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Introduction

A new steam generator model has been developed for the SASS\’S1 computer
code, which analyzes accident conditions in a liquid metal cooled fast
veactor. It has been incorporated into the new SASSYS balance-of-plant model
but it can also function on a stand-alone basis. The steam generator can be
used in a once-threough mode, or a variant of the model can be used as a
separate evaporator and a superheater with a recirculation loop. The new
model provides for an exact steady-state solution as well as the transient
calculation. There was a need for a faster and more flexible model than the
0old steam generator model. The new model provides for more detail with its
multi-node treatment as opposed to the previous model's one node per region
approach. Numerical instability problems which were the result of cell-
centered spatial differencing, fully explicit time differencing, and the
moving boundary treatment of the boiling crisis point in the boiling region
have been reduced. This leads to an increase in speed as larger time steps
can now be taken. The new model is an improvement in many respects.

General Features of the New Model

On the water side, the steam generator is divided into three regions at
most: a subcooled 1liquid, a saturated boiling and a superheated steam
region. A subcooled region is always assumed to exist but the disappearance
and reappearance of the other two regions is calculated. Thus a liquid-filled
steam generator can be characterized but dry-out can be calculated only to the
extent a small liquid region remains. The boundaries of the subcooled region
are defined as the inlet of the steam generator and the point where saturated
liquid enthalpy is attained or the top of the steam generator. The boiling
zone s bounded by the point of saturated liquid enthalpy and the point of
saturated vapor enthalpy or the top of the steam generator. The superheatead
region is, of course, above the point of saturated vapor enthalpy. The
subcooled region is treated as incompressible and therefore the inlet flow is
constant throughout the subcooled region and provides a lower flow boundary
condition for the boiling zone. Saturation conditions and a no slip condition
between phases are assumed at all times in the boiling zone. Pressure
boundary conditions are provided from an external calculation at the inlet and
outlet of the steam generator and an average of this is currently used for



calculating properties. The subcooled and superheated regions each have one
heat transfer regime and the boiling zone has two regimes separated at the
boiling crisis point.

There is no momentum eguation used in an integrated fashion to produce
nocdal velocities. The inlet water flow is assumed to be a driving function of
the equation set and only mass and energy conservation equations are used to
solve for mass flows, enthalpies, etc. for the compressibie regions on the
water side. A momentum equation is, however, explicitly coupled to the
calculation. It is used to calculate the pressure drop across the steam
generator in order to link the steam generator with the balance-of-plant and
calculate the 1liquid mass flow at the steam generator inlet.

Each of the three regions is divided into a fixed number of cells which
are thus a constant fraction of the varying region length. The volumetric
heat source and the wall temperature are calculated at the cell center. All
othar parameters are calculated at the cell edge. The heat flux is always
explicit in time but other parameters have varying degrees of implicitness in
time. Donor-cell difrerencing is used for numerical stability on both the
sodium and water sides. The wall temperature calculation is central differ-
enced, however. The sodium side, always being in the liquid state, is treated
as incompressible flow.

General Forms of Conservation Eguations

Before the individual solution methods for each water side region and the
sodium side can be considered, general forms of the continuity and energy
equations must be developed. Equations will be given for one node of the
multi-node system of equations. Integration of the continuity equation over
the length of one cell from Z; to Zi41 9ives,

I S az--g 3—7 6dz = -(6,,, - 6.) (1)

According to Leibnitz's Theorem,
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In order to write the equation in donor-cell form, Ilet 0i+1 replace the
average value over the interval, Bi’ and simplify,

. . .
pip18Zy ~ BeyZy = -AG, (4)

Integration of the enthalpy form of the energy equation (neglecting work
terms) from Z; to 7344 gives,

Z1'+1 Z1'+1 Z1'+1 Zi+1

[ ZGhdz=-] @M+ ] Qe+ [ Pz (5)
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Using Leibnitz's Theorem again for the LHS of (5) and the pressure term,
and remembering there is no spatial pressure variation, the following results,

d —_ . . .
o {(eh),aZ.} = (oh),, 2. + (h) Z, = -a(Gh), + Q.aZ, + PAZ, (6)

In order to write the equation in donor-cell form let (;F]i = (ph) 41 8S
in the mass equation and simplify,

(ph]i+1AZi - A(ph)izi = -A(Gh)i + QiAZi + PAZi (7

Subcogled Liquid Region

In the subcooled region, the mass flow is assumed to be uniform through-
out the zone due to incompressible flow. Each time step during the transient
an updated irnlet mass flow is provided to the steam generator from the
explicitly-coupled momentum equation. Therefore no continuity equation is



required. The coupled set of nodal energy conservation equations are used to
determine the length of the zone and the nodal enthalpies simultaneously using
the inlet enthalpy and the saturated 1iquid enthalpy as boundary conditions.
Or, alternatively, when liquid fills the steam generator and the zone length
js known, the outlet enthalpy is instead determined.

