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Introduction

A new steam generator model has been developed for the SASSYS1 computer

code, which analyzes accident conditions in a liquid metal cooled fast

reactor. It has been incorporated into the new SASSYS balance-of-plant model

but it can also function on a stand-alone basis. The steam generator can be

used in a once-through mode, or a variant of the model can be used as a

separate evaporator and a superheater with a recirculation loop. The new

model provides for an exact steady-state solution as well as the transient

calculation. There was a need for a faster and more flexible model than the

old steam generator model. The new model provides for more detail with its

multi-node treatment as opposed to the previous model's one node per region

approach. Numerical instability problems which were the result of cell-

centered spatial differencing, fully explicit time differencing, and the

moving boundary treatment of the boiling crisis point in the boiling region

have been reduced. This leads to an increase in speed as larger time steps

can now be taken. The new model is an improvement in many respects.

General Features of the New Model

On the water side, the steam generator is divided into three regions at

most: a subcooled liquid, a saturated boiling and a superheated steam

region. A subcooled region is always assumed to exist but the disappearance

and reappearance of the other two regions is calculated. Thus a liquid-filled

steam generator can be characterized but dry-out can be calculated only to the

extent a small liquid region remains. The boundaries of the subcooled region

are defined as the inlet of the steam generator and the point where saturated

liquid enthalpy is attained or the top of the steam generator. The boiling

zone is bounded by the point of saturated liquid enthalpy and the point of

saturated vapor enthalpy or the top of the steam generator. The superheated

region is, of course, above the point of saturated vapor enthalpy. The

subcooled region is treated as incompressible and therefore the inlet flow is

constant throughout the subcooled region and provides a lower flow boundary

condition for the boiling zone. Saturation conditions and a no slip condition

between phases are assumed at all times in the boiling zone. Pressure

boundary conditions are provided from an external calculation at the inlet and

outlet of the steam generator and an average of this is currently used for



calculating properties. The subcooled and superheated regions each have one

heat transfer regime and the boiling zone has two regimes separated at the

boiling crisis pomt.

There is no momentum equation used in an integrated fashion to produce

nodal velocities. The inlet water flow is assumed to be a driving function of

the equation set and only mass and energy conservation equations are used to

solve for mass flows, enthalpies, etc. for the compressible regions on the

water side. A momentum equation is, however, explicitly coupled to the

calculation. It is used to calculate the pressure drop across the steam

generator in order to link the steam generator with the balance-of-plant and

calculate the liquid mass flow at the steam generator inlet.

Each of the three regions is divided into a fixed number of cells which

are thus a constant fraction of the varying region length. The volumetric

heat source and the wall temperature are calculated at the cell center. All

other parameters are calculated at the cell edge. The heat flux is always

explicit in time but other parameters have varying degrees of implicitness in

time. Donor-cell differencing is used for numerical stability on both the

sodium and water sides. The wall temperature calculation is central differ-

enced, however. The sodium side, always being in the liquid state, is treated

as incompressible flow.

General Forms of Conservation Equations

Before the individual solution methods for each water side region and the

sodium side can be considered, general forms of the continuity and energy

equations must be developed. Equations will be given for one node of the

multi-node system of equations. Integration of the continuity equation over

the length of one cell from Ẑ  to Z^+i gives,

According to Leibnitz's Theorem,



^ 1 1 p.Z. (2)

i i

Therefore,

d r-,D AZ r - o L . + P.Z.. = -Ab. 1-3;
dt l i iJ i+1 l+l 1 1 1

In order to wri te the equation in donor-cell form, let p i +^ replace the

average value over the interval , p., and simplify,

p i + l A Z i " A p i Z i = ~AGi ( 4 )

Integration of the enthalpy form of the energy equation (neglecting work

terms) from Z i to Zn-+^ gives,

J | - (ph)dz = - J f - (Gh)dz + J Qdz + J 1 - Pdz (5)

z. 3t z. 3Z z. z. 3t

i i i i

Using Leibnitz's Theorem again for the LHS of (5) and the pressure term,
and remembering there is no spatial pressure variation, the following results,

^ .AZ.} - (ph)1 + 1Z i + 1 + (ph).Z. = -a(Gh). + Q.AZ. + PAZ. (6)

In order to wri te the equation in donor-cell form le t (ph). = (ph)^+-^ as

in the mass equation and simplify,

(ph).+1AZ. - L(ph).l. = -A(Gh). + Q.AZ. + PAZ. (7)

Subcooled Liquid Region

In the subcooled region, the mass flow is assumed to be uniform through-
out the zone due to incompressible flow. Each time step during the transient
an updated inlet mass flow is provided to the steam generator from the
explicitly-coupled momentum equation. Therefore no continuity equation is



required. The coupled set of nodal energy conservation equations are used to

determine the length of the zone and the nodal enthalpies simultaneously using

the in le t enthalpy and the saturated l iquid enthalpy as boundary conditions.

