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ABSTRACT

We review the consiruction and properties of four dimensional string
models, using free fermions on the world-sheet. We prove that as op-
posed to gauge symmetries, hroken space-time supersymmetry can only
be restored continuously by decompactification.

INTRODUCTION

Much progress has been made recently in the study of classical string so-
lutions |3-15]. We now know how to explicitly construct lots of consistent and
phenomenoclogically interesting string models directly in four dimensions {7-12).
Furthermore , many calculations with them are simple , often in fact simpler
than their field theory counterparts [16] ; thus there seems to be little reason
for even the most pragmatic model-builder not to try and take into account the

stringy constraints that guarantee a consistent unification of quantum gravity
.

Although some 4d madels can be obtained by compactification from 10 dj-
mensions [3-5], such a geometric interpretation is not always possible because
the six internal bosonic coordinates are treated in general on the same footing as
their world-sheet superpartners . Futhermore, even in the case of a bonna fide

compactification, the size of the internal manifold is often of the order of the
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Planck scale; the stringy nature of particles becomea then crucial and inval-
idates our intuition from field theories. For instance, ene may cbtain chirality
from a non chiral 10d theory, or enhance the gauge symmetries [17], both of
which would be forbidden in s traditional Kaluza Klein compactification. For
these reasons it is more fruitful to abandon the language of compactification, and
think of the string as moving dircctly in lour apace time dimensions with all its
internal quantum numbers carried by some superconformal modular covariznt

model of appropriate central charge on the world-sheet |18).

The space of all such superconformat models is huge and includes such exotic
possibilities as quantized Liouville modes |19], or collections of modcls frem the
minimal discrete series [11]. Nevertheless , most of what we know at present
about 44 string theory can he learned even if we restrict ourselves to a much
simpler class of models made out of free bosonic or fermionic ficlds on the world-
sneel : we may refer Lo these models a8 Gaussian . Different Gaussian models
have the same encrgy-rnomentum tensor but may differ in the way world-sheet
supersymmetry is realized and/or the choice of boundary conditions under par-
allel transport around the string . In this talk I will restrict myself even further
to a subclaxs of Gaussian tnodels which , in the fermionic language, are obtained
by allowing only mutually commuting boundary conditions. Models with non-
commuting boundary conditions are prabably equivalent in the bosconic language
to generic rational left-right asymmetric orbifolds ; the analysis of mnltiloop ar.
plitudes is in this case considerably more complicated as discussed earlier by
Narain [10].

The structure of this talk is as follows : in section 2, [ will briefly review the
construction of consistent 4d string models using free world-sheet fermions with
commuling spin-sttuctures . In gection 3 , ] will show how to obtain models with
space-time supersymmetry, chiral matier fields and realistic gauge groups, and
discuss some of their elemientary properties. Finally, in section 4 , I will examine
the spontaneons breaking of symmetries; 1 will show that as opposed to gauge
symmelries, space-time supersymmetry can only be restored continuously in a

decompactification limit.
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CONSTRUCTION OF 4D MODELS

The guiding principle for the construction of consistent first-quantized string
thearies is invariance under all (super)reparametrizations of the world-sheet.
This is required for finiteness and unitarity; it also seems to imply, mysteri-
ously enough, some of the most profound principles of modern physics such as
the principle of equivalence, gange invariance, the cancellation of anomalies and
the spin-statistics connection. Let us then see how to impose reparainetrization
jnvariance on a heterotic string [2] moving in four flat space-time dimensions,

with extra free world-sheet fermions carrying all its internal quantum numbers .’

