
Jff'^S (IV 
SLAC-PUB—4534 

DE88 006435 

L ' is o i- i / 

534 

STRINGS IN FOUR DIMENSIONS* ^ 

CONSTANTS P.BACHAS" 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 
a* 

# 

^ 

ABSTRACT 

We review the construction and properties of four dimensional string 
models, using free fermions on the world-sheet. We prove that as op­
posed to gauge symmetries, broken space-time supersymmetry can only 
be restored continuously by decotnpaetifitation. 

INTRODUCTION 

Much progress has been made recently in the itudy of classical string so­
lutions 13-1S]. We now know how to explicitly conitruct lots of consistent and 
phenomenologically interesting string models directly in four dimensions [7-]2]. 
Furthermore , many calculations with them are simple , often in fact simpler 
than their field theory counterparts (16] ; thus there seems to be little reason 
for even the most pragmatic model-builder not to try and take into account the 
stringy constraints that guarantee a consistent unification or quantum gravity 

IH-
Although some 4d models can be obtained by compatUFxation from 10 di­

mensions [3-5], such a geometric interpretation is not always possible because 
the six internal boaonic coordinates are treated in general on the same footing as 
their world-sheet superp&rtners . PutHermore, even in the case of a bonna fide 
compactiHcation, the site of the internal manifold is often of the order of the 
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Planck scale; the stringy nature of particles becomes then crucial and inval­

idates our intuition from field theories. For instance, one may obtain chirality 
from a non chiral lOd theory, or enhance the gauge symmetries (17j, both of 
which would be forbidden in a traditional Kaluza Klein compactification. For 
these reasons it is more fruitful to abandon the language of compactification, and 
think or the string as moving directly in Tour space time dimensions with all its 
internal quantum numbers carried by some superconformat modular covariant 
model of appropriate central charge on the world-sheet [18). 

The space of all such supercanforinat models is huge and includes such exotic 
possibilities as quantized Liouville modes |19], or collections or models from the 
minimal discrete scries [ll| . Nevertheless , most of what we know at present 
about 4d string theory can bo learned even if we restrict ourselves to a nnch 
simpler class of models made out of free bosonic or fcrmionic fields on the world-
ohccL ; we may refer to these models as Gaussian , Different Gaussian models 
have the same energy-momentum tensor but may differ in the way world-sheet 
supersymmetry is realized and/or the choice of boundary conditions under par­
allel transport around the string . In this talk I wjl] restrict myself even further 
to a subclass of Gaussian Tnodcls which , in the fermiontc language, are obtained 
by allowing only mutually commuting boundary conditions. Models with non-
commuting boundary conditions are probably equivalent in the bosonic language 
to generic rational left-right asymmetric orbifblds ; the analysis of multiloop am­
plitudes is in this case considerably more complicated as discussed earlier by 
Narain |I0|. 

The structure of this talk is as follows; in section 2 , I will briefly review the 
construction of consistent Id string models using free world-sheet fermions with 
commuting spin-structures . In section 3 , ] will show how to obtain models with 
space-time supereymmetry, chiral matter fields and realistic gauge groups, and 
discuss some of their elementary properties. Finally, in section 4 ,1 will examine 
tta spontaneous breaking of symmetries; 1 will show that as opposed to gauge 
symmetries, space-time supersymmetry can only be restored continuously in a 
decompactifkation limit. 
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CONSTRUCTION OF 4D MODELS 

The guiding principle for the construction of consistent first-quantiieri string 
theories is invariance under all (super)reparametmations of the world-sheet. 
This is required for finitcness and unitarity; it also seems to imply, mysteri­
ously enough, some of the most profound principles of modern physics such as 
the principle of equivalence, gauge invariance, the cancellation of anomalies and 
the spin-statistics connection- Let us then see how to impose reparamelrtaation 
invariance on a heterotic string [2] moving in four flat space-time dimensions, 
with extra free world-sheet fermions carrying all its internal quantum numbers. 