Or, a l ternat ively, when l iquid f i l l s the steam generator and the zone length

is known, the outlet enthalpy is instead determined.

Using equation (7) and setting p = 0 because of the incompressible flow,

and recall ing that AZ.J is invarient within a zone, the following results for

node i ,

h ,p. ,AZ - A(ph).Z. = -A(Gh). + Q.AZ + PAZ (8)
i+l i+l IT i i

The fo l low ing i s equation (8) i n f i n i t e d i f fe rence form,

k+1 1 k 1 ,k . k 1 k 1 7 k+ l -k , . k ,k> i - 1
Tt p i + l n ZSC ~ h i + l It p i + l n ' ZSC " p i [ h V ~ ~

L «
A t v

. .k+1
1 SC

k .
SC

) » - G k + 1 - fh
i + l

- h k + 1

l

_k 1 ,k+l i, 1 ,k+l .„.
Q. - Z s c + P - Z s c (9)

Rearranging according to coefficients of h. , h and Z , there are

n equations of the following form,

aihi + bihi+l + CiZSC = di

In the case where the liquid region does not reach the top of the steam

generator, h1 and h n + 1 are known, since they are the inlet enthalpy and hf.

h2 - hn and Z$Q are unknown and are solved for as follows.

From the first equation of the equation set (10), solve for h2, then for

hn from the second equation and so on,



dl - alhl f
 cl

h2 = 61 + f 1ZSC*' 61 = ~^ ' 1 = " b[

d2 - a26l f
 C2

h3 = 62 + f2ZSC; 62 " —V2 ' f2 = ' —

d. - a.e. . c. + a.f.
h. = e. + f-Zcr; e. = , f = (11)
i+l i i SC i b. i b.

Finally, in the equation for h ^ , Z s c can be solved for since h n + 1 is

known. Then each of h2 - hn can be solved for since they are all functions of

only Z$£ in the equation set (11).

If the steam generator is filled with liquid, then the outlet enthalpy is

unknown and there are n equations with 1^ - ^n+\ unknowns of the following

form which are simply solved from the bottom to the top of the steam generator

successively,

1 k k 1 , -k+1. k+1 n 1 _ f. 1 _
k+l It h1+lp1+l n ZSC + G hi + Q i n Z S C + P n Z S C

hi+l
 = 1 k i M (12)

Ti Pi+1 n
 ZSC + G

Boiling Region

In the boiling zone, the fluid is treated as compressible. Simultaneous

nodal equations are solved for void fraction, mass flow and region length.

Boundary conditions are the saturated liquid enthalpy and subcooled region

mass flow at the bottom of the boiling zone and either the saturated vapor

enthalpy at the top of the zone or, if there is no superheated vapor zone, the

region length is defined and the outlet enthalpy is determined. Only the

pressure and the volumetric heat source are treated explicitly in time. The

void fraction, the mass flow and the region length are all treated in fully

implicit fashion. An iterative method is used to solve for the region

length. The current value of the region length is held constant for each pass

in the iteration while nodal void fractions and mass flows are calculated from

the mass and energy equations. When the uppermost void fraction in the boil-

ing zone is computed at the end of an iteration, its value is compared to 1.0



and the region length is adjusted appropriately and the iterative process

continues until convergence. When the boiling zone extends to the top of the

steam generator, the same method is used but there is no iteration since the

region length is known.