Since the 2d theory is free, invariance under infinitesimal reparamelrizations
in gnaranteed , provided we cancel the conformal anomaly. This fixes the total
number of fermions ; in the non-supersymmetric antiholomorphic side we have
in addition to the space-time coordinates ;X an exira 44 real fermions n# (so
that 4 + %¥ = 26). In the supersymmetric holomorphic side, on the other hand,
we have the 8. X¥ | their supersymmetric partness ¥* and finally an extra 1B
real fermions x2 (so that 4 + 3 4 !: .- 26- 11 ). Recall that %. 1,—26 and 11 are
the contribuions of a Majorana fermijon ,a boson , the ghosts in the conformal
gauge and their superpartners , in this order {23]. Note also that our analysis can
casily be applied 1o type 1l supersymmetric strings , but these will not concern

us here since their phenomenological prospects are dimmer [13,14] .

Next, we muost ensure invariance under 2d Aolomorphic sypersymmetry trans-
formations. A Reneric candidate for the Lorentz- invariant, dimension  genera-

tor of such transformations is [6,24]

i
Ty - P X, 4 i,fﬂ,,rx"x"x‘ (2.1}

¢+ 'T'his was suggested already al the dawn of dual madels by Bardacki and Halpern |20}
The idca was tesurrected for supersymmeteic strings in eef. 6. The modular invariance
constraints were understood following the work of rel. [21,22). Thete constraints were
syslematically analyeed in ecf. [7,9,12].

s More genetal supercharges can be constructed if we besonize the fermionic currents but
these have not yel been completely classified.



This must obey the operator product expansion :

TF(Z]Tp(w] - ___%f___ + 2LB('"-'_)
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with Tg the [ree energy-momentum tensor and ¢ = 15 the central charge of

matter fields. Using Wick's theorem, it is straightforward to check that eq. (2.2)
is satisfied if and only if

flcbejcdll =0 (2.3a)

and

Socafoed = 3bas (238
where here the brackets stand for anlisymmetrization in all loose indices and
repeated indices are as always implicitly summed. We conclude that the coefli-
cients fgp. are the appropriately normalized structure constants of a semi-simple
Lie group G, since they obey the Jacobi and orthonormality conditions {2.3a,b).
The dimension of G must be 18, so that it is one of only three possible groups :
SU(2)%,5U(2) x SU(4} or finally SU(3) x O(5).

The final requirement is invariance under modular transformations . i.c.
global reparametrizations that cannot be reached continuously from the identity.
This forces us to sum over dilferent boundary conditions, or spin-structures flor
the fermions. Strictly speaking, a spin-structure for all fermions f, on a world-
sheet I is a representation of the first homotopy group » (L) by orthogonal
matrices : to every non-contractible loop on the surface we assign some matrix
A , so that fi = A,;f; under parallel transport around the loop. The matrix
A should not mix left and right-movers, and should respect Lorentz- invariance
and world-sheet supersymmetry. Thus, it must have the following block-diagonal

form :



1 0 1]
A= -84 0 A5 0 (2-‘”
0 Ar

where §4 is & sign which, as we will soon see , plays the sole of a space-Lime

fermion parity, and A€ is an automarphism of the group G, i.e. :
fabc-ﬂfal-“ﬁl-ﬂfgl = Jorprer {2.5)

This follows from the requirement that the supercharge Tx , eq. (2.1),be periodic

or antiperiodic when parallel transported around a loop,

in general, since m((E} is non-abelian for world-sheets ¥ of genus g > 2,
the matrices A corresponding to homotopically distinct loops need not commute.
Major simplificalions, however, do occur if we restrict ourselves to matrices cho-
sen from a set of mutually commuting ones. In this case, 71(I) can be replaced
by its abelianized version H1{Z} , also called the first homology group, the aclion
of the mapping tlass group Dif f{E)/Dif fo(L) becomes that of SL(2g,2Z) and
2!] fermionic determinanis depend only on the period matrix of the surface and

are, in fact, known explicitly in terms of ©-functions [22).