Using equation (7) and setting o = 0 because of the incompressible flow,
and recalling that AZi is invarient within a zone, the following result: for
node i,

hi+l°i+lAZ - A(ah)izi = -A(Gh)i + Qiaz + PaZ (8)

The following is equation (8) in finite difference form,

k+l11 k 1 .k Kk 1k
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Rearranging according to coefficients of hi s h, and Z , there are

i+l SC
n equations of the following form,

ashy * bihig * Cilse = 9 (10)

In the case where the 1iquid region does not reach the top of the steam
generator, hy; and h.,; are known, since they are the inlet enthalpy and hf.
ho - h,, and ZSC are unknown and are solved for as follows.

From the first equation of the equation set (10), solve for ho, then for
h- from the second equation and so on,



1
i} A S O
hy = e+ Filees & b =%
1 1
I Sl s G Bl oF
hy =8 + Tolges & b + T b
2 2
d; - ;85 ¢+ i
- . =_._.___;_’f_=________'__ 11
hi1 =8 * Filsed & b, i b, (11)

Finally, in the equation for h. ., Lo can be solved for since h,,; is
known. Then each of h2 - hn can be solved for since they are all functions of
only Zge in the equation set (11).

If the steam generator is filled with liguid, then the outlet enthalpy is
unknown and there are n equations with h, - h_ .| unknowns of the following
form which are simply solved from the bottom to the top of the steam generator
successively,

1 k k 1 k+1 k+1 1 -1
el 3t NP n et Mt hn et P 12)
i+l T O
at Pi+l n °SC

Boiling Region

In the boiling zone, the fluid is treated as compressible. Simultaneous
nodal equations are solved for void fraction, mass flow and region length,
Boundary conditions are the saturated liquid enthalpy and subcooled region
mass flow at the bottom of the boiling zone and either the saturated vapor
enthalpy at the top of the zone or, if there is no superheated vapor zone, the
region length is defined and the outlet enthalpy is determined. Only the
pressure and the volumetric heat source are treated explicitly in time. The
void fraction, the mass flow and the region length are all treated in fully
implicit fashion. An iterative method is used to solve for the region
length. The current value of the region length is held constant for each pass
in the iteration while nodal void fractions and mass flows are calculated from
the mass and energy equations. When the uppermost void fraction in the boil-
ing zone is computed at the end of an iteration, its value is compared to 1.0



and the region length is adjusted appropriately and the iterative process
continues until convergence. When the boiling zone extends to the top of the
steam generator, the same method is used but there is no iteration since the
region length is known.

First, the general continuity equation (4) is written in terms of the
nodal void fraction, a,

(2441%g * ®i41%g * oplel - fag,) - ui)pfgzi = -aG; (13)
The finite difference form of (13) is,
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Arranging according to coefficients of u::i and G::i, there results an
equation of the following form,

k+1 k+1
%4 0 07 G1'+l te=0 (15)

Writing the general energy equation (7) in terms of o results in the
following,

[°1+1(h°)fg * “1+1[h°)fg +(ho)lez - (ay,) - Bi)(ho)ngTP

= -a(Gh), + Q.87 + Paz (16)

The finite difference form of (16) is,
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If (17) is rearranged according to coefficients of «

k+1 .
and c¢' represent the coefficient of uiil and the constant term respectively,
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the following results,
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When the mass equation (15) is substituted into (18), a quadratic in

k
a.+1 results,
i+l
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Equation (19) is solved for aﬁii and then G::i is obtained from the

continuity equation &15) for each node starting at the bottom of the mesh
+

(; 1)where G kel and o, (= 0) are known. The solution proceeds upwards until
+

k+1
an+1 is ca]cu]ated and Z is adjusted on each iteration until k+1 is

%+l
sufficieantly close to 1.0.



Superheated Vapor Region

A compressible treatment of the vapor is used above the boiling zone and
simultaneous nodal mass and energy equations are solved for nodal enthalpies
and mass flows since the region length is known, being the remainder of the
steam generator length after computing new subcooled and boiling zone
lengths. The nodal densities and enthalpies are treated partially explicitly
in time. Boundary conditions are the saturated vapor enthalpy and the mass
flow at the bottom of the zone. The solution proceeds upwards to the top of
the steam generator.

Since there 1is an expression for p as a function of enthalpy and
pressure,

.=__ ap aFf 2
P T hat | 3P ot (20)

By substituting equation (20) into the mass equation (4), an expression
for G;,; as a function of hy,; results,

-5 - [22
Gy = G [ahh

3p - .
1 + =2 Plal + 0.l (21)
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By substituting equation (20) and equation (21) into the general energy
equation (7), simplifying, writing in finite difference form and solving for

h, ., the following results,
i+l
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The h1.+1 obtained from equation (22) is substituted into equation (21) to

. k+1 .
obtain Gi+1 . The solution then proceeds upwards to the top of the steam

generator.