Since the 2d theory is free, invariancc under infinitesimal reparamttritatiarui 
is guaranteed , provided we cancel the conformal anomaly. This fixes the total 
number of fcrmions : in the non-supcrsymmclric antiholomorphic side we have 
in addition to the space-time coordinates djX^ an extra 44 real fermions r\A (so 
that 4 4- y — 26). In the supersymmctric hobmorphic side, on the other hand, 
wc have the d^X^ , their supcrsymmetrk partners $•* and finally an extri 18 
real Icrmions xa («<> thai 4 + 5 4 !

3

H •• 2<i - 11 ) . Recall that ±, 1,-26 and 11 are 
lhi> coiilrlbu-inns of a Miijorana fcrmion ,a boson , the gliosis in the conformal 
gauRi- and tlicir sttpcrparlnrrs , in this order |23|. Note also that our analysis can 
easily be applied to type II supersymmetric strings , but these will not concern 
us here since their phcnnmenological prospects arc dimmer [13,14] . 

Next, we must ensure invariance under 2d kolomorpkic aupersymmttry trans­
formations. A grncric candidate for the Lorentz- invariant, dimension ? genera­
tor of such transformations is |f>,24| 

n - *»•«>.x„ ^ j / ^ x ' / x ' (2.1) 

• This u u suggested already aL the dawn at dual modrls by Birdirki and Halpern |20j. 
The idea w u muticcted for luperiymmettic iliingi in rrf. \f>). The modular invatianct 
constraint* were undeiilood following the work of ref. {21,22]. Theie conitrainti were 
«y«lematkally analysed in r«f. [7,9,|2|. 

• More geneial iupcicharges can be comtructed if we boionixc Ihe fertnionic current! but 
these have not yet been completely damnified. 



This must obey the operator product expansion : 

It 2TB{w) 
(« ~ ttf) 

with TB the free energy-momentum tensor and e = 15 the central charge of 
matter fields. Using Wick's theorem, it is straightforward to check that eq. (2.2) 
is satisfied if and only if 

W r f | . = 0 (2.3a) 

and 

facdjbcd ~ ~6ab (2.3fc) 

where here the brackets stand for antisymmetrization in all loose indices and 
repealed indices are as always implicitly summed. We conclude that the coeffi­
cients /ofre are the appropriately normalized structure constants of a semi-simple 
Lie group G , since they obey the Jacobi and orthonormality conditions (2.3a,b). 
The dimension of G must be 18, so that it is one of only three possible groups : 
SU{2)C,SU(2) x SU(A) or finally SU(3) x 0(5). 

The final requirement IB inv&riance under modular transformations , i.e. 
global rcparamctrizations that cannot be reached continuously from the identity. 
This forces us to sum over different boundary conditions, or spin-structures lor 
the fermions. Strictly speaking, a spin-structure for all fermions /, on a world-
sheet E is a representation of the first homotopy group JTI[£) by nrthogonal 
matrices : to every non-contractiblc loop on the surface we assign sonic matrix 
A , 60 that / , -* A,}f} under parallel transport around the loop. The matrix 
A should not mix left and right-movers, and should respect Lorentz- invariancc 
and world-sheet superBymmetry. Thus, it must have the following block-diagonat 
form : 



A=~&A 

( 
1 

0 

V 0 

0 

AG 

0 

\ 
0 
0 

AR J 

(2A) 

where 6A is a sign which, as we will soon « o , plays the role of a space-time 
fermion parity, and Ac is an automorphism of the group G, i.e. : 

fBuAfa>A&,Ag. = / . . * v (2.5) 

This follows from the requirement that the supercharge 7> , cq. (2.1),he periodic 
or antiperiodic when parallel transported around a loop. 

In general, since ir\ (S) is non-abcltan for world-sheets Y, of genus g > 2 , 
the matrices A corresponding to homo topically distinct loops need not commute. 
Major simplificalions, however, dc» occur if we restrict ourselves to matrices cho­
sen from a set of mutually commuting ones. In this case, fj(E) can be replaced 
by its abelianized version H\ (2) , also called the first homology group, the action 
of the mapping class group Di / / (E) /D» ' / / 0 (£ ) becomes that of SL(2g> 2) and 
all fermionic determinants depend only on the period matrix of the surface and 
are, in fact, known explicitly in terms of G-HJ net ions [22]. 