For these purely technical reasons, we limit purselves here to mutually com-
muting matrices 4 , which can thus be simultaneously diagonalized in some,

gencrally complex basis {f1, f2,...fx } of fermions. In this basis
A= '-dl:ag'(e'l'n‘,....,ci'a")

and we may denote the matrix 4 by the vector & = (ay,...,ak) of phases .
By convention I will only include the phase of the two real transverse , or one

complex, fermions ¥ and will take -1 < a, € 1.

Now a particular string model is determined by a set of coeflicients Clp ;

these are the weights with which a particular spin-structure [3] contribules to



the one-loop amplitudes. Here a and f are as ysual the boundary conditions
in the space and time directions around the torus. The one- loop vacuum to

vacuum amplitude for instance reads :

I drd7 1 o] v @15)
ZI—IOop =N / (fm'r)’ (ﬂﬁ)ai!l’.ﬂf) z C[ﬁ] l:I T (2.6)

FPund.dom. spinatructs

where 7 is the modular parameter of the totus integrated over a fundamental
domain in the npper complex plane , N is a normalization and 7 and © the

well-known Dedekind and Jacobi-Riemann functions.

Modular invariance imposes the [ollowing set of necessary and sufficient 122}

conditions :

C[z] - —efe °CL9 _‘;+ 1] (2.7a)

c [;] = ¢fo Bc[ _ﬁa] (2.78)
C [g]c[:] - a“c[ﬁ‘: 1] (2.7¢)

where {2.7 2,b) come from invariance under the modular transformations of the
torus (v -+ 1 + 1 and r — - ! respectively), while (2.7 <) comes from two-loop
modular invariance and the assumplion of factorization of string amplitudes.
In these equations , 1 stands for the veclor with all entries equal to onc ,the
dot products are Lotentzian: left minus right-movers, and addition is always
understond modulo 2 . A detailed analysis of these conditions can be found in
refs. |7,9,12]. For lack of iime, I will only summarize here the results that I will

need in Lhe sequel .



To start with, contributing spin-structures correspond to pairs of elements

of some additive group £ of boundary conditions, so that :

1, fa,BPES
|C[§]i={ he 2.8)

0, otherwise

We shall assume E is finite ,which means that all vectors a € B have ra-
ticnal components, since otherwise the normalization in (2.6) diverges and the
expression is only formal. Being abelian £ is isomorphic to a direct sum :
Zpy ® Zpy ® ... © Zng - Furthermore it must contain the vector 1 and, since
it is a group, also the vector 0 ; these correspond respectively to periodic and

antiperiodic boundary conditions for all fermions .

If we were dealing with the type Il supersymmetric or the bosonic string, with
left-right symmectric boundary conditions, all phases in {2.7) would disappear, the
absolute value in (2.8) could be dropped and this would be the end of the story.
For [eft-right asymmetric models, however, the existence of al least one choice of
phases for the coeflicients C‘[;] that is consistent with eqs. (2.7) imposes extra
constraints on the allowed groups £ . Let me describe these consiraints in the
simple case where fermions are allowed to be only periodic or antiperiodic. A
vector a can then be interproted as the characteristic Junction of a sol of periodic
fermions :

) 1, if f; periodic
. {0, il . antiperiodic

Vector addition can be interpreted as the symmetric difference {union minus
intersoction) of sets . T - Z, @ Z2 ® ... ® Z2 is generated by a basis {ﬁ‘“} -

LACH A Y of fermion sets. Then the constraints on £ are that
(gt (A 0 gUY = an(F N AW A N U - 0 peds (2.9)

where n(f#) is the number of real left minus right-moving fermions in the set
A. Note incidentally that in this case of periodic or antiperiodic fermions all
caeflicients C 3] are pure signs as follows from eq. {2.7 ¢) and the fact that

aira=0.