Sodjum Side Calculation

Incompressible flow is assumed on the sodium side, so no continuity equa-
tion is solved. Also, the pressure term in the erergy equation is negligible
and is eliminated. Since the sodium flows downward, in order to¢ donor-cell
the energy equation, [;F]i = (ph)i. It is also convenient to assume that G is
positive for downward flow which means -A(Gh)1 = - G(hi - hi+1]' Thus
equation (6) becomes,

[ph] 82 = [(oh) 4,y = (oM} 1Z, 4 = ~6(h, = h. ) + Q.82 (23)

Assume o = 0 because of incompressibie flow and rewrite equation (23) in

terms of temperature. And in order to make the equation more implicit, set
k+1

Ti = T: + AtTi and solve for Ti, noting that the end-of-time step aZ's from

the water side caiculation are used,

(a.2k+1 k+1 1 k _k+1

j *GJ'”1+1'”*:°Z
T, = (24)
! piAZk+1 + pi2k+1At + Gat

Starting at the top of the steam generator, with the new inlet sodium
temperatures at the end of the time step, the calculation proceeds downward to
the bottom of the mesh.

Wal) Temperature Calculation

The heat capacity of the tube wall must be taken into account during the
transient. Since there is no convective term in the energy equation, central
differencing is used. This means that [ph = = [(ph) + (ph)i]. Thus
equation (6) becomes,

d

dat {% [(oh) gy + (M) 10z} - (oh), 12, + (o) 2, = Q02 (25)

Writing equation (25) in terms of temperature and noting that Cp and ¢
are assumed temperature-independent, the following expression for T results,

- 1 k1 1 k sk+l  -k+l
= o % +3 NS oy (g 4 (26)




As in the sodium side calculation, updated aZ's and Z's are used from the
water side calculation. It must also be noted that the temperature T; above
is a cell-centered value while the I's are cell-edge values as in the sodium
and water equations.

Calculation of Boiling Crisis Point

The point of boiling crisis, or ONB point, in the boiling zone is
computed by tracking the continuously varying intersection of two functions
which is a point within the node structure. The first functjon represents the
required heat flux for the boiling crisis to occur and fhe second is the
actual local heat flux at the wall surface.

2

The ONB heat flux correlation® is as follows,

8 e -0.667
= 7.84 . . o 7
FD 7.84 10 {x hfgpg/pf \j1355 (27)

This correlation is evaluated at each cell center in the boiling zone
using the local quality. The inlet mass flux G is used instead of the local
area mass flux to enhance numerical stability although the original
correlaticn used the Tocal flow.

An expression for the wall surface heat flux is obtained as follows.
There is a correlation for the heat transfer coefficient at the tube wall
surface but the wall surface temperature is unknown, although the mid-wall
temperature and the water temperature at saturation are known. Without going
into the details of the correlation, it is known that the heat flux at the
wall surface, Fg, is equal to a - (TS - Tsat] » where T, is the wall surface
temperature and a is only a function of pressure. The heat flux between the
mid-wall and the wall surface, Fy is b - (TM - TS], where b is the inverse of
the wall heat resistance and Ty is the mid-wall temperature. When Fg is set

equal to Fy, a dratic i -T 1ts,
q M guadratic in (Ts cat) e ts

¢)

2 f =
+ D(TS -T - b(TM -T . )=0 (28)

sat] sat



Thus the wall surface temperature is obtained and then the heat flux at
the wall surface, Ffg, which is computed at each cell center over the length of
the boiling zone. There are thus two functions, FS and FD with values at each
cell. In order to obtain the intersection of these two functions and thus the
point of boiling crisis, a linear approximation is made to each function pro-
ceeding two cells at a time along the length of the steam generator until an
intersection of the two lines is reached. The intersection noint is tracked
exactly and the nucleate boiling and film boiling heat transfer coefficients
are pro-rated in the cell where the intersection occurs. This method gives a
smoothly varying, stable calculation of the DNB point.

Application of the Code

Figures 1-3 show data from a transient resulting from a reactor trip.
The primary and secondary sodium pumps, feedwater pumps, and turbines are
tripped as a consequence of the reactor trip. The main eaphasis, for the
current purpose, is to assess the thermal transients that eczcur in the steam
generator as the control system attempts to keep the system in balance. The
control rods begin to drop at 15 s. Figure 1 shows the feedwater flow and the
outlet steam flow which follows the inlet flow in very stable fashion. Figure
2 shows feedwater and outlet water temperatures and Figure 3 gives the varia-
tion of the saturated water and vapor interface locations which result from
the changing flow and temperature conditions.



List of Symbols

a void fraction

0 dencity (kg/M3)

X quality

Cp specific heat (J/kg-K)

F heat flux (J/M2-s)

6 mass £lux (kg/M2-s)

h enthalpy (J/kg)

i node index

j lowermost node in a region

k time step index

n number of nodes in a region
P pressure (Pa)

Q volumetric heat source (J/M3—s)
t time (s)

T temperature (K)

z spatial variable (M)

Z spatial location (M)

Ige Tength of subcooled zone (M)
Z1p length of two phase zone (M)
Loy length of superheated zone (M)
Saturation Properties

he saturated 1iquid enthalpy

hg saturated vapor enthalpy

PE saturated 1iquid density

Pgq saturated vapor density
TSat saturation temperature

Pfg = pg - Pf

heg = hg - he

h = thg + hf

p = Gng * of

X = apg/[pf + upfg] (assuming no sl1ip between phases)
(hD)fg = thg - hfof

(he) = heog + alhgpg - hgog)
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WATER TEMPERATURES
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