the 
method used in reference [3] for computing Wr, namely 



(111 - 6 )  

All thermodynamic properties for the fluid are associated with control volume 
centers, i.e., PI, U I ,  PI, etc. A question immediately arises as to how these quantities 
are extrapolated to the stream tube center (i.e., the location where W j  is computed). 
Like most LOCA codes, TOPAZ utilizes the 'upwind extrapolation'. The quantities 
u, P, and p in the brackets on the right hand side of equation (m-5) are assumed 
to be identically equal to their upwind control volume counterparts. This convention 
is maintained for all fluid properties at momentum nodes. Hence we can write the 
folIowing equation to describe the conservation of energy for the control volume I3 
in Figure 2: 

~ 1 3 v 1 3 ( u 1 3  + = ( Q  8113 + ( v g u ) 1 3  d t  
PI2 1 2  + z V i 2  + d Z J 2  - z I 3 ) ]  ' 

p13 1 
(111 - 7) 

- 3  u 13 + - + I ' 4 3  + +8(z" '- Z I ~ ) ]  [ PI3 

+ ( ( 2 ~ 4  - 2 1 3 ) ]  

where 

(111 - 8 )  I 

and 

(111 - 9 )  

The formulation described here is identical to upwind differencing the energy 
equation. Such differencing is generally first order accurate. TOPAZ provides the I 



user with the option of selecting pure upwind, pure centered, or a combination of 
the two, thus increasing the spatial differencing accuracy to as high as second order. 
Presently this option is only available for sections of the flow network having single 
flow streams of uniform cross-sectional flow area. 

4. Fluid Momentum Equation 

Conservation of momentum for an arbitrary stream tube (momentum node) J 
such as the one bounded by lines connecting points 2, 3, 4, 5, 8, 9, 10, 1 1, 2 in 
Figure 1 can be expressed as: 

~ W J  Ij- = (PI - PI+l) + 
d t 

(111- 10) 

where f I, LI, DI are the Moody friction factor, control volume length, and 
control volume diameter, respectively. The symbol Ij is defined as 

(111- 11) 

The term on the left hand side is the inertia associated with the fluid occupying 
the stream tube J. The first bracketed term on the right hand side represents the net 
pressure acting on the entrance and exit of the stream tube. The second bracketed 
term represents the net momentum crossing the stream tube boundaries. The third 
and fourth terms represent the Moody tube wall friction force acting on the fluid. 
The fifth term in brackets accounts for gravity forces on the fluid. The last term 
on the right hand side accounts for multi-dimensional flow effects associated with a 
change in flow direction (tube bends) and/or sudden area expansions. The symbol 
K is a form loss function based on the flow area A J. A is usually taken to be the 



smaller of areas Ar and AI+l. Further discussion of this function will be presented 
in the next section. 

5. Constitutive and Property Relationships 

It is sometimes useful to associate a particular conservation equation with 
a particular fluid variable in order to  determine the additional constitutive and 
property relationships required to complete the model. With this in mind one can 
think of the continuity equation (ID-4) as an equation for pressure, P, the energy 
equation (III-5) as an equation for internal energy, u, and the momentum equation 
(III-10) as an equation for mass flow rate, W. Having computed two independent 
thermodynamic properties, namely P and u, the complete local state of the fluid is 
specified. The remaining properties required by the TOPAZ fluid model may then 
be calculated directly from known state and property relations. Some state variables 
such as p, (%I.,, and (2) appear directly in the conservation equations, while 

P - -. 
others such as-C',, C,, p, k, and c appear indirectly in correlations for constitutive 
models. The property relationships required in the TOPAZ fluid model may be 
summarized as follows: 

Density p = fi(P, uj) 

Temperature T = f4(P, U )  

Enthalpy h = fs(P, u)  
Specific heats C, = fe(P,  u )  

c, =f7(P, u )  
Viscosity p = fs(P, u )  

Thermal Conductivity k = fa(P, u)  

Isentropic sound speed c = - = fio(P, u )  (3 

(111- 12)  

( I I I  - 13) 

( I I I  - 14) 

(111- 15) 

(111 - 16) 
(111- 17) 
( I I I  - 18) 
(111 - 19) 

(111 - 20) 

(111- 21) 



As previously mentioned the functions (m-12) through (IIt-21) for air, the 
hydrogen and helium isotopes, molten salt, and liquid sodium have been "hardwired" 
into TOPAZ property subroutines. The user may select any of these property sets 
using an integer flag as part of the input data. 

Real gas equation-of-state models for the hydrogen and helium isotopes were 
obtained from the Abel-Noble viral expansion of the van der Waals equation. These 
equation-of-state models are discussed in reference [18]. 

New fluid property sets (including two phase fluids) can be easily added as 
the need arises. Often property data is only available as a function of P and T 
rather than P and u. Direct incorporation of such data can easily be accomplished 
providing the relationship T=f(P,u) is known. 