For these purely technical reasons, we limit ourselves here to mutually com­
muting matrices A , which can thus be simultaneously diagonalized in some, 
generally complex basis { / I , / 2 , . . . / K } of fermions. In this basis 

J ^ - A o ^ " ' , . . . . , « • * " « ) 

and we may denote the matrix A by the vector a = (QJ an) of phases . 
By convention I will only include the phase of the two real transverse , or one 
tomplex, fermions ^ and will take - 1 < a, < 1. 

Now a particular string model is determined by a set of coefficients C[~); 
these arc the weights with which a particular spin-structure (Jjj contributes t« 

5 



the one-loop amplitudes. Here a and /? are as usual the boundary conditions 
in the space and time directions around the torus. The one- loop vacuum to 
vacuum amplitude Tor instance reads : 

FuniJon.. V ' l ' . p m . t r y e f j L " J . 

where r is the modular parameter of the torus integrated over a fundamental 
domain in the upper complex plane , A/ is & normalization and r\ and 9 the 
well-known Dcdckind and Jacobi-Riemann functions. 

Modular invariancc imposes the Following set of necessary and sufficient |22j 

conditions : 

(2.76) 

c fc l c K 
where (2.7 a,b) come from invariance under the modular transformations of the 
torus ( r --' r + 1 and r -* • \ respectively), while (2.7 c) comes from two-loop 
modular invariance and the assumption of factorization of string amplitudes. 
In these equations , 1 stands for the vector with all entries equal to one ,the 
dot products are Lorentzian: left minus right-movers, and addition is always 
understood modulo 2 . A detailed analysis of these conditions can be found in 
refs. |7,9,12j. For lack of time, I will only summarize here the results that I will 
need in thr sequel . 

; - ' • 
"c 

- a 

^ iaC 
' + •»! 

(2.7c) 
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To start with, contributing spin-structures correspond to pairs of elements 
of some additive group B of boundary conditions, so that : 

\C 
sj t o , other Pi 10, otherwise 

We shall assume E h finite ,which means that all vectors a e H have ra­
tional components, since otherwise the normalization in (2.6) diverges and the 
expression is only formal. Being abelian s is isomorphic to a direct sum : 
Z„, © Z„3 © ... ffi £„ B . Furthermore it must contain the vector 1 and, since 
it is a group, also the vector 0 ; these coirespond respectively to periodic and 
antipcriodic boundary conditions for all fermions . 

If we were dealing with the type II supcrsymmctric or the bosonic string, with 
left-right symmetric boundary conditions, all phases in (2.7) would disappear, the 
absolute value in (2.8) could be dropped and this would be the end of the story. 
For left-right asymmetric models, however, the existence of at least one choice of 
phases for the coefficients C[£] that is consistent with eqji. (2.7) imposes extra 
constraints on the allowed groups = . Let me describe these constraints in the 
simple case where fermions are allowed to be only periodic or antipcriodic. A 
vector o can then he interpreted JJS Ihr characteristic function of a set of pcriociir 
fermions : 

I, if A periodic 
antipcriodic 

f I, ""/. 
lo, if/, 

Vector addition can be interpreted as the symmetric difference (union minus 
intersection) <jf sets . = - Z2 G> /J-j © ... (f> /fj is generated by a basis {0^ -
I,/<" ,./*' I J...} *>r fermioii sets. Then the constraints on = are that : 

nl/J 1 ' ') 2n ( / l ( , ' f i ^ ' » ) -: 4n ( /*< l >n^»»n^*>n^I n ) - 0 mvd& (2.9) 

where n[(f) is the number of real left minus right-moving fermions in the set 
fi. Note incidentally that in this case of periodic or antiperiodic fcrmions all 
coefficients C[Jj) are pure signs as follows from eq. (2.7 c) and the fact that 
a t « = 0 . 
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S U S Y , C H I R A L I T Y , A N D M O H E 