8USY , CHIRALITY , AND MORE

In this section I will discuss some general properties of these string theories,
and will try to illustrate how easily one can obtain semi-realistic models with N=1}
space-time supersymmetry , chiral families and phenomenoclogically acceptable
gauge groups. Let us begin by noting that from the one-loop vacuum amplitude
eq. (2.6} we can read off the Hilbert spare of string excitations :

= [lie~** = 6,,0‘[;]} A {3.1)

a€Z feg

I now explain this formula : ¥, is the Hilbert-space sector in which the 24
fermions have boundary conditions given by a when paralie] transported around
the string . This means that states in N, are constructed by acting on a vacuum
[0 >, with positive [requency osciliators fi{n) , where the frequency n = 2 4
infeger . The tolal Hilbert space is a direct sum of sectors, one for cach a € E .
F\ is the fermion-number operator that counts the fermions of type f, . The curly
brackels in (3.1) stand for a projection operator that projects out all states which
do not salisfy the egquality inside . The faclorization condition (2.7 ¢) guaranters
that different projectors are mutually compatible, i.e. do not kils entire sectors.
The Hilbert space (3.1) is a simple generalization of the Neveu-Schwarz-Ramond
, ar heteratic string construclions @ earh time we add new sectors to a theory ,
we must also add new GSO-type projertions |25, so that the vertex operators

emitting physical states are single-valued relative to cach other [26] .

The mass of a physical state in wnits of Mpianex ™ piven by the zeroth.order

Virasoro gauge condilions :

M- Z (frequencies) — ; + ?_f-éqf- (3.2q)
feftmovera
= Z (frequencies) - 14 ‘jﬁé_f"j {3.26)

rightmovera



where a;,ap are the lefi- and right-parts of the vector a, and the sums run
over all oscillators used to construct the state. The space-time siatistics of the
states in a sector ¥, depend only on whether the y* are periodic (6o = —1) or
antiperiodic (&, = 1) under the boundary condition & . The reason is that in the
{former case the vacuum |0 >, must represent the Dirac algebra of zero-modes:
{x#(0),¥*(0)} = n** and is therefore a space-time spinor , while in the latter it
is a scalar . Furthermore oscillators cannot change the statistics since they carry

at most a Lorentz-vector index ,

Let us consider now some specific examples of siring-models. To simplify
matters, ] will restrict myself to the case of cnly periodic or antiperiodic fermions;
the operators e'*®'F = (—}* are fermion-parities that anticommute with all the
fermions in « , while commuting with the rest. I will furthermore choose the

world-sheet supersymmetry group : G = SU(2)® so that the supercharge reads :

]
Tr = 4¢3, X" 4+ I'Z "'x"zx"s (3.3)
J=1

The requirement that a boundary condition leave Tr unchanged up to a sign can
be checked easily by inspection .

The minimal string model has just two sectors: E = {0,1} , i.e. either
all fermions are perfodic or they are all antiperiodic . The low-lying spectrum
contains a tachyon T4 (M? = —1) in the vector representation of SO(44) :

a4 (z)i0 >0 (3.4a)

a graviton, dilaton and 2-index antisymmeiric tensor :

\b“(.i-,)é'x“(l)IO >0 , (3.48)

gauge bosons A¥@ and A#AB of G x SO(44) :



xn(%)axﬂ(l)[o >0 ¢"‘(%)n‘(%)nﬂ(%]|u S0 (3.4¢)

and finally massless scalars %42 in the (adioint,adjoint) of G x S0{44) :

XA (P B0 >0 (3.44)

All other states have masses of o(Mp). In particular this mode! contains no

massless space-time fermions .

