The Fourth Triennial
Software Quality Forum

~
%,

A >

4 [\
g %
0 i

?3‘0 i &

% <@
@/v a 0\6
ey nucLe”

Software: Our Quest for Excellence
Honoring 50 years of software history, progress, and process

Co-Sponsored by:
DOE/ALUWQD NWC Quality Managers
Software Quality Assurance Subcommittee

Kirtland Air Force Base
Albuquerque, NM
April 1-3, 1997

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof,

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

VA
\\, ,

r

‘)

T@bﬂ@ ©f A General Information R
@@m{t@mﬁg l B g Biographies & Abstracts o
Keynote Tutorial i Dave Parnas: Design Through Documentation

W1: Natural Language Modeling

X1: Defining Software Processes

Tut(.)rlals Y1: How the NWC Handles Software as Product
April 1, 1997
W2: Writing Testable Software Requirements
X2: Using COTS Software in Development Projects
Y2: Software Inspection Process Overview
Keynote Address Capers Jones: Software Quality for 1997

O General Sessions

Al: Software Management

A
, 3

B1: Software Testing

C1: Software Quality for Scientific Applications

April 2, 1997 A2: Software Engineering Processes

B2: Internet WEB Applications

|

A3: Software Process Improvement I

B3: High Integrity / Formal Methods I

A4: Software Process Improvement 1L

General Sessions B4: High Integrity / Formal Methods I

April 3, 1997 . :
A5: Software Quality: Experiences & Year 2000

BS: Software Standards for Quality Engineering

Closing Session Wrapup and Awards

Pre-Forum Registrations

Final Forum Attendance List

~en.:L:-I. . . .--

Notes

Notes

AVERY” READY INDEX° INDEXING SYSTEL

General Information

Summary Schedule

Forum Committee & Program Committee

History of the Software Quality Forum

Software Quality Assurance Subcommittee

Forum Awards, Proceedings, and Participating Organizations
Tours of National Atomic Museum and RMSEL

No Host Dinner - El Pinto Restaurant

Bus Schedule for Social, Tours, and No-Host Dinner

Maps: Local Area and Forum Site

SOFTWARE QUALITY FORUM
April 1-3, 1997
CONFERENCE SUMMARY

03:00~909:00 am REGISTRATION/CONTINENTAL BREAKFAST - TTC LOBBY

Design Through Documentation:
The Path to Software Quality
Dr, David Pamnas. McMaster University

Keynote Tutorial

09:00-11:00 am TIC Auditorium

11:00 - 01:00 pm LUNCH - ON YOUR OWN

Track Z - Keynote Tutorial Track W . Track X ' Track Y
SNL Bldg 823, Breezewsy SNL Bldg 822, Room A SNL Bldg 822, Room B TIC Conference Room

Z1: kmpection of Crierl Software [W1: Nanral Languags Modcing X1: Deficang, Saftware Processss Y1: How the NWC Handics Software as Product,
01:00 - 03:00 pm Dr. David Parmas, McMasters Unfversity Dx. John Stasp, SNL Dx. Gerald MeDorald, SNI, Cortracior David Vinson, Pantex

03:00-03:15pm BREAK - TICLOBBY

W2: Wrtng Testable SW Requaramerts X2: Using COTS Scftware in Dy Progects {Y2: = ion Process Overview
03:15-05:15pm [0~ L fversk Dr. Dwayne Knirk. SNL uwmwmmm lxrylxtmdk:ﬂybubbgm

Socia!l Hour and Birds of a Feather

05:30 - 06:30 pm National Atomic Museum

Meet in TTC Lobby - Round Trip Transportation Provided

07:30-08:30 am REGISTRATION/CONTINENTAL BREAKFAST - TTC LOBBY
. Mike Blacldedge, Forum Chair
0830 09:00 &m e comng kearks Earl Whiteman, DOE/AL D
John Crawford, SNL Executive VP 3
Software Quality for 1997 - What Works 3
09:00 - 10:00 &m]n(qc“:ncm ‘@d‘wﬁ: &nd What Doesn't?
Capers Jones; Chairman Software i
10:00-10:15 zm . BREAK - TTC LOBBY .
A
Track A Track B Track C Tk D
TIC Auditorium SNL Bldg 822, Rooms A&B TIC Conference Room C 3
ots- s | GAMET T T B et el N v—.
11:45-01:30 pm LUNCH - ON YOUR OWN -
Track A Track B TrackC Track D &
TIC Auditorium SNL Bldg 822, Rooms AZB Tows Tours
P _ Robotics Lab ‘Netioral Atcrric Muscum X
A2 F B2: kternet WEB Applications B - P
01:30 - 03:00 pm et o et T p Register in TTC Lobby Register in TTC Lobby
Chuir; Kathleen Caml, DOEHQ Chair: Faye Brown, LMES ORNL Meet in TTC Lobby before 1:30 prn Meet in TTC Lebby before 130 pn
03:00 - 03:15 pm BREAK - TIC LOBBY
A3: Software Process kmprovement I B3: High kxcgrity ! Fomal Methods 1 oyl R 3
0315..04:45 . : Register in TTC Lobby Register in TTC Lobby i
il Guaie: Mike Lackocr, ASFMAT Chuir; Dave Pecrcy, SNL Mect in TTC Lobby before 315 pm Mezt in TTC Lobby before 3:15 =
C€:00 - 07:00 pm No-Host Social Hour

El Pinto Restaurant
No-Host Dinner

08:00- 08:30 &m CONTINENTAL BREAKFAST - TTC LOBBY
Track A Track B)]
TTC Auditorium SNL Bldg 822, Rooms AZB Track C TrackD 5

§ g A4: Software Process brpe |4 BA: High Integricy / Formal Methods T
08:30 - 10:00 am Chair: Jobn Hare, AWE UK Ctui: Lty Dahon, SL Birds of 2 Feather / Networking Birds of a Feather / Networking
10:00-10:15 am BREAK - TTC LOBBY

2

. . AS: Software Quality: Experiences & Y2K BS: SW Standards for Quality Engincering . et . A
10:15-11;45 am Chair: Cathy Ktm, ASFMAT Chair: Patty Trelhoe, SNL . Birds of a Feather / Networking Birds of 2 Feather / Networking

Forum Committee

General Chair: :
Mike Blackledge, Sandia National Laboratories, mablack@sandza gov

Tutorials and Workshops:
Dave Peercy, Sandia Natzonal Laboratarzes depeerc@sandia.gov

Planning Committee:
Lorraine Baca, Sandia National Laboratorzes
- Ray Berg, Sandia National Laboratories
Dwayne Knirk, Sandia National Laboratories
Patty Trellue, Sandia National Laboratories
Gary Echert, DOE - Albuquerque Qfffice
Arrangements:
Theresa Griego, Sandia National Laboratories

Program Committee

Mike Blackledge, Sandia National Laboratories .
Patty Trellue, Sandia National Laboratories g

Faye Brown, Martin Marietta Energy Systems, Y-12 Plant
Kathleen Canal, DOE Headguarters
John Cerutti, Los Alamos National Laboratory
. Orval Hart, Los Alamos National Laboratory
Mike Lackner, AlliedSignal Federal Manufacturing and Technologies, Kansas City Plant
Dave Peercy, Sandia National Laboratories
Larry Rodin, Mason & Hanger, Pantex Plant
Don Schilling, AlliedSignal Federal Manufacturing and Technologies, Kansas City Plant
Pat Tempel, Sandia National Laboratories
David Vinson, Mason & Hanger, Pantex Plant

History of the Software Quality Forum

The Software Quality (SQ) Forum was established by the Software Quality Assurance
Subcommittee as an opportunity for all those involved in implementing SQA programs to meet
and share ideas and concerns. The SQ Forum is open to the public. Participation from managers,
quality engineers, and software professionals provides an ideal environment for identifying and
discussing the many issues and concerns raised by the Forum attendees and speakers. The
interaction prow&ed by the Forum contributes to the realization of a shared goal -- high quality
software product

Topics presented at the SQ Forum generally include: testing, sofiware measurement, software
surety, software reliability, SQA practices, assessments, software process improvement,
certification and licensing of software professwnals CASE tools, software pro_]ect management,
inspections, and management’s role in ensuring SQA.

The Software Quality Forum zquzgld every three yéars; past Forums are identified below.

Date Site

Spring 1988 Sandia National Laboratories
Spring 1991 AlliedSignal Aerospace Kansas City Division
Spring 1994 Lawrence Livermore National Laboratory

Software Quality Assurance Subcommittee

The Software Quality Assurance Subcommittee (SQAS) serves as a Technical Advisory Group on
software engineering and quality initiatives and issues for the Department of Energy’s Quality
Managers. The Quality Manager at each DOE site has the opportunity to select one Primary and
one Alternate representative to the SQAS.

The Subcommittee grew out of a Software Quality Assurance Information Exchange Forum
which was held in March of 1988 at Sandia National Laboratories. The Subcommittee provides a
contmumg forum for the exchange of mformatxon and work issues in the area of software quality
engineering.

For additional information abqut the SQAS, visit our web site at:

http://www.pantex.com/sqas/sqas.htm

Forum Awards
The Forum Program Committee would like to recognize those presenters who, through their
tutorial or technical presentation, have made a significant contribution to the success of the
Forum. A Best Tutorial and Best Presentation award will be presented at the Forum Wrap-up
session on Thursday, April 3. Selection of recipients for the Awards will be determined in two
parts: -
e technical content, scored by the Forum Committee
e delivery and usefulness, scored by attendees

Forum Proceedings
Forum Proceedings will include abstracts and presentation materials for all technical

presentations, presenter biographies, tutorial materials, and final Forum program information. -

Forum Proceedings will be distributed at the Forum with the registration packets. Additional
Forum Proceedings can be-purchased at the Registration Desk in the TTC Lobby.

Participating Organizations
AlliedSignal, Federal Manufacturing and Technologies, Kansas City Plant (AS/FME&ET)
Atomic Weapons Establishment, United Kingdom (AWE UK) :
Department of Energy, Albuguerque Office (DOE/AL)
Department of Energy, Headquarters (DOE/HQ)
Lawrence Livermore National Laboratory (LLNL)
Locivreed Martin Energy Systems, Oak Ridge, Y-12 Plant (LMES/OR)
Los Alamos National Laboratory (LANL) , '
Mason & Hanger, Pantex Plant (Pantex)
McMaster University, Communications Research Laboratory, Canada (MU/CRL)
New Mexico State University (NMSU) T
Sandia National Laboratories (SNL)
Software Productivity Research (SPR)
United States Air Force, Phillips Laboratory (USAF/Phillips) -
Westinghouse, Savannah River Site (SRS) :
Pioneer Technologies (Pioneer) ’

National Atomic Museum Tour

Operated by the Department of Energy, The National Atomic Museum contains a large collection
of declassified nuclear technology. Since its opening in-1969, the objective of the National
Atomic Museum has been to provide a readily assessable repository of educational materials, and
information on the Atomic Age.

Préhﬁnenﬂy featured in the museum’s high bay is the story of the Manhattan Engineer District,
the unprecedented 2.2 billion dollar scientific-engineering project that was centered in New
Mexico during World War II.

A portion of the Museum is devoted to exhibits on the research, development, and use of various
forms of nuclear energy. Historical and other traveling exhibits are also displayed in this area.
Located outside of the museum are a number of large exhibits. These include the Boeing B52B
jet bomber and a Navy TA-7C Corsair II fighter-bomber as well as many other nuclear weapons
systems, rockets, and missiles.

Robotic Manufacturing Science &Engineering Laboratory Tour

Intelligent systems bring diverse technologies together: computers, software, sensors, vision
systems,-and hardware such as robots. At Sandia National Laboratories, combinations of these
technologies are merged to create robotic and intelligent systems that range from micro to mega.

To advance the evolution of robotic and intelligent system technologies, Sandia National)
Laboratories and the DOE created the Robotic Manufacturing Science and Engineering
Laboratory (RMSEL). It is the first centralized facility designed specifically for bringing
intelligent machine technologies and technologists together.

The RMSEL facility was designed as a special environment to accommodate the unique needs of
robotics and intelligent systems research. A second-floor viewing gallery concourse overlooks
ground-floor laboratories used for the development of large-scale robotics systems. The State-of-
the-art physical resources coupled with outstanding intellectual resources make RMSEL unique in
robotic and intelligent systems research and development.
/

One of the main purposes of RMSEL is encouraging collaborative development with industry and
academic partners.

No Host Dinner - El Pinto Restaurant

A No-Host dinner has been planned for Wednesday Evening at the El Pinto Authentic New
Mexican Restaurant located at 10500 4th NW. There will be a variety of dinner selections offered
that should accommodate all tastes. The cost of the dinner is $15. Check at the Registration
Desk in the TTC Lobby if you would like to attend or if you are planning to use the bus
transportation provided from the Sheraton Hotel to the El Pinto Restaurant. El Pinto is located at
10500 4th NW; the phone number is 898-1771.

"Bus Schedule fdr Social, Tours, No-Host dinner

Depart Time Destination Return to Sandia National

Labs, “Pick-Up” time

Sandia National Labs, TTC | 5:30 p.m. | National Atomic Museum 6:30 p.m.

(Social)

Sandia National Labs, TTC | 1:30 p.m. Robotics Lab 2:45 p.m.

Sandia National Labs, TTC | 1:30 p.m. | National Atomic Museum 2:45p.m.

Sandia National Labs, TTC | 3:15 p.m. Robotics Lab 4:45 p.m.

Sandia National Labs, TTC | 3:15 p.m. | National Atomic Museum 4:45 p.m.

Sheraton Old Town 5:45 p.m. El Pinto Restaurant Return to Sheraton Old
Town, “Pick-Up” time

~8:30 p.m.

LOCAL AREA MAPS N

- ,
X
=
2
— N
Q I < : s
o _|© $ N &
2 £~ Xy
,._4:4’3 S > <&

%ﬁmn Old Town

S 8
=l 3 =
i 228 . =lad-g 3
1-25 SEEEE
CERE
Central
1-40
- ¢

Gibso —qe: .
T F A

Yald
t

20th Street

Sandia National Laboratories
Tech Areal

P kol d
?
-
L
-
1N

$44 3
.y
N
r
b

QARG

e
P e er Tor v evrereve reere
Y ‘
o X
SO

\nvrrare

Parking

Location of Conference Rooms

TTC Auditorium, TTC Lobby, TTC Conference Room
Located in Building 825. Enter through the doors on the north side of the building.

Bldg. 822 Rooms A&B

Located immediately to the right when entering Bldg. 822 from the doors on the south
side of the building. '

Bldg. 823 Breezeway

Located immediately to the left qﬁer the Reception Desk when entering Bldg. 823 from
the doors on the south side of the building.

NOTE: To get into the 823 Breezeway, individuals without a valid DbE must be
escorted by an individual with a valid DOE badge. They must show a picture ID and sign
in at the reception desk. The Breezeway will only be used for the afternoon Keynote

tutorials and a Forum committee member will be available to assist you with the entrance
details.

wa

BIOGRAPHIES =

Keynote Biographies

Capers Jones, Chair SPR

Capers Jones is an international consultant on
software management topics and Chairman of
Software Productivity Research, Inc. (SPR) in
Burlington, MA. Following graduation from the
University of Florida, Mr. Jones began his software
career as a programmer in the office of the Surgeon
General, Washington, D.C.. Prior to becoming
Chairman at SPR, Mr. Jones also worked at the
Crane Company, IBM, and was Assistant Director of
Programming Technology at ITT in Stratford CT.
Mpr. Jones has published nine books dealing with
software areas including; programming productivity,
software measurement, and software quality. His
tenth book, Software Cost Estimating is scheduled for
Dpublication in early 1997. Mr. Jones will share his
experience and insights in his keynote address
“Software Quality for 1997 - What Works and What
Doesn’t”.
Presentation: April 2, (09:00-10:00 am), TTC
Audiiorium

Dr. David Lorge Parnas, McMaster University

Professor David Lorge Parnas, Ph.D. holds the
NSERC/Bell Industrial Research Chair in the
Communications Research Laboratory, Department
of Electrical and Computer Engineering at McMaster
University in Hamilton, Ontario, Canada. His
primary area of interest is to promote to Software
Engineers the discipline and body of knowledge as
practiced by engineers in other fields.

‘By studying the problems:of software engineering
since 1965, Dr. Parnas has developed principles and
methods that have value to real world problems. In
recngnition of his accomplishments, he has received
"r:; srous honors, including election as a Fellow of

42 Royal Society of Canada and a Fellow of the Association for Computing Machznery
Dr. Parnas will share his experience and knowledge by leading three workshop/tutorials.
Tutorials: April 1, ZI (09:00-11:00 am), TIC Auditorium

22 (01:00-03:00 pm), Z3 (03:15-05:15 pm), Bldg 823 Breezeway

L
S——

)

Tutorial Leader Biographies

(Alphabetical Order)
Nancy L. Crowley, Phillips Laboratory
Lt Col Nancy Crowley is the Acting Chief of the Space System Technologies Division (PL/VTS), Kirtland AFB,
New Mexico. The focus of Space System Technologies Division is on the innovative application of software
technologies to improve performance and reduce operations and maintenance costs for satellite control systems,
including telemetry, tracking and commanding (TT&C), mission data dissemination, data processing, and satellite
autonomy. Lt Col Crowley is also the program manager for the Multimission Advanced Ground Intelligent
Control (MAGIC) program. MAGIC is developing the architecture for the next generation satellite control system
that provides a low cost, flexible software architecture that allows plug and play of COTS products in a vendor
independent manner. Lt Col Crowley was born May 13, 1955 in the Bronx, New York. She graduated from
Theills High School in Theills NY, in 1973. She received a Bachelor of Science in Electrical Engineering from
the University of New Hampshire in 1977 where she was a ROTC distinguished graduate. She later received the
Master of Science in Digital Engineering and the Doctor of Philosophy (major of software engineering, minor of
artificial intelligence) from the Air Force Institute of Technology in 1982 and 1994 respectively. Her research was
in object-oriented methods for software requirements analysis. Lt Col Crowley entered the Air Force in 1972 and
was a flight test engineer for Tactical Air Command. There she conducted operational test and evaluation and flew
in fighter aircraft in support of projects. After her masters degree, she was assigned to the Flight Dynamics
Laboratory, where she was the software engineer for the digital flight control system of the X-29 Advanced
Technology Demonstrator and the Ada focal point for the laboratory. There and in subsequent assignments she
was a technical consultant to the Swedish government on the development of the digital flight control system for
the’JAS-39. Her next assignment was at the Systems Acquisition School, Brooks AFB Texas where she was a
course developer and instructor of sofiware acquisition courses. There she was also a system administrator for a
UNIX and PC-based networked system that serviced the students and staff at the school. Afier completing her
Ph.D., she came to her current assignment in Oct 94. Outside her Air Force duties, Lt Col Crowley teaches
software engineering, software management, and computer science courses at local Universities. Her and her
husband own a computer consulting business. Both her and her husband enjoy riding horses.
Tutorial X2: April 1, (03:15 - 05:15 pm), SNL Bldg 822, Room B

Randy Dabbs, Sandia National Laboratories

Randy Dabbs is a Senior Member of Technical Staff at Sandia National Laboratories. He has earned a Master of
Science in Electrical Engineering from the University of New Mexico. He has held positions at the Sandia Particle
Beam Fusion Accelerator in the areas of data acquisition and signal processing; the Kwajalein Missile Range in the
areas of range computer systems engineering, range operations, tracking software modeling and development,
reentry mission project engineering, digital radar signal processing, radar controller real time software, and
software configuration management; and the Sandia Kauai Test Facility in the areas of range computer support
and operations, range safety software development, countdown software development, CASE tool selection and
modeling of range operational software. In his current position with the Sandia Quality Engineering Department,
he has participated in instructing the Software Quality Engineering course and the Software Inspections course. In
his role as software quality assurance engineer, he has participated in numerous software inspections for both
internal and external customers. In addition, he has helped develop and teach a customized version of the software
inspection course to meet the specific needs of Sandia organizations.

Tutorial Y2: April 1, (03:15 - 05:15 pm), TTC Conference Room C

" Dwayne L. Knirk, Ph.D., Sandia National Laboratories

Dr. Knirk is a member of the software quality engineering department at Sandia National Laboratories. He
provides in-house consulting to line organization projects for software engineering processes, methods, standards,
tools, and training. He participates in process assessments and improvement programs, and provides support for
configuration management, software inspections, and process automation. Dr. Knirk’s primary focus is on the two
complementary areas of software specification and testing, in which he works to bring more formal methods into
more practical applications. He works actively on IEEE software engineering standards groups. He is a member of
the ASQC Software Division Methods Committee. Dr. Knirk previously worked for Programming Environments,
Inc., where he was the architect and principal developer of the automated software test design tool, T. That
commercial product analyzed a formal software behavior description for testability, designed test cases for
demonstrating that behavior, and generated actual test case data.

Tutorial W2: April 1, (03:15 - 05:15 pm), SNL Bldg 822, Room A

Tutorial Leader Biographies

(Alphabetical Order)
G. Lawrence Lane, Sandia National Laboratories
Larry Lane is a Senior Member of the Technical Staff at Sandia National Laboratories. He earned a Master of Arts
Degree in mathematics from the University of Kansas. Larry join'e'gl Sandia Corporation in 1959 as an assembly
language programmer in the field data reduction department. He has also worked as a operating systems
programmer and was responsible for the selection and installation of Sandia’s first general purpose time sharing
computer. Larry also worked as a computer consultant for large scientific computers, as the second computer
ombudsman, and was responsible for the development of an electronic tracking system for electrical testing of
radiation-hardened microcircuits. Larry moved to his current position in the Quality Engineering Department in
1991, where he is an instructor for the Software Quality Engineering course and the Software Inspection Class. As
a software quality engineer, Larry has led numerous qualification efforts for new and upgraded software projects,
particularly in the areas of use control and weapon security. He has helped develop and teach a customized version
of the software inspection course to meet specific Sandia organizational needs.
Tutorial Y2: April 1, (03:15 - 05:15 pm), TTC Conference Room C

Gerald W. McDonald, Ph.D,

Dr. McDonald has a Bachelor of Science in Engineering Science and a Master of Science in Computer Systems
Management from the Naval Postgraduate School. Following his retirement the Navy he received a Master of
Engineering in Industrial and Systems Engineering and a Ph.D.-in Quantitative Management S¢ience (Operations
Research) from the University of Florida. Following receipt of his Ph.D. he worked for BDM International as an
executive-level Program and/or Project Manager and technical leader. During his thirteen years with that firm he
led both software and non-software projects. During the three years since his retirement from BDM he has acted
as consultant to Sandia, SEMATECH, and a number of other organizations. As a consultant he has worked
primarily in the field of Software Process Improvement. Besides direct technical assistance he has presented
training and workshops in software areas such as; quality engineering, software inspections, process definition and
documentation, and metrics. .

Tutorial X1: April 1, (01:00 - 03:00 pm), SNL Bldg 822, Room B

John K. Sharp, Ph.D., Sandia National Laboratories

John has performed information analysis in various positions at Sandia for fifteen years. He has worked closely
with Prof. Shir Nijssen of the Netherlands for several years to establish the procedure to develop and analyze
information problems using structured natural language. They are currently finishing a text on this topic. This
procedure was originally based on the NIAM (Natural language Information Analysis Methodology) modeling
technique. John and Prof. Nijssen have co-chaired two international conferences on natural language modeling.
John is also the editor of the international standard on conceptual schemas.

Tutorial W1: April 1, (01:00 - 03:00 pm), SNL Bldg 822, Room A

Software Quality Assurance Subcommittee, Work Item #16, Nuclear Weapons Complex Sites

The Software Quality Assurance Subcommittee (SQAS) operates under the DOE Nuclear Weapons Complex
(NWC) Quality Managers to identify and resolve Software Quality issues and problems common to. all DOE sites
and facilities. This tutorial is the result of an NWC SQAS work item to define how to manage and control

.....

product software. The Nuclear Weapons Comple?g-mde participants and presenters of this tutorial include:

Chair David Vinson, Pantex Plant . John Cerutti, LANL

Phil Huffman, Pantex Plant Bill Warren, LLNL

Alvin Cowen, Pantex Plant) Charles Chow, LLNL

Catherine Kuhn, AS/FM&T Ellis Sykes, DOE/Kansas City Area Office

Donald Schilling, AS/FM&T . Gary Echert, DOE/Albuquerque Area Office
-Dave Peercy, SNL - Kathleen Canal, DOE/HQ

Mike Blackledge, SNL . Ray Cullen, SRS

Orval Hart, LANL . Faye Brown, LMES, Oak Ridge, Y-12 Plant

Tutorial Y1: 'April 1, (01:00 - 03:00 pm), TTC C_o'gx__ference Room C

)

Presenter Biographies
(Alphabetical Order)

John Ambrosiano, Ph.D, Los Alamos National Laboratory

Dr. Ambrosiano received his Ph.D. in Plasma Physics from the College of William and Mary in 1980 and has since
pursued a career in Computational Physics. He has written simulation codes for a variety of applications including
plasmas and beams, acoustics, fluid dynamics, and electromagnetics. After a postdoctoral appointment at the
University of Alaska's Geophysical Institute to study Space Physics, he moved to the Washington, DC area to work
with a defense contractor. In 1987 he joined the Lawrence Livermore National Laboratory where he worked on
nuclear weapons applications, and later joined the Earth System Modeling project there. The growing complexity
of numerical simulations led to a strong interest in Computer Science and in Software Engineering in order to find
the leverage to manage the complexity of the new generation of simulation codes. In 1995 he joined the North
Carolina Supercomputing Center to lead the effort to build a simulation framework for environmental modeling
called the Environmental Decision Support System. This became the prototype for EPA's Models-3 framework. He
recently joined Los Alamos National Laboratory to participate in DOE's Accelerated Strategic Computing
Initiative. He is currently the leader of a twelve-person visualization and human-computer interaction team in X
Division at LANL. He is also the Laboratory's principle investigator for Scientific Data Management within the
ASCI program. His current interests are scientific data management, computational frameworks, and software
engineering for scientific applications.

Presentation: Wednesday, April 2, Session C1: 10:15-11:45 am, TTC Conference Room C

Rodema Ashby, Sandia National Laboratories

Rodema Ashby has been programming or leading projects at Sandia for the last 13 years.” Projects have included
configurable software security systems such as the Site Independent Alarm and Display System, and a Logging and
Accountability Subsystem. Interactive Collaborative Environments (ICE) which was licensed to SUN
Microsystems as their "Show Me" product included a great deal of commercial customer testing and collaboration.
A-PRIMED which was a 22 month, 2.5 million dollar cooperative effort involving 10 SNL NM Centers (and
minimally KC and SNL CA), demonstrated a 24 day, new product to market cycle. New hardware from new
customer requirements was created in a matter of days, after the project realization team had set up a
communications network and created and integrated tools for product realization. Rodema is currently writing
code to customize solid modeling tools for easier user model modifications.

Presentation: Wednesday, April 2, Session A1: 10:15-11:45 am, TTC Auditorium

Mikhail Auguston, New Mexico State University

Received a Ph.D. degree from the Institute of Cybernetics in Kiev (USSR) in 1983, Diploma of the Senior Research
Fellow from the Highest Evaluation Commission of the Council of Ministers of USSR in 1990, and degree of
Doctor in Computer Science from University of Latvia in 1992. Research interests are in programming language
design and implementation, and program testing and debugging tool design.

Joined Computing Center of Latvia University as Research Scientist in 1971. Since 1983 worked as a Leading
Researcher at the Institute of Mathematics and Computer Science of Latvia University. Took part in the design and
implementation of the language for file processing, the interpreter for PL/1 program testing, the testbed
environment for assembler level language for PDP-11 computers, the implementation of specification language
SDL for communication system software rapid prototyping and testing, the tool system GRAPES/4GL for
information system design. In the years 1987-88 has designed and implemented programming language RIGAL
for compiler writing on PDP, VAX and IBM PC computers. This work was presented at a number of international
conferences and is used at several sites for language processor design. In 1990 he has started to work on program
formal annotation language FORMAN for sequential and parallel program dynamic analysis, testing and
debugging. This work was presented at various international conferences and in several universities in Europe and
United States as an invited talk. He is the author of more than 30 scientific articles and co-author of the most
popular textbook on PL/1 in Soviet Union (totally more than 100,000 copies printed). Currently he is an Associate
Professor at the Computer Science Department of New Mexico State University. He teaches undergraduate and
graduate classes on Ci+, Data Structures, Software Engineering, Compiler Construction, Ada programming
language. Member of ACM and IEEE Computer Society.

Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

‘Presenter Biographies
(Alphabetical Order)

Michael Bell, Lockheed Martin Energy Systems .

Michael Bell is a software engineer with Lockheed Martin Energy Systemis at the Y-12 Plant. He is the lead
analyst on the Electronic Medical Records System project, as well as member of the software metrics team. He has
worked in the Oak Ridge area for seventeen years, at both Y-12 and Oak Ridge National Laboratory. His
experience includes research- and production-oriented software, in areas such as plasma physics, econometrics,
access control, manufacturing, and inspection. In this capacity, he has performed user interface and database
design, application migration (cross-platform and mainframe-to-workstation), real-time device control, modeling,
statistical and graphical analysis, and all aspects of structured and object-oriented software development. Mike
holds a bachelor’s degree in mathematics and is currently working toward a master’s degree in- software
engineering. - -
Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium

Gail M. Benefield, Lockheed Martin Energy Systems

Ms. Benefield has worked for Lockheed Martin Energy Systems, Inc.. LMES) since 1987. Her assignments
include working as an applications developer/analyst at the Y-12 site, an Applications Security Specialist for the
Computing and Telecommunications Security Organization, and currently, as a Computing Specialist within the
Information Technology Services division at the K-25 site in Oak Ridge. At Y-12, Ms. Benefield was on the team
which revised the 80-Series, a document owned by the Y-12 Quality Division, which was the Y-12 implementation
of the required software development methodology. She was also a member of the Y-12 Software Configuration
Control Board, which reviews all software changes to applications which fall within a certain class of software. In
her current assignment, Ms. Benefield is representing her department as an active participant on the team which
authored and is supporting the Software WorkPackage Methods (SWM) methodology. ‘
Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Larry J. Dalton, Sandia National Laboratories

Lamy J. Dalton holds a BS in Applied Mathematics and an MS in Electrical Engineering both from the University

of New Mexico. Larry has spent the past 19 years at Sandia National Laboratories in Albuquerque, New Mexico
engaged in high consequence systems development. Much of that time was dedicated to various aspects of nuclear
weapons and associated control systems. He is the manager of the Command and Control Software Department at
Sandia National Laboratories which in addition to software engineering research, develops software and systems
safety solutions for high consequence operations. '

"Presentation: Wednesday, April 2, Session B3: 03:15-04:45 pm, Bldg 822, Rooms A&B

Larry Desonier, Sandia National Laboratories

Education: In 1972, Lamry graduated from Southwestern Louisiana with a Bachelors of Science in Electrical
Engineering.. In 1976 graduated from Oklahoma City University with a Masters in Business Administration. In
1979 completed Masters in Electrical Engineering and Computer Science from University of New Mexico.
Complete a Masters of Science in Computer Information Systems from the University of Phoenix in 1996.
Presently working on a Certificate in Computational Simulation Science from the University of New Mexico under
a special Sandia National Laboratories retraining program with completion in May 1998. Work Experience:
Officer in the U.S. Air Force from 1972 through 1975 and worked as a Communications-Electronics Engineer.
Worked at the U.S. Air Force Weapons Laboratory from 1976 to 1984 as the Director of Communications. Came
to Sandia National Laboratories in 1985 and has worked as a Systems Developer, Software Engineer, and Project
Leader for over 12 years. ___

Presentation: Thursday, April 3, Session AS: 10:15-11:45 am, TTC Auditorium

.Th S

John Hare, Ph.D., AWE, Ministry of Defence, United Kingdom s ‘

Dr John T Hare is the Software Quality Manager of AWE Aldermaston, an MOD (UK) facility managed by
Hunting-BRAE Ltd. He is a Chartered Engineer and a Member of both the British Computer Society and the
Institute of Quality Assurance. John graduated from the Universities of Nottingham (BSc) and York (DPhil). He
started his career in 1973 as a scientist at what was then the Royal Aircraft Establishment (of International
Airshow fame). He was responsible for analysis of sonobuoy trials data, using computers in the days when 16KByte

was a generous amount of core memory! In 1980 John joined AEA Technology, which as UKAEA had been

Presenter Biographies

(Alphabetical Order)

responsible for the UK Atomic Energy Programme. John was responsible for the design of a number of computer-
based data acquisition systems. As the PC took the skill out of this activity, John's team specialised in Management
Information Systems, and the provision of Software Engineering support to scientific projects. This was the start of
a growing interest in Quality Assurance, as customers and regulatory authorities demanded accreditation to
1S09001. In 1993 John joined AWE, with a brief to improve software quality assurance and raise standards across
the company. This is moving into 2 new phase, with emphasis on Software Engineering. John and his wif¢
Heather have two daughters; Katherine (22).who is a biochemist doing research at Birmingham University, and
Louisa (19) who is a student of Modern Languages at Nottingham University. Outside interests include local
‘government and local history. Until recently John was Chairman of Governors at a school with 1000 students.
‘Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

David L. Harris, Sandia National Laboratories

Dave has a M.S. in Computer Science and A.B in Mathematics from all from the University of Missouri. He was
a graduate fellow at the Health Services Research Center in Columbia Missouri and his graduate education focused
on multi-processor hardware architectures and multi-processing operating systems. Dave is currently a Senior
Member of the Technical Staff at Sandia National Laboratories and is assigned to the Information Systems
Engineering Center. Dave has been doing research in using World Wide Web technology in support of
collaborative environments for distributed Decision Support Systems. Dave was the software process engineer for
the ICADS (Integration Correlation and Display System) program. ICADS is'a ground based sateliite data
analysis system and the project leader for TCAMS (Tech Control Automation, Maintenance, and Support), a five
year, $6 - 8M project consisting of over one million lines of sofiware source code. TCAMS has been accepted by
the Department of Defense customer and is in operation today. (A fielded and functional system). As the TCAMS
Team Leader, Dave was responsible for the device control software subsystem of the TCAMS software project.
Earlier in Dave’s career he was a software engineer responsible for various systems analysis and design of a large
command and control software system. Dave has software engineering experience in real-time, embedded,
guidance and control computers for ballistic missiles and systems administration of large, multi-user, time-sharing
systems.