The additional relationships required to complete the TOPAZ fluid model are 
Q s ,  q ", f, and KJ.  Q ., the rate at which thermal energy is transferred from the 
tube or vessel walls to the fluid, is obtained from Newton's Law of Cooling: 

(111- 22) 

where A,, h, TK, and TI are the fluid/wall interface area, heat transfer coeflcient, 
local wall temperature, and local fluid temperature respectively. Numerous models 
for h are available to the TOPAZ user including the following: 

1. Adiabatic flow, h=O 
2. Isothermal flow, h +oo 
3. Forced convection tube flow, h = f(Re, Pr) 
4. Vessel heat transfer, h = f (Ra) 
5. User supplied functions for h. 

For those flows requiring internal heat generation the user may supply a con- 
stant value for q ,  (default is q ,  = 0) or an arbitrary function for q ,  in terms of 
time, space, or system variables. 



The friction factor used in fluid modeling may be a constant specified by the 
user o r  the familiar Moody friction model [7]: 

f = f (Re, (111 - 23) 

where E / D  is the tube wall relative roughness. Additional friction factor models can 
be easily added to TOPAZ as the need arises. 

The final constitutive model required to model fluid flow is the form loss 
function K j .  The form loss function is intended to account for a multitude of 
local effects including reversible multidimensional effects as well as irreversible losses 
associated with friction in expanding or turning flows. The precise form of the form 
loss term in the momentum equation (last item in Equation III-lo), though familiar, 
is somewhat arbitrary. Other forms of this loss term can be easily incorporated into 
the code, providing such forms have been experimentally verified. 

With the loss term in its present form, the user may specify a value for K j  
which is either a constant, an arbitrary function, or one of the TOPAZ default 
functions. Reference [lo] contains a number of K j  correlations for incompressible 
and low Mach number flows. Two of these correlations, i.e., abrupt expansion and 
abrupt contraction are built into the TOPAZ code. 

If a completely reversible flow is being modeled at an area change, the user is 
still required to specify a finite value for K j  in order to account for reversible ac- 
celeration and deceleration effects. Reference [3] shows that for incompressible and 
low Mach number flows ( M a <  .3), the following equation is suitable for describing 
reversible expansion and contraction: 



The subscripts J, I, and 1+1 refer to orientation in Figure 1. Equation (III-24) 
is built into the TOPAZ code as a user option. 

The final constitutive model to be discussed here is the choked flow model, 
applicable to compressible flows. When the mass flow rate calculated from equation 
(III-10) exceeds local choked flow velocity, the momentum equation is no longer 
valid. This represents the onset of choked flow. When this occurs, the momentum 
equation is replaced by the following equation 

WJ = P J A J ~ C  ( I I I  - 25) 

where v, is the local choking velocity. When the flow becomes choked, the mass 
flow rate, WJ, continues to  be calculated by equation (111-25) until the right hand 
side of equation (ID-10) changes sign thus indicating a deceleration of the flow below 
the choked value. Such an event signals the onset of unchoked flow and W j  is again 
calculated from the momentum equation (111-10). 

This modeling exhibits all the quantitative as well as qualitative characteristics 
of choked flow. In a subsequent report it will be demonstrated that when the local 
(upwind) isentropic sound speed, c, is used in place of v, in equation (III-25), choking 
will occur when the local pressure ratio exceeds the critical pressure ratio for the 
gas. Furthermore a decrease in the downstream pressure will have no influence on 
the local mass flow rate. This, of course, is classical choked flow behavior, (e.g. 
reference [ll]). 

The user may supply arbitrary functions for v, in order to implement specialized 
choked flow models. This is frequently done in the simulation of LOCA's. The 

isentropic model v, = c = (%): is the default model for choked flow in TOPAZ. 



W .  Fluid Containment Heat Conduction Equations 

TOPAZ permits the user to couple fluid flow calculations with containment 
heat transfer calculations. The term containment refers to the solid structure 
which surrounds the fluid, i.e., the tube or vessel walls. Containment heat transfer 
calculations fall into three groups: 

1. Interior two-dimensional, transient heat conduction within the containment 
2. Convective heat exchange between the flowing fluid and the containment 
3. Convective and radiative heat exchange between the ambient and the 

containment. 

The second and third groups can be thought of as methods for implementing 
boundary conditions for the containment heat conduction calculation (group I). 
TOPAZ could in fact be used solely as a heat colnduction code for two-dimensional, 
transient heat conduction calculations. This can be accomplished by including only 
solid heat conduction nodes as part of the computational mesh and then supplying 
time dependent boundary conditions as required. 

Two-dimensional, transient heat conduction is usually sufacient to describe 
most fluid flow-heat transfer situations of interest to TOPAZ users. TOPAZ can be 
reprogrammed for fully three-dimensional, transient heat conduction analysis but it 
was felt that the additional generality would seldom be used and computer storage 
and execution time could be substantially irlcreased. This is due partially to the fact 
that the equations used to describe heat conduction are solved with exactly the same 
numerical technique as the fluid flow equations, i.e., each conduction node adds an 
additional differential equation to the TOPAZ model. Since the solution technique 
is fully implicit, any attempt to model a complex three-dimensional, transient 
heat conduction problem could completely consume the available computer storage. 
Such highly general heat conduction problems are solved more efficiently using 
specialized heat conduction codes such as TACO [12] or SAHARA [13]. However, 
these codes are not designed to couple heat conduction calculations to thermal- 
hydraulic calculations for flowing streams. 