To remedy this situation, as well as get rid of the tachyons, let us change the

theory by adding a new set :

S = (¥, x) (3.5)

to the generators of the group of sectors which becomes : E = {0,1,5,5 + 1} .
The cffect on Lthe low-lying spectrum is twofold: firstly in the sector g the new
GSO projection sets ()% = §C* (3] = ~1 where the last equality follows easily
from eq. (2.7c). Thus, out of all the states (3.4) we must only keep those that
bave odd S-parity, This leaves the graviton and company , the six gauge bosons
Ay, 1,3) » the gauge bosons of SO{44), and finally six scalars #(/:3):48 jn the
adjoint representation of S0{44) . Secondly, massless space-time fermions now

appear in the sector ¥ , namely four spin—% and four spin—% states !
AX*(1)|0 »5 (3.6a)
as well as four spin-} states in the adjoint of SO(44):
fr“(%)n"(%)lo >s (3.6)

The mulliplicity of four comes from the fact that |0 >5 is both a Loreniz and

an internal SO(6) spinor since it must represent the algebra of six zero-modes

10



x1'3(0) . It is straightforward to check that the masssless states (3.6) together
with the odd-S-parity states (3.4), form N=4 graviton and 50(44) Yang-Mills
multiplets . That the theory has N=4 supersymmetry even when higher excited
states and interactions are taken intc account , can in {act be demonstrated by

explicitly constructing the space- time supersymmetry generators [27] .

Of course N=4 theories are phenomenologically uninteresting since they don't
have matter muitiplets . To reduce the space-lime supersymmetry , let us add

one more basis element :

ﬁ(l} = {x(1=a,...6](|=2.3]‘qA=l....m} (3-7)

to our group of sectors . Proceeding as before, we note first that the result
of the (—)f""" projection is to truncate the spectrum of the SQ(44) , N=4 su-
persymmetric Lheory down to the graviton, SQ(18) x $0(28)-Yang-Mills , and
(vector,vector)- matter multiplets of N=2 . We trust the reader can , if he wants
to, work out the details of this truncation , keeping in mind that the operalor
( )™" anticommutes with the four zero modes x(/=3-%}3(0) | and thercfore
acts on the states (3.6) as an internal SO(4) chirality . Besides satisfying the
conditions (2.9}, the choice of #¢1) was dictated by the requirement that the new
sectors contribute a massless N=2 matter mulliplei, in the {spinor,l) represen-
tation of SO(16} x SO(28) . These are the states:

|0 >ga, and |0 >H,45 (3.8)

which will give rise to chiral matter families at the next and last stage of our

canstruclion.

Indeed Jet us finally add the following sel Lo our group of sectors :

5(?) 3 {ﬂ,p‘x(l'—l...d).l‘xs.n. xﬁ.a‘ndﬂ :,...mmn-_—:':,,,.ao} (3.10)

The result of the ( -)ﬁm truncation js to break the gauge group down to SC{10) »
S0(6) x SO(14)? , and to vreduce space-time supersymmetry to N=3 . Fur-

thermore, acting on the states [0 > gy the operator (—)ﬂu' equals (helicity) x

11



SO(10)chirality) . The 82} projection is therefore precisely a Weyl projection.
Fo summarize, we have thus finally obtained 2 string model whose massless
pectrum contains the states of a standard N=1 supersymmetric SO(10)- grand

ified theory , with eight families, and a gauged SO{6) horizontal symmetry.

One can go or refiniag this model but 1 don't think thia would at this stage
e particularly illuminating . Let me instead make some general remarks, The
jrst is that a given string tree amplitude does not depend on any details of the
nodel, other than the external vertex operators inserted on the sphere. On the
sther hand, as the above construction illustrated, the masstess states of many 44
models can be obtained by truncating a more symmetric theory, This makes the
salculation of the effective tree Lagrangian of massless modes considerably easier
28]. For instance the N=:1 theory constructed above is an exact truncation of a

=2 theory , whose Lagrangian depends on only ane rather than two arbitrary

functions .