Presentation: Wednesday, April 2, Session Al: 10:15-11:45 am, TTC Auditorium

Orval Hart, Los Alamos National Laboratory

Orval Hart has worked at the Los Alamos National Laboratory for 20 years, mainly involved in real-time control
systems for nuclear facilities. He has a Bachelor’s Degree in Mathematics from California State Polytechnic
College (Cal Poly) at Pomona and a Master’s Degree in Computer Engineering from the University of New
Mexico. Prior to coming to Los Alamos, he worked in real-time data acquisition systems, later moving to the Jet
Propulsion Laboratory in Pasadena where he worked on real-time telemetry and communication systems. In 1975,
he moved to Los Alamos where he was responsible for the original building control system software for the
Plutonium Research and Development facility (known as TA-55). Since then, he has worked on a control system
for an unmanned nuclear power supply (later canceled), the original procurement of the Laboratory intrusion and
detection system, an environmental monitoring computer network system for the Nevada Test Site and surrounding
states, the facility control system for the Special Nuclear Materials Laboratory (a sister facility to TA-55 that was
later canceled also), and for the last ten years has been responsible for the control software for the Weapons
Engineering Tritium Facility. This system is not only a facility environment control system, but also assists in
performing the everyday work in the Facility. Almost all work in the Facility is done from the control console as
opposed to hands-on in glove boxes. As many of the procedural interlocks as could be foreseen were implemented
in software to avoid human error, taking special care to test and prove them prior to going ‘on-line’. Computer
controlled automatic sub-systems are monitoring the Facility constantly to mitigate any operational abnormalities.
This system was implemented during the early days of Admiral Watkin’s tenure and as such, was a test case for
increased compliance and formality-of-operations.

Presentation: Wednesday, April 2, Session C1: 10:15-11:45 am, TTC Auditorium

Presenter Biographies
' (Alphabetical Order)

Kevin Hill, Mason and Hanger Corporation, Pantex Plant

Kevin Hill is a tester design engineer at the Mason and Hanger Corporation. He holds a BS in electrical
engineering from Kansas State University and is currently enrolled in the Interdisciplinary Master of Engineering
curriculum at Texas Tech University. Co-author Dr. Mario G. Beruvides is an assistant professor in Industrial
Engineering at Texas Tech University. Dr. Beruvides has 10 years of industrial work experience in design,
production, and manufacturing. His interests include white-collar/knowledge work performance improvement,
productivity engineering, work measurement, technology management, and engineering education. Dr. Beruvides
is a member of ASEM, a senior member of IIE, and a member of ASQC and the Academy of Management. He
holds a BS in mechanical engineering and an MSIE degree from the University of Miami, and a Ph. D. from
Virginia Polytechnic Institute and State University in industrial and systems engineering.

Presentation: Wednesday, April 2, Session B2: 01:30-03:00 pm, Bldg 822, Rooms A&B

Curtis G. Holmes, Jr., Lockheed Martin Energy Systems

Curt came to Lockheed Martin Energy Systems (LMES) at Oak Ridge, Tennessee from Texas Instruments and is
currently the Department Manager of the Environmental, Waste Management, and Analytical Laboratories
Systems in the Data Research and Development Organization. The purpose of the department is to be a focal point
for providing computing support for the Environmental, Waste, and Analytical Laboratory business areas at
LMES. Prior to his current assignment, Curt was the Department Manager for the Computer Application's
Department in the Engineering Division. The main focus of this department is the design, development,
implementation, and deployment of digital systems to support real time process control and data acquisition
systems. Curt Holmes holds a B.S. and M.S. Degree in Electrical Engineering from the University of Tennessee
with a Minor in Computer Science. He is a licensed Professional Engineer in the State of Tennessee.

Presentation: 17wrsday, April 3, Session A5: 10:15-11:45 am, TTC Auditorium

Karen Jefferson, Sandia National Laboratories in California
Karen L. Jefferson has worked at the Sandia National Laboratories for 12 years and is currently in the Systems

Research Department at Sandia California. Her work experience at Sandia has included high performance

computing, realtime control, sofiware engineering, and systems analysis. She is currently the software project lead
orr the Advanced Atmospheric Research Equipment project. She has a Masters degree in Computer Science from
the University of Arizona. <

Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium

2ase

oumiz
- raly

Bruce L. Johnston, Mason & Hanger Corporation, Pantex Plant

Bruce L. Johnston is a Project Programmer/Analyst for Mason & Hanger Corporation at the DOE Pantex Plant. In
April 1996, he accepted the challenge to be the Project Manager for the year 2000 Project. Before acceptu;:g this
new assignment he was the Computer Security Site Manager for the Pantex Plant and has worked in a computer
security capacity for the last ten years. Prior to joining Mason & Hanger, he worked for Battelle Memorial
Institute in Richland, Washington, and with EG&G in Idaho Falls, Idaho. In his personal life he has served as a
Scoutmaster for his community and is currently serving as a Bishop for the Church of Jesus Christ of Latter-Day
Saints. He keeps a healthy perspective and stays in balance by being a father of four children.

Presentation: Thursday, April 3, Session A5: 10:15-11:45 am, TTC Auditorium

-

Marie-Elena C. Kidd, Sandia National Laboratories ~ront
Marie-Elena C. Kidd is a computer scientist and Senior Member of the Technical Staff at Sandia-National
Laboratories. During her ten years at Sandia, she has worked as a software engineer on embedded, real-time
software systems for such applications as robotics, nuclear weapon components, and control systems. She has also
worked on lab-wide information sharing software systems and software engineering initiatives. She has a B.S. in
Computing and Information Sciences, Trinity University, San Antomo TX and an M.S. in Computer Science,
Purdue University, West Lafayette, IN. -

Presentation: Thursday, April 3, Session B4: 08:30-10:00 am, Bldg 822, RoomsA&B

T e T T e T — - et o PR of o oty S Ll Mt — ~ - e e s e et DTG A A sty e Mot v vF R . St g S L Sy »

)

N~

Presenter Biographies
. (Alphabetical Order)

Dr. Dwayne L. Knirk, Ph.D., Sandia National Laboratories
Dr. Knirk is a member of the software quality engineering department at Sandia National Laboratories. He
provides in-house consulting to line organization projects for software engineering processes, methods, standards,

tools, and training. He participates in process assessments and improvement programs, and provides support for

-configuration management, software inspections, and process automation. Dr. Knirk’s primary focus is on the two
complementary areas of software specification and testing, in which he works to bring more formal methods into
more practical applications. He works actively on IEEE software engineering standards groups. He is a member of
the ASQC Software Division Methods Committee. Dr. Knirk previously worked for Programming Environments,
Inc., where he was the architect and principal developer of the automated software test design tool, T. That
commercial product analyzed a formal software -behavior description for testability, designed test cases for
demonstrating that behavior, and generated actual test case data. -

Presentation: Wednesday, April 2, Session B1: 10:15-11:45 am, Bldg 822, Rooms A&B

Catherine M. Kuhn, AS/FM&T Kansas City Site
Cathy Kuhn is a Staff Technical Programmer/Analyst from AlliedSignal Federal Manufacturing and Technologies
/ Kansas City Site. For the past eight years she has been a member of the Kansas City’s Software Quality

" Assurance Group. During that time she has been involved in many Kansas City site and corporate software

development and software quality improvement efforts. Currently, she is an active member of the Information
Systems’ Software Process Group and the Information Systems Software Quality Assurance Group. This
“presentation is based upon her work with the Information Systems’ organization.
Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Michael F. Lackner, AS/FM&T Kansas City Site ‘
Michael holds a Masters of Science degree in Mechanical Engineering from the University of Missouri-Rolla, and

a Bachelor of Science degree in Acrospace Engineering from the same institution. Michael is a Registered
Professional Engineer in the State of Missouri. He is currently enrolled in the Doctor of Engineering program at
the University of Kansas, specializing in the area of computer-aided and computer-integrated manufactunng
Prior to the SQA assignment eight years ago, he spent 4 years in process and product engineering in plastics
products at AlliedSignal. He most recently completed the Blackbelt training in Six Sigma.

Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

David J. Leong, Sandia National Laboratories

David has been a Senior Member of Technical Staff at Sandia National Laboratories for seven years. He is
currently the project leader of Sandia’s Internal Web Technology Team, the EVE (Enterprise-information Viewing
Environment) Team. He has been involved with Sandia’s Intranet from its inception in the summer of 1994.
David has performed many related activities along the way, including; HTML authoring, browser training, systems
mtegratmn, application development, browser/server installations, etc.. Sandia’s Intranet, which has been featured
in WebMaster Magazine and Netscape’s Customer Profiles, currently houses approximately 40,000 admlmsmmve
and technical documents and isaccessed on the order of 250,000 times per day.

Fresentation: Wednesday, April 2, Session B2: 01:30-03:00 pm, Bldg 822, Rooms A&B

Stewart Meyer, Savannah River Site

Stewart Meyer is currently the software Quality Assurance/Configuration Management Coordinator for the NWPS
(Nuclear Waste Processing Support) section for all systems supporting the DWPF (Defense Waste Proo&ssmg
Facility) at SRS (Savannah River Site.) This position involves developing/updating QA/CM plans for process
control, process support, and manufacturing support systems. He also performs a hands on role as the
configuration manager for the SCMS (Software Configuration Management System) in developing the layered
applications, reviewing and approving the software changes, and performing library maintenance. He is the lead
for all external (DOE/Site) audits regarding software at DWPF and also participates in committees and task teams
at the division and Site level regarding sofiware management procedures. A graduate of McMurry College
(Abilene, Texas), with a Bachelor of Science in Computer Science and a background in management, his software
engineering career includes; OS/Application development for the DOD MLRS (Multiple Launch Rocket System)

Presenter Biographies

(Alphabetical Order)
project, process automation design/development for DWPF, group supervisor for the process automation group at
DWPF, and his current position (since 1993.)
Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium

Jennie L. Negin, Sandia National Laboratories :

Jennie Negin is manager of Web Services and IS Training at Sandia National Laboratories in Albuquerque, New
Mexico. Sandia is a Department of Energy multiprogram national laboratory managed by Sandia Corporation, a
Lockheed Martin company. Ms. Negin has been involved in development of many Information Systems at Sandia -
- travel, library, procurement, property, security, personnel, nuclear materials management and radiation exposure.
Ms. Negin was a consultant-to the University of New Mexico (UNM) Law School and the UNM Maxwell Museum
of Anthropology before coming to Sandia. Prior to that she was an internal consultant and systems developer at
Los Alamos National Laboratories and the University of Florida Computing Center. Ms. Negin is a long time
member of the Association of Computing Machinery and the New Mexico Network for Women in Science and
Engineering. Jennie is a graduate of the University of Florida with a BSE and MA in Mathematics.

Presentation: Wednesday, April 2, Session B2: 01:30-03:00 pm, Bldg 822, Rooms A&B

Don Rathbun, AS/FM&T Kansas City Site

Don Rathbun holds a BSEE from Kansas State University, Manhattan, Kansas, and a MSEE from the University of
Missouri, Columbia, Missouri. Business Systems Reengineering has been the focus of Don’s recent assignments
including project responsibilities on the Focused Factory initiative and the ISO9001 certification process from its
outset. Current assignments include involvement with the NWIG (Nuclear Weapons Information Group), IMOG
(Interagency Manufacturing Operations Group), and CAM-I (Consortium for Advanced Manufacturing
International) Organizations. Don has made presentations at the last two IMOG meetings and at the September
1995 LLNL Software Engmeenng Seminar. Prior assignments included project responsibilities on major radar
fuzing systems.

Presentation: Wednesday, April 2 Session A3: 03:15-04:45 pm, TTC Auditorium’

Larry Rodin, Mason & Hanger Corporation, Pantex Plant

Larry has been 30 Years with Mason & Hanger Corporation working in Quality. He is a Project Manager at the
Pantex Plant, Amarillo, Texas, Senior Member of the American Society for Quality Control, Member Software
Quslity Division. Larry has been an ASQC Certified Quality Engineer since 1970. In deference to the Year 2000
phenomena, his recertification date is December 31, 1999. Larry became Mason & Hanger’s SQAS Primary
Representative in the fall of 1990. He is currently serving as SQAS Vice-Chair, and previously has served as
Secretary . Larry has also worked on many Work Item Groups and developed this presentatmn as research for one
of these groups.

Presentation: 17zursday, April 3, Session B5: 1 0:15-11:45 am, Bldg 822, Rooms A&B

Edward W. Russell, Lawrence Livermore National Laboratory

For the Jast 15 years Ed Russell has been involved in formal QA implementation on several projects at LLNL. He
is currently working toward the ASME NQA-1 lead auditor qualification. Ed has also worked as an FEM code
analyst at LLNL in the early 1980°s. Ed‘s academic achievements include an M.S. degree from the University of
Californja Davis in Mechanical Engineering and Materials Science.

Presentation: Wednesday, April 2, Session C1: 10:15-11:45 am, TTC Auditorium

Don Schilling, AS/FM&T Kansas City Site

Don Schilling is a Manager, Engineering Projects, for AlliedSignal Federal Manufacturing and Technologies at
Kansas City. He has over 30 years of manufacturing experience in various assignments and responsibilities. He
was responsible for the formation of the Kansas City Plant’s Software Quality Assurance Group, which has
reported to him since 1988. Don has championed numerous Software Engineering and SQA initiatives within
AlliedSignal, the DOE Nuclear Weapons Complex, and in national and international forums.

Presentation: Wednesday, April 2, Session A3: 03:15-04:45 pm, TTC Auditorium

10

Presenter Biographies
(Alphabetical Order)

Joseph R. Schofield Jr., CQA, Sandia National Laboratories

Joe has been applying emerging technology for business and engineering solutions for the past 17 years. Joe guided
the evaluation and implementation of Sandia’s first large-scale CASE project using Texas Instrument’s IEF.
Current efforts include a client-served based object-oriented project with tens of millions of object instances. Joe
has been a keynote speaker at the Structured Development Forum in San Francisco in 1988 and spoke on CASE at
the National Conference on Information Systems Quality Assurance in Orlando, CASEWorld in LA, and the
Piedmont CASE User’s Group in Charlotte. Several articles on CASE were published by the Journal of Quality
Data Processing, System Builder, and Managing System Development. A four-page interview was printed in the
CASE Strategies Newsletter and another in Government Computer-News. Joe has presented at USE, SHARE,
GUIDE, and DOE-sponsored conferences. The Next Silver Bullet was published in 1995. His most recent article
The Year 2000 - Finally a Reality Check is under publication review.

Presentation: Wednesday, April 2, Session A1: 10:15-11:45 am, TTC Auditorium

John K. Sharp, Ph.D., Sandia National Laboratories

John has been working in information systems. during a 16 year career at Sandia National Laboratories. He has
held technical and management positions covering information system design, application development and data
administration functionSheJohn has been working closely with Professor Shir Nijssen in the Netherlands who is
creator of the NIAM (Nijssen’s Information Analysis Methodology), which is the basis for our approach to Natural
Language Modeling. Shir and John have co-chaired two international conferences on Natural Language Modeling
and are writing a book on Natural Language Modeling that will be published this winter.

Presentation: Thursday, April 3, Session B5: 10:15-11:45 am, Bldg 822, Rooms A&B

Debra Sparkman, Los Alamos National Laboratory

Debra Sparkman is the Software Quality Assurance Manager for LLNL Safeguards and Security Engineering and
Computations Division. She has been the SSEC quality assurance manager since January 1993 and test coordinator
for the Argus Security System since October 1994. Prior positions at LLNL have included Quality Assurance/Test
Coordinator for the Controlled Material Tracking System and staff member for the Fission Energy and Systems
Safety Computer Safety and Reliability group. Other publications include: SSEC SEI Experiences, 1994 DOE
NWC Software Quality Forum and Standards and Practices for Reliable Safety-Related Software Systems, 3rd
International Symposium on Software Reliability Engineering. Ms. Sparkman received a Bachelor of Science,
Computer Science in 1984 from the University of the Pacific. She is a member of the American Society for Quality
Control, IEEE, and IEEE Computer Society.

Presentation: Wednesday, April 2, Session B1: 10:15-11:45 am, Bldg 822 Rooms A&B

Ann Stewart, Lockheed Martin Energy Systems :

Ms. Stewart is the Quality Manager of the Data Systems Research and Development Program (DSRD) a division of
Lockheed Martin Energy Systems (LMES) in Oak Ridge, Tennessee. She has more than 20 years experience as a
software engineer and project manager with extensive experience in areas of quality assurance, performance
measurements, and process improvement. She established and managed the Software Quality Assurance Program
for the Oak Ridge National Laboratory (ORNL) in compliance with the Department of Energy (DOE) requirements
and was responsible for their Performance Indicator and Metrics Program. Ann is a graduate of the University of
‘Tennessee with a B.S. in Computer Science. She currently leads and manages DSRD's Process Improvement
Initiative using the Software Engineering Institute's Capability Maturity Model (SEVCMM).

Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Nancy A. Storch, Lawrence Livermore National Laboratory

Nancy has over 30 years experience in design and development of scientific software, with emphasis in user
interface design, computer graphics and software engineering. Her special interest is usability engineering,
Recently Nancy has also become involved in sofiware quality assurance and serves as SQA Engineer to two
projects. Nancy is the LLNL SE/SQA Group Leader. Prior to coming to LLNL, Nancy developed software for
submarine fire control systems. Thronghout her career, Nancy has striven to be at the forefront of the application
of computer science and software engineering. She has done graduate work in human factors, user interface
design, computer science and physics. Her degree is in mathematics.

Presentation: Wednesday, April 2, Session B1: 10:15-11:45 am, Bldg 822 Rooms A&B

11

Presenter Biographies
(Alphabetical Order)

Michael Tiemann, Headquarters Department of Energy

- Mike Tiemann has served in government service for 25 years, His career started in 1972 at Army Material

Command Headquarters, as an Army Lieutenant working in Environmental Program Management. After this he
spent almost 13 years at the Federal Energy Regulatory Commission as an Environmental Protection Specialist
and a Computer Systems Analyst. In 1987 he joined Headquarters DOE as the Project Management Officer
coordinating all information technology services and support for the Offices of the General Council, Inspector
General, Hearings and Appeals and the Economic Regulatory Administration and the Board of Contract Appeals.
Two years later, he was assigned the primary responsibilities for Information Management Planning at
Headquarters. He is currently the Action Officer in the CIO's Information Architecture Team responsible for

development of the Departmental Information Architecture. He is also the leader of the Information Management *

Planning and Architecture Coordinating Team or IMPACT, a diverse and professionally robust group of
technology professionals from across the Department which supports the Architecture efforts. In addition to
IMPACT, Mike has been a member of several Department-wide teams, and recently sat on an interagency panel on
business modernization. Mike holds degrees in Architecture (BED, Texas A&M, 1972) and Systems Management
(MSSM, US.C,, 1977). He is a current member of the Energy Federal Credit Union’s Information Technology
Advisory Committee. He is married and has two children.

Presentation: Wednesday, April 2, Session A3: 03:15-04:45 pm, TTC Auditorium

Victor L. Winter, Ph.D., Sandia National Laboratories

Victor L. Winter received his Ph.D. from the University of New Mexico in 1994. His dlssertanon research focused
on proving the correctness of program transformations. Currently, Dr. Winter is a member of the High Integrity
Software (HIS) Project at Sandia National Laboratories. His research interests include trusted software, formal
semantic models (graphical-based and symbol-based), theory of computation, automated reasoning and robotics.
Dr. Winter can be reached by phone in the United States at (505) 284-2696, by fax at (505) 844 - 9478, or by email
at viwinte@sandia.gov.

Presentation: Wednesday, April 2, Session B3: 03:15-04:45 pm, Bldg 822, Rooms A&B

Alexander R. Yakhnis, Ph.D., Pioneer Technologies

Dr. Alexander R. Yakhnis is a consultant in design of dependable software/hardware systems. He received a
Diploma in Mathematics from Moscow State University, Moscow, Russia. He worked as a computer programmer
in Moscow, Russia and Houston, Texas. Alexander received an M.S. in Computer Science and a Ph.D. in
Mathematics/Computer Science from Cornell University, Ithaca, New York. He then worked as a Research
Scientist at Mathematical Sciences Institute, Cornell University. He worked at Command and Control Software
Department at Sandia National Laboratories on High Integrity Software project from July 1995 to August 1996.

His interests include correctness proofs for concurrent and sequential programs, theory of computations, winning
strategies for two person games, control theory, hybrid systems, object-oriented methods, design of
hardware/software systems. He can be reached by phone at (505) 298-5854 or by e-mail at AYakhnis@aol.com.

Co-zuthor Dr. Vladimir R. Yakhnis is a research scientist at Rockwell Science Center, One Thousand Oaks, CA.
He szizived a Diploma in Mathematics from Moscow State University, Moscow, Russia. He worked as a computer
programmer in Moscow, Russia and Houston, Texas. Dr. Yakhnis received an M.S. in Computer Science and a
Ph.D. in Mathematics/Computer Science from Cornell University, Ithaca, New York. His research was in program
correctness for concurrent and sequential programs, winning strategies for two person games, state transition
systems and object-oriented methods. Dr. Yakhnis worked at the IBM Endicott Programming Laboratory as an
Advisory Programmer until 1994. There he developed “Generic Algorithms” methodology that allowed the
construction of mathematically proved software while “hiding” the actual proofs from the developers. The
methodology was designed to take advantage of object class templates in C++ or Eiffel. He worked as a Visiting
Scientist at Mathematical Sciences Institute, Cornell University until June 1995. There he developed the
groundwork for the semantics of object-oriented stepwise refinements. He worked at Sandia National Laboratories
at Albuquerque during 1995-1996. He can be reached by phone at (805) 373-4856 or by e-mail at

vryakhni@scimail.risc.rockwell.com.
Presentation: Wednesday, April 2, Session B3: 03:15-04:45 pm, Bldg 822, Rooms A&B

12

ABSTRACTS

Tutorial Abstracts: Tuesday, April 1 1997

Keynote Tutorial 09:00 - 11:00 am

Dr. David Lorge Parnas, MU/CRL
Z0: Design Through Documentation: The Path to Software Quality
TTC Auditorium

Although it is appealing, practitioners are not able or willing to write precise documents. Instead, they write vague
blurbs that are useless to those charged with the next steps and cannot be subject to rigorous analysis. This tutorial
describes how precise, complete, and testable documents can be produced for software and the ways that these
documents can contribute to an improved software process.

Tutorials 01:00 - 03:00 pm

Dr. David Lorge Parnas, MU/CRL

Z1: Inspection of Critical Software

Bldg 823 Breezeway

This tutorial describes a procedure for inspecting software that consistently finds subtle errors in “mature”
software, software that is believed to be correct. The procedure is based on three key ideas: the software reviewers
are active not passive; reviewers focus on small sections of code; reviewers proceed systematically so that no case
and no section of the program gets overlooked. During the procedure, the inspectors produce and review
mathematical documentation. The mathematics and its notation allows them to check for complete coverage and
to proceed systematically and in small steps.

Dr. John Sharp, Sandia National Laboratories

W1: Natural Language Modeling

Bldg 822 Room A

This t2orial describes a process and methodology that uses structured natural language to enable the construction
of pzeise information requirements directly from users, experts, and managers. The main focus of this natural
language approach is to create the precise information requirements and to do it in such a way that the business
and technical exerts are fully accountable for the results.

Dr. Gerald McDonald, Sandia National Laboratories Consultant

X1: Dgfinition and Documentation of Engincering Processes

Bldg 522 Room B

This tutorial is an extract of a two-day workshop developed under the auspices of the Quality Engineering
Department at Sandia National Laboratories. The presentation starts with basic definitions and addresses why
processes should be defined and documented. It covers three primary topics: (1) process considerations and
rationale, (2) approach to defining and documenting engineering processes, and (3) an IDEF0 model of the process
for defining engineering processes. Process considerations and rationale introduce models for documenting
procésses; describe the general architecture for product development; and define implications of immature
processes versus those for mature processes. The approach describes the top-level subprocesses that make up the
methodology for definition and documentation of engineering processes; namely: planning, gaining management
approval for a process definition project, collecting data on the as-is process to capture current best practices within
the organization, constructing a model of the as-is process, and verifying and validating that model. The final
portion presents a four-level, hicrarchical model that describes HOW to define and document an engineering
Pprocess.

Fazzo Brown, Oak Ridge; Ray Cullen, Savannah River; Gary Echert, DOE/AL; Phil Huffman, Pantex. Cathy
Keizn, AS/TFM&T; Dave Peercy, SNL; Ellis Sykes, DOE/KCP; David Vinson, Pantex

Y1: How the NWC Handles Software as a Product

TT<" Conference Room C

T3 rxorial provxdes a hands-on view of how the Nuclear Weapons Complex projects should be handling software
as : rroduct in response to Engineering Procedure 401099. The primary scope of the tutorial is on software
prixiucts that result from weapons and weapons-related projects, although the information presented is applicable

e T T R Y Y T e Y AT b e

Tutorial Abstracts: Tuesday, April 1 1997

to other software projects. Processes for Identification, Qualification, Acceptance, and Delivery are described in
terms of an extended case study. .)
Participant Restrictions: Must bea NWC or government employee; identification will be required. If you have
questions, contact Dave Peercy, 505-844-7965, depeerc@sandia.gov.

Tutorials 03:15 - 05:15 pm

Dr. David Lorge Parnas, MU/CRL

Z2; Exercise and Discussion

Bldg 823 Breezeway .

In this workshop, participants will be given a small program and will apply the documentation and inspections
methods from the previous Design Through Documentation and Inspection of Critical Software tutorials. This will
be followed by a discussion of previous experiences in a question and answer format.

Participant Restrictions: Must have attended both the Design Through Documentation and Inspection of Critical
Software tutorials.

Dr. Dwayne Knirk, SNL
W2: Writing Testable Software Requirements
Bldg 822 Room A

This tutorial identifies common problems in analyzing requirements in the problem and constructing a written
specification of what the software is to do. It deals with two main problem areas: separating the documentation of
what is given from the documentation of what is to be created; and determining what facts about the subject
software are to be documented, how they should be expressed, and how they are related.

Lt. Col. Nancy Crowley, USAF Phillips Laboratory

X2: Using COTS Software in Development Projects

Bldg 822 Room B

Commercial sofiware and standards must be carefully evaluated prior to selection, carefully integrated, and used
where appropriate to reap their benefits. This tutorial will discuss the experiences of the Space System
Technologies Division of the USAF Phillips Laboratory in developing a COTS-based satellite control system.

Larry lane and Randy Dabbs, Sandia National Laboratories

Y2: Software Inspection Process Overview

TTC Conference Room C

This tutorial provides an overview of the Software Inspection (In-Process Formal Review) Process and a mini-
inspection workshop. The inspection roles and process steps are introduced. Participants are then divided into
inspection groups for conduct of a mini-inspection to’ gain some practical experience with the: inspection process.
Discussion of the mini-inspection results concludes the workshop. ’

Presentation Abstracts: Wednesday, April 2 1997

Keynote Addras, 09:00 - 10:00 am, TTC Auditorium

Capzrs Jones, McMaster University

Softsezve Quality for 1997 - What Works and What Doesn’t?

This presentation provides a view of software quality for 1997 — what works and what doesn’t. For many years,
software quality assurance lagged behind-hardware quality assurance in terms of methods, metrics, and successful
results. New approaches such as Quality Function Deployment (QFD) the ISO 9000-9004 standards, the SEI
maturity levels, and Total Quality Management (TQM) are starting to attract wide attention, and in some cases to
bring software quality levels up to a parity with manufacturing quality levels. Since software is on the critical path
for many engineered products, and for internal business systems as well, the new approaches are starting to affect
global competition and attract widespread international interest. It can be hypothesized that success in mastering
software quality will be a key strategy for dominating global software markets in the 21st century.

Session Al: Software Management, 10:15-11:45 am, TTC Auditorium

Rodemy Ashby, Sandia National Laboratories

The Right Rock: Finding and Refining Customer Expectations

Figuring out what the customer wants, making sure the team understands the customer priorities, and negotiating
what the customer can have for what they want to pay sets the scene for project success or failure. Getting a clear
understanding of the political landscape (can't tell the players without a scorecard), and what is most important to
them is essential. The people who will be using the system you produce, and those paying for it are rarely the
same, and both must be satisfied for your project to be considered successful for the long term. Ways to bring
internal differences of opinion to the fore, and flush out misunderstandings while educating the customers and
project team about the cost of different decisions involves creating a vivid, shared understanding of how the target,
completed system looks and operates. Approaches to these problems that I've found useful include 1)Erika Jones
Organization Charting, 2)Customer Interviews, 3) Quality Functional Deployment and modifications with other
“matrix-type" decision-making tools, 4)Creating an initial system acceptance test document, keyed to the
requirements as requirements are negotiated, 5) Rapidiy-Prototyping an example to show the customer, and
modifying it per request if you have a configurable system and/or 5)Create the User Manual first. T'll illustrate the
methodology and tool use with project examples. .

David Harris, Sandia National Laboratories

TCAMS Lessons Learned

The overall objective of the Technical Control, Automation, Maintenance, and Support (TCAMS) system software
is to facilitate the operation of the communication center within the Commander in Chief (CINC) Mobile Alternate
Headquarters (CMAH). The software consists of about one million lines of source code and draws heavily upon
industry standards such as Ada, SQL, Unix, and X-Windows. Several technical decisions that were made during
the design and implementation of TCAMS went awry. This presentation attempts to provide insight into the root
causes for these wrong decisions with the hope that these insights can lead to a better understanding of the software
development process. An overview of the TCAMS project including some measures of the software complexity is
included as introductory information.

Joseph R. Schofield, Jr., CQA, Sandia National Laboratories

The Next Silver Bullet - Or Just Another Shot in the Foot?