Typical TOPAZ heat conduction meshes are shown in Figures 3 thru 5. Figure 
3 depicts an interior heat conduction control volume (node K) surrounded by four 
other control volumes (nodes K1, K2, K3, K4). A simple heat balance on node K, 
the shaded control volume, may be written as 



Figure 3. TOPAZ I n t e r i o r  S o l i d  Heat Conduction Mesh 
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( IV - 1) 

where VK, p ~ ,  CK, TK, q, are the volume, density, heat capacity, temperature, and 
heat generation rate per unit volume associated with control volume K. The user 
may specify either a constant value for q ,  (default is q ,  = 0) or any arbitrary 
function, i.e., q, may be represented as a function of time, space, or any dependent 
variable in the model. The quantity k is the average thermal conductivity over the 
heat flow path from node Ka to node K. It is approximated by evaluating the local 
material conductivity a t  a temperature equal to (TKi + TK)/2. The symbol ( f ) i  

is a characteristic length for conduction heat transfer between node Ki and node 
K. In simple rectangular coordinate systems such as that depicted in Figure 3, 
( f ) i  is equal to the heat transfer area divided by the length of the heat flow path 
from node Ki to node K. Appropriate values for (j?)i may be defined for other 
coordinate systems such as spherical or cylindrical. 

As indicated previously, TOPAZ has the capacity of modeling heat conduction 
at solid/fluid and solid/ambient interfaces. Hence it is possible to couple heat 
conduction calculations to the fluid flow and ambient boundary conditions. Figure 
4 illustrates a typical surface heat conduction control volume (node K) in contact 
with a flowing fluid having a local temperature TI. The energy balance for the 
shaded control volume (node K) may be expressed as 

where VK, pIGCK, TK, q,, k and (e)i are defined as they were for Equation (IV-1). A. 
is the heat transfer surface area separating the solid heat conduction control volume 
K and the fluid energy control volume I. The symbol h is the local convective heat 
transfer coeficient. Note that hAs(TK - TI) is identical to Q ,  in the fluid energy 
equation (m-5), thus indicating that all the heat leaving the exterior surface of the 
containment is absorbed by the fluid. 

Figure 5 illustrates a typical heat conduction control volume (shaded node K) 
exposed to an ambient convective and radiative boundary. This heat conduction 
model is particularly useful in modeling surfaces exposed to  incident thermal radi* 



tion such as those encountered in the analysis of solar central receivers [I, 21. A 
heat balance for the shaded node K takes the form: 

where E K ,  a ~ ,  and GK are the local emissivity, absorptivity, and net rate of incident 
radiation per unit area. The user may specify constants or arbitrary functions for 
EK and GK. QK is a user supplied constant. 

This completes the presentation of equations for heat transfer modeling in the 
fluid containment. The modularity of the TOPAZ code permits the addition of new 
conduction and convective boundary condition models as the need arises. 



V. Generating a TOPAZ Model 

1. The TOPAZ Computational Mesh 

In the previous two sections, six different model equations were introduced, 
namely: 

1. Fluid continuity equation 

2. Fluid energy equation 

3. Fluid momentum equation 

4. Interior solid heat conduction equation 

5. Fluid/solid heat transfer equation 

6. Ambient/solid heat transfer equation. 

The first three are devoted to modeling the thermal-hydraulics of flowing fluids, 
while the latter three model thermal energy transport in the fluid containment. 

In discussing the TOPAZ computational mesh, it is helpful to introduce the 
concept of "nodes". Each node represents a position in space where a single 
dependent variable (P, u, W, or T) is associated with a single model equation. 
Hence there are continuity nodes associated with P, energy nodes associated with 
u, momentum nodes associated with W, and heat conduction nodes associated with 
T. 

A typical fluid control volume has two nodes at its center, a continuity node 
and an energy node. Because of the previously described displaced mesh, momen- 
tum nodes are located at  the control volume interfaces or stream tubes which are 
displaced from the connecting continuity/energy node pairs. 

In addition to  the six node types described in the previous section, TOPAZ also 
contains additional node types to describe frequently encountered flow boundary 
conditions (e.g. constant pressure, constant internal energy, constant mass flow 
rate, etc.) and an arbitrary node type which enables users to  add arbitrary algebraic 
or differential equations to the model. By linking nodes together, it is possible for a 
user to  generate a computational model for any tube-vessel flow geometry, regardless 



of complexity. Of course the ultimate success of such modeling is subject to the 
assumptions stated in Section 11 and the accuracy of any correlations required to 
reduce multi-dimensional transient flow behavior down to one-dimensional, transient 
flow behavior. Computer storage may also place practical limitations on the solution 
of the TOPAZ model equations. 

In arranging nodes to form a computational mesh, the following simple rules 
must be followed in order to insure that the model will make physical sense: 

1. Fluid continuity and energy nodes occur in pairs. If node I is a 
continuity node then I + 1 must be an energy node at the same 
axial location in the flow. 

2. Pairs of fluid continuity and energy nodes may be connected to any 
number of momentum nodes (hence branching of flows) and any number 
of fluid/solid heat conduction nodes. 