In this section I will discuss some general properties of these string theories, 

and will try to illustrate how easily one can obtain semi-realistic tnod«lswith N = l 

space-time supcrsymmetry , chiial families and phenomenologicaUy acceptable 

gauge groups. Let us begin by noting that from the one-loop vacuum amplitude 

eq. (2.6) we can read off the Hi\btjt space oT string excitations : 

I now explain this formula '. Ua is the Hilbert-epace sector in which the 2d 

fermions have boundary conditions given by a when parallel transported around 

the string . This means that states in )ia arc constructed by acting on a vacuum 

|0 •>„ with positive frequency oscillators ft{n) , where the frequency n = —£* + 

integer , The total llilbcrt space is a direct sum of sectors, one for each a £ H . 

Ft is the fcrmion-numbc!roi»era.tor that counts the fermions of type / , . The curly 

brackets in (3.1) stand for a projection operator that projects out all states which 

do not satisfy the equality inside . The factorisation condition (2.7 c) guarantees 

that different projectors arc mutually compatible, i.e. do not kili entire sectors. 

The llilbcrt space (.1.1) is a simple generalization of the Nevcu-Schwarz-Ramond 

, or hetcroLic slrinR constructions : each time we add new sectors to a theory , 

we must also add iuw GSO-typc projections |25|, so that the vertrx operators 

emitting physical states are single-valued relative to each other |2f>| 

The mass «r a physical slate in vwU?of Mplane* J s RWcn by the zrTOth-i>rdrr 

Vinuioro gauge conditions : 

fr/tmot'fr* 

rtghtmovcra 
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where QJ,,Q.R are the left- and right-parts of the vector a, and the sums run 
over all oscillators used to construct the state. The space-time statistics of the 
states in a sector Wa depend only on whether the V** are periodic {6a = —1) or 
antiperiodie [6a ~ 1) under the boundary condition a . The reason is that in the 
former case the vacuum |0 >a must represent the Dirac algebra of zero-modes: 
{^[O),it>"{0)} = IJ'"' and is therefore a space-time spinor , while in the latter it 
is a scalar . Furthermore oscillators cannot change the statistics since they carry 
at most a Lorentz-vector index , 

Let us consider now some specific examples of string-models. To simplify 
matters, 1 will restrict myself to the case of only periodic or antipcriodic fermions; 
the operators ciKa'F = [—)" are fermion-parities that anticommute with all the 
fermions in a , while commuting with the rest. I will furthermore choose the 
world-sheet supersymmetry group : G = SU(2)5 so that the supercharge reads : 

e 
TF = 1>»d,X» + i £ x'1 V ' V ' 3 (3.3) 

i=i 

The requirement that a boundary condition leave 7> unchanged up to a sign can 
be checked easily by inspection . 

The minimal string model has just two sectors: 5 = {0,1} , i.e. cither 
all fermions are periodic or they are all antiperiodic . The low-lying spectrum 
contains a tachyon TA {M3 = - 5 } in the vector representation of SO(44) : 

flA(\)\0>o , (3.4a) 

a graviton, dilalon and 2-index antisymmetric tensor : 

4>"(i)dX»[l)p>0 , (3.46) 

gauge hosons A*'* and A»>AB of G x SO(44) : 
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X°{\)dX»{l)\o >o ; f ( i ) ^ ( | ) u f l ( - J ) | 0 > o {3.40 

and finally massless scalars $a>AB m the (adjoint.adjoint) of G x SO(44) ; 

Xa(lhA(\)vBB(\)[0>o (3.4rf) 

All other states have masses of o(M/>). In particular this model contains no 
masslcss space-time fcrmions . 