Repeated promises of productivity and quality unprovements have seldom materialized with the introduction of new
technologies. Marginal incremental improvements in productivity have become accepted as the norm. Joe shares a
model that explains the unintended outcomes of technology hopping as well as how to extend the investment in a
technology. Further implications exist for maintaining and improving the ability to manage the sofiware
development process as measured with instruments such as the Capability Maturity Model. The notion of the “in-
flight magazine syndrome” only exacerbates efforts to stabilize and maximize our use of technology This work was
recently published as the lead article in Managing System Development.

T T T T e - p— e e ey e

Presentation Abstracts: Wednesday, April 2 1997

Session B1: Software Testing, 10:15-11:45 am, Bldg 822 Rooms A&B

Debra Sparkman, Los Alamos National Laboratory

A Working Testing Process

Argus is an automated security system deployed at 4 DOE and DoD facilities across the United States. Argus is
composed of 3 major subsystems including over 20 software and firmware products. This paper describes the
processes performed for testing the Argus Security System. The primary focus is on the independent testing
activities. A brief description of unit, integration, and system testing performed by the development staff will be
presented. Independent system testing is conducted by the Quality Assurance team using a separate test system,
The independent testing process is a practical approach to implementing independent testing for an ‘existing
software-based system undergoing major enhancement development. The primary focus of testing is based upon
system level regression testing, major feature enhancements and new product testing. Test planning is conducted
prior to each testing activity. This planning is based upon risks associated with the degree of modifications and
their impact on the customer operational systems. The testing process tracks anomalies detected during testing,
From these anomalies, metrics are collected. The testing process is completed by the generation of a test report
summarizing the testing activities. This work was performed under the US Department of Energy by Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.

Nancy A. Storch, Lawrence Livermore National Laboratory

Testing the Design and Operations of a New Badging System

In response to a DOE mandated order to rebadge the Laboratory, efforts got underway to modify, replace, or adapt
" three major hardware and software systems. On a prior project, it had been helpful to conceptualize a complex
system by gathering all interested parties together and systematically walking thorough a paper process description.
However for the rebadging project we needed to do more than conceptualize the end system. We needed to test
operational aspects and integration of the systems with users in an environment similar to the actual deployment
environment. This became a full-scale mock exercise of rebadging. Each system was in a different state of
development. One was somewhat operational and in testing, one had a working prototype, another was in the low-
fi paper prototype stage. Also, they were being developed by different teams which rarely interacted with each
other. These teams were focused on designing, implementing and unit testing within their system. Therefore,
traditional integration and system. testing of the combined systems was still a long way off. We wanted to save
development time through early identification of issugs, integration and operational problems, as well as usability
problems. In the mock exercise we had 22 participants, who came from the development teams, operations and
maintenance, user groups, managers and customers. Observers were selected both from within and outside the
project. Observation posts were identified to include coverage of both individual system operation and overall
operations. Operational scenarios based on prior rebadging experiences were developed with hypothetical person's
to be rebadged. Realistic artifacts were acquired or created. Message and data communication between systems
was modeled using paper messages and records. Logistics were handled to turn a mothballed badge office into the
futuristic badge office of the exercise. The exercise took place over three half days. By the third day, we had
created a variation on the operational scenarios which held promise for a more streamlined operation. We also
gained insights on the interactions and communications between the systems and a list of important issues,
problems and action items was produced. This talk will focus on our approach to testing and discuss its costs and
benefits within the software development life cycle.)

Dwayne Knirk, Sandia National Laboratories

Establishing a Three-Way Agreement: Specification, Code, Test

After we complete software testing, what do we know and what don’t we know about the subject computing
system? What kinds of system tests will further reduce our ignorance about the suitability and correctness of the
computing system for its application? Software-intensive systems are expected to work in a particular environment
"to bring about desired effects in that environment. To accomplish these effects, the computing system must have a
variety of interactions with that environment. Its capabilities and features are directed to establishing a variety of
relationships between those interactions, including stimulus-response, constraint, and historical reference. To
establish such relationships are the services provided by the computing system. The given environment and
required effects in the problem are collectively documented as Problem Requirements. The computing system
interactions and services are documented Behavior Specification. The relationship between these two sets of

Presentation Abstracts: Wednesday, April 2 1997

information is an explicit and verifiable behavior design task. The Behavior Specification characterizes a
computing system independently of its application context. It provides a single reference point for all decisions of
software architecture and implementation as well as for test case and testware architecture and implementation.
Had we error-free development and testing processes, we should expect specific behavioral equivalencies between
the pairs (specification, code) and (specification, test). To the extent these processes are not perfect, we may have
defects in our code, our tests, or both.

This presentation explains the logical implications of the behavioral equivalencies, and interprets them in
operational terms. It described how testing provides a means of comparing software and testware behaviors and
. evaluating their behavioral equivalence to the source specification. An integrated testing approach is devised for
identifying deviations from the desired equivalence. The approach provides specific guidance for test design, test
execution, code design, instrumentation and data collection, and evaluation of test results. The presentation

concludes with a summary of what can be known through this logic-based testing approach and what remains tobe

examined in final system testing. The ultimate goal is validating the behavior of the resulting system through
measuring its effects in the application environment.

Session C1: Software Quality for Scientific Applications, 10:15-11:45 am, Bldg 822 Room C

John Ambresiano and Robert Webster, Los Alamos National Laboratory

Software Quality and Process Iimprovement in Scientific Simulation Codes

Today the reliance on high quality software is so important that standards for quality assurance are an integral part
of software development in both the public and private sectors. Yet as a community, research scientists have not
entirely embraced these methodologies and indeed are often leery of them. Is the problem with scientists, or with
the standards? As the questfor excellence in software is extended to government research activities, we must
understand this phenomenon and either modify how SQA standards are introduced to the scientific community, or
understand why they are inappropriate, and if inappropriate, how to modify them. A salient aspect of research
software development is that it usually involves a high degree of novelty and risk in the beginning. Only later, after
evolving through a series of prototypes, are concepts considered sound enough to be turned into production
software. This sometimes leaves scientists at a loss in deciding when to introduce. their products into the SQA
process. Too early and progress toward developing useful new concepts is impeded. Too late and high quality may
be impossible to assure. In this paper we apply process analysis and knowledge acquisition methods to study the
evolution of simulation models for nuclear technology applications from seminal prototypes to production design
codes. Using use-case scenarios and interviews, we will build a model of the simulation software production
process. We will also try to understand how the expert judgments of the scientists involved contribute to their
ranking of a software product’s quality and readiness for production. We will compare the results of this analysis to
the practices recommended to attain SEI's CMM level 2 certification. In doing so we will try to answer the
following questions: Which of these software development activities best fit a SQA model such as the SEI CMM
and which do not? Is there a modification of the CMM that allows research scientists to more easily introduce
their software at some appropriate stage into a standard SQA methodology?

Edward W, Russell, Lawrence Livermore National Laboratory

The SQA of Finite Element Method Codes used for Analyses of Pit Storage/Transport Packages

This presentation will describe the implementation of the SQA requirements of DOE/AL, Quality Criteria (QC-1),
Revision 8, July 1995, for Finite Element Method (FEM) codes used at the Lawrence Livermore National
Laboratory (LLNL) for conducting design and confirmatory analyses on pit storage/transport package designs.
This work satisfies the reguirements of the Defense Technologies Engineering Division (DTED) Quality
Assurance Policy and Plan for software management of activities associated with high risk, commensurate with
the LLNL risk-based graded approach of SQA implementation. Element 14.0, “Software Quality Assurance,” of
QC-1 dictates the following requirements: (1) organization, tasks, and responsibilities; (2) verification and
validation; (3) configuration management; (4) software documentation; and (5) reviews and audits. The FEM
codes controlled by this program are utilized for structural and thermal analyses. As an example, DYNA3D which
was originally developed at LLNL in the late 1970s, is a nonlinear, explicit, three-dimensional FEM solid and
structural mechanics code for amalyzing transient dynamic responses. Element formulations ‘include one-
dimensional truss and beam elements, two-dimensional quadrilateral and triangular shell elements, and three-

)

—

Presentation Abstracts: Wednesday, April 2 1997

dimensional continuum elements. Many material models are available to represent a wide range of material
" behavior. Sophisticated contact interface capabilities are available, such as frictional sliding and single surface
contact. The size of DYNA3D is roughly 100,000 lines of code with 700 subroutines.

The SQA implementation for FEM codes is guided by the commercial standard, ISO 9000-3: Guideline for
Application of ISO 9001 to the Development, Supply and Maintenance of Software, with increased SQA formality
as necessary to satisfy the requirements of the nuclear standard, QC-1. The IEEE SQA standards and guides were
consulted for guidance on format of the SQA Plan and associated specifications. The IEEE recommendations were
tailored for this application to meet the requirements of the governing document, QC-1. The requirements within
the DTED QA system to maintain and control high-quality software include the following documentation for FEM
codes: SQA. Plan, Requirements Specification, Design Description, Configuration Management System (CMS),
and Verification and Validation Report. The CMS uniquely identifies and controls code versions and changes, as
well as all pertinent baselines, procedures and documentation. Validation is accomplished by using a suite of
analytically and experimentally validated benchmark problems.

Orval hart, Los Alamos National Laboratory

Software Quality Assurance at the Weapons Engineering Tritium Facility

The Weapons Engineering Tritium Facility (WETF) at the Los Alamos National Laboratory began construction in.
1982 and finally received authorization to go -on-line in 1991. It was the first nuclear facility to receive
authorization under Admiral Watkin’s increased formality-of-operations. Due to the many changes in DOE orders
for nuclear facilities, the facility took longer than would be expected to get on-line. First it was “yes, we’ll
grandfather you in under the old regulations”, then it was “no, you will have to meet the new regulations”. The
WETF went through several Readiness Assessments (then called Safety Appraisals) and the Operation Readiness
Review before finally receiving approval to start operation. The WETF is unique, in that it was the first nuclear
facility to place what was previously administrative procedures (interlocks, etc.) into software that was monitoring
and controlling major operational aspects of the facility. The Instrumentation and Control System is designed to
be inherently safe, i.e., if any of the computers controlling the facility fails, the systems will fail safe. That is, all
valves are closed, all pumps stopped, etc. The facility cannot be operated in this mode, but is left in a safe state.
Backup procedures allow for the safe restarting of the facility. Many of the operational systems are automatic in
their nature, i.c., the ICS takes immediate action when an ‘operational’ abnormality occurs. Operation of the
facility, in general, is performed from Operator Consoles in the Control Area, as opposed to through switches or
hands-on in glove boxes. Due to this new method of operation, where software is involved in almost all operation
and surveillance of the facility, the DOE was ‘extremely’ apprehensive about how all this was to work. This
presentation will discuss the Quality Assurance program that was adopted to assure that the WETF could be
operated in a safe and reliable manner.

Session A2: Software Engineering Processes, 01:30-03:00 pm, TTC Auditorium

Michael Bell, Lockheed Martin Energy Systems

Function Point Count Adjustment by Means of Scaling Touched Function Points

The talk presents an adjustment method to function point analysis that will quantify the work effort involved in a
software enhancement project in terms of function points. The technique allows direct comparison of the
magnitude of work with the magnitude of functionality change, which is also measured and expressed in terms of
function points, The adjustment method is based on effort data that are ordinarily readily available, avoiding
complex and costly data collection requirements or subjective judgments. The technique accounts for software
development activities that are not directly measured by function point analysis. The adjustment may be used with
attribute analysis to predict and bascline a wide range of software development efforts.

Stewart Meyer, Westinghouse Savannah River Co.

Using An Automated Code Management System To Improve Configuration Control Practices

Using a configuration management tool (software library) is not something new, several organizations and Sites
use them. There are numerous tools commercially available, some claiming to be extensible and easy to customize.
We took a very simple tool and added a front end to it. This front end is the interface to the software libraries and

— e e e - -

Presentation Abstracts: Wednesday, April 2 1997

shields the users from knowing the command language -of the tool. In addition, the front end enforces the
configuration control policies as set forth in the QA plans and procedures. The methods are then consistent across
organizations and sofiware products that are managed using this system as a tool. The front end is a developed
product that may be used in other areas at the Savannah River Site, or other Sites, assuming the base system
components are available, Although this system is used by one section at SRS, it could be available for use by
others, without further investment in hardware. The key processes to improve were:

1. Identification of basclines; 2. Methods for verification of patches in a process control; environment; 3.
Performing concurrent development in a controlled environment; 4. Methods for implementing periodic
verification; 5. Configuration audits.

Outline of this presentation: -

1. Description of deficiencies in previous software CM methods;; 2 :Description of methods and practices changed
to foster improvements; 3. Description of SCMS system architecture and software tools; 4. Functional description
of the SCMS from a user perspective relative to CM practices.; 5. Discussion on how key processes were improved.

Karen Jefferson, Terry Porter & Todd West, Sandia National Laboratories California

Software Engineering and Graphical Programming Languages

In a Work for Others project for the Air Force, The Advanced Atmosphenc Research Equipment (AARE) software
team used National Instruments’ LabVIEW (a data flow graphical programming language) to control hardware
used to collect samples of airborne particulate and gaseous species. Along with developing control and data
collection software, the customer required MIL-STD-498 processes and documentation. This talk will discuss the
processes and tools developed to support this project from the requirements to testing phase. In addition, unique
aspects of the processes specifically tailored to graphical programming languages (such as coding standards,
coding documentation, and configuration management) will be presented.

Session B2: Internet WEB Applications, 01:30-03:00 pm, Bldg 822 Rooms A&B

Kevin Hill, Pantex Plant :& B¢’

Internet Strategies for Engineersmz

The tools avaiiable on the Internet have the potential to help engineers reduce costs and increase productivity. As
the amount of information available increases, so does congestion. Thus the Internet may be a victim of its own
popularity. Strategies for effective use become necessary. How can an increase rather tham a decrease in
productivity be achieved? A survey of engineers® Internet usage is the first step in the search for ways to optimize
time on the Internet. Two methods are used to advance this search. The first is the interpretation of survey results
and follow-up questions. The second is via literature review. Standard search methods in conjunction.with human
networking can make the Internet a more productive tool. Concemns which have restricted Internet-usage, such as
reliability of solrces, and unwanted leaking of information are addressed. Survey results and analysis-provide a
forum to initiate a discussion of this powerful tool’s (the Internet’s) impact on engineering efficiency and scftware

quality.

David Leong & Fran Current, Sandia National Laboratories

Exploiting the Intranet: A New Architecture for Enterprise Information

The Intranet is an architecture for viewing information within the enterprise. This architecture is based upon the
World Wide Web standards. With the global Internet as a proving ground, this architecture is proving to be a very
formidable information system for corporate uses. One of the strongest features of an Intranet is its inherent cross
vlatform support. Applications are functional on PCs, Macintosh, and UNIX platforms. The basic purpose of most
intranets today is the electronic delivery of corporate documents. These documents are typically of a static nature;
cozrporate policy, manuals, newsletters. With the presentation capabilities of a web browser, compelling documents
with integrated text, graphics, sound, and even video:can be delivered via the Intranet. Hypertext links allow
documents to be integrated in a way that makes knowledge even more accessible when compared to print media.
Database access through a web interface is also a very powerful tool to the corporation. Query access to MIS
systems typically living on the mainframe can now be made available to everyone on the Intranet:~By adopting a
three tiered client-server strategy, the web can become a graphical interface to legacy systems. Now the
corporation’s electronic phone book, human resource information, and financial reports can be delivered via a web

Presentation Abstracts: Wednesday, April 21997

browser. Creating interactive web interfaces involves additional technologies. Security, workflow, and the ‘Javas’
(JavaScript from Netscape, and Java from Sun). In the area of security, authentication and authorization are very
integral to client-server applications that allow the user to update information. Transactional based workflow is
also necessary to route task requests among workgroups in the enterprise. Standard HTML forms offer a stateless
user interface. By using Java and JavaScript, one can create applications that establish connections and provide
field level event handling on the presentation tier of the application.

This new paradigm for delivering information is not without its share of challenges. Cultural and political barriers
exist that must be addressed with the same vigor as the technical challenges. An enterprise solution must have
input from users within that enterprise. It is necessary to show the users how the enterprise Intranet can make
their daily job easier. The enterprise web (Intranet) is a scalable productivity tool for the corporation that will
enhance the way employees do their job.

Jennie Negin, Sandia National Laboratories

“Rightsizing” Software Quality for a Web Services Organization

This presentation describes variations of software engineering and project management as applies to an
organization that is supplying services for Sandia National Laboratories’ Intranet on a cost recovery basis.

Session A3: Software Process Improvement 1, 03:15-04:45 pm, TTC Auditorium

Don Schilling, AS/TFM&T

Quest for Excellence 1996: Reaching for the Stars

In the Spring of 1995, a need for software process improvement arose when DOE requested that certain software be
handled as product. A solution was needed quickly to meet critical production scheduleés. This presentation
summaries the actions and the processes that were followed in developing and implementing a solution for FM&T
to handle product software. It discusses the Total Quality improvement process used and the outputs which were
developed. The presentation is based upon the presentation given at AlliedSignal in the Quest for Excellence
competition. The Quest for Excellence is a corporate-wide competition designed to show case process
improvement. The team won the Teamwork Award for their efforts in defining a system which worked
successfully and minimally impacted critical production schedules. This presentation also ties in with the tutorial
of how the Nuclear Weapons Complex projects should be handling software as a product in response to
Engineering Procedure EP401099. It shows one sites struggle in defining a workable process to meet customer

expectations.

Don Rathbun, AS/FM&T

Command Media System at the Kansas City Plant (KCP)

The Kansas City Plant was certified to the ISO9001 Standard in April 1995, followmg a successful audit by Third
Party Auditor, Det Norske Veritas (DNV). The KCP has also successfully passed three six-month periodic audits
by DNV subsequent to receiving certification in 1995. A new on-line Command Media System was developed
and implemented to help ensure control of the documents associated with the KCP business processes. This
control is demanded by the International Organization for Standardization to receive ISO9001 certification. The
new on-line system is based upon the KCP Business Model. New Process Descriptions (PDs) and Work
Instructions (WIs) were created by the KCP Process Owners for each process and released in the Command Media
System. The development of the KCP Business Model and the new Command Media System will be discussed
during the presentation, including how to access the system and structure of documents within the system. Also to
be discussed are the operational structure in place to manage Command Media and proposed improvements to the
system in 1997.

Michael Tiemann, Headquarters Department of Energy

Departmental Information Architecture

The Information Technology Management Reform Act of 1996 requires agency Chief Information Officers (CIO)
to develop, maintain and facilitate the implementation of sound and integrated information technology
.architectures. Notwithstanding this act’s formalization of this recent requirement, the Department of Energy’s
Designated TRM official, the Assistant Secretary for Information Management, decided well over a year ago to

Presentation Abstracts: Wednesday, April 2 1997

establish a Departmental or enterprise-wide Information Architecture. As described in the published document the
Department of. Energy Information Architecture, Volume One, The Foundations, dated March 1995, the
Departmental Information Architecture is a high level, principles and standards based framework within which the
majority of programmatic, organizational and field site architectures should be developed and implemented. 1t is
intended to be a template that can guide all information management acquisitions, activities, projects,
developments, solutions and implementations. In order to help achieve this goal additional documents have been
written to further explain and define the Architecture. Two additional volumes, Baseline Analysis and Guidance,
(Information Architecture Volumes Two and Three, respectively) have been published to describe the current or
defacto Departmental Information Architecture and to provide specific guidance on the establishment of
Information Architectures within other organizational components of DOE. The intent is that they will be treated
as nested organizational subarchitectures within the overarching Departmental Architecture. The Baseline
Analysis document identifies many of the challenges facing the Department in regard to the divergent, often
incompatable, obsolete, or non interoperable technologies and systems currently deployed as well as the duplication
and redundancies, inheritant in the applications and data structures. The Guidance document provides useful
guidelines for architectural activities in all life cycle phases for DOE and its partners and stakeholders. In addition,
there are several architectural standards related documents being published and widely distributed. Presently there
are numerous architectural efforts underway at various sites and within several of the major programs. It is the
intent of the Office of the CIO to support these activities and to grow this approach further throughout the entire
DOE community. .

This presentation will summarize the above documents and related actions and activities to date regarding the
Departmental Information Architecture Program and explain the future directions as the Departmental Information
Architecture becomes the Chief Informatmn Officer’s central component in the comprehensxve Departmental

— Information Management Stxategy

Session B3: High Integrity / Formal Methods I, 03:15-04:45 pm, Bldg 822 Rooms A&B

Larry J. Dalton & Marie-Elenz Xidd, Sandia National Laboratories

Meeting the High Integrity Software Needs of Today and Tomorrow

Quantifiable measures of the reliability, safety and security for software-based systems remains an elusive goal
even after decades of research. Such systems continue to be a major source of safety and security catastrophes.
These catastrophes include the of loss of life, environmental or economic damage, and loss of public confidence. In
spite of these catastrophes, the usage and complexity of software-based systems in high-consequence applications is
_continuing to increase. This growth, with the associated safety and security risks, presents a national challenge to

“the R R&D community. Sandia National Laboratories established a High Integrity Software research projectin 1995

to begm to address the challenge. The first of two research areas, the Correctness Track, is focused on creating the
" abilityrto create software that is “correct by construction.” Research projects include advanced concepts for the
capture of software specification/requirements, validation through intuitive and visual reasoning and mathematics
for correctness preserving transformations covering all steps from specifications to executable code. The second
research area, Systems Immunology, is directed towards in-situ techniques and technologies to enable real-time
“fanit detection and safing control (fault response). Systems Immunology research projects include Software Event

- Execution Reliability (SEER), Dlgltal Isolation and Incompatibility, and Top-Down Fault Analysis of
'Microprowssor Systems.

Victor ‘Winter, Sandia National Laboratories ’

An Overview of the AST Software Construction Methodology

AST is a formal method that is being developed within the High-Integrity Software (HIS) project at Sandia

‘National Laboratories. AST stands for Abstraction, Synthesis, and Transformation. Within AST, abstraction,

deductive synthesis, and transformation techniques are used to enable the automation of a significant portion of the

software construction and verification process. Furthermore, within AST the impact of human involvement is

limited to such an extent that it can be formally verified. In AST, the role of synthesis is to construct abstract

algorithmic solutions to problems from nonalgorithmic specifications (e.g., precondition and postcondition pairs).

_ This is accomplished by using a sophisticated search engine such as an automated reasoning system to resolve (or
_.Temove) the nondeterministic choices that are present in the initial nonalgorithmic specification. Complementing

10

T - O D SR
. WA RN v P T A et R T -SRI BPEES RCrEEATH CAE 3 v A S AP ™ T . ' Sal L A

"

Presentation Abstracts: Wednesday, Apr.il 2 1997

synthesis within our methodology, the role of refinement transformation is (1) to optimize solutions that are
obtained in the synthesis step, and (2) to introduce low-level (e.g., machine oriented) algorithmic details for the
purpose of (ultimately) producing a machine executable implementation satisfying the original nonalgorithmic
specification. Currently, AST is restricted to a somewhat well-behaved subset of reactive systems that we refer to as
single-agent reactive systems. Because the burden placed on the synthesis portion of our methodology can be
enormous we have found it useful to distribute the synthesis process over an abstraction hierarchy. In order for this
approach to succeed, the abstraction hierarchy must have the property that a solution at one level of abstraction
“benefits” or “can be used to guide the construction of” a solution at the next lower level of abstraction within the
hierarchy. In essence, what is going on is that an algorithmic skeleton is being synthesized at one level of
abstraction and is then in some sense “passed down” to the next level in the abstraction hierarchy. This process
continues until a machine executable algorithm has been obtained. An undesirable consequence of this approach is
that the synthesized algorithms tend to be sequential in nature (i.e., completely parallel or concurrent solutions
cannot be readily synthesized in this framework). Fortunately, it is well within the capability of refinement
transformations to take a sequential specification of a problem and to then transform it into an efficient parallel
solution. This talk gives an introductory overview of AST as well as a brief example of how transformation
techniques can be used to compliment synthesis.

Alex Yakhnis & Vladimir Yakhnis, Pioneer Technologies

Towards Automated Construction of Dependable Software/Hardware Systems

Many observers have recognized that software/hardware systems built by Government and by Industry can be very
complex. It may be difficult to establish dependability and functionality of such systems. Here are some of the
questions that existence of such systems raises. (1) How a software/hardware system should be documented in order
to be understood by users and customers of various backgrounds? (2) What should be established in order to
conclude that the system is acceptable? (3) Finally, since the system intent is often evolving in the course of system
design’and use, how should we modify the system to reflect this evolution while preserving the system
dependability? Here are some of the approaches which are presently used in Industry in order to resolve the above
questions: (1) Presenting a system as a hierarchy of models where the levels of the hierarchy would represent
various levels of abstraction. Then an observer could look only at the levels of hierarchy that do not have details
that are of no interest for the observer. Another approach to document a system is the object oriented approach.
Here, systems are understood through understanding of individual objects from which the system is composed and
of interactions among objects. Usually, the approaches are not combined. Also, thus far applications of object-
oriented approach were mostly limited to the software-only system components. (2) Exhaustive testing that system
behaviors satisfy the requirements. The problem here is that exhaustive testing is not possible even for moderately
complex systems. An approach to overcome this is to formalize system requirements, to accurately model the
system that is being constructed, and to produce a mathematical proof that the system model satisfies the
requirements, However, so far, this was done with respect to system components only. Moreover, correctness proofs
are usually not applied to several software constructs, e.g. communication among objects. (3) Maintaining system
requirements, models, design, and simulation information in a single data base capable of containing many system
versions. However, such a data base alone would not insure that the next version would be as dependable as the
previous one. In this talk we will describe a direction of work on how to get better answers to the above questions
on the basis of mathematical modeling, formal methods, and multi-agent strategic approach. These methods are
aimed to achieve industrial strength automation of system specification, design, correctness proofs, and
maintenance without exhaustive testing. Mathematical modeling and formal methods are beginning to be
recognized in Industry as promising approaches to deal with high complexity of systems. The formal methods
groups have been formed at Intel, Motorola, and HP.

11

-~ s ¥ . e v T e

Presentation Abstracts: Thursday, April 3 1997

Session Ad4: Software Process Improvement II, 08:30-10:00 am, TTC Auditorium

" Cathy Kubn, AS/FM&T =

AlliedSignal Capability Maturity Model Assessment & Improvement Processes
This presentation provides a summary of the processes used by AlliedSignal to assess progress against the Software

‘E:ngineering Institutes Capability Maturity Model and the use of this assessment data to plan and implement

gxganizational process improvements. AlliedSignal corporate has committed to achieve CMM Level 3 at sixteen of
its key business units within the next three years. This strategy is a key component in an efiort to develop a
competitive advantage in the aerospace business. What’s unique about this initiative is that it is being applied to
Information Systems. Staff at the AlliedSignal Aerospace Center for Process Improvement and the AlliedSignal
Corporate Information Systems group have developed the methods and materials-to assist business units in this
strategy. Six certified SEI examiners have been trained to conduct progress assessments and supporting material
have been developed. Included in this material is a process guide for using assessment results to plan and drive
organizational improvement. Each business unit is scheduled for a formal assessment every 6 - 8 months.
Quarterly self-assessment metrics are provided by each business unit and are used to track progress. The
presentation focuses on the contim‘x_.ggs‘;,improvement cycle implemented at the Kansas City site as a result of

repeated assessments and planning.

Ann Stewart, Lockheed Martin Energy Systems

Lessons Learned on Ultilizing the SEI/CMM in the Federal Government Work for Others Environment

Pata Systems Research and Development (DSRD), a division of Lockheed Martin Energy Systems, Inc., has
developed a- specific approach in applying the Software Engineering Institute’s Capability Maturity- Model
(SEI/CMM) that has been successful in our customer focused environment of research and development within the
federal government. This approach is based on establishing an orderly and understood infrastructure consisting of
three major building blocks, controls, processes, and information. This infrastructure is sustained through a strong
quality program emphasizing technical, peer, and management reviews and quality audits and surveillances. This
paper describes the tactical application of this approach and DSRD’s experiences and lessons learned in three years
of implementation.

Gail Benefield, Lockbheed Martin Energy Systems

“SWiM™ Your Way to Software Quality

£ company quality improvement effort has many aspects. At Lockheed Martin Energy Systems at Oak Ridge, a
software development methodology called Software WorkPackage Methods (SWM) has been created and can be
considered part of the company’s quality improvement efforts. SWM is a methodology for managing, developing,
-and supporting information system projects and applications. It is composed of methodology guidelines, role
definitions and assignments, and work packages. The work packages ‘dre in the form of work breakdown structures
suitable for project estimating, planning, and management. - SWM, provides development and support processes
which are customizable, yet repeatable. It keeps pace with new software development methods and techniques and
provides automation support for the project estimating, planning, and management.

Session B4: High Integrity / Formal Methods IT, 08:30-10:00 am, Bldg 822 Rooms A&B

Mikhail Auguston, New Mexico State University

Debugging Automation Tools Based on Event Grammars and Computations over Traces.)

Dynamic program analysis is one of the least understood activities in software development. A major problem is
still the inability to express the mismatch between the expected and-the observed behavior of the program on the
‘level of abstraction maintained by the user. We propose to design software testing and debugging automation tools
based on assertion language concepts as well as on precise program execution models. We are developing a
PARFORMAN language for the description of computations over execution histories of target programs that
provides a basis for tool development for assertion checking, .debugging queries, execution profiles, and
performance measurements. We use assertion language mechanisms, including event patterns and aggregate
operations over event traces, to describe typical bugs and debugging rules, and to evaluate debugging queries. An
event grammar provides a sound basis for assertion language implementation via target program automatic
instrumentation. These tools and methods may be useful for software testing, debugging, documentation, and

12

g Y 7 m——— e o

.
l""

Presentation Abstracts: Thursday, April 3 1997

maintenance of software systems. Our approach is nondestructive, since assertion texts are separated from the
target program source code and can be maintained independently. Assertions can capture the essential dynamic
properties of a particular target program and can formalize the general knowledge of typical bugs and debugging
strategies. Event grammars may be designed for sequential as well as for parallel programs. Examples of
assertions and debugging rules for run-time detection of bugs and bug localization are presented. We have
developed a prototype implementation of the assertion checker and debugging rule evaluator,

Marie-Elena Kidd, Sandia National Laboratories

A Method for Critical Software Event Execution Reliability in High Integrity Software

When high consequence systems rely on software for critical control functions, they require high integrity software.
A major concern of high integrity software is ensuring the faithful execution of critical software driven event
execution sequences. To meet system performance criteria, high integrity software must execute correctly and
reliably. In addition, in the presence of transient hardware or software faults in both normal and abnormal
environments, safety and security objectives must be maintained. A reliable, repeatable method and -application
techniques are needed to address these issues. Qur technical approach involves an in-situ (embedded in the
software) dynamic (run-time) fault detection and mitigation method for ensuring critical event execution
sequences in high integrity sofiware. Our method is based on deriving a mathematical description of the critical
software controlled event execution sequence from a sofiware model or the software requirements, embedding
check points and update points based on that mathematical description into the target code, and adding a software
module that implements the functionality of the underlying mathematical model. This extra software is added to
the target code to verify that the correct software event execution sequence is maintained.

John Sharp, Sandia National Laboratories
Business Rule Enforcement Via Natural Language Modeling . .
The topic of my presentation will be business rule enforcement using Natural Language Modeling. A well defined
procedure will be explained that allows subject matter experts to specify requirements and then be held accountable
for them. I will convey a fundamental truth: ‘That requirements can always come in the form of precisely
analyzed, elementary natural language sentences.” Requirements include both facts that result in tables for
populating data and business rules that do not change the table structure, but they do restrict the population of
otherwise good facts in existing tables. A brief review of analysis results will now be discussed to allow you to
understand a portion of the capabilities of this procedure. The following sentences all require external data to
populate the instances of knowledge that is desired to be maintained.

Professor has degree in subject.