The second remark concerns the graviton, dilaton and anlisymmetric tensor
states {3.4b), which seemed to survive all projections . This is no accident :
indeed acting on these states o™ F - §) = C‘lg] , where the second equality
lollows easily from {2.7 byr) . Consequently the GSO projections {3.1) are auto-
matically satisfied, meaning that gravilon and company are always in the string

spectrum,

The final remark concerns space-lime supersymmetry . First note that, in
the case of only periodic or antiperiodic fermions, the only cindidate massless
spin-% states are : dXH(1)]0 > 5 , with § a set of precisely eight real lefl-movers
. Indeed § must contain at least 8 fermions Lo make the supercharge Ty periadic
, and il canpnot contain mare since the mass | eq. (3.2), wonld then become
non-zero . Next note Lthat some or all components of 2X#(1)JD .~ 5 will survive

the GSO projections if and only if {or all a € E disjoint from §, we have

» We will encounler more general "supersymmetry gencrating”™ vectors 5 with pon-integer
components in the following seclion.

12



c[‘z] = -1 (3.11)

Note that for a’s overlapping with 5 , there is no restriction, since (—)* acts like
a chirality operator and cannot eliminate all components. We thus conclude that
the necessary and sufficient conditions for having at least one masgless gravitino
is that S € E and that (3.11) be satisfied. We may now provea

Lemma : For any string model with a massless gravitino , the partition

function and one-loop cosmological constant vanish .

To provethis denote for short by [g] the contribution of a given spin-structure
to the partition function , i.e. the integrand in eq. (2.6) . Then using the facl

that T js a group , we may write the full partition function as :

.,;JE]* Z{[;]+ a;S]+[ﬂ:s]+[gi§]} (3.12)

*‘hﬂEE

Now unless z and y are disjoint, [;] is proportional to 6[:] and vanishes. The
coefficients of the non-vanishing spin-structures within the curly brackets on the
other hand, can be related by virtue of (3.11) and the duality and factorization

conditions (2.7b.c). The result can be shown to be proportional to the Jacobi

o4 [:,] - o [g] + e [ﬂ =0 (3.13)

which completes the proof,

identity:

This is an example of a non-renarmalization theorem [29]. Unless the theory
contains anomalous U(1)’s |30], the stability of supersymmetric vacva and the
vanishing of the cosmalogical constant presumably hold to all orders in the string-

locp expansion.

13



SYMMETRY BREAKING

The previous section hopefully illustrated how one can construct 4d string
models , which conld be reasonable first approximations teo ocur real world if we
were Lo ignore all masses that are much much smaller than Mpjanck - Though
small, the masses of real particles are however finite, and are presumably related
to the spontaneous breaking of gauge symmetries and, if it exists al all , of space-
time supersymmetry. To make further progress we must therefore understand

spontaneous symmetry breaking in string theory,
Gauge Symmetries

In what concerns gauge symmetries , things look good : indecd the scalar
poteniial in most 4d string models has lots of flat directions aleng which the
scalar vacyum expectatinn values can slide freely , breaking the gange groups
spontaneously at classically undetermined scales |5,31-33] . This is reminisent of
no-scale models [34]. Although we do not fully understand how some of these
scales will be fixed dynamically to be hierarchically smaller than Mp |, the pos-
sibility that such a thing happens at least exists .

In order to be more explicit , let ne consider for example the potential of the
massless scalars (3.5d) in the SU(2)® x O(44) non-supersymmetric model of the
previous section. One way of calculating this is to perturb the two- dimensional
free fermionic action with the corresponding approprietely supersymmetrized

scalar vertex operators at zero-momentum :

ft{-:f, = Q“'Aajdzdidﬂ(xn + 012 x*x)nAn P

{4.1)
- q)n,ADfnbr[d!d}-(xbxc)lqdnﬂ)

and then calculate the f-functions [35] of the resulting generalized Thirring

model. The classical siring equations are :

av
ﬁ¢n.An = ﬁ;ﬁ =10 (4-2)
These determine the scalar potential modulo field redefinitions , which reflect

14



the dependence of the § -functions on the precise subtraction procedure. The

two leading orders m > however universal and yield [32}:

8
. e 1 ) .
Vid)= :-;-_-]L.—(.','g zTr(Ql.-Qldﬁl.i) += E Tr1‘1,1‘¢1,:]2
I=1

‘/E_' 4 LJig (4_3)
-3 et ey + 5 STl sam 4 o)
R, i

where the traces and commutator are with respeci to the suppressed SO(44)

indices .