3. Fluid/solid heat conduction nodes which are connected to adjacent fluid 
continuity-energy node pairs must be physically located at the same 
axial location as the fluid continuity-energy node pair. 

4. All fluid continuity-energy node pairs must be separated by one and 
only one fluid momentum node. 

Application of these rules for generating a mesh can best be illustrated through 
an example. Suppose one is interested in modeling the flow of a high pressure com- 
pressible fluid from one spherical vessel to another. The two vessels are connected 
by a single tube and the user wishes to predict transient temperature excursions 
in the heat containment (two vessels and the tube) as well as the fluid property 
variations as a function of space and time. Figure 6 illustrates how one might con- 
nect nodes together to build a TOPAZ model. The figure indicates that one 
continuity-energy node pair has been designated for each vessel and five equally 
spaced node pairs have been connected together to form the tube. Such a mesh 
is equivalent to modeling fluid flow in the tube using an upwind finite differencing 
scheme with five computational cells. The distribution of heat conduction nodes 
in the tube wall indicates that radial and axial temperature variations are being 
resolved (3 nodes in the radial direction and 5 nodes in the axial direction) but 
circumferential variations are ignored, i.e. heat flow within the tube walls is as- 
sumed axisymmetric. The distribution of heat conduction nodes in the vessel walls 
indicates that only radial temperature gradients are being resolved, i.e. heat flow 
within the vessel walls is assumed to be spherically symmetric. 
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Reference [2] illustrates how radial and circumferential variations in tube wall 
temperature may be resolved. Such variations are important in the modeling of 
solar central receivers where thermal boundary conditions are not axisymmetric. 

In problems where the heat capacity and thermal diffusivity in the heat con- 
tainment are large, one might be justified in assigning a constant temperature t o  
tube and vessel walls. Such modeling would completely eliminate the need for heat 
conduction nodes in the mesh. For the simple example shown in Figure 6, the num- 
ber of nodes in the TOPAZ mesh would be reduced from 41 to 20. The convective 
heat transfer between the containment walls and the fluid would then be calculated 
with a user assigned wall temperature. 

Figure 7 illustrates a computational mesh having a flow branch. High pressure 
gas is transfered from vessel A down tube 1 to a junction where flow divides into 
tubes 2 and 3. The flow in tubes 2 and 3 terminates in vessels B and C respectively. 
In this example, three control volumes are used for each tube and the tube walls 
maintain a user assigned temperature. Note that a single continuity-energy node 
pair has been designated to  represent each vessel and the branch volume. 

As with any finite difference technique, the number of nodes employed in the 
TOPAZ model has a direct bearing on the accuracy of the solution, i.e. the finer 
the mesh the more accurate the solution. Typically one would obtain TOPAZ 
solutions with varying numbers of nodes until the addition of further nodes produced 
negligible changes in the calculated results. 

Frequently in compressible flow modeling one must be concerned with suppIying 
enough nodes to adequately resolve steep pressure gradients. As an example, a 
rapidly opening valve in a piping system carrying a compressible fluid could cause a 
steep pressure wave to propagate through the flow domain. Since virtually all of the 
one-dimensional, transient compressible flow physics are embodied in the TOPAZ 
fluid flow equations, TOPAZ will attempt to resolve and track these waves as they 
occur in the flow. Success of the numerical method requires that any gradient in the 
flow be spread over more than one node or control volume. Hence the propagation 
of a steep front could bring calculations to a halt if the number of axial control 
volumes is insufficient. Such restrictions are nonexistant in incompressible fluid 
flow or solid heat conduction modeling. 
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2. Generating the Computational Mesh 

In the TOPAZ computer code the computational mesh for a model is uniquely 
defined by elements in the two-dimensional array DATA (N, M) where N is the num- 
ber assigned to a particular node in the mesh and M is the storage location contain- 
ing data about the node. The maximum size of the DATA array is DATA(NMAX, 
20) where NMAX is equal to the number of nodes in the mesh. The total amount of 
data associated with a particular node, N, is DATA (N, 1)) DATA (N, 2), ... DATA 
(N, 20). The data stored in these array elements includes such information as: 

1. Node type - continuity, energy, momentum, conduction, etc. 

2. Material type - stainless steel, Hz, air, liquid sodium etc. 

3. Mesh connectivity information - number and orientation of each and 
every node connected to node N. 

4. Physical dimensions - diameter, control volume length, elevation from 
the reference height, etc. 

5. Constitutive model information - type of heat transfer, friction factor, 
and form loss correlations, etc. 

6. Printout information - identifies which property to print out at a 
particular node during major edits (print out of variables 
at all nodes) or minor edits (print o~zt of variables at 5 user 
selected nodes). 

Generally it is not necessary to fill all elements of the DATA array. Typically 
the elements DATA (N, lo), DATA (N, 11), ..., DATA (N, 20) remain undefined. 
One exception to this would be the special case where a fluid continuity-energy 
node pair would have the maximum 8 momentum nodes connected to it. 