Course requires minimum degree level in subject

Professor teaches course.
Referential integrity applies, in that populations of the third sentence must be from known populations of professor
and course in the first two. These sentences cannot enforce the business rule that a professor must be allowed to
teach a course before he can be assigned to teach the course. I define this requirement as a “business rule” because
no other fields are needed to store the data than appears in the previous three, but the rule can be enforced by
starting with the derived sentence:

Professor is allowed to teach course. .
This sentence is a derived fact (an SQL query can be established with appropriate triggers) and a set theory rule
can be applied to restrict the population of the third sentence. This rule is:

The professor teaching a course must be a subset of the professors who are allowed to teach that course.
All “business rules” can be written as either direct set theory constraints against facts that are externally populated
or as derived fact(s) and set theory constraints against other facts or derived facts. The benefit of Natural
Language Modeling is that all of the experts and users can understand and be held accountable for the specification
of the design because it always exists as a set of understandable sentences. Transformations of this knowledge set
can be made into any graphical technique (including relational and object-oriented methods) but I do not know of
any graphical presentation that can handle all of the knowledge captured.

Presentation Abstracts: Thursday, April 3 1997

Session AS: Software Process Improvement I, 10:15-11:45 am, TTC Auditorium

Larry Desonier, Sandia National Laboratories . .

Guns for Hire - Experiences of Quality Software Development Under the Gun :

In today’s software development environment, a major concern is the quality of the software. Sometimes getting
the quality boxes checked seems to take precedence over implementation and delivery. There exists a way to both
perform rapid development and have a quality product. There is a saying that 80% of the work gets done in 20%
of the time, and the rest may never get finished. The question here is simply can quality software be developed
when (1) 80% of the dollars are spent, (2) only 20% of the work is complete, (3) there is 6 weeks to delivery, and
(4) no code has yet been written (and the team estimate is many months to code completion). This is just the
situation for a “Guns for Hire” team. In some organizations this would be known as a type of “Skunk Works” or
software “Swat Team.” Our experience has shown that with the right size team, the right skills mix of
individuals, and some disciplined development practices, quality software can be developed and projects can be
saved. This discussion will reflect on projects accomplished in just this manner: projects developing user interface
or command console software, a PC-based graphics display for alarm annunciation, material and personnel
tracking systems, a taxi-way monitoring system, and others. This would not be possible without an experienced
team, standard development practices, actually reusing code (yes, it is possible), and strictly disciplined
development practices. The successes of this process paradigm is why the “Guns for Hire” team is continuously in
demand. :

Bruce Johnston, Pantex Plant .

The Year 2000 Challenge: A Project Management Perspective

Today we are faced with the biggest threat to computing ever discovered. As the year 1999 makes its final tick into the year
2000, many time-sensitive business applications like accounting, payroll, project management and many, many more will either
completely fail or make disastrous mistakes. Why will this happen? In the 1970's and early 1980's when data processing shops
were buying mainframe computers by the truckloads, the high cost of memory persuaded programmers to drop the century
digits from a-date field to save two bytes of memory. Although shortsighted, this practice was universally accepted because
these early computer applications were not expected to be in operation today. Using only two digits for the year 1996, for
example, is represented simply “96. This means when the year 2000 arrives, tens of thousands of old software programs still
in use will think the year is 1900. If the doomsday predictions hold true only half of the worlds computer applications will be
completely fixed or replaced before December 31, 1999. This will be a real challenge: finding, changing, and testing date
parameter software changes and the challenge will be an even greater Software Quality Assurance problem for legacy
programs. This paper will address the year 2000 challenge from a project management perspective and give insight into
managing the project of the century.)

Curt Holmes, Lockheed Martin Enérgy Systems

Year 2000 Awareness '

The Date 2000 challenge has been referred to as both a technical problem and a business risk. It has also been
called the single largest information technology project which corporations and government agencies will
undertake in the next several years. Current estimates for the cost of remediating Date 2000 software problems in
the U.S. range between $600 billion to $1000 billion, and are increasing. The problem will affect all hardware
platforms and all software systems in various ways and with unpredictable results. On average, organizations are
finding that over 80% of their existing applications portfolio is impacted by two-digit year date processing (i.e.
19xx). Some systems will shut down, while others will corrupt data and generate spurious output. In all cases, the
business operational risks, resulting from the failure of internal operating systems, far out weigh the potential cost
of remediation. The purpose.of this presentation is to create an awareness of Year 2000 issues, promote
collaboration among DOE sites, and propose electronic sharing of resources to save money in infrastructure and
software resources costs. ‘

14

Presentation Abstracts: Thursday, April 3 1997

Session BS: High Integrity / Formal Methods II, 10:15-11:45 am, Bldg 822 Rooms A&B

John Hare, AWE UK

ISO and Software Quality Assurance

Emerging International Standards now promise a global approach to Software Quality Assurance; ISO/IEC 12207
provides a framework for Software life cycle processes that has already attracted the attention of both US and UK
customers. The ISO 'SPICE' standards give international weight to the concept of self-assessment, and a model that
could take the SEI CMM world-wide. Previously our customers have independently developed their own
standards, which include QC-1, AQAP 150 and DefStan 05-95. Whilst ISO9000-3 can be adopted for assessment,
this is non-mandatory and has not been well received in the US although widely used in Europe. TickIT, the
scheme for third party assessment, could refocus on ISO/IEC 12207. This presentation reviews customer
requirements and the new International Software Standards, with particular emphasis on ISO/IEC 12207 and
SPICE. It is concluded that ISO Standards will become a dominate driver for Software Engineering, and could now
succeed in promoting a world-wide approach.

Larry Rodin, Pantex Plant)

Licensing and Certification of Software Professionals

This report presents information on software engineering certification programs, licensing of software engineers,

reasons to become certified, certification as a condition of employment, the body of knowledge and examination

structures for the certification programs, and an overview of the Institute of Electronic and Electrical Engineers

recommendations for software engineering as a profession. .

The Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Managers completed a

Work Item to research software-related certification and licensing efforts and provided status reports to the

Quality Managers. A white paper was a significant result of that work item and this presentation has been

updated to reflect changes in the licensing and certification processes.

Certification is a voluntary process administered by a professional society. Licensing is a mandatory process

administered by government. Two professional organization have been identified as having or developing

certification programs, and one state has developed legislation for a licensing program:

¢ The Institute for Certification of Computer Professionals (ICCP) has two levels of certification — Associate
Computing Professional, and the Certified Computing Professional; '

e The American Society for Quality Control has implemented its program for Certified Software Quality
Engineer; .

® New Jersey is the only state identified as actually enacting software development legislation, their licensing
program covers "software designers”.

Included in the presentation are considerations and implications for licensing and certification. What problems are

we solving by having licensing and certification. Equal Employment Opportunity (EEO) laws will be discussed to

address issues such as: can certification testing being considered discriminatory; or can certification as a condition

of employment be considered discriminatory.

Michael Lackner, AS/TFM&T .

Operational Excellence (Six Sigma) Philosophy: Application to Software Quality Assurance
The Kansas City Plant, as part of AlliedSignal Aerospace, has committed fifteen individuals to each receive four
months of training in Six Sigma and at least a year in the position established as a Blackbelt. Six Sigma is a
philosophy of doing business encompassing the methodologies of defect prevention (versus defect detection) through
the use of statistical tools, i.e., process mapping, design of experiments, and process controls. Business includes
providing any product or service. Continuous improvement to the way business is performed is achieved through the
identification of optimal target values in products and processes, and the reduction of variation around those targets.
An overview of the tools and training will be discussed, along with the application to the processes included in
Software Quality Assurance. :

-

15

Session Z: Keynote Tutorial

Dr. Dave Parnas
NSERC/Bell Industrial Research Chair in Software Engineering

_.McMaster University
Ontario Canada
Session Title
Z0 |"Design Through Documentation: The Path to Software Quality"
71 ["Inspection of Critical Software”
Z2 |"Exercise & Discussion':

Dr. David Lorge Parnas

Keynote Tutorial

Professor David Lorge Parnas, PhD holds the NSERC/Bell Industrial Research Chair in the
Communications Research Laboratory, Department of Electrical and Computer Engineering at
McMaster University in Hamilton, Ontario, Canada. His primary area of interest is to promote
the discipline and body of knowledge to Software Engineers as practiced by engineers in other
fields. By studying the problems of software engineering since 1965, Dr. Parnas has developed
principles and methods that have value to real world problems. In recognition of his
accomplishments, he has received numerous honors, including election as a Fellow of the Royal
Society of Canada and a Fellow of the Association for Computing Machinery.

Dr. Parnas will share his experience and knowledge by leading the three workshop/tutorials
described on the next page.

David Lorge Parnas McMaster University Hamilton, Ontario
NSERC/Bell Industrial Research Chair in Software Canada 1.8S 4K1

Engineering Phone 905-648-5772

Communications Research Laboratory FAX 905-648-5943

Department of Electrical and Computer Engineering Email parnas@qusunt.crl. McMaster.CA

Z0: April 11997, 09:00 - 11:00 am, TTC Auditorium
"Design Through Documentation: The Path to Software Quality"

In traditional engineering design, a series of documents precedes the actual construction of the
product. These documents permit review and analysis, then after revision, serve as input to the
next phase. When the (inevitable) errors are discovered and changes are required, the design
documents already on file are updated and reviewed again. Each new refinement is reviewed
against the previous documents.

In software design this "waterfall" method is almost never applied. Although it is appealing,
practitioners are not able or willing to write precise documents. Instead, they write vague blurbs
that are useless to those charged with the next steps and cannot be subject to rigorous analysis.

We will describe how precise, complete, and testable documents can be produced for software
and the ways that these documents can contribute to an improved sofiware process.

Z1: April 11997, 01:00 - 03:00 pm, Bldg 823, Breezeway
"Inspection of Critical Software"

Software is devilishly hard to inspect. Serious errors can hide in a software product for years.

People are hesitant to employ software in safety-critical applications. Many companies are finding

correcting and improving software to be an increasingly burdensome cost.

This talk describes a procedure for inspecting software that consistently finds subtle errors in
"mature” software, software that is believed to be correct. The procedure is based on three key
ideas:

e The software reviewers are active not passive
e Reviewers focus on small sections of code.

» Reviewers proceed systematically so that no case and no section of the program gets
overlooked. ‘

During the procedure, the inspectors produce and review mathematical documentation. The
“mathematics allows them to check for complete coverage; the notation allows them to proceed
systematically and in small steps.

Z2: April 11997, 03:00 - 035:00 pm, Bldg 823, Breezeway
"Exercise & Discussion"

Participants will be given a small program and will apply the documentation and inspection
methods to them. This will be followed by a discussion of previous experiences in question and
answer format. '

.

p—

-,

L

)

« McMaster University a

R

| blurbs that are useless to those charged with the next steps and

Design through Documentation:
The Path to Software Quality

David Lorge Parnas

NSERC/Bell Industrial Research Chalr in Software Engineering
Communications Research Laboratory
Department of Electrical and Computer Englnesring
McMaster University Hamilton, Ontarlo Canada L2S 4K1

Abstract

In traditional engineering design, a series of documents
precedes the actual construction of the product. These
documents permit review and analysis, then after revision,
serve as input to the next phase. When the (inevitable) errors
are discovered and changes are required, the design documents
already on file are updated and reviewed again. Each new
refinement is reviewed against the previous documents.

In software design this “waterfall” method is almost never
applied, Although it is appealing, practitioners are not able or
willing to write precise documents. Instead, they write vague,

cannot be subject to rigorous analysis.

We will describe how precise, complete, and testable
 documents can be produced for software and the ways that
these documents can contribute 1o an improved software
process.

PS g n = [ab

Software Engineering Re ”_Gtvu;
Sconnectng theoty with pracsce”
b designdocalides A2 19960735
= McMaster University «
Why i r n lem?

Developers consistently underestimate the difficulty
of building software for long-term use.

They write software rather than design it.
They do not:

« systematically, identify and record requirements,

* hold reviews of the requirements document,

« explicitly design, document and review software

- structure,

« carefully inspect all designs and programs. ’
These steps are standard practice for all engineering
products other than software.

The steps are not taken for software because,
» “Software is easyl”
* “The code is self-documentingl”

* “Software is just a set of instructions.”
« “Anyone who knows the language can program.”

Famous last words!

s McMaster University «

I: B war Lower

Software is a collection of software components.

* Nobody can build products as one big “blob”
* Everyone wants to re-use software components
* “Components are junk!” (industry leader)

What'’s the problem?

» Components are hard to re-use (hidden assumptions)
" » Components have complex interfaces

+ Components are not well documented

* The design process does not emphasize these issues.

A3, 19960723

« McMaster University =

o . o Lan
Software Engineering Research er;,r
“connectng theoly with practes”

April 3, 1996 0735

Why Don’t People Apply Engineering
Discipline 1o Soft >

(1) Some don’t have an engineering education.
(2) Some don’t think it’s necessary.
(3) Some don’t know how to do it.

Why don’t we demand that software péople have
appropriate gualifications?

Experience shows that it is necessary.
In this talk I want to focus on how to do it.

o wons B +Lab

14

Software Engineering Research Group
i g LOry with pract

Ap 19960735

= McMaster Unlversity «

The Relevance of Documeniation

“We have better things to do than document”
“We sell code, not design documents.”
But,

» We cannot collect, review, or check requirements for
completeness unless we document them.

* We can’t make, review, or live up to structural
decisions unless they are documented.

* "We can't inspect designs, without design
documentation.
« We can best inspect programs with the help of
program documentation.
Design through documemauon is the key to better
software.

s McMastor University »

n $ Lok

Somvro Engineecing Research Orwp
theory wit

g P

A3, 19960735

= McMaster Univarsity «

wo A fB ware:
(1) Better design-
(2) Better documentation
Two A fB r Documentation

(1) Better design (easier to document) -
(2) Using mathematics, which is

* more compact,

* less ambiguous,

» more useful (mechanically interpretable)

than natural language.

-Two Aspects of Better Design

| (1) Following Software Design Principles

(2) Raising consciousness: documenting design.

In other words, design and documentation are
irrevocably linked. They help (or hurt) each other.

Writing Down Requirements

The most costly errors are those made early in the
process - they are the hardest to change.

Misunderstandings about requirements lead to early
mistakes.

Pre:;:.2 snmers need to be told what is needed.
They must also be told what is subject to change.
Requirements must be subject to review.

Safety reviews of software must be based on a
previously agreed statement of requirements.

Maintcnance actions must be based on requirements.

None of these things is possible unless we have a
written statement to work with.

i “hat written statement must be precise and
gomplete.

Cotmuﬂuﬂom Rm-'eh leomory
Group
. “connectog twoly with practios

April 2, 19960723

= McMastor University =

AprR 2. 1996735

What’s Wrong with Reguirements Methods?

We think of requirements as a set of elements, each
element being one requirement.

Consider three such requirements.

» The output must be an integer.
« The output must be positive.
« The output must not be zero.

Consider an alternative formulation:

« The output must be 2 natural number
These are equivalent - one requirement or three?
‘We cannot count requirements or list them?

If we try, we have no hope of checking for
completeness, consistency, correctness.

There is a better way, based on the basic model used
in control theory.

(2

Comr:nluﬂm Resesarch Laboratory
Englneering R h Group
g Seory with p

AR, 1960725

—

= McMaster University =

How to document system requirements?
The first step is to:)

Identify monitored variables (my, mj, eee, m,).
Identify controlled variables (cy, c,, oo, Cp)-

The primary monitored variables are things outside
the system whose values should influence the output
of the system. Examples: °

* customer meter reading
* steam temperature
« time of day
The primary controlled variables are things gutside

the system whose values should be determined by
the system. Examples:

« what the operator sees

=what appears on a bil

= control positions
This is only the beginning, but for many projects you
cannot even find a complete list of these variables
and there is no agreement on what they are.

o~ o, R, h L abh

:%M. Enginescing Research Gfou;':
*connecing theory with peactee”

Apell 3, 1996 0735

s McMasterUniversity «

Bringing Time into the Picture
All of these variables can vary with time.

For each scalar variable, x, denote the time-function
describing its value by “x*”.

The value of x at time t is denoted “xt (£)”".

The vector of time-functions (v'y, v%,, ..., v%,) will be
denoted by “v*”,
Contrary to the statements of some computer

scientists, there is no problem dealing with “real”
time. .

1n

A 3, 1996 0135

s McMaster Unlversity .

Monitored and Controlled Variables Will Be
Added During The Desian Process.

It is inevitable that the need for additional variables
will be discovered as we get into detailéd work.

Further, new monitored and control variables are
created during the design process.

The primary monitored and controlled variables are
outside the system.

Sometimes we want to monitor the sysiem itself, i.e.
measure things that did not exist before the system
was built,

Sometimés we may even want to control (adjust)
parts of the system.

As the design is developed, we may add these

requirements document.

It is essential that the document be updated.
Otherwise reviewers and maintainers are lost.

monitored and controlled variables to the|

10 dexigndocsiides AprlY, 19960735

= McMaster University =

‘Bringing Math Into our Tool Kit

The implementors need to know the following
relations:

Relation NAT:
¢ domain contains values of ;', range contains values of &,
* (m', <) is in NAT if and only if nature permits that behaviour.

This tell us what we need to know about the
environment.

Relation REQ;

+ domain contains values of m', range contains values of &,

* (m', &) is in REQ if and only if system should permit that
behaviour.

This tells us how the new system is intended to

further restrict what NAT(ure) allows to happen.

If we can describe these relations, we have our
system requirements written down.

We can get the “scary” math out of the documents
by using the right notation.

P " Lah

. 8% P0ry with pr

Aeril 2, 19960733

= McMaster University «

Wh This Approach?

(1) For all the “motherhood” reasons that we try to find
the requirements first.

(2) Because we can check for completeness.

(3) Because we can check for consistency.

(4) Because we have a precise description.

(5) Because we have a reviewable document.

(6) Because we can often simulate the system.

(7) Because the design can be based on the document.
(8) Because the programming goes much faster.

(9) Because the programmers work consistently and do
niot duplicate each other’s work.

(10)Because we will discover ways to éimplify the system.

(11)Because we can build monitors for tesung or
zupervising the system.

Why not?
(12)Because it requires some training,.

(13)Because it is a risky front-end investment that slows
down the initial part of development.

ARl 319960755

s McMaster Unlversity =

When Can We Skip System Design?’

Sometimes the I/O devices are simple and we can
have simple relationships between the controlled and
output variables as well as between the monitored
and controlled variables.

In that case, we can use the systems requirements
document as a software requirements document.

Many applications have this property.

In some, we can cheat and mix the two.

Software Enginsering Ressarch Grouﬁ
“connectng taory with practes”

Al 3, 1996 0735

s McMaster Unlversity «

How can w men m ign?

i denotes the vector valued time function

(iYy, ity, eee, i) with one element for each of the
input reglsters

v

o denotes the vector vaiﬁxéd time function
(oY, Of, eee, Of q) with one element for each of the
output registers

Document the following relations

Relation IN:

+ domain contains values of m, range contains values of 1t

+ (% iY is in IN if and only if input device permits that behaviour
It must be the case that

domain(IN) D domain(NAT)

Relation QUT
« domain contains the possible values of o

* range contains the possible values of &
* (0%, c") isin OUT if and only if output device permits that behaviour

&

o 1 o Lab

Y
Englneering R h Group
“connecting Bwory with practice”

L3 designdec.alides Aped 3, 1996073

‘s McMaster Univorsity «

Dividing the Software to Conquer Complexity

Small modules are easier to understand, if

he interf] fule: _—

To keep interfaces simple, “hide” the details inside
the module.

Use the requirements documents to help structure
the software:]
+ Some modules hide the requirements (REQ)

«some modules hide software decisions (which are not
in the requirements document).

» Some modules hide the hardware (IN, OUT)
These modules are support software.
These modules “create” virtual:
« data structures,
«devices,
*“actors”,
“objects” that do part of the job.

It is at this stage that we have the best chances for re-
use - but we must document the interfaces.

[R Lab
Software Engineering Research Gmup
“cornectng Bxory with practcs”

16 designdocslides

7 e i e i AN A A I S PN

0

s McMaster Unlversity =

Documenting Module/Object Interfaces (1)
It is wise to design software by designing a set of
objects.)

* Each object is implemented by a module (a set of
programs) using a data structure that is “hidden from”
(never used directly by) programs outside the module.

+ Changing the state of the object, or getting information
about the object’s state, is only done by invocations of
programs from the module.

« An object is a finite state machine.

+ The input alphabet of an object is the set of operations
one can perform upon an object.

« The output alphabet of the object is the set of values
that can be returned by such operations.

The state of an object can be hidden.

Describing or specifying objects is very different
from ribing or ifyin m

Hiding the state means that we must discuss event
sequences, but it makes future changes easier.

o R h Lab
o Englneerng R ~Gmu;
“connectng twoiy with practce®
17 designdocalides A3, 19960735

a» McMaster University =

12 Element Queue
{1) SYNIAX
ACCESS PROGRAMS
Program Nee Value Argtl
ADD <Stegers
REMOVE
FRONT <ipleger>
(2) CANOXICAL Represesiation
{rp= [(e)]].y) (PSas1)
3) EQUIVALENCES
1ep.ADD(a) =
eopt{ry) = § xp, Rfdi%
leogh(rp) < 12 p (8
1ep.REMOVE »
cooditions equrvelont
xpw_ xp, Scapty®
repe_ RN {Zh} N
1ep.FRONT«
coadiions oquivalent
xp=_ ¥xp. Tecpty¥e
P xp
val(Front) = a;
Communications Ressarch Laborstory
S Engineedng Re h Group
connecing hecry wil: pracsce”
19 designdocalides A 3, 1996 0735

s McMaster Unlversity =

Documenting Module/Object Interfaces (2)

Black-box interface' descriptions must be written in
terms of (input, output) sequences (traces).

* A trace of a finite state machine is a finite
sequence of pairs, each containing a member of
the input alphabet and a member of the output
alphabet.

* A trace, T, is considered possible for machine M,
if M could react to the sequence of inputs in T by
emitting the sequence of outputs in T.

Descriptions and specifications of objects can both
be written as predicates on classes of traces.

These predicates are the characteristic predicate of
an extension function/relation.

We organise our descriptions in terms of:
* A canonical abstract state representation, and
« single event extensions of those traces.

1¢: matic, reviewable referen men

“ ', M&mh,
18 daigadec.alides) Ape2 3, 19960735

= McMaster University =

Design Reviews for Module Interfaces

483 ”

interface:
» The implicit assumptions can be wrong.
« The implicit assumption can be inconsistent.
« Interfaces can force inefficiencies on the system
« Interface assumptions can be likely to change
« Interface descriptions can be ambiguous

Interface decisions are early decisions.
Interface decisions affect more than one module.
Interface documents deserve serious thought!

They tend to be casually reviewed.

Communlcatons Ressarch Laboratory
Software Englneering Research Group
g $ory with pracs

20 denigndoc slides AFS 319960135

= McMaster University =

Effective Reviews are Active Reviews
A_dilemma:

« Errors in interface documents should be found before
the documents are used.)

« Errors in interface documents are often found only
when the documents are used.

Another dil :

« Everyone’s work requires review

« It’s easiest to say “OK”

« Reviewer’s work is not reviewed.

* No individual knows enough to review all aspects of
a design.

* When working in a group, people tend to relax in the
knowledge that others are also working the problem.

« Make the reviewers use the documents.
« Make the reviewers answer questions.

-+ Have specialised review questionnaires. Ask the
teviewer about things that they know.

» Make the reviewers provide specifics - not one bit.

o e B Lan

Y

Som.En_g!modnngszp
eory

21 degigndocslides A3, 19960725

A
a McMastor University =

Design Document for Queuel2: Implementation 1 - Pascal ~

{) DATA STRUCTURR
CONSTANTS
Cooooat Neme _ § Definicion 1
i = 3 2]
TYPES
- -le> § =yl mLLgee
VARIABLES
Type Defoimiame] | Varwbics | Iotal Vahes
- DATA | “Doat Cre
aQZE1 X3 “Den’s Cre™
omloncn yuLr “Duat Carv™
Abh;.viuicc:
epeSR=F+1)v(FuQSIZE)A(R=0)

‘edzeS(RwF+) v(FuQSZE1)A(R=0)
el SR =F + N} v(F = QSZE AR =0)
<go> § qds X 0LQSTZ5-1 x 0.QSIZE-} x bockesa

{3) ABSTRACTION FUNCTION
G a2
a{DATAFRFULL) &
(edge vITILDA PR (DATAD (DATATR=1D. oe. . (DATATRD
(~adpe vFULLY A (F< R) ATATD. o
el a=PULL Quar
. a -1 an
Softwars Englm.dng Research erp
“connectng theory with prackes”
3 designdocslides Agril}, 19560735

s« McMaster University «

Documenting Internal Design

‘We need to document:
(1) The complete data structure.

(2) The interpretation of that data structure
(known as an abstraction function).

(3) The effect of each program.

2 designdocalides

Research Lab Y

g 9 Geroup
“cannectng theory with practce”

A3, 1996 0733

= McMaster Univorsity =

_ Describing Programs

A program is a part of a module.

We wish to describe its effect on the module’s
private data structure.

We distinguish f iptions:

* constructive descriptions, which show how a
product is constructed from other products,

* behavioural descriptions, which describe the
visible behaviour of a product without discussing
how it was constructed, and

* specifications, which describe the requirements

that a product must meet. .

In my view this is a very important distinction that is
ignored by the “formal methods” community.

n - lab
Sottware Englnesring Ressarch qu:
“commectng twory with practice”

AFI3, 1960735

» McMaster University =

Relational Program Descriptions and

Users need to know the relation between the starting
values of variables and the final values of variables.

Users need to know the starting states for which the
program is guaranteed to terminate.

We base our work on Harlan Mills’ (“Cleanroom”)|.

program function, but
* Represent the function in a more readable tabular
format.
« Deal properly with non-determinism.
» Carefully distinguish between relations as specifica-
tions and relations as descriptions.

It is possible to produce short, readable specifica-
tions of programs and review them before writing
the actual code.

This forces designers to think about issues that they
tend to overlook (such as error response).

= McMaster Unlversity =

25 designdocalides Aprid 3,1996 0735

= McMaster University =

(3) PROGRAM FUNCTIONS

P Nene Agfl | Vake
Lol
PLQIINIT <> -~ <>
SCADD cga> | QR Cracga> —b au>
PCRENOVE <> b >
K IRONT <qe> - @ X Cixcge>
FLADO) & NOT) A Y] G R (NCDATALD) A NSO &
CRaD)a CRE0a
‘edge n . ‘edgea B
W v ~"sdge SR ~edge
DATAR) = ‘DATATR) | & » “DATATR] a a
X = X QBT OSEEL X R-1 | k=1
UL « FULL S | TeQSZEZ| FUIL e | e’
HRIHOVE £ NODATAX) A
(= edgev FAD A
) >0 Cebgea~TULL
ra QSZE1 r-1 *
FULL = ™y ™ TULL
MIFRONT § NCRFULL. DATA. D a
T T —~vedes vFULL

framaves§ DATA[] &

-The “Laws” of Programs

Do Software Engineers have laws for programs that
correspond to Kirchoff’s laws for circuits?

Yes!

The ‘basic laws of programs are essentially the
axioms of the algebra of (LD-)relations.

If you. accept the fact that LD-relations provide
adequate descriptions of program behaviour,
sequential execution is composition.

The laws are the classic results about relations.

These laws allow you to find behavioural descrip-
tions of constructed programs if given:

« the constructive description of those programs and,
* the behavioural descriptions of the primitive programs.
With these laws, all reasonable specifications and

descriptions are compositional. Composition is
not Conjunction.

" n 1 ah

’s

Y

Sottware Engineering Research Group
“ g Prwory with p

26 dexigndocalides A3, 1996 0735

s McMaster University «

o " n o 1 an
Software Enginesring Research Gmu;,:
“connectng theccy wit: practice”™

designdocalides AR 3, 1996 0135

Imperfection of Documents?

When engineers work with physical products they
must use imperfect implementations of abstract
specifications.

With software, imperfection is not always necessary
but it may be convenient and acceptable.

The imperfections must be “bounded” and explicitly
limited in their applicability.

For example, we may ignore the limits on
representations of numbers because we only work
with a limited range of numbers.

It is important to include this in the specification.

No new mathematics is needed for this. Implication
does the job.

The use of mathematics in engineering does not
imply a belief in perfection of programs or maths.

28 designdocalides Aprdl 1, 19960735

= McMaster University =

What New Notation do we Need?

Although the mathematics is old, and the abstract
notation for defining things is old, the applications
are new.

‘We have to describe relations and functions that have
non-heterogeneous ranges and domains and can
have a'd@iscontinuity at arbitrary points.

P SN
We have found a variety of .tabular notations to be
useful.

Ryszard Janicki, has found new ways to unite these
tabular notations.

Jeff Zucker and our students are implementing tools
for transformations.

We are trying to:

 Make the documentation easier to produce
« Make the documentation more useful

e McMastor Unlversity =

Apeil 3, 1996 0735

= 'McMaster University =

A _Simpl nventi | Expression

(@ i, Bli] =x) A (B[i’] = x) a{present’ =
true)) v (V i, (01 <i<N) = B[] =
x))a(present’ = false))) A (‘x =x’ A ‘B =B’)

A tabular expression:
Specification f ;
i, Bli] = L, ((1SisN
@i [1.1 x) | (Vi g(m;xs») =
L Bfj']=x true
present’= true false

A
NC(x, B)

The above is one of many kinds of tables!
Simple tables like this understare the advantage.
These have “practitioner appeal”.

)~

30 designdoe slides

Inspecting Programs

Its the code that “hits the road”

Getting the requirements right, the structure right,
the interfaces right, etc. are all important but we
have to check the code. ‘ .

The same review principles apply. =
« Make the reviewers use the documents.
» Make the reviewers answer questions.
» Have specialised review questionnaires. Ask the
reviewer about things that they know.
» Make the reviewers provide specifics - not one bit.

We want to compare the completed programs with
previously reviewed specifications.

‘We ask the reviewers to produce descriptions.

We then show that the descriptions match the
specifications. _
It’s hard work but it produces results.

» We get good documentation for future use

+ We find errors in the best industrial code - programs
that were considered correct.

n, Lak

¥
Enalneerina R h Group

‘aomocn'ng M& with practcs®

A, 19560733

s McMastor Unlversity «

31

[2ers !
Softwarc Lr3irsering Ressarch Grou;
‘connecing hearty with practcs”

designdocalides Al 3, 1996 0125

Is it Teachable/l earnable/Practical?

Its the way to start - first year engineering students
have leamed to read and implement from specs.

Tabular notation'- no theoretical advantage, but a
great practical advantage. .

Short courses introduced these ideas to the nuclear
industry in Canada. They now teach their own.

People can apply the inspection technique aftera 3 -
4 day course.

Critical Mass in a company is essential. Writers
without readers are useless.

There is lots of room for improvement, We will
identify these faster if you work with us.

e 1 . hlab

b4

Software Enginesring Research Group
*commecting theory with practcs”

April 3, 19960735

s e ey

= McMaster Univarsity «

Scts for Deseribing Programs

Everything about digital computers can be
explained in terms of finite sets; the set concept
is viewed by many as the most basic concept in
mathematics.

A set is a collection of elements from a
previously defined set (sometimes called the
universe).

The elements in the universe must be known
before other sets are defined. Every application
of set theory must begin with a careful
description of the Universe from which it’s
elements are drawn.

Sets drawn from different universes cannot be
compared.

Set elements are assumed to have previously
defined attributes.

The famous anomalies can be avoided.

= McMaster Universitly «

Notation for sets:
{x.y,z}. enumeration -a set containing x,y, z
| such that

{x | <condition>}The set of elements such that x
satisfies the condition.

AcB Aisasubset of B (could be identical)
AcB A is a subset of B and smaller than B
AUB set of elements in either A or B
ANB set of elements in both A and B
A-B set of elements of A that are not in B

—(B) set of elements in Universe not in B
(the complement of B)

XeA Xisanelementof A
{} an empty set
Only combine sets from the same Universe.

Even empty sets must have an associated
Universe.

Call it du]] set theory. .
[7 R h Lab y
“COnTRCINg Becry with practos
inmpoctprdalides 19 February 36, 3997

= McMastor University «

Relations

What is 3 relation (e.g. >, <, =)?