To remedy this situation, us welt afi get rid of the tachyons, tct us change the 
theory by adding a new set : 

S = { ^ , X - S ) (3-5) 

to the generators of the group of sectors which becomes : S — {fl, 1,5,5 + 1} . 
The effect on the tow-lying spectrum is twofold: firstly in the sector # 0 the new 
GSO projection sets [~)s = $oC*['$} = ~*1 where the last equality follows easily 
from cq. (2.7c). Thus, out of all the states (3.4) we must only keep those that 
have odd S-parity. This leaves the gT&viton and company , the six gauge bosons 
>lji,(j,3) i tne gauge bosons of SO{44), and finally six scalars $('.')•<*" j n the 
adjoint representation of SO(44) . Secondly, massless space-time fcrmions now 
appear in the sector Ms . namely four spin-| and four spin-i states : 

W ( 1 ) | 0 >s (3.6a) 

as well as four spin-A states in the adjoint of SO(44); 

nA[\)flB(~)\0>s (3-04) 

The multiplicity of four comes from the fact that (0 >s is both a Lorentz and 
an internal SO(6) spinor since it must represent the algebra of six zero-modes 

)0 



y ' , 3 (0) . It is straightforward to check that the mussless states (3.6) together 
with ine odd-S-parity states (3.4), form N=4 graviton and SO(44) Yang-Mills 
multiplets . That the theory has N=4 Hupereymmetry even when higher excited 
states and interactions are taken into account, can In fact be demonstrated by 
explicitly constructing the space- time supersymmetry generators [27] . 

Of course N=4 theories arc phenomenologicalty uninteresting since they don't 
have matter multiplets . To reduce the space-time supersymmctry , let us add 
one more basis clement : 

0(0 = { x(/=3,...C)(. = 2,3J i tJA = l 1...!6j (3-TJ 

to our group of sectors . Proceeding as before, w« note first that the result 
of the ( - ) ' ' " projection is to truncate the spectrum of the SO(44) , N=4 su-
persymmetric theory down to the graviton, 50(16) x SO(28)-Yang-Mills , and 
(vcctor(vector)- matter multiplcls of N=2 . We trust the reader can , if he wants 
to, work out the details of this truncation , keeping in mind that the operator 
( )** anticommutcs with the four aero modes jf( / = 3---e)-3(0) , and therefore 
arts on the slates (3.G) as an internal SO(4) chiralily . Decides satisfying the 
rtv.tliLiutis (2.0), tlit* fhoir.eof/<"'' was dictated by tin* requirement that the new 
sector? contribute a mass I ess N=2 matter multiplct, in the (.spinor.l) rcpre.sen-
tation orS0(16) x SO(28) . These are the stales: 

\Q>Pl and |tl > j P l + S (3.8) 

which will give rise to chiral matter families at the next and last stage of our 
construction. 

ludi'i'd li'i us finally add ihr- following st.-L Li> our [*r<),1P of sectors : 

TheTcsultof the [-)P truncation is to break the gauge group down to SO( I0)v 
SO(C) v SO(14)' , and to reduce space-time superfiymmetry to N - 1 . Fur­
thermore, acting on the states |0 >^(i> the operator [-)fi<" equals (hclicity) x 
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SO(lOjefu'rofttj/) . The (H7) projection IB therefore precisely a Weyl projection. 
To summarize, wc have thus finally obtained a string model whose massiess 
ipectrum contains the states of a standard N=l supersymmetric SO(lO)- grand 
mified theory , with eight families, and a gauged S0(6) horizontal symmetry. 

One can RO on tefming ttu* KKKICI Wt I don't YViink ihis would at this stage 
JC particularly illuminating . Let me instead make some general remarks. The 
us t is that a given string tree amplitude does not depend on any details of the 
nodel, other than the external vertex operators inserted on the sphere. On the 
ither hand, as the above constTuction illustrated, the massiess states of many 4d 
Tiodcls can be obtained by truncating a more symmetric theory. This makes the 
rnlculation of the effective tree Lagrangian of maasless modes considerably easier 
28]. For instance the N - 1 theory constructed above is an exact truncation of a 
N~2 Ihciwy , whose IjagTangian depends on only one rather than two arbitrary 
functions . 