Since TOPAZ does not currently possess a totally general user friendly inter- 
face, the user is responsible for filling the DATA array for his particular problem. 
This is usually done in the TOPAZ driver program. Needless to say this could 
be an extremely tedious process if each element in the DATA array was read in 
individually as data. A reasonable alternative to this dilemma is for the user to 
write an "automatedn driver program which can act as a mesh generator for filling 
the DATA array. Through appropriate use of "DO LOOPS", the DATA array can 
be generated using a relatively small amount of coding. 



Although TOPAZ is an extremely general code, the following two types of 
problems are frequently modelled: 

1. Fluid flow with no heat conduction in containment and negligible 
elevation changes (i.e., the example of Figure 7). 

2. Fluid flow with axisymmetric heat conduction in the containment and 
negligible elevation changes (i.e., the example of Figure 6). 

A special set of mesh generating subroutines called PARTS has been written for 
creating the DATA array for such problems. The user may call specific subroutines 
for specific component types such as pipes, branch volumes, and vessels. A user 
may, for example, wish to generate a mesh for a simple constant diameter pipe. The 
number of individual pieces of data required to fill the DATA array for this ensemble 
of nodes could be as small as a few hundred, and as large as tens of thousands, 
depending on the number of fluid control volumes (fluid continuity-energy node 
pairs) and the number of radial tube wall heat conduction nodes desired by the 
user. It should be noted, however, that much of the information placed in the DATA 
array is highly repetitive. Consider the fluid continuity nodes for example. Since 
the pipe has constant physical dimensions and no elevation changes throughout the 
flow, all DATA elements of all continuity nodes are virtually identical, except for 
information relating to nodal connectivity (i.e. the first continuity node in the pipe 
has different momentum nodes connected to it than say the tenth). 

This repetitive characteristic makes it fairly easy to write mesh generation 
subprograms such as PARTS. With such mesh generation subprograms, the problem 
of generating a TOPAZ mesh becomes almost trivial. The entire mesh for the 
example in Figure 6 could be generated through a total of three subroutine calls to 
the PARTS subprogram, i.e., two calls to a vessel subroutine and one call to a pipe 
subroutine. The example in Figure 7 could be generated through a total of seven 
calls, i.e., three calls to the vessel subroutine, three calls to the pipe subroutine, and 
one call to the branch subroutine. 

Complete TOPAZ "user friendly" interface programs can be easily written for 
specific classes of problems (i.e., fixed flow geometry and boundary conditions). 
Such interfaces can successfully insulate the user from burden of generating the 
computational mesh or writting subprograms for boundary conditons. The TOPAZ 
driver program, DRAC, (mnamic Receiver Analysis Code), [2] is an example of 
such an interface. The user need only read in approximately thirty pieces of data 
through NAMELIST input, and DRAC will generate a computational mesh, specify 
boundary conditons, and direct the integration of TOPAZ equations for a fairly 
complicated transient combined heat conduction - fluid flow problem. 



In the future, it is expected that other "user friendlyn interface codes will 
be written for the purpose of modeling heat conduction - fluid flow situations of 
frequent interest. 



VI. Solution of the TOPAZ Equations 

The TOPAZ model for a particular problem consists of NMAX mixed algebraic 
and ordinary differential equations, and NMAX unknowns (one equation and one 
unknown per computational node). The nodes which make up the model represent 
locations where boundary conditions, fluid conservation equations (continuity, energy, 
and momentum), and containment heat conduction equations are applied. 

Once the model has been formulated (i.e. formation of the DATA array) the 
solution of the model equations may then proceed. In TOPAZ these equations 
are solved using DASSL, a code written by L. R. Petzold [6] of SNLL. DASSL is 
a family of subroutines (DASTEP, DASSLRT, NJAC, SOLVE, and other library 
subroutine packages such as LINPACK [14]) designed to perform the fully implicit 
numerical solution of systems of differentiallalgebraic equations. No attempt will 
be made here to outline the details of how DASSL solves the equations. For these 
details, the reader is referred to reference 161. However, a few comments will be 
made to describe the overall solution procedure, and to outline the reasons why 
DASSL appears to be well suited for solving the TOPAZ model equations. 

In order for the DASSL solution to proceed, all the nodal equations, including 
those presented in Sections IU and TV must be recast into the following form: 

F(t7 Y, Y') = 0 ( V I  - 1) 

y(to) = YO jvr - 2) 

$(to) = Y', ( V I  - 3) 

where y1 = d y l d t  and F, y, y1 are one-dimensional vectors of length NMAX. The 
variable y is intended to represent the vector of dependent variables in the TOPAZ 
model. Physical quantities represented by y include the following: 

y  = P at fluid continuity nodes 
y = u at fluid energy nodes 
y = W at  fluid momentum nodes 
y = T at containment heat conduction nodes 



Equations (VI-2), (VI-3) represent the initial conditions for the TOPAZ model. 
TOPAZ calculations are usually started from a consistent but trivial set of initial 
conditions in which all fluids are assumed at rest at t = to. For many problems 
such as those in which fluid flow is initiated by opening a valve or starting a pump 
at t = to, these initial conditions are realistic. In other problems where the user is 
interested in describing transient excursions from some steady flow condition, the 
fluid is first accelerated from rest to  the desired steady flow initial conditions. This 
procedure eliminates the often diflcult task of solving the steady state equations 
to obtain a consistent set of steady flow initial conditions. It has been employed 
successfully to produce the initial conditions for the DRAC [3] problem. 