. Asetof ordered pairs.

What is the domain of a relation?
The set of elements that appear as the first
element of a pair in the relation.

2

The set of elements that appear as the second
element of a pair in the relation.

One need not enumerate all the pairs to describe
arelation!

IfR is a relation and (x,y) € R, we can write
xRy.

g Peory with p

fspectpreddides 219 ety 16,1997

= McMaster Unlversity «

Examples of relations

Both elements taken from the set of real
numbers.

1) A={Gxy!ix>y)

@ B={xyix=y)}

3 C=AuUB

@ D={xyx xx=4}
G) E={xy}|x+y=4}

o " n f Lab

¥

Software Engineering Ressarch Group
“connecong thecry with pracics”

inspecrpred alides 3/19 Tebrusry 15,1997

inspretpredalides 4015 . February 16, 1997

Communications Research Laboratory
Sottware Englnesting Research Group
X oty wvith p

u» McMaster Unlversity =

What is a function?

A function is a relation, F, such that if (x,y) is in
Fand (uv)isinF andx=uy,theny=v

If Fis a function, and (x,y) € F, we can write
y=F(x).

F(x) would not generally denote a single value if
F were a relation that was not a function.

Since all functions are relations we can ‘also
write xFy.

In many applications it is important to make sure
that a relation is a funiction. It assures us that a
description is unambiguous.

A partial function is a function whose domain is
smaller than the stated universe.

= McMaster University «

Software Enginesring Research Grou;
“connectng twory wih practios”
inspecedalides Sn9 Pebruary 36,1997

= McMaster University =

Examples of functions

Both elements taken from the universe of real
numbers.

A={(xy)ly=x+1} -written A(x)=x +1
B = {(x,y) I x=y]} - written B(x) = x

C={(xy) |yxy =xandy>=0}
- written C(x)=+j)L{

inrpectpredatides 619

What is a Predicate?

A function whose range is a subset of

{true, false}

Predicates are often described by predicate
expressions.

Examples:
x > 0 characterises

{- .. (-1 false), (0false), (.true), (2.true) . . .}

cee (M’(lsm’ (O,ELLQ)’ ('latgl&)"'}

{
X =X2) A (X > 0) describes
{... Q2 false)(1.true), (0.false), (-1false)...}

Communications Research Laboratory
Software Engineering Research Group
*cormecting theory with practod”

s McMaster University =

e dalides mns

C R rch Lab
Soh-toEnglm'dnnguethu;
g Pecry with

#

Characteristic Predicates
Every set has a characteristic predicate.

The domain of that predicate is the universe
from which the set is drawn.

(x,true) is in the predicate if x is in the set being
characterised.

Predicate expressions can describe, sets,
functions, relations in this way provided that the
universe is clearly specified.

frue characterises the universe, U
Jalse characterises the empty set, {}

Predicate expressions are described more
completely later.

Communications Resesrch Laboratory
Sottwars Englnesring Ressarch Group
“connectng theory with practicd”

inspoctpred dides 819 Tobmary 16,3997

» McMastor Unlversity «

Characteristic Predicates Describing Relations
{(x,y) 1 x <y} described by x< y

{(‘x,x”) Ix’="x+ 1} described by x’ = ‘x + 1
The use of predicate expressions in this way
requires clearly stated conventions about the
universe and the naming of the elements of an
ordered pair.

‘x can be read “x before” or “x left”.

x" can be read “x after” or “x right”.

A predicate expression is not a predicate.

A predicate expression is not a set.

A predicate expression is not a function or
relation. Predicate expressions can describe:

s McMaster Unlversity «

o predicates
- sets
functions
relations
[fons R h i -; Y
s .magggo“odan;;mpwﬁwp
inspocprodalides 919 Febowy 16, 1957

= McMaster University =

Summary
*A relation is a set of pairs (2-tuples).

*The set of values that appear as the first element
of a pair is called the domain of that relation.

*The set of values that appear as the second
element of a pair is called the range of that
relation.

*A function is a relation such that for any given
element, x, in its domain, there is only one pair
(x,y) in the function.

*If (a,b) is in the function F, “F(a)” means b, often
called “the value of F at a”. may include tuples.
It may make sense 1o write “F((a,b))",

“F((a,b,c))”, and “F(F((a,b,c)))".

Functions whose domain is smaller than the
universe are called partial functions

*Most of the functions that arise in software
development will be partial functions.

*A predicate is a function whose range contains
no members other than frue and false.

*For any set, X, the characteristic predicate of X
is a predicate whose domain is the universe from
which X is drawn, and whose value, for b, is frue
if and only if b is a member of X.

Definition of Predicate Expressions

Built-in functions and predicates are named:
To simplify the presentation we shall assume

that all functions and relations have simple
names.

£1, .y f are the names of functions (sets)

Ry, ...y Ry, are the names of the characteristic
predicates of relations.

C \J Research Lab 4
Softwars Englnesring Ressarch Group
° g theory with p

inspoctpredalides ' 1019 February 14,1597

= McMaster University = -

¢ h Lab
Software Enginesring Rnomccw;
“connectng thecry with practes”

inepoctpeedalides 1119 Pebraury 36, 1997

Definition of Predicate Expressions

Terms are constructed from:
A finite set of mathematical variables, xy,.., X,

A finite set of constants, C

: The constants are strings. Each constant

represents one member of the universe, U.

“V” stands for a comma separated list of terms
(see below).

A function application is a string of the form
£V).
A term is either a constant, a variable, or a

- function application.

S R fah

L4

Sottware Engineering Ressarch Group
° Decry with J

inspoctprcdalides 1219 Prary 14,1997

,~
¢

)

= McMaster Unlversity =

Definition of Predicate Expressions

A primitive expression is a string of the form

R;(V).
Nothing else is a primitive expression.

All of our expressions will be built of primitive
expressions.

Note that primitive expressions, since they
denote predicates, will always evaluate to either

frue or false.

inspeczpred alides 13/19

¢ Research Lab Y
Software Engineering Research Group
“connectng theory with peacties”™

« McMaster University «

Febnary 14, 1997

The Meaning of Predicate Expressions

An assignment, a, is a list specifying values for
all the variables. We evaluate expressions for a

specific assignment.

(1) iftisa constant representing t' (2 member of U), the value
of the 1erm t for assignment a, (written “val(t,2)"), is ",

(2) tisavariable, x;, the val{1,3) is the value specified for that
variablein a. :

(3) iftisafunction application, f,(V), we must evaluate each of

the terms in V until we have obtained the values that they
represent.

() V* denotes the result of this evaluation

(3a)if V" is in the domain of £, val(t,a) is fi,(V*),
(3b)if V” is not in the domain of f;, val(t,a) is not

defined.

(30)if any of the elements of V'’ is not defined,
- the value of the function application is not defined.

C R tab Y
Software Engineering Ressarch Group
“connectng eary with prackcs”

Fobewsry 16, 1977

= McMaster University =

Predicate Expressions

All primitive expressions are predicate
expressions. ‘

If P and Q are predicate expressions and x; is a
variable, then

(Vxg.,P),
(%P,
(37X ()X
®@vQ),
®)=Q),
—(P))

are also predicate expressions.

The previous definitions tell us what we can
write, ie. which expressions are predicate
expressions; they do not tell us what these
expressions mean.

= McMaster Unlvarsity «

The Meaning of Predicate Expressions

- o .. .

valuati Vi 1001S:

For a primitive expression, R(V), we first
evaluate all the terms in V to get V?, and
distinguish the following three cases:

(@) If V'’ is in R, the value is true.

() If V’ is not in R, the value is false.

(c) If any element V’ is not defined, the value
is false.

Petnary 34, 1997

= McMaster University

Evaluating Predicate Expressions
If P and Q are predicate expressions.
(3) (Vxy,P)is frue if P is true for all values of x;
in our Universe. Otherwise, it is_false.
®) (Bxk,P) is frue if P is true if there is a value
of xp in our Universe for which P is frue.
Otherwise, it is false. A
(©) (P)A(Q) is true if both P and Q are frue.
Otherwise, it is false.

(d) ®PW(Q) is frue if either P or Q are frue.
Otherwise, it is false.

(e) —(P) is true if P is false. Otherwise, it is
false.

() P)=(Q) is true if either P is false or Q is
true. Otherwise, it is_false.

The symbols are read, “for all”, “there exists”,
‘6md”’ (Cor’Q’ “nO[”, and (‘implies!’.

= McMaster University =

Engineering ". .Gmup
“connectng theory with peactes”

inspectpredalides 17/19 Fubeary 36, 1997

- McMastorUnlva'rslty -

Identities for Predicate Expressions

If P and Q are predicate expressions,

(@) =(Vxy,P) = @xy,—(P)

(®) =Gx.P) = (Vx,—(P))

(©) =((PIMQ) = EHIV(=(Q)

@ ~@VQ) = EIAQ)

© =E)vQ= ®)=Q

Parentheses can sometimes be omitted if you
Sionger o v which b sromess e,
For example, we can write

“an—b” instead of “(a)a(= (b)),
and “— baa” instead of “(— (b)a(a))”

Examples of Predicate Expressions

((x>0) Ay =VR) v ((x<0) A (y =) (1)
((x>0) =(y = VR)A(<0)=> (y = V=) (2)
=V v y=Vx) ©3)

Gi, ((1sisn) A (Al] = X)) (4)
@i ((1 <i<n)= (Al = %)) (5)

((1=n) A (Vi, ((1<i<n) = (‘Ali]<'Ali+1]))) (6)

Exercise

Try to write English statements corresponding to
the above,

)

QLL

e E g Re h Geoup
connectng thecry with peactcs”
inpoctpredalides 19719 Febrary 14,1997

™

Ce h Lab
¥
Software Englnesring Ressarch Group
* thecry with pract

inspectpred slides 18119 Petruary 16, 1997

£yl

» McMaster University «

fiware In ions W nTr
David Lorge Parnas
NSERC/Bell Industrial R 4 Chair in Soft Engineering

Communications Research Laboratory
Depariment of Electrical and Computer Engineering
McMaster University Hamilton, Ontario Canada LS 4K1

Scftware is devilishly hard 1o inspect. Serious errors can hide
for years. Consequently, many are hesitant to employ software in
safety<critical applications and all companies are finding
correcting and improving sofiware to be an increasingly
burdensome cost.

This talk describes a procedure for inspecting software that
consistently finds subde emors in software, software that is
belicved to be comrect. The procedure is based on four key ideas:

* All software reviewers are actively using the code.
* Reviewers exploit the hierarchical structure of the code rather
than proceeding sequentially through the code.
*Reviewers focus on small sections of code, producing precise
summaries that are used when inspecting other such sections.
* Reviewers proceed systematically so that no case, and no section
of the program, gets overlooked.
During the procedure, the inspectors produce and review
mathematical documentation. The mathematics allows them to
check for complete coverage; the notation allows the work to

= McMaster University =

nsihiliti i re) Engineer:

* To thoroughly understand the properties of their
products.

* To follow established rules of good practice
when designing and building products.

* To apply accepted theory where it has been
shown to lead to better, safer products.

Engineering is Not Management

The art of management is the ability to get things
built without knowing exactly what they are.

The engineer is expected to thoroughly understand
the properties of the product.

Software projects are hard to manage - especially if
they are badly designed, but ... ’

Unless we have good Engineers, the best managers
will not be able to successfully manage these
products. : :

proceed in small systematic steps.
o teatlama B, -0 e y
Software Englneering Ressarch Group
“connecting theory with practce”
1 inspectB.alides Féxrwry 16, 15972134

= McMaster University «

”,

o . 11 ah

Y

Sotiware Engineering Ressarch Group
“ ing theory with Sce*

2 inapectBalides Februsry 16, 19972334

- McMaster University =

Why i I n a Problem?

Developers consistently underestimate the difficulty
of building software for long-term use.

They write software rather than design it.

They do not:
* systematically, identify and record requirements,
* hold reviews of the requirements document,
* explicitly design, document and review software
structure,
= carefully inspect all designs and programs.
These steps are standard practice for all engineering
products other than software.
The steps are not taken for software because,
* “Software is easy!”
* “The code is self-documenting!”
« “Sofiware is just a set of instuctions.”
« “Anyone who knows the language can program.”

Famous last words!

- Why ng’t l_’gg_ ple Apply Engineering

isciplin t

(1) Some don’t have an engineering education.
2) Some don’t think it’s necessary.
(3) Some don’t know how to do it.

Why don’t we demand that software people have
appropriate qualifications?

Experience shows that it is necessary.

Why aren’t software designers required to be
Engineers?

Why do we continue to think of them as scientists
and to educate them accordingly?

Communications Ressarch Leboratory
Software Enginesring Ressarch Group
“connecting theory with practce®
3 inspoctB.dides Febrwry 16, 19972134

o Leationa 0 b Y ab

¥

Sottware Engineering Research Group
® ing theory with pracsice®

4 inepociBulides February 16, 19972134

= McMaster University »

Why Don’t Engineers Apply Mathematics,

The last 30 years have seen great advances in our
understanding of software science.

Programs written by most engineers have not taken
advantage of this theory.

Programs written by most other programmers do not
reflect this theory.)

* Many don’t know the theory.
* Those who know it don’t know how to apply it
* Much of it is difficult to apply, perhaps even not
applicable.
* Deals with impractical languages
* Deals with unbounded memory size
« Uses unnecessarily difficult notations
» Designed for the wrong purpose

+ .here is a need to connect theory to practice.
j Let’s start with software inspections.

L .

= McMaster University w

When is Software Critical?

Critical is not necessarily “safety critical”

Other types of critical programs: N

* » Mass distributed programs in warranty situations
« Critical kernels in many systems

» Financial Systems

* Security (Privacy, Data Protection) programs

The common property of all of these examples is
that the cost of a failure is high.

If you value your reputation, your -work may be
critical.

o leations R + Lab. v
Software Engineering Research Group
o ¢ with pract

Fetruary 16, 1957 21:34

» McMaster University «

The Critical- re Tri

+ 1) Precise, well organised, mathematical -
documentation with systematic review
(2) Extensive Testing
« Systematic Testing-quick discovery of gross errors

o Random Testing -discovery of shared oversights and
reliability assessment :

(3) Qualified People and Approved Procésses

The Three Legs are complementary
The three legs are all needed.
'| The stool falls over if any leg is forgotten.
The third leg is the shortest. i
115 the shortest leg that we should worry about.
Today we discuss only leg (1).

o teatlons B, "1k

14

Software Englnesring Research Group
° ing theory with practce®

February 1€, 1997 2134

P

2

. = McMaster University «

- Communlcations Ressarch Laboratory
Software Enginesring Research Group
* 7 with procy:

¥

Fetrusy 16, 199721:3¢

Wh nventional Reviews are Ineffectiv

(1) Thereviewers are swamped with information.

(2) Most reviewers are not familiar with the
product design goals.

(3) There are no clear individual responsibilities.

(4) Reviewers can avoid potential embarrassment
by saying nothing.

(5) The review is conducted as a large meeting
where detailed discussions are difficult.

(6) Presence of managers silences criticism.

(7) Presence of uninformed reviewers may turn the
review into a tutorial.

®) Specialists'are asked general questions.
(9) Generalists are expected to know specifics.

(10) The review procedure reviews code without
respect to structure. (n lines per hour)

(11) Unstated assumptions are not questioned.

Communicaticns Ressarch Laboratory
Soin Enghisedng R h Group
“connectng theory with practce”™

tospociBabides February 16, mzi:u

S

D

= McMaster University =

Effective Reviews are Active Reviews
Adilemma:
» Errors in programs and design documents should be
found before the documents/systems are used.

» Exrors in programs and documents are usually found
when the documents are used.

Another dilemma:
» Everyone’s work requires review!
* It’s easier to say “OK” than to find subtle errors!
» Reviewer’s approval is not reviewed.
One more dilemma:
» No individual can review all aspects of a design.

» When working in a group, people tend to relax in the
knowledge that others are also working the problem.

Solutions:
» Mazake the reviewers use the documents.’
* Make the reviewers document their analysis.

» Have specialised reviews. Ask the reviewer about
things that they know.

» Make the reviewers provide specifics - not just a bit.

C. loatlons Research Lab Y
Software Engineering Ressarch Group
“connecting theory with practce”

9 infpoctB.alides Febrmry 16, 19972134

= McMaster University =

Parnas/NRL/AECB rio Hydr

Focus on the engineering side.

Depend on hierarchical decomposition rather than
sequential reading.

Use mathematical notations to provide precise
descriptions rather than informal paraphrases.

Produce useful documentation as a side effect.

Proceed much more quickly if the documentation
was already produced by the developers.

Insures that cases and variables are not overlooked.

Applies simple mathematics to check for
completeness aspects.

Communicetions Research Laboratory
Software Englinesting Research Group
* ing theory with pracs:

11 ingpectBatides Februwy 16, 1957 21:34

= McMaster University =

revi Work In ion

Best known approach Fagan - 1976.
Many followers - new book by Gilb.
Explicitly focus on the management aspects.
* Who should be there?
* What are the roles of the participants?
» How long is a meeting?
+ How fast do you work?
» Forms for reporting errors?

Read the code in sequence and paraphrase.
Paraphrases are informal.

Most observers find these more effective than
conventional reviews or walkthroughs, but ...

... can we do better?

s Leatlnna B 2+ 0 ah
! Y
Sottware Enginsering Research Group
“ ing theory with prace
10 inwpeciBatides February 16, 9572134

« McMaster University «

Reviewi ign m

Base the review process on the nature of the
document.

Begin by identifying desired properties.
Prepare questionnaires for the reviewers. Ask them
questions that: .

« make them use the document.

* make them demonstrate that the desired properties
are present.

« ask for sources of information to support the answers
to other questions.

For example:
* Askreviewers to identify the domain of the program
* Askreviewers to identify “error” cases.

» Ask reviewers to explain why the behaviour required
for each case is the desired behaviour,

For more information read [1].

Communications Ressarch Laboratory
Software Engineering Research Group
ing theory with practice™

12 iospectBalides Febrary 16, 1997 134

a McMaster University =

Inspecting Programs

It is the code that “hits the road”.

Getting the requirements right, the structure nght'
the interfaces right, the documentation right, etc. are
all important but we have to check the code.

The same review principles apply. viz:

» Make the reviewers use the material they review.
o Make the reviewers answer questions.
* Ask the reviewer about things that they know.

» Make the reviewers provide specifics.

We compare completed programs with previously
reviewed specifications.

We ask the reviewers to produce precise
descriptions.

We then show that the descriptions match the
specifications.

It is hard work but it produces results.

* We get good documentation for future use.

» We find errors in the best industrial code - programs
that were considered correct.

s McMaster University =

r In ion Pr

(1) Prepare a precise specification of what the cod
should do - a program function table. -

(2) Decompose the program into small parts
appropriate for the “display approach” [2].

(3) Produce specifications as required for the display
approach.

(4) Compare the “top level” display description with
the requirement specification.

Observations:
* You can’t inspect without precise requirements.

» Step 2 would already have been done if you use
the display method for documentation.

» Step 3 is truly an active design review
e All reviewer work is itself reviewable.

» If you did not already have it, the by-product is
- thorough documentation. .

« It’s a bunch of small steps and very systematic,

[« Ications Research Lab Y
Soltware Englneecing R h Group
K g thecry with pracéce”

13 inspectBatides February 16,1997 21:34

= McMaster University =

Descriptions vs. ifi
An actyal description is a staternent of some m

attributes of a product, or set of products.

A specification is a statement of all properties
required of a product, or a set of products. o

In the sequel, “descnpnon w1thout modifier, means
“actual description™.

The followin implication finitions:

* A description may include attributes that are not
required.

» 4 smecification may include attributes that a (faulty)
F:="uct does not possess.

e T statement that a product satisfies a given
specification may constitute a description.

The third fact results in much confusion. A useful
di-zmction has been lost.

_J

Comm.mlaﬂom Ruumhh.bmwfy
e Ei ‘Group
thcory\mh
2] ivspectBulides Febroary 16, 19972134
= McMaster University »
D iptions vs. ification

Any list of attributes may be interpreted as gither a
description or a specification.
Example; .
“A volume of more than 1 cubic meter”
This could be either an observation about a specific

box or, a statement of the requirements for a box that
is about to be purchased.

A specification may offer a choice of attributes; a
description describes the actual attributes, but need
not describe the product completely.

Sometimes one may use one’s knowledge of the
world to guess whether a statement is a description
or a specification.
Example:

“Milk, badly spoiled” ,
gings.sjng is n Qg reliable, We need tfo label

ification ription

1% TspectBalidos

P feations R 5 1ah
Solmro Enghurhg Ruun;h erp
g theory with

Felroury 16, 195721:34

e bl B 21 ah

Y

Sottware Englneeting Ressarch Group
“connectng theory with practce”

16 inspectBalides Fabeury 16, 19572134

e)

R AR e R VI S S iy g

= McMaster Unlversity =

Do We Need New Semantics Theories For
Programmi

Not for the practical software engineering problems
that I see.

I can find 30 year old theéry that works for the
problems that I will describe today.

Semantic theory has failed to describe real
languages, but (in my opinion) the fault lies with the
languages.

We do need improvements in:

« the notation used to describe actual programs

» the ability to describe behaviour in terms of the
values of observable variables - nothing else.

* convenient ways to deal with all aspects of
termination including non-deterministic non-
termination.

What follows is mathematically equivalent to some
very old ideas, but has some small practical
advantages. .

o 1 el n, $ 1ot

14
Software Englneering Ressarch Group
. “connecting theory with pracsce”

Febroxy 16, 1997 21:3¢

s McMaster University «

ing LD-Relation Before/After
Behavioural Descriptions (1)

Let P be a program, let S be a set of states, and let Lp
= (Rp Cp) be an LD-relation on S-such that

(x,y) € Rp if and only if <x,...,y> is a possible
terminating execution of P, and

x & Cpif and only if P is guaranteed to terminate if it
is started in state s. !

L, is called the LD-relation of P

By convention, if Cp is not given, it is,
(by default), Dom(Rp).

With this convention, our approach is upwards
compatible with the “cleanroom™ approach for
dealing with deterministic programs.

" Please note that Cp is not the same as the

precondition used in VDM [4]. Sp is the set of states
in which the termination of P is certain.

o teatlane B +1ab
Software Englnescing Ressarch
“connecting theory with pracsce”

b4

Febrwry 16, 15997 21:34

= McMaster University =

A Mathematical Interlude - LD-relations. '

A binary relation R on a given set U is a set of
ordered pairs with both elements from U,
ie.ReUxU. .

The set U is called the Universe of R.

‘The set of pairs R can be described by its
characteristic predicate, R(p,q),
ie.R={(p.q): UxUIR(p,g)}.

The domain of R is denoted Dom(R) and is {p | 3q
Re.9I1}.

The range of R is denoted Range(R) and is
{q13p R(.9)]}.

Below, “relation” means “binary relation”,

A limited-domain relation (LD-relation) on a set, U,
is a pair, L = (Ry,, Cp) where:

Ry, the relational component of L, is a relation on U,
ie.Ry €cUxU,and

C.. the competence set of L, is a subset of the
domain of Ry, i.e. G € Dom(Ry).

e leatione 2. 1 ah v
Sottware Engineering Research Group
“connectng theory with pracsce”

12 irepeciBatides Fobraxry 16, 597214

s McMaster University «

Using LD-Relations as Before/After
Behavioural Descriptions (2)

The following follow from the definitions:

* If P starts in x and x € Cp, P always terminates; if ‘
(X, ¥) € Rp, P may terminate in y.

«If P starts in x, and x € (Dom(Rp) — Cp), the
termination of P is non-deterministic; in this case,
if (x, y) € Rp, when P is started in x, it may
terminate in y or may not terminate.

* If P starts in x, and x ¢ Dom(Rp), then P will never
terminate. .

By these conventions we are able to provide
complete before/after descriptions of any program
but retain a simpler representation to use for those
cases that arise most often.

o Leattane B, .12k
Y
Sottware Englneering R_uc.d! Group

v P

Febeusry 16, 15972134

= McMaster Unlversity =

Specifying Programs (1)

Specifications may allow behaviour not actually
exhibited by a satisfactory program.

We can also use LD-relations as before/after
specifications: :

Let Lp = (Rp Cp) be the description of program P.

Let S, called a specification, be a set of

LD-relations on the same universe and

Lg=(R3. Cg) be an element of S.

We say that

(1) P satisfies an LD-relation Lg, if and only if
Cs c Cp and Rp ;Rs, and

(2) P satisfies a specification, S, if and only if
I..p satisfies at least one element of S.

Often, S has only one element. If S = {Lg} is a
specification, then we can also call Lg a specification.

= McMaster University «

’s eatiang B »1ah

4

Software Engineering Research Group
° i with Sco”

21 nrpectBakides - Februxry 36, 155721:34

= McMaster University «

Specifying Programs (2)
The following follow from the definitions: , j |

* A'program will satisfy it’s own description as well as infinitely~ i
many other LD-relations.

* An acceptable program must O terminate when started in states |
outside Dom(Rg).

* Anaceeptable program must terminate when started in states in Cg
(Cs = Dom(Rp)). : f

* An acceptable program may only terminate in states that are in
RangeRg).

* A deterministic program can satisfy a specification that would also
be satisfied by a non-deterministic program.

ription ification of a pr !
* There is cnly one LD-relation describing a program, but that ;
program will satisfy many distinct specifications described by '
different LD-relations. . ‘
* An acceptable program need not exhibit all of the behaviours ;
allowed by Rg Rp S Rg)- :
* An acceptable program may be certain 10 terminate in states outside k
Cs. (Cs < Cp). o
The intended use of each LD-relation (specification
or description) must be stated explicitly!

Tabular Descriptions an ification
ification for rch m
7, B[i] = i, (1<is
@i Bl =x) (Vz(ém;x»?‘l)=
L Bfi'l=x true
present’= false
14 true ﬁC(x.B)

Description of]

i, B[] = i, (1sisN
@i Blii=x) | (Vi gmilx») =
il BHT=04 irue
Vi (G <isN)
= B] #x))
present’= © false
t tue ﬁC(mB)

The above is one of many kinds of tables!
Simple tables like this understate the advantage.
These have proven “practitioner appeal”

Communications Research Laboratory
Software Englneering Resesrch Group ,
* ing theory with practice” ;

= McMaster University »

Jlu>N- @)

¢ ications Ressarch Lab

Sothy Enginsering R h
“connecting theory with practice”

23 nspetBalides Fetromy 16, 19573134

¥

A Simple Example

(integer array H[1:NJ;

(integerc;integern;ric: i;
it (nsN—

(integer u; integer /; boolean p; I <= 1; ¢ <= 0;
it (ue=l+n-1;
@sSN-o(

(integeri;i <= 0; p <=true;
(i<l-1+132l5
(All+] = Alud)} = =i+ ;o)
L All+] = Afu-i] = (p = false; @))
I Lw-1+1p2)sim0)
8)

(~p—skiplp— c=ctl);l =l w)

£)

" Hh] <=cnen+lw)
In>N — @)

§i)

Py 1 . h [ah

" ; y
Software Engineering R h Group
“connecting theory with practce®

- inspeciBalides Febrary 16, 19972134

= McMaster University »

Decomposition

(integer array H[1:N};

¢ (integerc;integern;n<I; Y
i (nSN—o
(.

r(un}egeru; nteger /; booleanp;/=1l;c<=0;
it (uel+n-;
sN->(

integer i; i <= 0; p <= true;
Izg (i<l@-1+1p2)—
(Al+] = Afusi] = G =i+ 1;#)
I Ali+i] # Alu-i] » (p < false; @))
I La-141p2)sine)
i)

v

(-p—orskiplp— c=ctlfl=lt]l;w)
lu>N> @))

) J
) Hn] <=cnen+lw)
In>N = @)

gtyi) y,

= McMaster University «

[~ [cations Ressarch Lab Y
Software Englnsering Research Group
“connecting theory with pracice”™

25 inepectBalides . Fetruary 16, 197 21:3¢

s McMaster University =

Display: An Example

Problem: ctpal =
L true |
Hy
o=] [exf@lpdain+iDh |
H, G
ANC(@,A)
a. card(x), where x is a set, is the number of elements in x.
Solution; ctpal =

(integer u, /; boolean p; I <= 1; c <= 0;

if (u=l+n-1;

(us N — (palul; (=p — skip Ip = c<«<c+l);
=1 w)

[u>SN—> @))

t)

palul = NC([,u,A) A (p’ =pal(A,lu)

where
pa(Abc)=((I1<b<c<N) A
(Vi,0<i< L(c- b +1)+2J = Alb+i}=Alc-i])))

Displays: An Explanation

The top part of each display is the specification for
the program in the middle.

The program in the middle is kept small by
removing sections, creating a display for them, and
including their specification in the bottom part.

The bottom part contains a specification of these
invoked programs.

To check a display determine the description of the
program in the middle, and see if it satisfies the
specification at the top. In doing this, use the
specifications of the invoked programs, not their
text.

To check a set of displays, make sure that every
specification at the bottom of one display is at the
top of another. The exceptions:

« standard programs
» primitive programs
Completeness can be checked mechanically.

Communications Research Labocatory
Software Engineering Research Group
“connecsng theory with peactce™

% inspeciBalides Febrary 16, 1972134

= McMaster University =

Communlcations Research Laboratory
Software Enginescing Research Group
* ing theory with practce®
n inspectBatides Febrawy 16, 1997 21:34

r re and In ion

Well-structured programs are easier to decompose.
They can be decomposed by purely syntactic means.

Well-structured programs are much easier to inspect.
Inspection encourages good structuring.

Inspection suggests structural imprbvements.
Inspected programs are easier to maintain.

Modified programs need not be completely re-
inspected.

The cost of future maintenance is greatly reduced.

The definition of “well-structured” should not be
based on the absence or presence of certain control
structures. It has to do with- the ease of
decomposition. [2]

e Leations B b 1 ab
Y
SdtwuoEnghmk)gR,n.d!&wp

v P

- inapociBalides February 16, 15972134

» McMasterUnlver;lty =

Qur Initial Experience:
Darlington Nuclear Power Generating Station!
Thr ntrol ms in ign 1 IS:
« one normal control system
= two independent shutdown systems

Safety analysis asswmes control system will fail.
Only shutdown systems are considered safety-
critical.

Previous shutdown systems were analogue and relay
systems.

At Darlington they are software controlled.
Each Software System has a simple task.

Their designs are “diverse”.

The systems are more . complex than their
predecessors with the result that AECB? could not
be confident of their trustworthiness.

How can we ing_Qw ase that level of confidence?

1 Discussed in more detail in [4] and [3].
2 Atomic Energy Control Board of Canada

= McMaster University =

.| requirements document.

Why W Id N English

p

The following type of sentence was found in the

“Shut off the pumps if the water level
is above 100 meters for 4 seconds”

~o-
— e

What does this simple sentence mean?

~ {oatinna B + 1 gh
Softwaro Enginsering Research Group
g theory with p

29 ingpectBalides Ferowy 161972134

= McMaster University =

= McMaster University =

s L £ 12
Scitware Engh»r[ng Research Graup
g theory with p
30 fospeciB alides . February 16, 1557 21:34
.

Three Reasonable Interpretations:

“Shut off the pumps if the mean water
-=rdevel over the past 4 seconds was

ot above 100 meters”.

~ame
vy

[(JI, Wit +4> 100] ee o

“Shut- off the pumps if the median
water level over the past 4 seconds
was above 100 meters” .

(MAX}y 4.4 (WL(D) + MINp g 3 (WL(H)) + 2> 100

“Shut off the pumps if the “rms
water level over the past 4 seconds
was above 100 meters” .

—\/ 0T, wi2@ay +4) > 100

A Fourth (Unr nable) Interpretation:

“Shut off pumps if the minimum
water level over the past 4 seconds
was above 100 meters” .

MiNpr y IWL(] > 100

This is the most literal interpretation!

Iti i r waiting to h n!

If you use natural languages, there are thousands of
such phrases waiting to “bug” you.