1t is straightforward to check that the above potential vanishes if we give
arbitrary vacuum expectation values to all $U+)45 with (1,1} and {AB) chosen
among some 6 and 22 , respectively , mutually commuting gencrators of SU(2)°
and SO(44) . That this is true even if higher-order terms are taken into account
in (4.3) , follows from the fact that the Thirring model with mutually commuting
left-currents coupled to mutually comrauting right- currents has exact conformal
invariance . In the statistical mechanics language , these flat directions corre-
spond 1o integrable marginal operators that deform conlinuously the spectrum

of conformal weights , i.c. masses of the string states .

The scalar potential (1.3) is in some sense universal for the entire class of
Gaussian string models ; the reason is that Lthe massless scalars coming from the
purely antiperiodic sector N arc a subset of the #9483 | and their potential can
be obtained by appropriately truncating (4-3) . Thus for example our discussion
of the flat directions can be taken over to the N= 4 , 2 and 1 supersymmetric
madels consteucted in the previous section . Of course massless scalars may also
exist in other sectors of the Hilbert space , and may give extra flat directions
al appropriate multicritical points . 1 will refrain , however , from further dis-

cussing these points and turn now Lo the more crucial problem of supersymmnetry
breaking .

15



Supersymmetry

One of the main motivations for introducing supersymmetry is that it can
solve the technical part of the gauge hierarchy problem , i.e. explain why radia-
tive corrections do not drive the weak scale My, to Mp . Of course , a completely
different mechanism could be responsible for this in string theory . Otherwise
{following the conventional lore , we should expect space-time supersymmetry to
be broken at a scale of erder My , and hence much smeller than Mp . Further-
more this breaking is either non-perturbative (38], or else it must accur at tree
leve] , since the non-renormalization theorems exclude the possibility that it be
induced by radiative carractions . Setting the non-perturbative effects aside, the
following question arises : iz it possible , 23 in field theory , ta slightly perturb
the tree-level spectrum of a 4d supersymmetric string model by introducing in-
finitesimal (io units of My ) mass splitlings between superpartners 7 1 will now
show that , at least in the class of free-fermionic madels considered here |, this is
not possible [37]: the existence of a gravitino of small mass necessarily implies
the existence of a whole tower of such states between 0 and Mp with mass differ-
ences of the order of the supersymmetry breaking scale . Thus supersymmetry

can only be restored in some sert of decompactification limit .

Tu prove the assertion let us start by considering the mass of a space-time
fermionic string excitation . This must belong 1o a sector N, where the boundary
condition a leaves the ¥* and the supercharge Ty periodic . Thus from (3.2 a)

we have :

o
a -
+ 2 (1.4)

- 1 1
T _ : _ = z
M*® = é (frequencies) +

leftmovers

where ; is the contribution to the mass subtraction of the periodic ¥ | and o

is the phase-vector of some automorphism A€ | as explained in section 2 .

To save time | will restrict myself here Lo inner automorphisms , i.e. group

elements in the adjoint representation , although all my conclusions will hold

s The breaking through a one-loop induced Fayet-liopoulos D-term [30) does ot seem
phenomenologically relevant.