Equation (VI-1) represents the TOPAZ model equations cast into a special 
form which will be refered to here as the "residual form". Most popular codes for 
solving ordinary differential equations require the system equations be cast into the 
"standard form" 

Y' = f( t ,y)  (VI  - 4) 

&!(to) = Yo. (VI  - 5) 

Equation (VI-1) simply represents a recasting of equation (VI-4) such that 

F(t ,  Y, Y') = d - f( t7  Y) = 0- (VI  - 6) 

For many systems of equations it is difficult or even impossible to solve each equation 
for a single y'. Hence representing the equations in the standard form (VI-41, may 
not be possible. The DASSL code is not encumbered by this requirement. This 
is a significant advantage particularly in light of the fact that the TOPAZ fluid 
continuity Equation (III-4) cannot be cast into the standard form. 

In order to solve the system of equations, DASSL replaces the time derivative 
in (VI-1) by a difference approximation and then solves the resulting equations at 
the current time, t, using implicit iterations. If a first order difference in time is 
employed to approximate y', Equation (VI-1) becomes 



(VI - 7) 

where n represents the time step number. The system of ODE'S given in (VI-7) have, 
in effect, been approximated by a system of nonlinear algebraic equations where y, 
represents the vector of unknowns a t  time step n. 

DASSL does not restrict itself to approximating y' using only first order ap- 
proximations. Instead DASSL approximates the derivative y' using the kth  order 
backward differentiation formula where k may range from one to five. The order k 
and the time stepsize At, = t, - tn-l is automatically chosen by DASSL at every 
time step based on the behavior of the solution. 

The implicit iteration technique used to solve the system of nonlinear algebraic 
equations is Newton's Method [15]. Newton's Method, like any iteration scheme, 
requires an initial guess for the vector of unknowns. The method converges most 
rapidly when the initial guess is an accurate one. DASSL obtains an initial guess 
for y, by evaluating the polynomal which interpolates the computed solution at 
the last k + 1 times at the current time t,. An initial guess for y', is obtained by 
taking the time derivative of the interpolating golynomal and evaluating it at t,. 

DASSL provides for two options in computing the iteration matrix required in 
Newton's Method. The user may either provide an analytic Jacobian (matrix of 
partial derivatives aFc/dyi) or request that DASSL compute a numerical Jacobian 
using finite differences. Because of the complexity of most TOPAZ models the latter 
option is used exclusively. 

DASSL automatically selects a time increment At, which satisfies a user specified 
set of error tolerances. The user specifies absolute and relative error tolerances either 
uniformly (i.e. one pair of tolerances for all variables) or as a vector of length NMAX 
(i.e., a different pair for each variable). DASSL automatically recomputes the 
numerical Jacobian with varying frequency as the solution evolves. The frequency of 
this calculation depends on the behavior of the solution. 

The DASSL user may specify a problem as having either a "banded or "dense" 
variable-equation connectivity matrix. (See reference 11 for an explanation of 
bandedness as it applies to TOPAZ-like flow problems. \ Banded problems such 

' as the one shown in the example of Figure 6, can be solved more economically 
since the number of calculations required to perform the numerical differencing is 



substantially reduced along with the amount of computer storage. The width of 
the band (and hence the cost of the calculations) for the problem in Figure 6 will 
increase as the number of radial heat conduction nodes is increased. 

In problems with flow branching, the banded variable-equation connectivity 
typified by single stream flow problems quickly breaks down. When this happens 
one must resort to performing DASSL calculations with a "dense" iteration matrix. 
Such calculations require more storage and computer time. More often than not 
TOPAZ-DASSL calculations are performed with a dense iteration matrix. 

Jn general the computer storage required by DASSL far exceeds the storage 
required by the TOPAZ code when a dense iteration matrix is used. Hence it is the 
storage required by DASSL which ultimately limits the size of any problem modeled 
by TOPAZ. Such a limitation is typical whenever equations are solved implicitly 
rather than explicity. Thus far, no TOPAZ simulation to date has required more 
than 1M words. 

In compressible flow problems in which flows choke and unchoke with time, 
TOPAZ must utilize a special version of DASSL called DASSLRT. DASSLRT 
contains a root finding capability which permits TOPAZ to identify locations in the 
flow where choking and unchoking occur. Each time choking or unchoking occurs 
a "root" is found and DASSLRT returns control of the calculations to TOPAZ. 
When this occurs TOPAZ replaces the fluid momentum equation with the choked 
flow equation or vice-versa as required and restarts the calculation. This results in 
smooth, stable, and accurate transitions between choked and unchoked flows. 

The fact that DASSL is an implicit solver has two significant advantages with 
regard to its application to the solution of the TOPAZ equations. First of all, any 
TOPAZ model of transient compressible flow is composed of a collection of stiff 
ODE'S since time scales associated with propagating pressure waves in the flow are 
generally orders of magnitude smaller than time scales associated with the speed 
of the flow or propagation of thermal diffusion in the containment. An implicit 
solver such as DASSL is well suited to providing economical solutions for such stiff 
equation sets. 