L

Communications Research Laborstory
Sokvn.ro Enginescing Rnurch Group
g theory withp

an npanilobdes Februmry 16, 19972138

e, teattonn B .12k
Soltwsre Enginseting Resesrch Gleup
“connecting theory with pracice®

32 inspeciB.atides February 16, 197 2134

= McMaster University «

The In ion Pr Darlington

Four teams:
(1) Application Experts
(2) Programming Experts
(3) Verifiers
(4) Auditors

Roles of the teams:
(1) Produces requirements tables.
(2) Produce Program Function Tables (Displays).
(3) Show (1) = (2) and that (2) are correct.
(4) Audit the “proofs”.

= McMaster University «

[Ications Research Lab 4
Software Engineering Ressarch Group
“connectng theory with practce”

33 inspectBalides . Fetruwy 16, 1997 21:34

s McMaster University «

Subsequent Experience

In classes on this method, we ‘have applied this to
numerous small industrial programs that were
believed to be correct.

In most cases, we found unexpected errors.

In some cases, the participants could not state the
requirements.

In other cases, the program could not be
decomposed (machine code w/o documentation).

I believe that one program was correct.
In al] cases, we could improve the program.

We have found errors in textbook programs, library

programs, and well-used and tested programs.

No process is perfect, but this one engenders
confidence. It produces code that people trust.

Essential Point: Divide and Conquer

The initial decomposition is essential. Attempts to
simply scrutinise the program fail.

Trying to read the program the way a computer
would is much less effective. Logically connected
parts may be far apart.

The use of tables is essential. It breaks things down
into simple cases so that

« We can be sure that all cases are covered
+ Each case is straightforward

We consider all variables, but one at a time.
We consider all cases, one at a time.

We can take “breaks”, go home and sleep, even take
holidays, without losing our place.

Using displays and tabular summaries is far more
work than Fagan’s English paraphrasing, but it
imposes a discipline that helps.

o rations R =1 ah y
Sof Enginsering R h Group
% theory with practice”

k foepectBalides Feboury 16 197 2134

« McMaster University =

Communlcstions Research Laboratory
Software Englinesring Ressarch Group
“ ing theory with pracsce”

s mlpwl.B.lhda February 16, 1997 21:34

Th her Essential Point:
Precise, A Description
Having lots of little parts is not enough.
'We have to be sure that the parts fit together.
We have to be able to do that without page-flipping.

Each part’s behaviour must be precisely summarised
without giving intermediate states.

We must be sure that the description at the bottom of
one display will be identical with that at the top of
another display.

These global checks can, and have been,
mechanised.

Precise descriptions are painstaking work, but if
quality is important, they are essential.

. Leatlnns B 1 ab y
Scttware Enghneering Re: h Greup
“ ing theory with practice”

35 incpeciBabides Febrary 1€, 199721:34

« McMaster University «

'sn Iw !

The most critical step, besides decomposition, is
finding a good representation for the state space.

A 1:1 relation between names and elements 'of the
data structure cannot be assumed.

When preparing the displays, the creative step is
data state representation.

= McMaster University «

- € lcations Research Lab 3 4
. Soltware Engineecing Research Group
- “connecting theory with practice®

Feruy 16, 19972134

-

ETovre

arn s

—ana

me Suggested Readin |

(1) Parnas, D. L., Weiss, D. M., “Active Desig A
Reviews: Principles and Practices”, Proceedings
of the 8th International Conference on Software
Engineering, London, August 1985.

Also in Journal of Systems and Sofiware,

, December 1987.

(2) Pamnas, D. L., Madey, J., Iglewski, M.,
“Precise Documentation of Well-Structured
Programs”,
IEEE Transactions on Software Engineering,
Vol. 20, No. 12, December 1994, pp. 948 - 976.

(3) Parnas, D. L. “Inspection of Safety Critical
Software using Function Tables”, Proceedings of
IFIP World Congress 1994, Volume III, August
1994, pp. 270 - 277. ,

(4) Pammas, D. L., Asmis, GJK., Madey, I,
“Assessment of Safety-Critical Software in
Nuclear Power Plants”, Nuclear Safety, vol. 32,
10. 2, April-June 1991, pp. 189-198.

J

38 inspeetBalides

o toatlons R + 1 ah v
{tware Engineering R h Group
“connectng theory with practice®

February 16, 1997 214

A AR s S e p—— - ——— DT T et e e T

= McMaster University =«

" The Problem of the Dutch national flag!

There is a data type color € {blue,red,white}
There is an abstract data type “buckets”.

Variables of this type may be used as a vector of
N “pebbles” of “color” type, where N > 0 is an
integer. |

The only operations on v are: PUT(,c),
LOOK(1), SWAP(,j)

Design a procedure to rearrange (if necessary)
the pebbles in the order of the Dutch national

flag using no Arrays, and calling LOOK(i) once

for each value of 1.

' Introduced and (perhaps) solved by E. W. Dijkstra in 1976

24

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

nevercut.slides 7/3/96:1226

x McMaster University «

1<k<r: the k™ bucket is in zone ER (number

of buckets r—1 > 0)

r<k<w: the k™ bucket is in zone X (number

of buckets w—r+1 > 0)

w <k < b: the k™ bucket is in zone EW (number
of buckets b—w > 0)

b<k< N: the k™ bucket is in zone EB (number

of buckets N—b > 0)

““his can be illustrated by the following figure.

| ER X EW- | EB
1 r W b N

Initially, r=1, and w=b=N, so that the zones ER,
EW, and EB are empty. The program then
proceeds by incrementing I, and decrementing W
and b while making the necessary swaps, until
the area marked “X” is empty because r = W+1.

25

Communications Research Laboratory
- Software Engineering Research Group
“connecting theory with practice”

nevercut.slides ‘ . 3/96:1226

= McMaster University «

program DutchNationalFlag (input, output);
const

N = 10;

type
color = (red, white, blue, blank);
buckets = array [l..N] of color;

var
v
i

buckets;
integer;

function LOOK(i : integer) : color;
begin
LOOK := v[i]
end;

procedure PUT(i : integer; c : color);
begin
vii] := ¢
end;

procedure SWAP (i, j : integer);
var

t : color;

begin

if ((A > N) or (1 < 1) or (j >N) or (j < 1)) then
writeln ('wrong index passed to SWAP')

else
begin
t = vi[il;
v[il := v[Jj];
vijl =t
end

end; {SWAP}

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

26 nevercut.slides 7/3/96:1226

= McMaster University «

. procedure Decrease(var r, w, b : integer);
var .

colr, colw : color;

begin
colr := LOOK(r):;
while ((colr = red) and (r < w)) do
begin
r :=r + 1;
colr := LOOK(r)
end;
if (r < w) then
begin
{DecW}
colw := LOOK(w):;
while ((colw = white) and ({(r+1) < w)) do
begin
wi=w - 1;
colw := LOOK (w)
end;

case colw of
red: begin
SWAP(r, W):; r :=r + 1
end;
white: w :=w - 1;
blue: begin ,
SWAP(w, b); w :=w - 1; b

-
r -

SWAP (r, w)
end
" end ‘
end;
case colxr of
red: r:=r+1;

white: w :=w - 1;
blue: begin '
SWAP(w, b); w :=w - 1;
b :=b - 1; ’
end
end
end; {Decrease}

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

27 nevercut.slides

s TS AT TR —— VT~ AL A S

W&@&l;ﬁ

= McMaster Unive'rsity x

procedure Rearrange(var r, w, b : integer);
begin ’
while (w >= r) do
Decrease(r, w, b)
end; {Rearrange}

procedure DutchFlag;

var
r, w, b ¢« integer;
begin
r :=1;
w := N;
b := N;

Rearrange (r, w, b)
end; {DutchFlag}

begin
{initialize the object v}
DutchFlag;

.end. {DutchNationalFlag}

{MAIN PROGRAM BODY}

28

Communications Research Laboratory .
Software Engineering Research Group
“connecting theory with practice”

nevercut.slides

7/3/96:1226

» McMaster University «

LEXICON

A. Auxiliary functions
card: set — integer .

card(s) ¢ Is! (i.e. numberof elements in the set s)

flag: buckets — boolean .
flag(v) & 3r,b [partial flag(v,r,r—1,b)]

partial_flag: buckets X integer X integer X integer — boolean
partial flagvrw,b) € (1SHAGT-1SW)AWSD)ABSN) A
Vi(1<isN)[(G<P)= (v =red)) A
' (w <i < b) = (v; = white)) A
(G <) = (v;=blue)]-

Note: v, is defined in part C of this Lexicon.

same_colors: buckets X buckets — boolean
same_colors(vl v2) £ ‘
(card({i | (1 S <N) A (v]; = red)}) = card({i] (1 i <N) A (2, = red)})) A
. (eard({i| (1 i< N) A (v1; = white)}) = card({i | (1 <i SN) A (v2,= white)})) A
(card({i| (1 <i<N) A (vI;=blue)}) = card({i | (1 <i<N) A (v2; = blue)}))

B. Pascal external definitions and declarations
constN = {literal non-negative integer}
type color = (red, white, blue); .
type buckets = {vector(N, color) - cf. part C of this Lexicon}
varv :buckets;
procedure LOOK(i tinteger);
{cf. part C of this Lexicon}
procedure SWAP(j, j : integer);
{cf. part C of this Lexicon)
C. vector(n,elern) Module Interface Specification

(0) CHARACTERISTICS .

* type specified: vector(n,elem)

+ features: single-object, generic

- foreign types: elem, <integer>, <positive_integer>

- foreign types: n: <positive_integer>, elem

-

29

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

nevercut.slides

7/3/96:1226

- McMaster University «
. (1) SYNTAX
ACCESS-PROGRAMS
Program Name Argil Arg#2 Value Type
LOOK <integer>:V elem
PUT <integer>:V| elem:V
SWAP <integer>:V | <integer>:V
(2) CANONICAL TRACES
canonical(T) ¢ T = [PUTG, &)} .
1=
_ = [PUTG, 1"
i=1
<
EQUIVALENT NOTATION FOR TRACES
Trace Equivalent notation
v.LOOK ()« v;
(3) EQUIVALENCES.
TLOOK@®=T : -
T.PUT(, €) => -
- Condition Equivalence
—(1<i<n) ~ %wrong_index%
1<i<n {TLPUT(,e).T2 where T=T1.PUT({x).T2
T.SWAPG, j) =
Condition Equivalence
=((1<i€n)A(1<j<n) %wrong_index%
- - T T1PUT(x).T2.PUTG,y).T3
- i< where
T=TLPUT(,y).T2PUT(,x).T3
(I<isna(l<j<n)a i=j - T
T1.PUT(.x).T2.PUT(,y).T3
i>n where
T=T1PUTG,y).T2.PUT({,x).T3
(4) RETURN VALUES
Program Name Argument No Value
LOOK Value e where #0 = T1L.PUT{#1,¢).T2

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

' 30 nevercut.slides ' ‘ 73/96:1226

Precise Documentation of Well-Structured Programs.

David Lorge Parnas, Jan Madey!, Michal Iglewski2

Telecommunications Research Institute of Ontario (TRIO)
CRL, McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

This paper describes a new form of program documentation that is precise, systematic and readable.
This documentation comprises a set of displays supplemented by a lexicon and an index. Each display
presents a program fragment in such a way that its correctness can be examined without looking at any
other display. Each display has three parts: (1) the specification of the program presented in the display,
(2) the program itself, and (3) the specifications of programs invoked by this program. The displays are
intended to be used by Software Engineers as a reference document during inspection and mainte-
nance. This paper also introduces a specification technique that is a refinement of Mills' functional ap-

proach to program documentation and verification; programs are specified and described in tabular
form.

1 Imtroduction

The process of program development has been thoroughly studied for nearly 30 years and usefunl insights have
been gained. However, the focus of this work has been on designing the first version of a program. If a software prod-
uct is successful, the program will have many more readers than writers and will be studied and revised many times.
Moreover, while the writers have had the time to become closely familiar with the program, most readers will not
have that luxury. We consider the needs of readers, e.g. reviewers and maintainers, to be at Ieast as important as the
needs of program designers. Although proper decomposition of the software into modules will reduce the complexity
and length of programs, there will still be programs whose length makes them difficult to understand. This paper pre-
sents 2 method that can be used by developers to present their programs in a way that makes review and maintenance
easier. The heart of the method is a way of precisely summarizing the effects of a program component, so that review-
ers and maintainers do not have to study that code when looking at components that interact with it. The program and
documentation are organized in such a way that the information needed to study a component is presented together
with that component. This method is intended for programs that are well-structured in the sense defined later in this
paper. ’ RN

The present report is a revised version of [24]; it will appear in IEEE Transactions on Software Engineering.

1.1 On the role of documentation

Anyone who has ever seriously read a lengthy program produced by others (for example to inspect it or to make
changes 10 it) realizes the importance of documentation. Some argue that well-written programs are self document-
ing. Practical experience suggests that this is true only for small programs; human beings cannot easily understand
long programs. When asked to study such programs, we tend to focus on little details while making use of inaccurate

! Permanent address: Instirute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland

2 Permanent address: Département d’informatique, Université du Québec & Hull, Hull, Québec, Canada J8X 3X7

October, 1994 1/41 . CRL Report No. 295

e e e

descriptions of the overall structure. The combination of a large amount of detail with inaccurate or vague descrip-
tions of the structure makes it quite common for serious errors to escape the reviewers’ attention.

A design concept or algorithmic method that was obvious to the programmer at the time the program was written
will not be obvious to other programmers, or even to the same programmer, one year later. Even if the program was
developed using a systematic refinement process, there are few traces of that process in the final code. Although the
program’s author may have thought of the program in terms of a set of building blocks, each with a clearly defined
function, it is not easy 1o identify those blocks and induce their functions by looking at the final code.

12 Smdying long programs

When studying a long program, we must decompose it into small parts and then, provisionally, associate a func-
tion with each one. We must then convince ourselves of two things: (1) if each part implements its assigned function,
the whole program will be correct, (2) that each part implements its assigned function. Frequently, we find that our
provisional assumptions were not exactly what the programmer intended. Then, after revising our initial division and
function descriptions, we try again. In principle, this iterative process converges and we learn whether or not the pro-
gram is correct. In practice, we usually give up before we have a complete understanding of the program. The process
terminates when we run out of time or patience.

1.3 Conventional documentation

Experienced development organizations have long recognized the need for documentation and there are exten-
sive documentation standards. Unfortunately, when one tries to use this documentation, it is not found to be very use-
ful. Often, the document includes a narrative description of the program - a translation of the program into a “natural”
language. For people with an understanding of programming, it is usually easier to read the program itself than prose
that anicmpts to say the same thing. Our natural languages were not intended to be used for precise descriptions where
small dezails are critical. Most documentation encountered in industry is vague, inaccurate, and incomplete.

‘When documenting programs, there seems to be a tendency to focus on the details that we think will be hard to

- “-ember while ignoring the basic structural decisions, which seem obvious. Later, readers find that the structure is

- =i obvious and the details are overwhelming. Moreover, most documentation is informally organized. Even when the

tesired information is present, it is not obvious where it will be found. When the information is found, it is often in-

consistent or inaccurate. Industrial experience suggests that a huge portion of the “maintenance effort” goes into find-
ing information and then finding an expert who can confirm or correct the information that was found.

The inadequacies of most software documentation can, in part, be blamed on the differences between standard
engineering practice and the way that software systems are designed. In engineering, the production of design docu-
ments plays akey role - it is rare 1o find an engineer proceeding by building first and documenting later. In engineer-
ing, mathematics is extensively used to provide accurate and detailed descriptions of the products to be built; the need
for precise descriptions of each component of larger products is almost universally accepted. In contrast, software
systems are commonly produced before proper documentation is written; documentation is not viewed as a part of the
design activity but as an additional task required by bureaucratic regulations or ignorant customers. The use of math-
ematics in describing programs is rare. As a result, the documentation is of limited value for programmers, reviewers
ang maintainers.

1.4 Design through documentation

The methods presented in this paper must be understood in the context 'of the complete documentation scheme
described in [19].

It is widely accepted that the documentation of a computer system must include a software requirements docu-

October, 1994 ' 2/41 CRL Report No. 295

Al

ment (consisting of a system requirements document and a system design document). These documents provide a
black-box description of the system as a whole, a description of the hardware structure, and a black-box description
of the software. Detailed discussions of these documents can be found in [5, 6, 28, 29].

Because large software systems are seldom the product of a single person, the task of constructing them must be
split into several smaller work assignments. Each assignment is to design and implement a group of one or more pro-
grams, which we call a module. In well-structured systems, the programs in a module share access 1o a private data
structure and implement one or more abstract objects. We call programs that are part of the module, and can be used
from outside the module, the access-programs of the module. Programs that belong o other modules never read di-
rectly from, or write directly to, the internal data structure of a module; they always use a module’s access-programs
to get information about, or change the state of, any objects created by that module [16]. We recommend a software
module guide, which describes the structure of the software system by indicating the design decisions hidden in each
one [23]. For each module identified in the module guide, there should be a module interface specification, which
provides a black-box description of the behavior of the objects created by that module. Our approach to specification
of module interfaces (the trace assertion method) is illustrated in Appendix B and described in [21, 81.

For every implementation of a module interface specification (there may be several), there should be a document
describing the module internal design; that document must describe the internal data structures and the effect of the
module's access-programs on the state of that structure. The contents of these documents are defined in [19], which
contains a more general discussion of the role and structure of documentation in software engineering. Examples of a
detailed software requirements document can be found in [5, 28).

This paper focuses on the documentation of programs within a module. The documentation described here com-
plements the documents mentioned above,

1.5 The responsibilities of program designers and reviewers

We believe that the reviewer or maintainer of a program should never have 1o guess its structure. The iterative
process described in Section 1.2 must be eliminated. Programs should be presented to the reviewer and maintainer as
a collection of small parts, each with a precise description of its function. The structure should be explicitly and pre-
cisely described in the documentation. It should be possible to review the small parts separately and know that, if
each of the components is correct, the whole program is correct. In other words, the decomposition phase of the re-
view process should not be repeated by the reviewer; it should be communicated by the designer. The reviewers must
check that the structure is a good one, but their primary responsibility should be checking each of the small fragments
against the description of its function.

It is clear that we are asking more work from the designers than they usually do. We are asking them to write
down, systematically, information that reviewers and maintainers would otherwise have to discover for themselves.
Because there will be more readers than writers, and because the writer already knows the information, we believe
that the combined cost of developing and maintaining the product will be lower if the writer presents the program as
proposed in this paper and the documentation is kept live by revising it each time that the program is revised. More-
over, our experience suggests that the quality of the program will be improved as a result of requiring the programmer
to produce the documentation,

1.6 The use of mathematics in documehtation

Our method is based on a mathematical model of programs and uses mathematical notation to provide precise
descriptions of programs. Although mathematics is not commonly used in programming practice, we believe that the
ability to use mathematics in this way will be the hallmark of Software Engineers in the future.

Most demonstrations of the use of mathematical methods in software engineering emphasize program develop-

October, 1994 3/41 CRL Report No. 295

T N L. o,

ment or verification. This paper focuses on documentation. While we believe in systematic development, we believe
that the documentation delivered with a program should not depend on the program development process. This paper
discusses the documentation that should be associated with a program, not the procedure for developing the program.

Many papers on formal methods for program development emphasize the idea of proving a program to be cor-
rect. Our paper is less ambitious. Althoug}i we believe that the mathematical documentation we describe could be
used as input to a program verification process (our notation is close to classical predicate logic), our emphasis is on
documentation that is valuable whether or not formal proof is attempted. We have used this type of documentation as
inputto an inspection process [22], but this paper does not discuss formal verification.

1.7 Introduction to the “Display Method?”

This paper introduces a method of documenting well-structured programs called the Displéy Method. It requires
designers and implementers to present their programs as sets of displays. The method is based on the well-known fact
that a well-structured program can always be written as a short text in which the names of other programs® may ap-
pear and the programs named can also be short. The down-side of such an organization is that there will be many pro-
grams and to understand any one of them, one must understand several others. We overcome this by presenting the
material in displays. A display is a document in which a program is presented in such a way that its correctness can be
examined without looking at other displays. _

Though the Display Method can be used with any specification technique (and any imperative programming lan-
iuage), we decided to illustrate it using a refinement of Mills’ approach® [13, 14]. We have chosen 1o base our work
on Mills” method, rather than approaches that are more popular, because we find it more suitable for large programs.
Unlike Floyd [3], Hoare [7], Dijkstra {2], and their followers, Mills, althou gh equally rigorous, does not include axi-
omatic descriptions of programming language statements among his basic definitions. Instead, he assumes that the
s~ograms, from which other programs are constructed, can be described by mathematical functions. Since this as-

zmption is valid for all deterministic programs, one can apply Mills’ approach even when the component programs
" quite long and complex. This allows the same method to be used for well-structured programs of any size.

Many other methods do not deal with the problem of how to assemble small programs into large ones. For exam-
.14, if one were to mimic the techniques used by Wirth for the eight queens problem [27], one would keep repeating
the parts of the text that were developed early in the refinement process. For a long program, this would not be practi-
cal. Program texts would grow so long that no dne could keep them under full intellectual control. Other presematioris
of moderate-sized programs are confusing because it is not Clear how the small sections fit together (cf. e.g. chapters
14 and 24 in [2]). Our method avoids both problems. '

In documentation, the notation is very important; documents are to be read by experts from a variety of fields and
:#ould be easily understood. We must apply the principle of “divide and conquer” when designing notation; readers
szould not have to parse long expressions. Our approach is based on the use of tables to describe mathematical func-
tions, relations, and sets [18]; such tabular notation has already been used in practice (e.g. in safety-critical software
for a nuclear plant [22]) and has proven practical. '

Some readers will observe that, in our examples, the volume of the documentation is much greater than the vol-
ume of program code. This is a consequence of the need to use small, but nontrivial, examples in a paper of this sort.
The Iength and comp!sxity of a precise description of a program’s effect does not necessarily increase with the length
of the program. In fact. it often happens that the description of the effects of a part of a program is more complex than
the description of the whole program. Consequently, the ratio of program size to program documentation size is under

3 Note that these named programs need not be subroutines. In the text submitted to the comiailer some of the program names may
have been replaced by the text of the program itself.)

4 Although Mills is the best known proponent of this approach, similar ideas were independ;mdy discovered by many others.

October, 1994 ' 4/41 CRL Report No. 295

Lot

e

-

e S—— R

the control of the document’s author. When documenting long, but easily understood, programs, it is not necessary to
describe the behavior of small components; consequently, the ratio of code size to documentation size increases. In
practice, the components identified will be longer than those in this paper’s examples.

1.8 Organization of this paper

In the next section, we review some old issues about the structure of programs. Section 3 contains some basic
definitions used in our approach to program description. Section 4 presents the main ideas of the Display Method and
introduces important notational conventions. The method is illustrated by two complete examples (presented in ap-
pendices). A discussion of these examples and some.sample displays are presented in Section 5. The lessons learned
from previous experience with the proposed approach, and some future plans, are described in the final section.

2 Well-structured programs

This section motivates restricting the structure of programs, and then states the constraints proposed. While some
researchers consider the themes in this section obvious, many practitioners continue to ignore them.

2.1 Hierarchical control structure in programs

The well known “structured programming™ constructs, such as “while” and “if then else” have two very useful
properties:

(1) programs constructed using them can be decdmposed into a hierarchy of parts (with lower level parts
completely contained in an upper level part) using simple parsers; those parsers need not even distinguish one 4
identifier from another, . :

(2) the semantics of the total program can be determined from the semantics of its parts, using simple oper-
ations (cf. e.g. [17, 20]).

Further, the semantics of the program can be determined in a flexible sequence, finding the semantics of inner
parts first and finding the semantics of a sequence of programs constructed using “;” either left to right, right to left, or
a mixture - as one prefers. In fact, the work need not be sequential. In contrast, the use of “go to” and Iabels makes it.
difficult to find a decomposition in which the components have simple semantics.

The above properties are important because they make it easier to study a long program one small part at a time,
and to do so without a previous understanding of the overall structure of that program. In contrast, when 2 program is
constructed using labels and unrestricted jumps, considerable understanding of the program is needed in order to de-
compose it into parts that can be studied independently.)

Programs having the desired properties are often referred to as having a kierarchical control structure or as well-
structured programs. The Display Method is intended to be used for such programs.

2.2 Use of data abstractions

Even the best structured program will be difficult to explain and understand if it is presented in terms of complex .
data structures. Essential information about the nature of the data and algorithm can be obscured by representational
details,

Complex data structures should be encapsulated (or hidden) by the introduction of new data types that have been
designed specifically for the type of data being stored. Such specially designed data types, known as abstract data
rypes (because they allow the reader to abstract from the actual representation of the data), were introduced into the
literature by Dijkstra [1]. The principle of information hiding, long used by very good programmers, was first dis-
cussed explicitly in [15). "

October, 1994 5/41 CRL Report No. 295

Precise documentation of a program that uses abstract data types is not possible unless the properties of the ab-
stract operations are also precisely documented. In this paper we presume that the abstract types are implemented by
modules whose properties have been specified by a module specification method such as that discussed in [21] or by
one of the algebraic methods. However, the examples in this paper have been selected so that they can be understood
without an understanding of module specifications.

2.3 Discipline vs. notation
It will be seen that the usability of the discipline proposed in this paper is independent of:
(1) the notation used to present the information in a display,
(2) the language used for coding the program, and
(3) the method used to verify the displays.

The present paper focuses on the contents of the displays, using one programming language and one of many
possible notations for presenting specifications. We have chosen the Pascal language [9] for the initial examples, not
because it is ideal but because it is familiar. We have chosen to use tabular representations of LD-relations for reasons
explained in Section 3, but we believe that the display method could be adapted for use with other notations such as
VDM [10]. While we do not present formal verifications; we claim that the information necessary for verification of
any display is contained in that display and the lexicon.

3 Mathematical description of program effects

In this section we show how to use standard mathematical concepts to describe the effect of program execution.
We introduce the LD-relation [17, 20] and its application 1o program description and specification. Those wanting 1o
use this method must read this section carefully. The literature contains many notations that are similar but differ from
this one in subtle ways. In particular, the meaning of our notation is (necessarily) different from that of both Hehner
[4} and VDM [10]5; confusion can arise if one assumes otherwise.

3.1 Finite state machine approach

. A digital computer can usefully be viewed as a finite state machine. For our purposes such a machine is one that
is always in one of a finite set of states and whose operation consists of 2 sequence of state-changes, i.e. transitions
from state to state.

Definition 1;

We will use the term “program™ to denote a description of state-change sequences in a finite state machine. Pro-
grams may describe both finite (terminating) and infinite (non-terminating) state-change sequences. a

Let P be a program and let U be the set of states of a digital computer. The following terminology and notation .

will be used in the sequel: '

Definition 2:

* A complete state-change'sequence described by P is called an execution of P.

« The set of executions of P that begin with the state x, (x € U), is denoted by ep(x), and x 1s called the starting state
of the sequences in that set. The set of all executions of P is denoted by Exec(P,U). .

5 The work described in [4] stresses the description of programs by a single predicate, which limits the ability 1o provide complete
descriptions of non-deterministic programs. VDM only describes the behavior of a program when started in states that satisfy a pre-
condition that guarantees termination. We chose a method that allows complete description of any program.

October, 1994 6/41 CRL Report No. 295

o . - - - - ——— e g
D & v v o B e Arualia o - - "= = ey T —— Fasun o " 4 —

« If there exists a finite execution in ep(x) with final element z, then:
- we write <x,...,z> € ep(X),
- we say that this execution terminates (in z) and call z the final state (of this execution).
e If <x,...,2> € ep(x), we also say that the program P may start in x and terminate in z.
« If ep(x) contains an infinite sequence, we say that this is a non-terminating execution, and denote it by <x, ...>.
« If there exists a state x, (x € U), such that ep(x) contains two or more distinct executions, then P is a non-determin-
istic program.

» If for a given state x, (x € U), every member of ep(x) terminates, then x is called a safe state for P, The set of safe
states for P is denoted by Sp .
0

3.2 Limited-domain relations (LD-relations)

If we are not interested in the intermediate states of executions, then every deterministic program can be de-
scribed by a program function, a function whose domain is-the set'of safe states and whose range is the set of final
states [13]. Non-deterministic programs cannot be fully described by program functions. First, a program started in a
safe state may terminate in one of several distinct final states; thus a relation must be used and not a function. Second,
a program started in a state that is not a safe one may sometimes terminate and sometimes not; a relation on the set of
states does not provide sufficient information to distingnish between safe and unsafe states.

In [17] one possible solution® 1o the latter problem was suggested: instead of a relation we use a pair, (relation,

set). This set will be used to provide the necessary additional information. The definitions that follow describe this so-
lution. We begin by defining some formal structures, and describe how these can be used 10 describe and specify pro-

grams,

Definition 3: ,

* A binary relation R on a given set U is a set of ordered pairs with both elements from U, i.e. RS U xU. The st U
is called the Universe.

» The set of pairs R could also be defined by its characteristic predicate, R(p,q), i.e. R = {(p,9):U x U IR(p,q)).
» The domain and the range of R can be expressed as follows:
Dom®) = {p13q R(.9)1}, Range(R) = {q13p R(.9]).

In the sequel the term “relation” means “binary relation™.

Definition 4:
Let U be a set. A limited-domain relation (LD-relation) on U is an ordered pair L = (R;, Cp), where:

- Ry, the relational componént of L, is arelation on U, i.e. Ry SUXU,
- CL, the competence set of L, is a subset of the domain of Ry, i.e. C; € Dom(R;). . 0

. 3.3 Applications of LD-relations

An LD-relation can be used both to specify and to describe programs. A program specification is a statement of
the requirements that an acceptable program must satisfy. A program description is a representation of the visible be-
havior of a specific program. A specification may allow behavior that is not actually exhibited by the program. Since
the same mathematical structure is used for both descriptions and specifications, each must be labelled to indicate the
intended interpretation of the information. The following sections explain our usage of these terms more precisely.

$Other, mathematically equivalent, approaches introduce a special symbol to represent non-termination, cf. e.g.{12]. The approach
chosen here allows representation in terms of variable values without the addition of any special symbols or states.

October, 1994 " 7/41 : CRL Report No. 295

3.3.1 Program descriptions

As was mentioned in Section 3.2 a deterministic program can be described by a program function. We can gener-
alize this notion, as follows:

Definition &; -)
* Let P be a program, let U be a set of states, and let Lp = (Rp, Cp) be an LD-relation on U such, that:
- (X,y) € Rp & <x,...,y> € Exec(®,U), '
- Cp = Sp .7 .
L, is called the LD-relation of P and the description of P.

* If Cp = Dom(Rp), then (by convention) the competence set need not be given explicitly. In other words, if C; is not
- given, then it is, by default, Dom(Rp).

Q
One should note the following consequences of this definition:

- if x € Cp, P always terminates when started in x and if (x, y) € Rp , P may terminate in y,

- ifx € (Dom(Rp) — Cp), the termination of P when started in x is non-deterministic; in that case if (x: ;r) €Rp, "’

P may terminate in y, but it might not terminate at all,
- if x € Dom(Rp) and P starts in x, then P will never terminate.

- If P is a deterministic program, then the relational component, Rp , is a function, Cp = Dom(Rp), and hence Lp
is the program function defined in {13). Hence, our approach is “upward compatible” with that of Mills,

3.3.2 Specification of programs

We can also use LD-relations 10 specify a program. In the general case one may be given a set of LD-relations
and be asked 1o write a program that satisfies at least one of them.

Definition 6; i =

LetL, =(Rp, Cp) be the LD-relation of a program P (where U is the set of states). Let S, called a specification,
be a set of LD-relations on U, and let Lg = (R} @4 be an element of S. We say that: * °

ip satisfies the LD-relation Lg, iff Cs € Cp and Rp SR,

- P satisfies the specification S, iff P satisfies at least one element of S.

ug
Often, S has only one element. If S is a specificationand S = {Ls}, then we can also call Lg a specification. This

is the usual case and the only one mmmwd in this paper. .
Il isusedasa speciﬁcaﬁon, P will satisfy it. However, P will satisfy many other specifications and other pro-

" grams may mﬁsfpr.

4 The Display Method of program documentation

In the Display Method, program documentation consists of a set of displays, supplemented by a lexicon and an
index. This section explains these concepts.