First, the general continuity equation (4) is written in terms of the

nodal void fraction, a,

fa. ,p, + a. .p. + P J A Z - (a. , - a.)pr Z. = -AG. (13)
1 i+l fg i+l fg f; *• i+l l; fg i i K '

The finite difference form of (13) is,

, 1 . k+1 k , k k+1 -k -k, 1 T
l7t (ai+l " ai+l

)pfg + ai+l °fg + Pf ] n ZTP

k+1 k+1. k ,1-j 1 k+1 k , • , . k+1 k+l

k+1 k+1
Arranging according to coefficients of a. and G. , there results an

equation of the following form,

k+1 k+1
a. . • a + G. n + c = 0l+l i+l

Writing the general energy equation (7) in terms of a results in the
following,

[ a i+ l ( h p ) fg

= -a(Gh)i + QI#AZ + PAZ (16)

The f ini te difference form of (16) i s ,



k+1, 1 ,k+l
Z

k+1 k+K

" a1

k+1
f9

i p fg J

k 1 k+1 i 1
Qi n ZTP + P n ZTP

(17)

k+1 k+1
If (17) is rearranged according to coefficients of o. . and G , and a1

k+1
and c1 represent the coefficient of a and the constant term respectively,

the following results,

k+1 , _k+l
a. , a1 + G. .
i+l i+l

k+1

i+l g fg

k+1
fg J

+ c1 = 0 (18)

When the mass equation (15) is substituted into (18), a quadratic in
k+la. results,

k+1,2
Jfg

Pf " Cpfghf

[c'pf " c hf pf ] = (19)

k+1 k+1
Equation (19) is solved for a. , and then G. . is obtained from theH v ; i+l i+l

continuity equation (15) for each node starting at the bottom of the mesh
k+1 k+1

(i=l)where G. and a. (= 0) are known. The solution proceeds upwards until
k+1 T "• k+1 k+1
a , is calculated and ZTn is adjusted on each iteration until a . is
n+1 TP n+1
sufficiently close to 1.0.



Superheated Vapor Region

A compressible treatment of the vapor is used above the boiling zone and

simultaneous nodal mass and energy equations are solved for nodal enthalpies

and mass flows since the region length is known, being the remainder of the

steam generator length after computing new subcooled and boiling zone

lengths. The nodal densities and enthalpies are treated partially explicitly

in time. Boundary conditions are the saturated vapor enthalpy and the mass

flow at the bottom of the zone. The solution proceeds upwards to the top of

the steam generator.

Since there is an expression for p as a function of enthalpy and

pressure,

• = ap ah ap aP
p ah at aP at K '

By substituting equation (20) into the mass equation (4), an expression

for Gj+i as a function of h^+1 results,

G = G. - [ ^ h + ^ P ] A Z + AP.Z. (21)
l + l i l ah i + l aP ' i i K '

By substituting equation (20) and equation (21) into the general energy

equation (7), simplifying, writing in f in i te difference form and solving for
k+1

h. , the following results,

. k+l r k+1 k+1 i - j -k+1, 1 _k+l r l uk k nk -k,
.k+1 _ hi (Gi -pi TZSH^nZSH ( I thHlVrt+ P^
i+1 k+1 j _ k I k+1 k i - j ^ ( 2 2 )

i + At °i+l n SH " pi n £SH

k+1
The h obtained from equation (22) is substituted into equation (21) to

k+'l
obtain G j . The solution then proceeds upwards to the top of the steam

generator.



Sodium Side Calculation

Incompressible flow is assumed on the sodium side, so no continuity equa-
tion is solved. Also, the pressure term in the energy equation is negligible
and is eliminated. Since the sodium flows downward, in order to donor-cell
the energy equation, (ph), = (ph).. It is also convenient to assume that G is
positive for downward flow which means -A(Gh). = - G(h. - h. ). Thus
equation (6) becomes,

(phl.AZ - [(ph). . - (ph).]Z. . = -G(h. - h. ,) + Q.AZ (23)
v Ji lv yi+l v 'iJ i+l *• i 1+1/ wi v ;

Assume p = 0 because of incompressible flow and rewrite equation (23) in
terms of temperature. And in order to make the equation more implicit, set
k+1 k

T. = T. + AtT. and solve for T., noting that the end-of-time step AZ's from
the water side calculation are used,

, -k+1 ->, ,_k+l Jc, 1 nk ,U.2 + G ) • ( T . + 1 - T . ) + — Q . . Z

p.AZ + p.Z At + GAt

Starting at the top of the steam generator, with the new inlet sodium
temperatures at the end of the time step, the calculation proceeds downward to
the bottom of the mesh.