In addition to facilitating the solution to stiff equations the implicit solution 
proves to be extremely valuable in its application to TOPAZ because of the inherent 
difficulty associated with incorporating pressure and velocity boundary conditions 
in generalized pipe flow modeling. Consider, for example, an explicit upwind finite 
difference technique applied to  a pipe flow where the inlet velocity (or pressure) 
a t  the upstream boundary is specified. Properties in the flow field a t  the new 



time step can be calculated explicitly by marching in space from the upstream 
boundary to the downstream boundary. However, if the calculated pressure at the 
downstream boundary does not match the specified downstream boundary pressure, 
the inlet pressure (or velocity) must be adjusted and the calculation repeated until 
the downstream boundary condition is satisfied. Such a flow problem is frequently 
refered to as a "shooting problem". In such problems, the explicit technique may 
be highly uneconomical. Not only do time steps have to be small (compared to  
implicit techniques) to provide stability, but numerous iterations a t  each time step 
are required in order to satisfy the shooting problem's boundary conditions. This 
difflculty is further compounded in compressible flows not only because of increased 
stiffness in the equations but also due to the existence of choke points in the flow 
field. 

It is by no means impossible to apply explicit techniques to shooting problems. 
Clever iteration sequences can almost always be devised for a particular flow geometry. 
However, devising such techniques requires an apriori knowledge of the flow geometry. 
In a generalized code such as TOPAZ, it is virtually impossible to anticipate all flow 
geometries of interest to the user. It is highly likely that at some point in time a user 
will be interested in modeling a complicated collection of vessels, pipes, and mul- 
tiple flow branches for which any pseudo generalized physically motivated iteration 
scheme will fail completely. 

DASSL and TOPAZ avoid the difficulties associated with the shooting problem 
by including the boundary conditions as part of the iteration equations. Furthermore, 
since the iteration procedure is mathematically motivated (Newton's Method) rather 
than physically motivated, it is usually successful regardless of the number or ar- 
rangement of vessels, pipes, or flow branches. 



VII. TOPAZ Code Architecture 

In this section a description of TOPAZ code architecture will be presented. A 
detailed presentation of the code architecture is beyond the scope of this document, 
hence only a very general overview will be given. 

The purpose of this overview is three-fold: 

To show how the user interfaces with TOPAZ 
To illustrate the basic flow of information between major 
blocks of code 
To illustrate the modularity and generality of TOPAZ 

TOPAZ code architecture is illustrated schematically in Figures 8 and 9. Figure 
8 illustrates the relationship between the user supplied driver program, the TOPAZ 
subroutines, and the DASSL subroutines. Figure 9 focuses directly on the TOPAZ 
block of code, in order to illustrate the flow of information required to accomplish 
the major goal of calculating NMAX residuals i.e., the F vector defined in Equation 
(VI- 1). 

Let us first examine Figure 8. The user's major interaction with TOPAZ and 
DASSL takes place through the DRIVER program. If a "user friendly" driver 
program such as DRAC [2] is not available, the user must write his own. The major 
function of the driver program is to fill the DATA array and monitor the integration. 
As discussed in Section V the DATA array contains all the information necessary 
to describe uniquely the user's particular problem. If the user needs to calculate 
special residuals which are not currently built into TOPAZ, a subroutine (NODE 
10) must be included in the DRIVER program for that purpose. These special 
residuals fall into two groups, namely, special boundary conditions, and special 
nodal equations (e.g. control equations, etc.). If a user wishes to include special 
functional relationships for form losses, heat transfer correlations, etc., which are 
not currently "hard wired into TOPAZ, he must also include a subroutine (VALUE) 
as part of the driver program. 

The driver program directs the integration by making repeated calls to DASSL. 
Driver programs are generally written so that the integration is periodically inter- 
upted for the purpose of printing out the solution as a function of time. These 
printouts may be short, i.e. "minor edits" in which dependent variables at five 
different nodes are printed, or comparatively long, i.e. "major edits" in which the 
dependent variables at all nodes are printed. The major and minor edit subroutines 
are part of the TOPAZ block of code. - 
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For compressible flow problems the integration may be interupted between 
print increments. This can happen whenever DASSL "finds a root", i.e. identifies 
a point in the flow where a transition occurs between choked and unchoked flow. 
The driver program must contain the necessary logic to restart the integration after 
substituting the appropriate residual at the choke point (i.e., equation IU-10 or 
m-25). 

The next major block of coding illustrated in Figure 8 is DASSL. DASSL 
I receives integration commands from the driver program and returns the integrated 

results including any error messages. In order to integrate the equations DASSL 
must periodically evaluate the residuals associated with each and every cornputat- 
tional node (i.e. F(N), N=1,2, ..., NMAX). This is accomplished through repeated 
calls to the RESIDS subroutine located in the TOPAZ block of coding (Figure 9). 

The TOPAZ block of coding performs two functions. It prints out major 
and minor edits as requested by the driver program, and it calculates the residual 
vector F(N), N=l, 2, ..., NMAX as requested by DASSL. Within the TOPAZ block 
are subroutines for calculating residuals for each node type. These subroutines 
are named NODE1, NODE2, NODE3, etc. Other subroutines within the TOPAZ 
block include subroutines for various material properties, equations of state, and 
constitutive relationships. 