16



also for outer automorphisms . The general inner antomorphism is of the form
AG = =P H with H' a set of mutually commuling generators in a Cartan-Weyl
basis. We thus obtain :

1 ~

G G 2

-a® = Zeg + E a- 1 4.5
o - o e} ’( 7F-1) {4.5)

where r¢ is the rank of the group and the sum runs over all roots g, positive
with respect to # . Now let us define , § = c—";- Y #, where ¢ is the Casimir in
+ue

the adjoint representation. Using the Freudenthal-de Vries strange formula ;

. 2
e g = §dc (4.6)

and the fact that ¥ p*p” = 86", we can rewrite eq. (4.5) as follows :
+vr

a® . ¢

1 L=

The minimum vector length is therefore 2de and is obtained for the special

automorphism :*

AG = o d (4.8)

which we may refer to as a superautomorphism. Plugging now eq. {4.7) back in
eq. (4.4) , with dg = 18, we conclude that the holomorphic part of a massless
space-time spinor is necessarily the vacuum of a sector in which the fermionic
boundary conditions are given by the superavtomorphism (4.8). Note inciden-
tally that we have here also proved that there are no tachyonic spinor excitations

as is , of course, to be expected of a consistent string theory .

Congider now a massless gravitino . It follows casily from the above discussion

that the only candidate for such a siate is 3X#(1}{0 > 5 where :

+ | owe this elegant argument to Peter Goddard. A brute force but more general classifica-
tion of minima, that includes outer aytomorphisms, was given in ref. {12}
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§=(L af en=0) (49)
v xe nA

In order to give a small mass to the gravitina, we must perturb slightly this
boundary condition :

S+65=(1 af +6a€ 65 ) (4.10)

where 85, << 1 . The state

X (N0 > 5483 {411}

has mass
M? = .;.(5&6)1 - %(55,.3)2 (4.12)

where the absence of a lincar term is due to the fact that the vector af has
minimum length , so that af - §a® = 0. (4.11) is actually the only candidate
for a slightly massive grayitino, because at § + 65 there are na nearly periodic

fermions with infinitesimal frequencies at our disposal .

Let us assume then that the Hilbert space of our model contains such a
nearly massless gravitino. This means that (S + 65) ¢ = and, in order that

{4-11} survives the GSO projections :

i

+1

! -1 ifé
C[sa.ss ={ 3 :

4.13
a 1 il ép (4.13)

This condition is due to the fact that e'*# ¥ acts an (4.11) as a chirality operator

if 6 = —1 and as the identity otherwise .

Now we will use the fact that the superautomorphism (4.8} is always an h-th

root of the identity with h a small integer (for simply-laced groups A is the dual

18




Coxeter number). This means that 2k8 = 0, which together with the fact that

Z is a group , leads 1o an entire tower of candidate low-mass gravitinos:
BX*(1)I0 >s465 ; AXP()0 >s54(zheryps 3 FXM()0 >sqpan+1)es

all of which satisfy level-matching due to the absence of a linear term in eq.
{4.12) . Furthermore they all survive the generalized GSO projections : this can
be proved by using once more the duality and factorization conditions (2.7 b,c) ,
to reexpress C[(2nA+3US+E5)] in verms of C[54°5] . The fact that S minimizes

vector lenght is again crucial, for getting rid of the phases.

Thus, what we have concluded is that the existence of a gravitino with, for
instance, a mass of 1Ter , implies the existence of an entire tower of gravitinos
with masses {2h 4+ 1)Tev, (4h + 1)Tev and a3 on { incidentally & = 2,3 or 4 for
the groups that interest us) . The physical interpretation is that supersyinmetry
in broken by a Sherck-Schwarz \ype compactification [38,31], but with the mo-
menta in the internal dimensions related to the radii , so that the mass splittings
can be made Lo vanish only in the imit sf decompactification . Using diflerent
arguments, Dine ang Seibrrg |39], and Banks and Dixon |40] have also concluded
that supersymmetry cannot be restored continuously at an analytic point of the
sralar polential. As opposed to the proof given here, their arguments are not
restricted to a particular class of models. However, they do not allow them to
characterize the singularity uniquely as being due to decompactification. Finally
1 should point out that 1 have here taken the gravitino mass as a measnre of the
supersymmetry breaking scale. Thus my arguments would not apply if the mass

spliltings in the matter and gauge sectors were small but the gravilino mass was

of order Mp.
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