H:‘i

4.1 Displays

7 Please note that Cp is not the same as the precondition used in VDM [IO]N and other methods. LD-relations provide a complete

description of the behavior of a program, not just a description of its behavior when the starting state is in Cp . Rp is a description
of the behavior within its domain, not just within Cp.

October, 1994 8/41 CRL Report No. 295

L.

These named programs can also be short and can include the names of other programs. By a display we mean a con-
cise document, (preferably 1-2 pages), in which a short program is presented in such a way, that its correctness can be
determined without examining other displays. More precisely:

Definition 7;

A display is a document that consists of the following three parts:

- P1: a specification for the program presented in this display,

- P2: the program itself. The names of other programs may appear in this text; we say that the these programs are

invoked in this display,
" - P3: specifications of all programs (other than that specified in P18) invoked in P2 that are not known®.
, Q

the, that the terms “program” and “invocation” are to be understood in a generic sense. A name appearing in the
program P2 may represent a procedure call (in which case it will usually be followed by actual parameters) but may
also be treated as a macro call, to be replaced by a sequence of instructions. In either case, the construction of the re-
sulting program by merging the P2 parts of all displays should be a simple operation that can be done automatically.,
As discussed below (cf. Section 4.4), if an invoked program is not an available!© program, its specification must ap-
pear as P1 in another display. -

jo23
POPS

4.2 The lexicon
To avoid repetition of information in several displays, and the maintenance problems that result from redundant

information, we place that information in a separate document, called the lexicon.

Definition 8:

A lexcon is a dictionary containing definitions of terms used in the program being documented. It will contain
the definitions of any mathematical functions, programs constants, typss, etc. that are used in more than one display.

n]

'We refer readers to the lexicon wherever the information that it contains would have appeared.

4.3 The index--

To help those studying a program .}i_/ga also recommend an index. ~
Definition 9;

An index is a list of all the variables, programs, etc. indicating where those items appear in the displays. If some
narnes are used with more than one meaning, we also describe the category of each name.

.

0

4.4 Completeness and correctness

Each display can be reviewed without any reference to other displays; its correctness can be verified without
looking at the implementation of either the programs that are invo}«ad in that display or the programs that invoke the
program it describes.

8 Note that if a program invokes itself recursively, one should not include the specification of that program in its own P3.

2 A known program is one that does not require a specification. The semantics of known programs are assumed 1o be understood.
Every project should have a list of programs that are considered to be known.)

10 An available program is one that exists in 2 project or system library. We need not have a display for an available program. Avail-
able programs are not necessarily known programs. Known programs are usually, but not always, available.

October, 1994 - 9m CRL Report No. 295

Definition 10: .
* Adisplay is correct if the program in P2 will satisfy the specification in P1, provided that the programs invoked in
P2 satisfy the specifications given in P3.
* A set of displays is complete if, for each specification of a program (except an available program) that is found in
P3 of a display, there exists another display in which this specification is in P11!.
* Aset of displays is correct if (1) the set of displays is complete, and (2) all displays are correct.
a

A display can be supplemented by an additional part, P4, that contains a demonstration of its correctness. This

could be either a description of the informal reasoning.routinely done by a programmer, or a more formal argument.

The existence of this additional section would make the reviewer’s task simpler — one would not have to invent a
“proof”, only to check one. In the present paper we do not supply P4,

4.5 Notation

In the examples of displays in this paper we will use LD-relations for program specifications and the Pascal lan-
guage for programs. The LD-relations will be represented in a tabular form [18]. The basis of such representation is
[the fact that every relation can be understood as a set of ordered pairs defined by its characteristic predicate (cf, Defi-
nition 3, Section 3.2). A predicate is also used to represent the competence set of an LD-relation.

4.5.1 Infroductory conventions

This section introduces some useful notational conventions. It is usual to describe predicates using boolean ex-
pressions. The tabular notation used in the present paper will be explained by means of examples.

Convention 1;
Let P be a program specified by an LD-relation L = (R, C), and let (v1, --., i) be the variables in P that constitute
its data structure, v. Then: :

@ ¢

v; 7 (to be read “v; before™) denotes the value of the prégram variable v; before an execution of P,

“v" 7 (1o be read “v; after”) denotes the value of the program variable v; after a terminating execution of P,
- “ ‘v 7 (to be read “‘v before™) denotes the value of the data structure v before an execution of P,

= “v’ 7 (1o be read “v after”™) denotes the value of the data structure vafter a terminating execution of P.

]

Each pair in R will be of the form (*v;, v;"). Note that ‘v; and v;’, as mathematical variables, could have been re-
placed in the definition of R by other symbols, but we would then have to establish an explicit correspondence be-
tween those symbols and the components of program data structure.- Our notational convention makes the
correspondence implicit in the variable names.

nvention 2:
If it is clear from the context that the programming variables are 2, b, c, -, then one may write “R(,)” instead of
“R((‘a, ‘b, ‘C, .")’ (ar, b’, cr, .“))”.
a
nvention 3: . ,
In examples we will often need to express the fact that some variables do not change their values during the exe-
cution of a program. We found it useful to introduce a predicate symbol NC (“Not Changed™).

NC(vy, v S (W ="v) A A (w =) '

1 Note that completeness of the set of displays can easily be checked mechanically.

October, 1994 10/41 ‘ CRL Report No. 295

Convention 4;
When we write a boolean expression to characterize a set of program variable values, we always assume that pro-
gramming variables can only have values appropriate to their types and do not state those restrictions explicitly.
LEr Q
The variables that form the domain and range for a given LD-relation can be listed in the heading preceding the
LD-relation and need not be repeated in the characteristic predicates.
a

4.5.2 Tabular representations
To explain the tabular notation used in this paper, we introduce the following simple problem;

PROBLEM
Write a program which finds the maximum of two integer values stored in programming variables.

Discussion:

The data structure of this program will consist of three variables of integer!? type named a, b, and max. The
first two will be used to store the input values, while the third one will store the result. We will require that the final
values of a and b be the same as the initial ones. Note, that the initial value of max (i.e. ‘max) is irrelevant.

The above considerations lead to the following specification of this program by an LD-relation, Ls=(Rs, Cs):
- Rs()={(a'="a) A (b'="D) A ((('a < D) A (Max’= D)) v (('a 2 ‘D) A (max' ="a)))]},
- Cs=Dom(Rg).

Tabular form:
The characteristic predicate of the relation Rg can be given in tabular form.
» A direct representation of this predicate as a table, is as follows:

91 ‘agd ‘az'b
a ‘a ‘a
b’ ‘b ‘b
max’ ‘b ‘a

= For ease of checking tables, we usually require that conditions that head columns be mutually exclusive!>, In this
case we should replace “<” by “<*, or “2” by “>”". The first replacement leads 1o the following table:

v ‘asb | ‘a>b
a = ‘a ‘a
b’ = D ‘b
max’ = ‘b ‘a

12 We will use different fonts to distinguish between programming language elements (e.g. “infeger”, “true™), and mathematical
terms (e.g. “integer”, “true”™).

13 This requirement is not strictly necessary, just useful. Eliminating heading overlap for tables that represent functions, cannot
change their meaning and, consequently, does not result in overspecification. We show how 1o describe relations below.

October, 1994 . 11/41 CRL Report No. 295

« Using “NC” we can revrite the above expression as follows:

T3 ‘ash ‘a>b
max’ = ‘b ‘a
3 ‘asb ‘a>'b
max’ = ‘b ‘a

» The first two rows of ‘72 can easily be expressed conventionally. We can combine both notations as follows:
(@=aAa=D)A

A‘ NC(a,b)

* The conditions in Z3 itself can be written in another way (which may make the table easier to réad when expres-
sions are long) - the string above a dotted line is treated as if it were repeated in each column below that tine:

T4

(fa<'b)=

true

© false

max’

‘D

‘a

T35

‘a

b

max’

‘b

‘a

ANC(a, b)

= The conditions heading columns in 74 can be written in yet another form, as follows:

ANC(a,b)

* The equality operator in the “value after” phrase can be replaced by any other relational operator or by the vertical
bar, “I”. The latter is to be read “such that”. When “I” is used, the entries in that row must be boolean expressions;
the value of the variable must satisfy the predicate described in the relevant column. For instance, the row defining
max’ in the table 73 could have been written as follows: Note that the use of “I” allows the description of relations

% a<h | ‘a>b

max’ | max’=‘b

max'=‘a | ANC(a, b)

or non-deterministic programs without having overlapping column headings.
» The table identifiers: 71, 72, ... are optional and have no formal meaning,

4.6 Parameters and side-effects

Programs presented in displays will often use procedures. Procedures are not programs in the sense described
above; they are program schemata, which cannot be described by functions or LD-relations. Procedures with formal
parameters can be represented by program function schema, mappings from actual parameters to program functions,
as described and illustrated in [8]. A procedure invocation, including the actual parameters, is a program in the sense
of this paper. Here, we provide the program function corresponding to each actual invecation.

October, 1994 12/41 CRL Report No. 295

()

(1) The specification of the procedure invocation will be written in terms of actual parameters. In the declaration of
this procedure, however, formal parameters will be used. Both the specifications of invoked programs appearing
in the declaration, and statements in the declaration body must be written in terms of the formal parameters of the
procedure (and its other local or non-local objects). The binding of parameters is done according to semantics of
the given programming language (Pascal, for the examples in Section 5).

(2) For simplicity’s sake, we will avoid any form of aliasing14 in our examples, e.g.: i

« If more than one parameter is called by variable, then the actual parameters will be different variables.

» If there are side-effects, then a variable external to the procedure body will not be passed as a parameter
called by variable.

5 Exampleé

In this section we will illustrate the Display Method on two simple but complete examples written in Standard
Pascal [9]. We decided to use simple and well-known problems to emphasize the main ideas of the proposed ap-
proach. The complete sets of displays with the lexicons and the indices are presented in appendices.

5.1 “Binary search”

We begin with a problem familiar to all programmers, so that we can focus on the display method.

5.1.1 Informal description of the problem

Given an integer x, and a list of #n 2> 1 integers, a, ..., 4, in non-decreasing order:
- check whether x is among a,, ..., @, and return this information,
- if xis among a,, ..., 4, find an index j such that x = a;.
If the list is empty or not sorted, we require program termination but do not care what the program does because
we assume that the program will not be invoked under such conditions!>.

5.1.2 Discussion

(1) A solution to this problem (by the well-known “binary search” method) will be presented as a Pascal procedure
declaration and its invocation. It is the invocation that must satisfy the specification. This procedure declaration
should be preceded by definitions and declarations of needed constants, types and variables, to set up the data
structure whose values will form the state space.

(2) The following assumptions are made about the correspondence between the description of the problem and Pas-
cal programming language objects:

« Integer numbers are represented by values of the standard type integer'.

« The length of the list is represented by the constant n. ‘

» The list itself is represented by the value of the variable A of a type vector, defined as array[1..n] of integer.
« The integer x is represented by the value of the variable x of type integer.

» The results are represented by the values of two variables: j of type integer, and present of type Boolean.

14 Aliasing does not invalidate the basic theory or model used in our work. However, it complicates the representation of data states.
In our examples, there is a 1:1 correspondence between identifiers and elements of the data structure at any point in the program.
This allows us to represent state by a list of values in which each element corresponds to one identifier. If aliasing is allowed, or "
with dynamic data structures, one needs a more elaborate scheme for identifying data states.

15 This is undoubtedly 2 foolish assumption in practice, but it is useful for llustrating the meaning of the notation. In this example,
if a program is called when the assumptions are not satisfied, even the values of the variables x and A are allowed to change.

16 Recall that by convention we use different fonts 1o distinguish Pascal objects from mathematical ones.

October, 1994 , 1341 CRL Report No. 295

(3) We will specify, that:)
« The values of A and x should not change if the program is invoked under normal conditions.

+ If the desired index exists, then j will return its value and present will be true. If the index does not exist,
present will be false and j can have any integer value.

(4) The following observations and conventions aré related to the data state:

+ Initally, the data state is determined by the values of the constant nl and the variables A, X, J» and present.

« The relational component R of the LD-relation should specify acceptable changes of these values (however
constants, by definition, do not change and their values need not be mentioned).

« For variables we will use the conventions introduced in the previous section.

5.1.3 Example of a display

We will present one display (the complete set is to be found in Appendix A). To help in understanding specifica-
tions, we begin by discussing P1 of this display in detail. We have number°d each line of part P1 and explain those
lines in the notes below.

Specification

() | Find(x, A, j, present)
® Ro() =((T<smAVi[(1<i<n) = (Al <'Ali+1])]) =

3 JGf(1<i<sn)aA(All=%)]=

“) true false

® |5 | A= true

© present’ =) true false ANC(, A)

Notes on P1:

(1) The procedure i mvomuon “Find(x,A,j,present)” lists actual parameters which form the data structure. If exter-
nal'? variables were used, they need to be listed in this line,

(2) Since the elements of the data structure are listed in line 1, we do not need to repeat them (Convention 2, Section
4). Without that convention we would have to write “Ro{(‘%, ‘A, 4, ‘present), (x', A", j’» present’))” instead of
“Ro(,)”. Next note, that the expression “((1<n) A Vi[(1 <i<n)= (‘Ali] < ‘Ali+1])])” is true if the § input se-
quence is non-decreasingly ordered. .

(3.4)This and the next line could have been written as one entry but we would have to repeat the long expression twice.

(5) The phrase “J' | rrue™ expresses the fact that the program will satisfy the specification no matter what the value of
j is when the program terminates.

(6) Notice that the logical values written here are Pascal constants. The other “srue” and “false” were mathematical
constants. The phrase “NC(x, A)” expresses the requirement that the variables with input values remain un-
changed.

In P3 of the display, the rows for low and high are not strictly necessary because the new values of those variables are

not constrained. Since these tables represent the characteristic predicate of the relation, variables that are not men-

tioned are not constrained. We sometimes include such rows to make this more explicit.

17'We will use the term external to denote objects that are not local to a given program.

October, 1994 T 14/41 CRL Report No. 295

Rl y T o

.
RS

L’w

DISPLAY 1

Display 1 Specification

Find(x, A, j, present)

Ro() = (1SN AVI[(1<i<n) = (A <‘Ali+1])]) =

[<isn)A(All=%)]=

true false
P | ‘AT =% true
present’ = true false

ANC(x, A)

llllllll!lll!lllllllllll!lllll!lllllllllllllllllllllllllllllll!lllllllllll!llllllllllllllllllllllll!lllll!llllllllllllllll

Display 1 Program

Procedure declaration:
procedure Find(e : integer; V : vector; var index : integer; var found : Boolean);
var low, high : integer; '

begin

Initialization; Body
end {Find}

e R R R Rl R iR Rt R R R TRt Rt R Rt bR R R AR R iR R R R R AR R AR R0 R0220800028001108]

Rislicliro1(0) M external variables: e, V, found, low, high

R,(,) = (low" = 1) A (high’ = n) A (found’ = false) A NC(e, V)

Rz(r) =

Display 1 Specifications of Invoked Programs

(on Display 4)

external variables: e, V, index, found, low, high

(on Display 2)

((‘low < ‘high) A (found = false) A Vi [(‘low <i < ‘high) = (‘V[i] < ‘V[i+1_]))=
' 3i[(low <i<‘high) A(V[i]=‘e)] =

true false
index’ | ‘V[index']=‘e true
found’ = true faise
low’ | true true
high’] true true ANC(e, V)
October, 1994 15/41

CRL Report No. 295

END OF DISPLAY 1

5.2 “Dutch national flag” example
This example is based on [2], chapter 14.

3.2.1 Informal description of the problem

(1) There isan abstract data type “buckets”. A value of this type may be used as a vector of N elements of type “col-
or”, where N 2 0 is a fixed integer, and color £ {blue, red, white}. Each element is called a “pebble” by Dijk-
stra. We introduce a variable of type buckets, v, ¢ of type color, and i,j of type integer. The operations on v are:

» PUT(,c), which sets the value of i®® element of v to ¢, if N>0, (i.e. puts the c-colored pebble i into the i® buck-
et) and does nothing if N=0 or i is out of range.

« LOOK(i), which returns the color of the pebble in the i® bucket and does nothing if i is out of range.

- SWAP(i,j), which swaps pebbles between the i and j® bucket, if i+, and does nothing if i and jare equal or
the arguments are out of range,

(2) The type buckets and the operations PUT, LOOK and SWAP are defined more formally in Appendix B (in the
lexicon) by a parameterized module interface specification using the trace assertion method [21, 8]. The initial
value of v is assumed to be set externally.

(3) We want to design a Pascal procedure that, given any initial arrangements of pebbles in v, “will rearrange (if nec-
essary) the pebbles in the order of the Dutch national flag, i.e. in order from low to high bucket number first the
red, then the white, and finally the blue pebbles.” [2). This procedure should:

» cope with all possible special cases, including missing colors and N=0,
» not introduce arrays of any sort, only a fixed number of variables of type integer and color, and
* not use the operation LOOK(i) more than once for each value of 1.

5.2.2 Discussion

Our solution (and the description in this section) is based on the original proposal by Dijkstra. We will assume
the existence of the external Pascal variable v of type buckets, as presented in the problem descnpuon above, and
that the Pascal procedures PUT, LOOK, and SWAP are both available and known.

Although the pebbles are of only three different colors, the fact that we can only inspect pebbles one at a time, to-
gether with the requirement that we can only inspect each pebble once, implies that throughout the arrangement pro-
cess, we have to distinguish between pebbles of four different categories, viz. established red (ER), established white
(EW), established blue (EB), and as yet uninspetied (X). We will divide the row of buckets into four (possibly empty)
zones of consecutively numbered buckets, each zone being reserved for pebbles of a specific category. For keeping
rack of the place of the zone boundaries we will use three integer variables, r, w, b, with the meanings:

1<k<r: thek® bucket is in zone ER (number of buckets -1 > 0)
r<k<w: the k™ bucket is in zone X (number of buckets w—r+1>0)
w<k<b: thek™ bucket is in zone EW (number of backets b-w > 0)

b< k<N: the k™ bucket is in zone EB (number of buckets N~b 2 0)
This is illustrated by the following figure:

ER X EwW EB

October, 1994 16/41 N CRL Report No. 295

' v —— RERE M ™ s~ai S T - TPV —— T e— sumnrerat -l U i sk - T T T LT

Initially, r=1, and W = b = N, so that the zones ER, EW, and EB are empty. The program then proceeds by incre-
menting r, and decrementing w and b while making the necessary swaps, until the area marked “X” is empty because
r=w+l,

5.2.3 Example of a display

The complete set of displays including the lexicon and index is to be found in Appendix B. In the dxsplay below -
there are three auxiliary functions (predicates) used: flag, partial_flag, and same > _colors. Their formal definition is
given in the lexicon. Intuitively, flag(v) is true if the colors in v form the required final configuration (zone X is emp-
ty); partial_flag(vx,w,b) is true if colors are grouped as on the above figure. The predicate same_colors(x,y) is true if
x and y have the same number of red, white, and blue pebbles.

DISPLAY 1 _
Display 1 Specification

DutchFlag : external variable: v

Ro(,) = flag(v'} A same_colors(*v,V")

llllllllllllllllllllll!lll!lllllll"ll"lllllllllllllllll"lllllllllll"ll
"Display 1 Program
Procedure declaration:
proceduré DutchFlag;
varr,w, b :integer;
begin
r=1,w=N;b=N;
Rearrange(r, w, b)
end {DutchFlag} .

-Display 1 Specifications of Invoked Programs

L3221 U [s S ATA OW external variable: v

Ri()=((r=1)A(w=N)A(b=N))
=
(partial flag(v',r w'.b’) A (W' =1'-1) A same_colors('v,v"))

END OF DISPLAY 1

" October, 1994 17/41 CRL Report No. 295

.6 Expefience

The ideas reported-in this paper are motivated more by practical experience than by theory. The theory has been
inroduced only to the extent that it was needed to provide a precise meaning for the notation. We have all had the
frustrating experience of trying to read the mind of a programmer when trying 1o correct a program. The proposals in
this paper represent our thoughts about what the programmer should have given us.

The method described in this paper is an improved version of the technique used in the inspection of safety-criti-
cal software for the Darlington (Ontario) Nuclear Power Generation Station [22].-It is important to understand that
the Darlington experience was not an experiment; we did not gather data or make scientific observations. There was a
job 1o be done and it had to be done as quickly as safety considerations would permit. -

At the Darlington station, two safety-critical systems were, for the first time, implemented in software, The
Atomic Energy Control Board of Canada (AECB) was not willing to allow the plant to operate until they were con-
vinced of the correctness of the programs. Delays were very expensive for the owners of the plant, Ontario Hydro.
The software had been ready for several years (because the rest of the plant was even further behind schedule), had
been tested thoroughly, and was considered by its owners to be safe to use. However, the usual informal approaches to
inspection did not provide the confidence level demanded by the AECB. The code, while not huge!8, was sufficiently
complex that the engineers who inspected it using informal methods could not be confident that they had considered
all of the possibilities and found all of the errors.

One of the preliminary inspections demonstrated that the requirements documentation was not complete or pre-
cise. An error caused by misinterpretation of a sentence was discovered. As a result, the manufacturer was asked 1o
produce a mathematical requirements document using [S] as a model. This document, which also used tabular repre-
sentations of mathematical functions, was reviewed by nuclear safety experts.

It was also agreed that precise program documentation would be produced and used as the basis for an inspection
procedure. Because the comrectness of this code was considered vital to the safety of the plant, AECB, Ontario Hydro,
and Atomic Energy of Canada Ltd. (AECL), were able to train approximately 60 engineers 10 produce and review
tabular documentation. The inspectors had to identify program components and document them. The resulting tables
‘were then used as the input to an open inspection process. Each table was presented 10 a review group and the authors
had to demonstrate that it was a correct description of the code. Generally, this involved going through the table on a
column-by column, row-by-row basis. The tabular organization was extremely valuable because it made it easy to
take breaks (the process went on for months) without losing context or continuity.

In addition to demonstrating that the tabular documentation of the programs accurately described the code, it was .

necessary to demonstrate that the tables describing the code described behavior that satisfied the requirements repre-
sented by tables in the requirements document. Generally, this involved a step-by-step transformation of one table un-
til it matched the corresponding table in the other requirements document. The transformations were not mechanical;
their correctness depended on properties of the functions nsed in the expressions and required human insight. Again,
the tabular organization proved essential to allowing human beings with finite attention spans 10 compare two very
detailed documents

In the Darlington work the documentation was not formally organized into displays. This led to a Iot of page flip-

12 While line-counts are notoriously subjective, an outside expert ([11]) estimates the programs as containing about 2500 lines of
FORTRAN and Pascal, plus about the same amount of code in assembler.

October, 1994 18/41 CRL Report No. 295

T e TS e ATy I, VT N o Ve

" ping during the inspection process. Technological Limitations also prevented us from using some of the notation in
this paper. The work was done without the precise definitions in this paper and demonstrated the need for those defi-
nitions. In the Darlington work, for example, we did not use quantifiers and this led 1o problems when dealing with
arrays in the program.

The methods described in this paper result from our reflection on the Darlington experience. The notations used
here are the ones that we now believe we should have used in Darlington. The notation presented here has been used
in more academic experiments including work done at Warsaw University and at McMaster University, Our conclu-
sions are supported by experience gained when the Display Method was applied to examples larger than those pre-
sented in this paper (e.g. a simple data base) and implemented in different programming languages (Sun Pascal,
Turbo Pascal, FORTRAN, C), cf. [26]. One interesting aspect of this McMaster University work was that it was done
by an undergraduate with no prior exposure to formal methods or mathematical logic. He was able to document and -
repair a FORTRAN program that had been frustrating its owners in their attempts to repair it for many months. Our
success did not surprise us, but it surprised the owners of the FORTRAN program who had reluctantly concluded that
the program could not be salvaged.

The extensive experience gained in the Darlington work, and in subsequent uses of the method, has revealed
where users of these ideas spend their time. We have found that much of the Engineer’s time was spent on tasks that
could be done by relatively simple tools. This work has led to tool projects at McMaster University, the Université du
Québec 2 Hull, and Warsaw University, which will be described in the next Section.

7 Concluding remarks

We base this method on a very simple idea. Programs can only be understood in small chunks, so they should al-
ways be presented in small pieces. Each presentation must be complete in itself so that it can be studied without look-
ing at the others. However, one can not follow this simple precept without finding a way to express the connections
between the small sections. It does no good to have a collection of small programs, each one of them correct, if they
do not fit together to make a large correct program. This observation led us to use a relational/functional model, both
1o specify the requirements that a program must meet, and to describe the behavior of a given program. While we
found that conventional mathematical concepts were theoretically sufficient to describe these relations, conventional
notation resulted in complex expressions that were hard to parse and understand. This led us to introduce a tabular no-
tation that allowed us to describe the programs in a more readable manner. Without this notational progress, the orig-
inal simple idea would not be as practical.

We began our work on the assumption that we were studying a method of program presentation. It soon became
clear that the method was also a way of developing programs. Programs that had been developed before we began to
document them, were found to have defects that became obvious when we started 1o present them in displays. Docu-
menting programs using the display method can result in significant improvements in the quality of the program.

One advantage of this method is that one can speed up a review by employing more reviewers. The displays do
not have to be reviewed in any special order and can be reviewed in parallel because they are independent. Even more
important, if an error is found in Part 2 of a display, that part can be changed without necessitating modifications to
any other displays.unless Part 3 is changed. If we do find it necessary to change Part 3 of a display, other displays will
have to be changed but we will know exactly which displays must be revised and checked.

The package of ideas that we have presented has proven valuable, but we believe that tool support is needed 10
make it practical for “everyday” programs. With current 100ls, it takes an excessive amount of effort to make sure that
our expressions are syntactically correct and to achieve neat formatiing. Moreover, it requires a high degree of disci-
pline to perform simple checks on the displays, and to make sure that the specifications that are “copied” from the
bottom of one display to the top of another are, and remain, identical. Checking lexicon entries requires annoying
page-flipping or frustrating delays on the screen. Assembling the program segments to produce executable code by

October, 1994 19/41 CRL Report No. 295

T T e 0 o G Jan e [i RN

hand is also a time-consuming process in which it is easy to introduce careless errors.

We believe that the situation can be ameliorated by building a set of tools that are designed to support this meth-
od of program development and documentation, We envision a system in which the central window presents a dis-
play, and other windows provide the relevant lexicon entries. In such a system, the “copying” of the specifications
would be automatic and it would be impossible to change one without changing the other. The system would be capa-
ble of performing a completeness check and would remind us of specifications that could be found in Part 3 of one
display but were not yet developed as Part 1 of another. Checking correctness remains a task for humans, We now
have a prototype of such a tool. Other tools would provide syntactic and semantic checks and help us to format the
displays. Work on direct support of the Display Method is being carried out at both McMaster University and Warsaw
University. At the Université du Québec 2 Hull editors to support other types of formal documentation have been
completed. .

A system of this sort would be extremely valuable for people who develop software and even more valuable for
those who maintain software products: It would be valuable even without any venﬁcauon capability, but a simple the-
orem prover would allow us to make basic checks on the tables. In the future, documentation in this style could be
used as input to more sophisticated provers. The information necessary for verification is present in these documents,

Because the documentation is mathematical in nature, it can be used to support testing. The tabular representa-
tions can be converted to “oracles”, i.e. programs that evaluate the results of tests. If a program is tested against pro-
grams generated from it's documentation, developers are more likely to keep the program and documentation
consistent. Work of this sort is described in [25].

Tools to make it easier to produce tabular representations of functions and relations in any kind of documentation
are being studied and developed at McMaster University.

If readers take the time to compare our presentation of the problem of the Dutch National Flag with Dijksmra’s
original proposal [2] they will see the benefit of our approach. Dijkstra’s presentation, though very illuminating, is
dangerously unclear. Although he shows great discipline in developing the small program fragments that are present-
ed in the text, he relies on informal dxscussxons.to,desmbe how these are to be assembled into a complete working
program. Four essential lines of program text in our solution cannot be found in the program fragments in the original
version. Three of these lines are implied by an easily overlooked English sentence in Dijkstra’s discussion of the pro-
gram development. The fourth covers a simple case that seems 1o have been overlooked because the complete pro-
gram structure was never presented. We know of several occasions where readers have been asked to examine the
original descnpnon of the algorithm and then assemble working Pascal programs. Some readers simply assembled
Dijkstra’s program fragments - - producing programs that were not correct. Others noted the conditions in the Enghsh
text and produced comect programs. We consider Dijkstra’s description to be unclear; some have argued that j itis
wrong 9. While no method guarantees error-free programs, we believe that the use of the Display Method with care-
ful reviews of each display, makes such errors much less Iikely.

The problem of the Dutch National Flag reveals one of the limitations of our specxﬁcanon method. LD-relations,
like predicate transformers and pre/post conditions, are unable to express the fact that the program is only permitted
to inspect the contents of a bucket once. Relational methods Iimit the final state of the program, but the number of
“LOOK? operations that have been carried out is not reflected in the final state with the data structure given. The def-
inition of the buckets abstraction could easily be modified to distinguish between inspected and uninspected buckets,
but this would be modifying the data structure gnily to make the specification easier.

The binary search example illustrates the subtle ways in which programming language restrictions can affect the
documentation. In Display 2 we had to introduce “med” but, because we were using Pascal, this variable’s declaration
should have been included in stplay 1. If we had been using Pascal s predecessor, Algol 60, the declaration could

19 Dijkstra advised against bothering to assemble the final program, apparently because there was no need 10 look at it.

October, 1994 120/41 CRL Report No. 295

SN e r————————r—n———
——— e y— - T e TTEWATAY STy T T T T T e eetm—— R — t Dk o dnras S T P T - Y n—

have been made where it was needed and kept local to the block in which it was used.

Acknowledgements

Dr. Gordon Stuart, then a Ph.D. student at the-University of Victoria, contributed to the early development of
these ideas. Wm. Wadge helped to clarify the concepts of LD-relations. Graydon Saunders worked on a diagrammatic
form of displays for a mythical programming language that we call DAD. The many employees and consultants of
AECB, AECL, and Ontario Hydro who applied some of these ideas to the review of the software for the Darlington
Nuclear Plant [22] helped us by showing what was needed to turn some academic conceptions into a more mature
technology. Mr. P. Filip Sawicki’s work on his MSc Thesis [26} was an important step in exploration of the Display
Method. We are grateful to David Weiss and to the many people who were kind enough to offer us comments on ear-
lier versions of this paper. An excruciatingly detailed review by referee #4 helped us to clarify our explanations in
many ways. The editor’s final suggestions were unusually helpful.

This research was primarily funded by the Telecommunications Research Institute of Ontario (TRIO). Other sup-
port was provided by the Canadian Institute of Telecommunications Research (CITR), by the State Committee for
Scientific Research in Poland (KBN), by Digital Equipment’s European External Research Programme (EERP) and
by the Natural Sciences and Engineering Research Council of Canada (NSERC).)

References

1. Dijkstra, E.W., “The Structure of the ‘THE’ Muitiprogramming System”, Communications of the ACM, Vol. 11,
No. 5, May 1968, pp. 341-346.

Dijkstra, E.W., Discipline of Programming, Prentice-Hall, 1976.

3. Floyd, R.W., “Assigning Meanings to Programs”, Proceedings of the Symposium of Applied Mathematics, Vol.
19, 1968. Also in: Schwartz, J.T. (editor), Mathematical Aspects of Computer Science, American Mathematical
Society, 1967, pp. 19-32. :

4. Hehner, E.CR., “Predicative Programming, Part 17, Communications of the ACM, Vol. 27, No. 2, February 1984,
pp. 134-143.)

5. Heninger, K.L., Kallander, J., Parnas, DL., Shore, IE., “Software Requirements for the A-7E Aircraft”, NRL
Memorandum Report 3876, United States Naval Research Lab., Washington D.C., November 1978, 523 pp.

6. Heninger, K.L., “Specifying Software Requirements for Complex Systems: New Techniques and their Applica-
tion”, IEEE Transactions Software Engineering, Vol. SE-6, No. 1, January 1980, pp. 2-13

7. Hoare, C.AR., “An Axiomatic Basis for Computer Programming”, Communications of the ACM, Vol. 12, No.
10, October 1969, pp. 576-580.] .