Figure 9 illustrates the flow of information within TOPAZ required to calculate 
the current d u e s  of the residual vector F(N), N=l, 2, ..., NMAX. DASSL calls the 
RESIDS subroutine which cycles through the entire computational mesh for N=l, 
2, ..., NMAX. The first step in calculating the residual at a particlar node, N, is to 
identify the node type. This information is stored in DATA (N, 1). Knowing the 
node type enables RESIDS to determine which subroutine (NODE1, NODE2, etc.) 
to call to determine F(N). Subroutines which make individual residual calculations 
frequently call on other TOPAZ utility subroutines for the purpose of calculating 
required fluid properties and constitutive relationships. 

Because of the modularity in TOPAZ code architecture new node types, properties, 
equations of state, and constitutive relationships can be easily "hardwired" into the 
code as the need arises. This feature increases the codes generality and range of a p  
plication. 
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VIII. Future Activities 

Future activities in the development of TOPAZ will focus on the following 
areas: 

1. Detailed modeling and documentation of fluid-flow heat transfer 
configurations of specific interest 

2. Validation of TOPAZ modeling techniques 

3. Writing "user friendly" TOPAZ driver programs 

I 4. Increasing the Generality of TOPAZ 

1. Detailed Modeling and Documentation 

TOPAZ is currently being used to model complex flow problems. These efforts 
are expected to continue since the code contains a number of features which make 
it uniquely suited to solving many Sandia problems (e.g . transient flow phenomena, 
flow branching, etc.). Significant experience in flow modeling is expected to be 
gained through individual modeling efforts. When appropriate, these efforts will be 
documented, particularly when experimental test data is available for comparison. 

2. Validation of TOPAZ Modeling Techniques 

In addition to validation through specific modeling efforts, a program of TOPAZ 
validation will be undertaken in order to evaluate generic multi-dimensional model- 
ing techniques (flow branching, vessel heat transfer, form losses, etc.). In the final 
analysis, one's ability to successfully model with TOPAZ (or any one-dimensional 
code) is directly related to  the accuracy of constitutive relationships (models for 
form losses, friction, heat transfer and other multi-dimensional phenomena). A 
number of currently used constitutive relationships for compressible flow form losses 
and vessel heat transfer are known to be inaccurate. In the future, TOPAZ valida- 
tion and model improvement will be tightly coupled to an in-house experimental 
program aimed at improving form loss and heat transfer models. 

A substantial amount of code verification will take place by comparing TOPAZ 
generated predictions to analytical solutions and other independent computer code 
predictions. Some verification has already taken place and is documented in reference 

I 21. Calculational comparisons between TOPAZ and the gas transfer codes TRIC 
161 and DUCTFLO [17] will be documented in the near future. 



3. User Friendly TOPAZ Driver Programs 

The manpower required to write a user friendly interface capable of exploiting 
the complete generality of TOPAZ is prohibitive at  this time. However, user friendly 
driver programs for specific problem types are relatively easy to generate. Such 
programs would completely insulate the user from the burden of generating a mesh 
or becoming involved with the details of directing DASSL integration. The user 
would communicate with the code though a sim le concise set of input data without 
becoming involved in program details. DRAC f! 21 represents the first of these user 
friendly driver programs to be written to date. Other user friendly drivers are likely 
to be written in the near future for the purpose of modeling frequently encountered 
flow geometries such as those depicted in Figure 6 (compressible flow between two 
vessels along a single flow path) and in Figure 7 (compressible flow between three 
vessels via a flow branch). 

4. Increasing the Generality of TOPAZ 

In the early development of TOPAZ, modeling capabilities were directed toward 
solar central receiver applications [I, 21. Such modeling was restricted to  the flow of 
single-species, non-reacting, compressible and incompressible fluids. Many non-solar 
flow problems involve the transport of mixtures of gases in which concentration of 
species varies throughout the flow domain as a function of space and time. Including 
such a modeling capability in TOPAZ will require significant code modification. 
However, plans have been made to  add this feature. 



IX. Conclusion 

This report is the first in a series of reports documenting the computer code 
TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer). In this report an over- 
view of the code has been presented. TOPAZ models the one-dimensional transient 
flow of compressible and incompressible fluids through complex and arbitrary ar- 
rangements of pipes, valves, flow branches, and vessels. Heat transfer to and 
from the fluid containment structures is included in the modeling as well as two- 
dimensional transient heat conduction within the containment itself. 

The purpose of this document was to discuss the TOPAZ modeling assumptions, 
basic equations, constitutive models, numerical integration techniques, and overall 
code architecture. 

Although TOPAZ is a highly general code, a single "user friendlyn inter- 
face capable of exploiting the code's complete generality does not presently exist. 
Application of the code requires that user interface programs be written for specific 
classes of problems (e.g. reference [2]). These interfaces generate the TOPAZ com- 
putational mesh and direct the fully implicit integration of the model equations. 
The user interface program serves as a driver for TOPAZ. 

Future TOPAZ development will include additional code validation, writing of 
user interface programs and the addition of a gas species tracking capability. 
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