The second remark concerns the graviton, dilaton and antisymmetric tensor 

stales (3.4b), which ecemed to survive all projections . This is no accident : 

indeed acting on these stall's e"^ r - hp — C*[p] , where the second equality 

follows easily from (2.7 b,r) . Consequently the tiSO projections (3.1) are auto­

matically satisfied, meaning that gravilnn and company arc always in the string 

spectrum. 

The final remark concerns space-time supyrsymmctTy . First nott- that, in 

the case of only periodic or antiperiodic fermions, the only r.uuliilate mass less 

spin-1 states arc : c W ( l ) | 0 ><; , with S a set of precisely eight real loft-movers 

. Indeed S must contain at least 8 form ions to make the supercharge 7> periodic 

, and it cannot contain more since the mass , cq. (3.2), would then become 

non-zero . Next note that some or all components of d.\"(\)\0 .-s will survive 

the <5SO projections if and only if for all a 6 5 disjoint from S, we have 

• We will encounter mom general •Buperaymmetry generating" vcrtorn S with non-integer 
component* in the following section. 
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s 
a 

- - 1 (3.11) 

Note that for a's overlapping with S , there is no restriction, since ( - ) " acts Hke 
a chwality operator and cannot eliminate all components. We thus conclude that 
the necessary and sufficient conditions for having at least one masslcss giavitino 
is that S 6 H and that (3.11) be satisfied. We may now prove a 

Lemma : For any string model with a massless gravitino , the partition 
function and one-loop cosmological constant vanish . 

To prove this denote for short by [£] the contribution of a given spin-structure 
to the partition function , i.e. the integrand in eq. (2.6) . Then using the fact 
that 5 is a group , we may write the full partition function as : 

-.pes 
+ [°;i+w+t + s 

+ s 
(3.12) 

Now unless x and y are disjoint, M is proportional to © [j] and vanishes. The 
coefficients of the non-vanishing spin-structures within the curty brackets on the 
other hand, can be related by virtue of (3.11) and the duality and factorization 
conditions (2.7b,c). The result can be shown to be proportional to the Jaeobi 
identity: 

e* a-*M" (3.13) 

which completes th« proof. 

This is an example of a non-renormalization theorem [29], Unless the theory 
contains anomalous U(l)'s |30|, the stability of supersymmetric vacua and the 
vanishing of the cosmological constant presumably hold to all orders in thestring-
locp expansion. 

13 



SYMMETRY B R E A K I N G 

The previous section hopefully illustrated how one can construct 4d string 
models , which could be reasonable first approximations to our real world if we 
were to ignore all masses that are much much smaller than Mpianck • Though 
small, the masses of real particles are however finite, and are presumably related 
to the spontaneous breaking of gauge (symmetries and, if it exists at a l l , of space-
time supersymmetry. To make further progress we must therefore understand 
Spontaneous symmetry breaking in string theory. 

Gauge Symmetrica 

In what concerns gauge symmetries , things look good : indeed the scalar 
potential in most 4d string models has lots of flat directions along which the 
scalar vacuum expectation values can slide freely , breaking the gauge groups 
spontaneously at classically undetermined scales |5,3]-33] . This is reminisent of 
no-scale models [34]. Although we do not fully understand how some of these 
scales will be fixed dynamically to be hierarchically smaller than M/> , the pos­
sibility that such a thing happens at least exists . 

In order to be more explicit, let us consider for example the potential of the 
massless scalars (3.5«I) in the SL7(2)° x 0(44) non-supersymmetric model of the 
previous section. One way of calculating this is to perturb the two- dimensional 
free fcrmionic action with the corresponding appropriately supersymmctrized 
scalar vertex operators at zero-momentum : 

(4.1) 

and then calculate the /^-functions |35| of the resulting generalized Thtrrinc 
model. The classical string equations arc : 

These determine the scalar potential modulo field redefinitions , which reflect 

U 



the dependence of the 0 -functions on the precise subtraction procedure. The 
two leading orders IUC however universal and yield [32}: 

v(*) = -4=< i j 4X>(* i , i* , d*' , i) + i D rr|»",»*]» 
3 ^ f l '=1 '.•>."> (4.3) 

" | £(3>»''**'J)a + \ D E rr»''i*/',)a + o(*s) 

where the traces and commutator are with respect to the suppressed SO(44) 
indices . 