8. Iglewski, M., Madey, J., Pamnas, i).L., Kelly P. C., “Documentation Paradigms™, CRL Report 270, McMaster
University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada: July
1993, 45 pp.

9. Jensen, K., Wirth, N., “Pascal User Manual and Report”, Lecture Notes in Computer Science, Vol. 18, New York,
Springer-Verlag, 1974 (second corrected edition 1976).

10." Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall, 1986.
11. Leveson, N., Personal Communication, 10 September 1994.

[

12. Majster-Cederbaum, M.E., “A Simple Relation Between Relational and Predicate Transformer Semantics for
Nondeterministic Programs”, Information Processing Letters, Vol. 11, No. 4,5, December 1980, pp. 190-192.

13. Mills, H.D.,"The New Math of Computer Programming”, Communications of the ACM, Vol. 18, No. 1, January
1975, pp. 43-48. ’

14. Mills, H.D., “Function Semantics for Sequential Programs™, Proceedings of the IFIP Congress 1980, North Hol-

October, 1994 21/41 CRL Report No. 295

15.

16.

17.

18.

19.

20.

21.

[
o

)
bad

a
i

25.

26.

21.

28.

)

land 1980, pp. 241-250.

Parnas, D.L., “Information Distributions Aspects of Desxgn Methodology” Proceedings of the IFIP Congress
‘71, Booklet TA-3, 1971, pp. 26-30.

Parnas, D.L., “On the Criteria to be Used in Decomposing Systems into Modules”, Communications of the ACM,
Vol. 15, No. 12, December 1972, pp. 1053-1058.

Parnas, DL., “A Generalized Control Structure and Its Formal Definition”, Communications of the ACM, Vol.

26, No. 8, August 1983, pp. 527-581.

Pamas, D.L., “Tabular Representation of Relations”, CRL Repbrt 260, McMaster University, CRL, Telecommu-
nications Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada; October 1992, 17 pp.

Parnas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering. (Version 2)”, CRL Re-
port 237, McMaster University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, On-
tario, Canada; September 1991, 14 pp.

Parnas, DL., Wadge, W.W., “Less Restrictive Constructs for Structured Programs”, Technical Report 86-186,
Queen’s, C&IS, Kingston, Ontario, Canada, October 1986, 16 pp.

Pamnas, D1., Wang, Y., “The Trace Assertion Method of Module Interface Specification™, Technical Report 89-
261, Queen’s, C&IS, Telecommunications Research Institute of Ontano (TRIO), Kingston, Ontario, Canada, Oc-
tober 1989, 39 pp. (Available from McMaster University).

. Parnas, D.L., Asmis, GJ.K,, Madey, J., “Assessment of Safety-Cnucal Software in Nuclear Power Plants™, Nu-

clear Safery, Vol. 32, No. 2, 1991, pp. 189-198.

Parnas, D. L3 Clements, P. C., Weiss, D. M., “The Modular Structure of Complex Systems”, IEEE Transactions
on Software Engineering, March 1985, Vol. SE-11 No. 3, pp. 259-266.

. Parnas, D L., Madey, J., Iglewski, M., “Formal Documentation of Well-Structured Prog:ams CRL Report 259,

McMaster University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, Can-
ada; September 1992, 37 pp.

Peters, D., Parnas, D. L. “Generating a Test Oracle from Program Documentation”, published in Proceedings of
the International Symposium on Software Testing and Analysis, August 17 - 19, 1994,

Sawicki, P.E, “Analiza metody SPS(R) weryfikacji programow” (in Polisk), [“An Analysis of the SPS(R) Meth-
od of Program Verification”], MSc Thesis, Warsaw University, Institute of Informatics, 1992, 124 pp.

Wirth, N., “Program Development by Stepwise Refinement”, Communications of the ACM, Vol. 14, No. 4, April
1971, pp. 221-227.

van Schouwen, A. J., “The A-7 Requirements Model:. Re—exammauon for Real-Time Systems and an Applica-
tion to Monitoring Systems”, Technical Repori 90-276, Queen’s, C&IS, Telecommunications Research Instimte
of Ontario (TRIO), Kingston, Ontario, Canada, May 1990, 93 pp. (Available from McMaster University).

vzn Schouwen, A. J., Parnas, D. L., Madey, J., “Documentation of Requirements for Computer Systems”, pre-
sented at RE ‘93 IEEE International Symposium on Requzrements Engineering, San Diego, CA, 4 - 6 January,
1993.

October, 1994 © 241 _ CRL Report No. 295

LT TR YT T T e, e - ey L Ea Lrat~ et o e et N MR ARPEE Bt vrine e tt. R A

Appendix A

“Binary search” example presented on displays

The description of the problem and the discussion of the solution were given in Section 5.1. What follows is the
formal documentation for the complete solution.

October, 1994 23/41 CRL Report No. 295

DISPLAY 1

Dis_p;lay 1 Specification
Find(x, A,], present) ‘
Ro() =((1sn)aVi[(1<i<n) = (Al < ‘Ali+1])) =
Si[(1<isn)A(Al]=%)]=
true false
) [‘AllT="% true
present’ = true false ANC(x, A)

i!lllllllllllllllllll!lllllllllllllllllllllllllllllllll!lllllllllllllllllllllllll!lllllllllllllllllllllllllllllllll!ll!lll

Display 1 Program

Procedure declaration:

procedure Find(e : integer; V : vector; var index : intéger; var found : Boolean);
var low, high : integer;

begin

Initialization; Body
end {Find}

lllIlllllllllllllllllllllllll!llllIlllllllllllllllllllllllllllllllllllll

Display 1 Specifications of Invoked Programs

Laliiclireti il external variables: e, V, found, low, high (on Display 4)
Ry(.) = (low" = 1) A (high’ = n) A (found" = false) A NC(e, V)
xteinal variables: e, V, index, found, low, high (on Display 2)
Izz() =]]
((‘low < ‘high) A (‘found =false) A Vi [(‘low <i < *high) = (‘V[] < *V[i+1])) =
3i [(low <i < ‘high) A (V[i] ='¢)] = '
true false
index" | ‘Vindex'] = ‘e true
found = true false
low’ | true true
high’] true true ANC(, V)
END OF DISPLAY 1
October, 1994 24/41

CRL Report No. 295

TS VAR ST o A~y ot et T) " Y L

DISPLAY 2
Display 2 Specification

Body external variables: e, V, index, found, low, high (from Display I)

R,(,) =
((‘2f(o?Jnd =false) A (‘low < ‘high) A Vi [(low < i < ‘high) = (‘V[i] S Vii+1])) =
3i [(low < i < ‘high) A (V[] = 'e)] =
true false
index’ | ‘V[index'] = ‘e true
found® = tue false
low’ | rrue true
high’ | . true true ANC(e, V)

lllllllllll!llllllll!llllllllll!llIl[llllllllllllllllll!llllll!!lll}llllllllllllllllllllllllll!lllllllllll}ll!llllllllllll
Display 2 Program
New variable (to be declared in the embedding block): var med : integer;

Program statements:

{Body}
while not found and (low < high) do begin
med := (low + high) div 2;
Test
end
lllllllllllllllllllllllllllllIlllllllllllllllllllllllllllllllll!l!ll!lllllll!lll

Display 2 Specifications of Invoked Programs

- Test S cxternal variables: e, V, index, found, low, high, med (on Display 3)
Rs(,) = (‘low < ‘med < ‘high) =
‘V[‘med]
<‘e =‘e >'e
index’ | true index’ = ‘med true -
| found: = ‘found true ‘found
low’ = ‘med + 1 ‘low ‘low
high’ = *high ‘high ‘med -1 ANC(e, V, med)

END OF DISPLAY 2

October, 1994 25/41 _ CRL Report No. 295

DISPLAY 3

Display 3 Specification

Test external variables: e, V, index, found, low, high, med
R5(,) = (‘low < ‘med < ‘high) =
‘V{'med]

<‘e ='‘e >‘e
index’ | true index’ = ‘med true
found® = ‘found true found
low’ = ‘med + 1 ‘low ‘low
high' = ‘high ‘high ‘med - 1

A NC(e, V, med)

(from Display 2)

llllll!""llllllllllllll"lll"llllll"lllllllllllll"llllllllIl"l"llllllllllllllllllllllllllllllll"l"llllll"lllll"

{Test}

Display 3 Program

if Vimed] < e then
Iow :=med + 1
else

if V[med] > e then
high := med -1

else begin
index := med;
found = true

end

Display 3 Specifications of Invoked Programs
) Empty

October, 1994

26/41

END OF DISPLAY 3

CRL Report No. 295

T T L T

DISPLAY 4

Display 4 Specification

Initiatization

extemal variables: e, V, found, low, high (from Display 1)

Ry(,) = (low" = 1) A (high’ = n) A (found’ = false) A NC(e, V)

lllllllllllllllllll"lll!lllll"llllllll"lllllll"lllll"lllll"ll"llllllllllI"llll"ll!"lllll"llllll"lllll"lll"ll

{Initialization}

low = 1;
high :=n;

found := false;

Display 4 Program

lllllllllllllllll"llllll"lllllllllllllllllllllllllllllllllllllll""llllllll"llllllllll"ll"lllllll!llllllllllllllllll

Ociober, 1994

Display 4 Specifications of Invoked Programs

Empty
END OF DISPLAY 4

27/41 CRL Report No. 295

DRI TN A

LEXICON

A. Pascal external definitions and declarations

const n = n; {literal integer is to be written here}
type vector = array[1..n] of integer;
varx, j : integer; A : vector; present : Boolean;

INDEX

Legend:
- DO
.« Di, i=12,..
- D, =12,..,
* Dijy, =12, ...,
«L;, x=AB,..

October, 1994

Name Used in
A DO, D1, L,
Body Dl,3,D2;,
e D1,3,D2;5,D3, D4,
Find D1,
found D1,3,D2,D3,D4 -
high D1,,,D2,D3,D4
index Dl,5,D2;5,D3,D4
Initialization D1,5,D4
j DO, D1,,L,
Iow D1,,,D2,D3,D4
med D2,5,D3
n D0, D1,5,D4,L,
present DO, D1,,L,
Test D2,5,D3
\Y Di1,5,D2,5,D3, D4,
vector DO, D1,,L,
X D0,D1;,L,
denotes the -introduction,
denotes Display i,
je {1,2,3) denotes Display 7, part Pj,
jke (1,23} denotes Display i, parts Pj and Pk,
" denotes the lexicon, part x.
28/41

.......

CRL Report No. 295

LTI e, T

Appendix B

“Dutch national flag” example presented on displays

The description of the problem (based on [2], chapter 14), and the discussion of the solution were given in Sec-
tion 5.2. What follows is the formal documemauon for the complete solution. The notation used to specify “buckets”
is explained in [8] and [21]

October, 1994 29/41 CRL Report No. 295

DISPLAY 1
Display 1 Specification

DutchFlag : external variable: v ~

Ry(,) = ﬂafg'(v') A same_colors('v,v')

llIllllllxxlllllllllIllllllllllllllIllllllllllllllll!lllllllllllllllllllllllllll
Display 1 Program
"Procedure declaration:

procedure DutchFlag;

varr, w, b :integer;

begin
r=1w=N;b=N;
Rearmrange(r, w, b)

end {DutchFlag}

llllllllllllIllillllllllllllllllllllllllllllllllll

Display 1 Specifications of Invoked Programs

Rearrange(r, LAY R extemal variable: v (on Display 2)

Ri()=({r=1N)A(w=N)A(b=N))
=1
(partial_flag(v',r w',b") A (W' =1"-1) A 'same_colors('v,V'"))

END OF DISPLAY 1

October, 1994 30/41 CRL Repoit No. 295

R T -y e e - oy ~ B e e Tkl

&'. \

DISPLAY 2
Display 2 Specification

Rearrange(r, w, b) | external variable: v o (from Display 1)

Ri()=((r=1)a(w=N)A(D=N)) '
=
(pariial_flag(v',r W',0") A (W' =r-1) A same_colors(*v,V"))

lllllllllll;llllllllllllllllllllllllllllllIlllllllllllllllllllllllllllllllIlll!lllll
Display 2 Program
Procedure declaration:

procedure Rearrange(var r, w, b : integer);
begin
while w>rdo
Decrease(r, w, b)
end {Rearrange}

lllllllllllllllllllllllll!lllllllllllllllllllllllllllllllllllllll]llllllllllllllllll!lllllllllllllllllllllll!l!lllllllllll

Display 2 Specifications of Invoked Programs

3 /:Tol RIS VTR B external variable; v (on Display 3)
Ry(,) = (partial_flag(v,'r,w,'b) A (‘r < 'w))
=
(partial_flag(v',r W'.D") A (W-T) < (W-1)) A ’ -
same_colors('vV')) .

END OF DISPLAY 2

October, 1994 31/41 CRL Report No. 295

DISPLAY 3

Display 3 Specification

Decrease(r, w, b) |} external variable: v

" Ry(,) = (partial_flag(™v,'r, w,b) A (T < 'W))

=

(pardial_flag(v',r w'b’) A (W-r) < (w-* r)) A

same colors(‘vv)]

lllllllllllllll!!lIlllllllllllilllllllllllllllllllllll!llllllllllllllllllllllllllll!!ll!llllllll!lllllllll!lllllllllllllll

Display 3 Program

Procedure declaration;

procedure Decrease(varr, w, b : integer);
var colr, colw : color;

begin

IncR;
if r <w then begin
DecW;
UseColw
end {if};
UseColr
end {Decrease}

l!&ﬂallIllllIlllllllllllllllll!llllllll!llllllllllllllllllllllllllllillllllllllll!

Display 3 Specifications of Invoked Programs?

®

external variables: v, r, w, b, colr, colw

partial_flag(v', r', W', b’) A

R(,) = partial_flag(, 'r, W,) A (T < W) =

rue
W] EC<w)A
((C+D <w’) = (V' # white))
colw’ = Ve A NC(v,1,b,colr)
1Note: v, is defined in part C of the lexicon.
October, 1994 32/41

(on Display 4)

Display to be continued

CRL Report No. 295

kel

(from Display 2)

IR e sl

-

)

-

m external variables: v, r, w, b, colr, colw (on Display 5)
Ru(,) = partial_flag(™v, ‘r, W, b) A (T < ‘W) =)
partial_flag(v', ', W', b') A
rue
r | §@<SwW)A
(@ <w) = (Vi =red))
colr = Ve A NC{v,w,b,colw)
m extemnal variables: v, r, w, b, colr, colw (on Display 6)
Rs(,) = partial_flag(v, ‘r, ‘W, ') A (‘Colr= ‘v.,)) A
(r<‘w) A (('r < ‘w) = (‘colr # red))
=
partial_flag(v', ', w', b') A same_colofs("v,v') A
‘colr =
red white blue
r | Fr=c+1 NC(r) NC(D
W] NCw) w=w-1|w=‘w-1 o
b | NC®) NC(®) b’=‘b—-1 | ANC(colr,colw)
external variables: v, r, w, b, colr, colw (on Display 7)

o |

Ry(.) = partial_flag('v, T, ‘W, D) A (‘colr = *v.) A (‘cOlw = ‘v.,)) A : .
('r < W) A (((T+1) < ‘W) = (‘colw = white))

=

partial_flag(V', r', W', b’} A same_colors(,V') A (V' = cOI’) A

‘colw =
red white blue
roo r=c+1| NC@) NC(r)-
wo NCw) [w=w—-1]w=‘w-1
b | NC®) NC(b) b’=‘b-1 | ANC(colr,colw)
October, 1994 - 33/41

END OF DISPLAY 3

CRL Report No. 295

DISPLAY 4

Display 4 Specification

DecW | external variables: v, r, w, b, colr, colw

(from Display 3)

Rq(,) = partial_flag(", r, W, 'b) A (T < ‘W) =
partial_flag(V',r,w',b) A .

rue

W ETC<w)A
((C+1) <w’) = (v'y» = White))

cow' = _ v, A NC(v,r,b,colr)

ll!lll

Display 4 Program

{DecW}

colw := LOOK(w);

while (colw = white) and ({r+1) < w) do begin
w = w-1; colw := LOOK(w)

end -

.

llll!lll!ll!llllllllllllllllllllllllllllllllll

Display 4 Specifications of Invoked Programs

. Empty

October, 1994

f

END OF DISPLAY 4

CRL Remn No. 295 o

DISPLAY 5
Display 5 Specification

IncR external variables: v, 1, w, b, colr, colw (from Display 3)

Ry(,) = partial flag('v,’r, W, D) A (r<‘w) =
partial flag(v', r', W', b’) A

rue

r | §@C<sW)A
(" <w’) = (vi- =red))

colr = Ve A NC(v,w,b,colw)

IlllIlllllllllllllll!lllllllllllllllll!lIll!!llllllllllllllll!llllllll

Display 5 Specification
{IncR}
colr := LOOK(r); { vis an implicit variable used by LOOK }
while (colr = red) and (r < w) do begin
r:=r+1; colr := LOOK(r)
end

llllllllllllIlllllll!‘llIllllllllllllllllllIlll!llilllllllllllllilllllllllllllll
Display 5 Specifications of Invoked Programs
Empty
END OF DISPLAY 5

CRL Report No. 295 7

October, 1994 35/41

DISPLAY 6 . :) ~
Display 6 Specification

UseColr external variables: v, 1, w, b, colr, colw ' ' ‘(from Display 3)
Rs(,) = partial_flag("v, T, ‘W, ‘b) A (COIF = “Voy) A
(r< ‘W) A (T < ‘W) = (‘colr = red))
p—-1

_ partial_flag(v', r', W', D) A same_colors(‘'v,V') A

‘colr =
red white blue)
roo| r=r+1| NC(@ NC(r)
W] . NCw) {w=w-1|WwW=w=1
b | NC(®) NC() b’=‘b-1 | ANC(colr,colw)

R R R R R R R R R R R R R R R Rt R R R iR R a Rt ARttt at Rt itiassitisitiiisl;

Display 6 Program .
{UseColr} : -

case colr of

red: ri=r+1;

white: wi=w-1;)

blue: begin SWAP(w,b); w == w-1; b := b~1 end
end

RN N IR R NS a I e N s IR RN NS NSRRI NI NIRRT R NSRS RINSINNINIILIIL

Display 6 Specifications of Invoked Programs

Empty
END OF DISPLAY 6
_ CRL Report No. 295

October, 1994

. e - T e

DISPLAY 7

Display 7 Specification

UseColw

external variables: v, 1, w, b, colr, colw

Rg(,) = partal_flag(*v, r, ‘W, D) A (‘cOIr = ‘v.;} A (‘COlW = *v.,,) A
('r< W) A ({(‘r+1) < ‘W) = (‘colw = white))

=
partial_flag(V', ', W', b') A same_colors("VV') A (V'y» =COIF')® A
‘colw =
red white blue
r r=‘r+1 NC(r) NC(n)
w' NCW) |w=w-1|w=w-1
b’ NC() NC(®) b’=‘b-1

A NC(colr,colw)

(from Display 3)

a. The post-condition V', = colr” is redundant and has been 2dded for ease of comprehension.

llllllllllllllllll!lllllllllllllllll!llllllllllllllllllllllllllllllllllllllilllllllllllllllllllllllllllllllllllllll!l!llll

{UseColw}

case colw of
begin SWAP(r, w); r := r+1 end;

white: w =w-1;

red:

blue:
end

begin SWAP(w, b); w := w—1; b := b—1; SWAP(r,w) end

Display 7 Program

lll!llllllllllllll

Display 7 Specifications of Invoked Programs

October, 1994

Empty

37/41

END OF DISPLAY 7

CRL Report No. 295

October, 199

LEXICON

A. Auxiliary functions

card: set — integer

card(s) € 1sl1 (i.e. number of elements in the set s)

flag: buckets — boolean
flag(v) & 3r,b[partial_flag(v,r,r~1,b))

partial_flag: buckets X integer X integer X integer — boolean
partial_flagvrwh) € QLDAT-1SWAWSHABSN)A
ViQ<isN)[(<D =W=red)a
((w<i<b)= (v;=white)) A
{(b<i)= (v;=hblue)]

Note: v; is defined in part C of this Iexicon.

. same_colors: buckets x buckets — boolean

same_colors(vl v2) 4
(card({i] (1 ST<N) A (v1; = red)}) = card({i] (1 <i<N) A (v, =red)})) A
(card({i | (1 £i < N) A (v]; = white)}) = card({i | (1 i < N) A (v2;= white)})) A
(card({i | (1 <i<N) A (vI; = blue)}) = card({i | (1 <i<Nj A (v2; = blue)}))

B. Pascal external definitions and declarations

const N = {literal non-negative integer}
type color = (red, white, blue);
type buckets = {vector(N, color) - cf. part C of this lexicon)
var v : buckets;
procedure LOOK(i : integer);
{ct. part C of this lexicon)
procedure SWAP(i, j : integer);
{cf. part Cof this lexicon}

C. vector(n,elem) Module Interface Specification

(0) CHARACTERISTICS

» type specified: vector(n,elem)

» features: single-object, generic

- foreign types: elem, <integer>, <positive_integer>

» generic parameters: n: <positive_integer>, elem

CRL“ Rg.pm-t No 205

R e e e v e gt v rteare

TN N e AT T
WA T N, T M8 L, U s

(1) SYNTAX

ACCESS-PROGRAMS
Program Name Arg#l Arg#2 | Value Type
LOOK <integer>:V elem
PUT <integer>:V| elem:V
SWAP <integer>:V | <integer>:V
(2) CANONICAL TRACES
canonical(T) <> T=[PUT(, ei)],n) '
1=
- =PUTG.L_
EQUIVALENT NOTATION FOR TRACES
Trace Equivalent notation
vLOOK() vi
(3) EQUIVALENCES
TLOOK@) =T
T.PUT(Q, e) =
' Condition Equivalence
—(1<i<n) %wrong_index%
1<i<n §TLPUT(.e).T2 where T=T1.PUT(ix).T2
T.SWAP(, j) = ‘
Condition Equivalence
=({(1<i<n)A(1<j<n) %wrong_index%
T1.PUT(,x).T2.PUTG,y).T3
i< where
T =T1.PUT(,y).T2 PUT(j x).T3
(I<i<n)a(l1<j<n)a =) T
T1.PUT(,x).T2.PUTG,y). T3
a>Jj where)
' T=TI1.PUT(,y).T2.PUT(i x).T3
(4) RETURN VALUES
Program Name - Argument No Value
LOOQK(®) Value e where vector(n,elem) = T1.PUT(ie). T2
October, 1994

39/41

CRL Report No. 295

INDEX

Name Category Used in
b variable in DutchFlag D1,
b formal parameter in Rearrange D15,D2;5
b formal parameter in Decrease ~ § D23, D3, D4,, D5,, D6, D7
blve D0, D3;,D6,D7,L,
buckets DO,L,s
card La
color DO, D3,, Ly
-colr D3,3,D4,,D5,D6, D7,
colw D3,3, D4, D5,, D6,, D7
Decrease D23, D3y,
DecW D3,3,D4.
DutchFlag Dl,,
flag D1, L,
IncR B3,3,D5
LOOK DO, D4,,D5,,Lg ¢
N D0, D1,3,D2;,L, 3
partial_flag D13, D2, 3, D3, 3, D4;, D5;, D6, D74, Ly
PUT DO, Lc
r variable in DutchFlag D1,
r formgl parameter in Rearrange ‘ _‘:Dl3, D2,,
r formal parameter in Decrease “~§ D23, D3, D4, D5, D6, D7
red D0, D3;,D5,D6,D7,L, 5
Rearrange Dly3, D2,
same_colors D1,3,D2,5,D3,5,D6,, D7;, L,
SWAP DO, D62, D7,, Ly ¢
UseColr D3,5,D6
UseColw D3,5,D7

October, 1994

CRL Rennrt Nn 208

Name Category Used in
v D0, D1, 3, D2, 3, D3, 3, D4;, D5;, D6,;, D7y, Ly
vector DO, Lpc
w variable in DutchFlag Dl1,
w formal parameter in Rearrange Dl1;,D2,,
w formal parameter.in Decrease D23, D3, D4y 5, D5y 5, D6y 5, D7, 5
white D0, D33, D4,D6,D7,L, 5
Legend:
D0 denotes the introduction,
«Di, i=12,.. denotes Display i,

- Djj, i=12,...
® Dij,kv i=1»2n eoey
«L,, x=AB,..

October, 1994

j€{1,23) denotes Display i, part Pj,
Jjke€ {1,23) denotes Display i, parts Pj and Pk,
denotes the lexicon, part x.

41/41

CRL Report No. 295

LA
3

Session W1: Natural Language Modeling

‘Dr. John Sharp
Sandia National Laboratories

Natural Language Modeling
John K. Sharp, PhD
Sandia National Laboratories

This seminar describes a process and methodology that uses structured natural language to enable
the construction of precise information requirements directly from users, experts, and mangers.
The main focus of this natural language approach is to create the precise information requirements
and to do it in such a way that the business and technical experts are fully accountable for the
results. These requirements can then be implemented using appropriate tools and technology.
This requirement set is also a universal learning tool because it has all of the knowledge that is
needed to understand a particular process (e.g., expense vouchers, project management, budget
. Teviews, tax laws, machine function) :

Personal accountability for results is established with the expert that is specifying the design and
the implementor is accountable for meeting the design requirements. This is done through a
systematic procedure based on a common understanding of the requirements and the ability to
communicate effectively. In other words, if the craftsman produced the part according to the
requirements then he did the correct job. The accountability for form, fit, and function resides
with the engineer who created the design. The craftsman is only accountable for meeting the
requirements. The center of this accountability process is a communication channel that is
completely understood by all of the participants. Natural language modeling processes allow
information technology to achieve this same high quality level.

The advantage of this procedure is that it takes an informal, possibly incomplete, possibly
redundant, possibly inconsistent and possibly indeterminate description of a user problem and
turns it into a precise set of facts and constraints that contain all of the knowledge and business
rules that are necessary for completely solving a user problem. The sentences are created and
analyzed by the subject matter expert with the analyst being a facilitator or scribe of the
knowledge that is created. The expert is fully accountable for the specification and the knowledge
can be transformed into desired graphical and textual presentations that become part of the design
specification for the implementor.

This seminar will be an overview of the procedure for creating natural language models.
Examples will be provided for every step in the procedure. The procedure starts with the subject
matter expert verbalizing sentences about the subject area. Placeholders or variables are then
assigned within the created sentences. The sentences are then qualified by assigning names to the
placeholder and the object. Constraints are then identified and tested. Finally, the results can then
be specified in a number of ways, including relational tables. The focus of the seminar shows how
low quality initial inputs are turned into high quality requirements that can hold the subject matter
expert accountable for the requirements and the implementor accountable for meeting them.

Simple examples will be used throughout the seminar to show how unary, binary and n-ary
sentences are analyzed. All possible procedure steps will be presented using examples. Several
examples will be used as interactive problems to help attendees understand the procedure.

BIOGRAPHY
John K. Sharp, PhD -

John has performed information analysis in various positions at Sandia for fifteen years. He has
worked closely with Prof. Shir Nijssen of the Netherlands for several years to establish the
procedure to develop and analyze information problems using structured natural language. They
are currently finishing a text on this topic. This procedure was originally based on the NIAM
(Natural language Information Analysis Methodology) modeling technique. John and Prof.
Nijssen have co-chaired two international conferences on natural language modeling. John is also
the editor of the international standard on conceptual schemas.

. Sandia National Laboratories
Reengineering Center
P.0. Box 5800, MS-0803
Albuquerque, NM 87185-0803
Voice: 505-844-5428
Fax: 505-844-7501
E-mail: jksharp@sandia.gov

Natural Language Modeling

John K. Sharp, PhD
Sandia National Laboratories

Sants Capatan, 0 ho-ulrn:-m;y.
forbw
Corwact DLACOLIMAZLST

FesRIM Pugel

Introduction

- Natural Language Modeling Background
* Natural Language Modeling Procedure

* Validating Information Models |
« Conclusion

RIIM Page2

Natural Language Modeling Background

FRIRLM Paged

Information Modeling Processes
Must Limit Analyst Liability

« Every information analyst must have the
ability to make the users/owners fully O
accountable for their information system

design

* No more of the following

Good Tnput: =3

Process

—3 Bad output

Natural Language Modeling
Overview |

Based on mathematical analysis of elementary sentences
Separates analysis from the documentation of analysis
- éi)eciﬁed analysis procedure that is understandable
— Can be documented in various graphical models

Creates a complete design that is validated by subject
matter experts

Accountability can be assigned at every step in the design
life-cycle

Opportunity for significant productivity improvements -

_RINLM Page3

Natural Language Modeling
Axioms

Axiom 1: All the information communicated to and from
an information system can be considered to be a set of
natural language sentences.

Axiom 2: In discussions with the user the only language to
be-used is the familiar jargon of the user.

Axiom 3: Decisions may only be taken when they are
based on a representative number of concrete examples.

Axiom 4: For every information activity there must be a
precise prescription available.

KR Page 6

- Accountability is available for
information technology

* Subject matter experts become accountable for the
requirements.

-+ Analysts are accountable for a logically complete set of
requirements. -

* Implementators are accountable for implementing the
requirements.

* Management is accountable for the delivery of the
application based on validated requirements.

RONIM Page?

Natural Language Modelﬁlg Procedure

KN Pegr S

e e e

~ Natural Language Modeling
~ Procedure

* Sentence analysis questions
~+ Sentence analysis examples

* Sentence analysis procedure

* Process analysis questions
Process analysis procedure

KRNI Pugee 9

NLM Procedure

Sentence Analysis Questions

* Question 1 (Repeated for each variable in a sentence)

Given that fact instance “Text a, text.” is true, is it allowed for
another valid Anr [for example “3,”] to exist such that the fact
instance “Text a, text.” is true?

* Question 2

Does a, at any moment in time identify exactly one A.
* Question 3 _

Is there a context within which A is uniquely identified by an Anr.
* Question 4

Is there an instance of an identifying fact type that when combined with
3, establishes a complete elementary sentence.

Where A is an entity or object, Anris the label, and a, is a population instance.

RsXIM Pugeio

]

NLM Procedure

Sentence Analysis Examples

Social security number 123-45-6789 identifies a person.
“123-45-6789” is a Social Security Number.

Social security number <SSN> identifies a person.
123-45-6789

Allowed?

another Y [987-65-4321]

Question 1: Given that fact instance “Social security number 123-45-6789
identifies a person.” is true, is it possible for another valid Social Sccurity
Number [for example “987-65-4321"] to exist such that the fact instance
“Social security number 987-65-4321 identifics & person.” is true? Y

Question 2: Docs 123-45-6789 at any moment in time identify exactly onc”
person? Y

RENLM Page 21

NLM Procedure

Sentence Analysis Examples (cont.)

Room number 101 identifies a room. .
“101” is a Room Number.

Room number <RoomNumber> identifies a room.
101

Allowed?

another Y [102]

- Question 1: Given that fact instance “Room number 101 identifies 2 room.” is true,
-.is it possible for another valid Room Number [for example “102”] to exist such that
the fact instancz “Room number 102 identifics a room.” is true? Y

Question 2: Does 101 at any moment in time identify exactly one room? N

Question 3: Is there a context within which “room™ is uniquely identificd by
a “Room Number?” Y

What is it? building KNI Preet2

NLM Procedure

Sentence Analysis Examples (cont.)

Person name John Smith identifies a person.
“John Smith” is an Person Name.

Person name <Person Name> identifies a person.
John Smith
Allowed?
another Y [Sue Jones]
Question 1: Given that fact instance “Person name John Smith identifies a person.” is true,

is it possible for another valid Person Name [for example “Suc Jones™] to exist such that the
fact instance “Person name Sue Jones identifies a person.” is true? : Y

Question 2: Does John Smith at any moment in time identify exactly one person? N

Question 3: Is there a context within which “person” is uniquely identified by a “Person
Name?” N

Question 4: Is there an instance of an identifying fact type that when combined with person
name establishes a complete elementary sentence? Y
What is it? Social security number 123-45-6789 ident<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>