Wall Temperature Calculation

The heat capacity of the tube wall must be taken into account during the
transient. Since there is no convective term in the energy equation, central
differencing is used. This means that (tf\). = - [(ph). + (ph).]. Thus
equation (6) becomes,

l + l
+ ( p h ) 1 Z 1 - Q 1 A Z (25)

Writing equation (25) in terms of temperature and noting that C_ and p
are assumed temperature-independent, the following expression for f results,

AZ



As in the sodium side calculation, updated AZ'S and Z's are used from the

water side calculation. It must also be noted that the temperature T^ above

is a cell-centered value while the Z's are cell-edge values as in the sodium

and water equations.

Calculation of Boiling Crisis Point

The point of boiling crisis, or DNB point, in the boiling zone is
computed by tracking the continuously varying intersection of two functions
which is a point within the node structure. The first function represents the
required heat flux for the boiling crisis to occur and the second is the
actual local heat flux at the wall surface.

9

The DNB heat flux correlation is as follows,

,-0.667
= 7.84 • 10u(x • h f g P g/ P f • J-^r- ) (27)

This correlation is evaluated at each cell center in the boiling zon?
using the local quality. The inlet mass flux G is used instead of the local
area mass flux to enhance numerical stability although the original
correlation used the local flow.

An expression for the wall surface heat flux is obtained as follows.
There is a correlation for the heat transfer coefficient at the tube wall
surface but the wall surface temperature is unknown, although the mid-wall
temperature and the water temperature at saturation are known. Without going

into the details of the correlation, it is known that the heat flux at the
2

wall surface, Fs, is equal to a • (T - T ) , where Ts is the wall surface

temperature and a is only a function of pressure. The heat f lux between the

mid-wall and the wall surface, FM is b • [Tu - T_l, where b is the inverse of
11 Mo

the wall heat resistance and TM is the mid-wall temperature. When F^ is set
equal to FM, a quadratic in (T - T ) results,

s sat
a • (T - T J 2 + b(T - T J - b(Tu - T 1 = 0 (28)

s satJ k s sat; l M satJ v ;



Thus the wall surface temperature is obtained and then the heat flux at
the wall surface, Fs, which is computed at each cell center over the length of
the boiling zone. There are thus two functions, F$ and FQ with values at each
cell. In order to obtain the intersection of these two functions and thus the
point of boiling crisis, a linear approximation is made to each function pro-
ceeding two cells at a time along the length of the steam generator until an
intersection of the two lines is reached. The intersection point is tracked
exactly and the nucleate boiling and film boiling heat transfer coefficients
are pro-rated in the cell where the intersection occurs. This method gives a
smoothly varying, stable calculation of the DNB point.

Application of the Code

Figures 1-3 show data from a transient resulting from a reactor trip.
The primary and secondary sodium pumps, feedwater pumps, and turbines are
tripped as a consequence of the reactor trip. The main emphasis, for the
current purpose, is to assess the thermal transients that occur in the steam
generator as the control system attempts to keep the system in balance. The
control rods begin to drop at 15 s. Figure 1 shows the feedwater flow and the
outlet steam flow which follows the inlet flow in very stable fashion. Figure
2 shows feedwater and outlet water temperatures and Figure 3 gives the varia-
tion of the saturated water and vapor interface locations which result from
the changing flow and temperature conditions.



List of
a

P

X

Cp
F

G
h

i

j

k

n

P

Q

t

T
z

Z
zsc
ZTP
ZSH

Symbols
void fraction

density (kg/M3)

quality

specific heat (J/kg-K)

heat flux (J/M2-s)

mass flux (kg/M2-s)

enthalpy (J/kg)

node index

lowermost node in a region

time step index

number of nodes in a region

pressure (Pa)

volumetric heat source (J/M -s)

time (s)

temperature (K)

spatial variable (M)

spatial location (M)

length of subcooled zone (M)

length of two phase zone (M)

length of superheated zone (M)

Saturation Properties

hf
hg

pg
Tsat
Pfg
hfg
h

p

X

saturated liquid enthalpy

saturated vapor enthalpy

saturated liquid density

saturated vapor density

saturation temperature

= Pg " Pf

• ^ - hf

= xhf g + h f

= apfg + Pf

= ap^/lpi: + aor^l (assuming no s"

( M f g ~ hgPg - h f P f

(hp) =
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STEAM GEN. WATER SIDE FLOWS
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STEAM GEN. WATER TEMPERATURES
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STEAM GEN. INTERFACES
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