It is straightforward to check that the above potential vanishes if we give 
arbitrary vacuum expectation values to all $U.'>MJ» w ; t n | ^ , j a n j [AH) chosen 
among some 6 and 22 , respectively , mutually commuting generators of SU(2)a 

and SO{44) . That this is true even if higher-order terms are taken into account 
in (4.3) , fallows from the fact that the Thirring model with mutually commuting 
left-currents coupled to mutually commuting right- currents has ex?xt conforms] 
invariiince . In the statistical mechanics language , these flat directions corre­
spond to inlcgrable marginal operators that deform continuously the spectrum 
of conformal weights , i.e. masses of the string states . 

The scalar potential (4.3) is in some sense universal for the entire class of 
Gaussian string models ; the reason is that the mass less scalar* coming from the 
purely antipcriodic sector Wo aTC a subset of the ^"•AD , and their potential can 
bo obtained by appropriately truncating (4.3) . Thus for example our discussion 
of the flat directions can be taken over to the N~ 4 , 2 and 1 supersymmetric 
lumlols construe lid in the previous section . Of course masslcss scalars may also 
exist in other sectors of the Ililbcrt space , and may give extra flat directions 
at appropriate multicriliral points . 1 will refrain , however , from further dis­
cussing these points and turn now to the more crucial problem of supersyminctry 
breaking -
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Supersymmet ry 

One of the main motivations for introducing eupersymmetry is that it can 
solve the technical part of the gauge hierarchy problem , i.e. explain why radia­
tive corrections do not drive the weak scale Mw to Mp , Of course , a completely 
different mechanism could be responsible for this in string theory . Otherwise 
following the conventional lore , we should expect space-time supersymmetry to 
be broken at a scale of order Mw . and hence much smaller than Mp , Further­
more this breaking is either non-perturbative [36], or else it must occur at tree 
level , since the non-renormalization theorems exclude the possibility that it be 
induced by radiative corrections". Setting the non-perturbative efleets aside, the 
following question arises : is it possible , as in field theory , to slightly perturb 
the tree-level spectrum of a 4d supcrsymmctric string model by introducing in­
finitesimal (in units of Mp ) mass splittings between superpartners ? I will now 
show t h a t , at least in the class of free-fcrmionic models considered here , this is 
not possible [37]: the existence of a gravitino of small mass necessarily implies 
the existence of a whole tower of such states between 0 and Mp with mass differ­
ences of the order of the supcrsymmclry breaking scale . Thus super-symmetry 
can only be restored in some sort of dccompactificatlon limit . 

T<» prove the assertion let us slart by considering the mass of a space-lime 
fermionic string excitation . This must belong to a sector Ha where the boundary 
condition a leaves the VM and the supercharge 7> periodic . Thus from (3.2 a) 
we have : 

M = ]L (/««««n«e*) ^ 2 + 8 + "~T' ' ' 
lefttnvvtrm 

where £ is the contribution to the mass subtraction of the periodic V* i a"«l " ' ' 
is the phase-vector of some automorphism Aa , as explained in section 2 . 

To save time 1 will restrict myself here to inner automorphisms , i.e. group 
elements in the adjoint representation , although all my conclusions will Hold 

* The breaking through a one-loop induced Fiyel-Hiopouloi D-lrim 130) dim not srem 
phcnomenologically relevant. 
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also Tor outer automorphisms . The general inner automorphism is of the form 
fip ;= e1"**-̂  with II1 a set of mutually commuting generators in a Cartan*Weyl 
basis. We thus obtain : 

a G - a

c = I r G + ^ ( t f - p - l ) s (4.5) 
2 +vz 

where r c is the rank of the group and the sum runs over all roots p, positive 
with respect to 8 . Now let us define , g = ^ YL P •> where «c is the Casimir in 

+ vt. 
the adjoint representation. Using the Freudenth*l-de Vries strange formula ; 

2 
cag-9 = ~da (4.6) 

and the fact that £ P1^ ~ l?si* » w e c a n rewrite eq. (4.5) as follows : 

a

G-aG^\dG + \cc{?-gf (4.7) 

The minimum vector length is therefore \dc and is obtained for the special 
automorphism : 

which we may refer to as a superautomorphism. Plugging now cq. (4.7) back in 
eq. (4.4) , with dc — 18, we conclude that the holomorphic part of a masslcss 
space-time spinor is necessarily the vacuum of a sector in which the fermlonic 
boundary conditions are given by the superautomorphism (4.8). Note inciden­
tally that we have here also proved that there are no tachyonic spinor excitations 
as is , of course, to be expected of a consistent string theory . 

Consider now a masslessgravitino. It follows easily from the above discussion 
that the only candidate for such a state is SX^lJlO >s where : 

* I owe thia elegant argument to t'clcr Goddard. A brute foice but moie genera! flasojSka-
tion of minimi., that includes outer automorphism!, was given in re(. |12|. 
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In order to give a small mass to the gravitino, we must perturb slightly this 
boundary condition : 

S + 6b' = ( 1 a$ + SaG 6SR ) (-1.10) 

where 55, << 1 . The state 

d A ' " ( l ) | 0 > S H ( s (4.11) 

has mass 

where the absence of a linear term is due to the fact that the vector a£ has 
minimum length , so that aft • 6a° = 0 . (4.11) is actually the only candidate 
for a slightly massive grayitino, because at S + 6S there are no nearly periodic 
fcrrnions with infinitesimal frequencies at our disposal . 

Let us assume then that the Hilbert space of our model contains such a 
nearly massless gravitino. This means that [S + SS) e H and, in order that 
(4.11) survives the GSO projections : 

This condition is due to the fact that e ' " ' " ' acts on (4.11] as a chirality operator 

if 6p = - 1 and (is the identity otherwise . 

Now we will use the fact that the superautomorphism (4.8) is always an n-th 
root of the identity with h a small integer (for simply-laced groups h is the dual 
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Coxeter number). This means that 2hS = 0 , which together with the fact that 
H is a group , leads to an entire tower of candidate low-mass gravitinos: 

dX"(l)|0 >S+SS ', dX"(l)|0 >S+[2K+l)fS i a X " ( l ) | 0 > s + ( 4 A + , J W -

all of which satisfy level-matching due to the absence of a linear term in eq. 
(4.12) . Furthermore they nil survive the generalized GSO projections : this can 
be proved by using once more the duality and factorization conditions (2.7 b,c) , 
to reotpress c[{2nh+i)J<s+6S)] in terms of C ^ 6 5 ] . The fact that S minimizes 
vector lenght is again crucial, for getting rid of the phases. 

Thus, what we have concluded is that the existence of a gravilino with, for 
instance, a mass of ITcv , implies the existence of an entire tower of gravitinos 
with masses (2/i + \)Tev, (4A + L)reu and .n> on { incidentally h = 2,3 or 4 for 
the groups that interest us) . The physical interpretation is that supersyinmetry 
is broken by a Shcrck-Schwarz type compactiflcation [38,31], but with the mo­
menta in the internal dimensions related lo the radii , so that the mass splittings 
can be made to vanish only in tkc limit of decompactijicalion . Using different 
arguments. Dine and ScihTg [39], and Banks and Dixon J40J havualno concluded 
that supcrsymmetry cannot be restored continuously at an analytic point of the 
scalar potential. As opposed to the proof given here, their arguments are not 
restricted to a particular class of models. However, they do not allow them to 
characterize the singularity uniquely as being due to decompactification. Finally 
1 should point out that 1 have here taken tin- gravitino mass as a measure or the 
supcrsymmoiry breaking scale. Thus my arguments would not apply if the mass 
splittings in the matter and gauge sectors were small but the gravilino mass wa-s 
of order \1p. 
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