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CALCULATIONS OF INCREASED SOLAR UV FLUXES AND DUV DOSES
DUE TO STRATOSPHERIC OZONE DEPLETIONS

by

Andrew Zardecki and Siegfried A. W. Gerstl

ABSTRACT

Accurate radiative transfer calculations are performed
in the middle ultraviolet spectral region for aerosol-loaded
atmospheres with the goal of determining thé solar irradiance
at the ground and quantifying the irradiance perturbations due
to the presence of aerosols and various ozone depletions. The
extent of the increase of UV-B radiation as a function of wave-
length and solar zenith- angle is calculated for five model
atmospheres. In addition, the damaging ultraviolet dose rates
and radiation amplification factors are evaluated at different
latitudes and seasons for erythemal and DNA action spectra.

I. INTRODUCTION

Many recent studiesl.3 indicate that the release of CFCs (chlorofluorocar-
bons)=--mainly CFMs (chlorofluoromethanes)--into the atmosphere acts to deplete
the stratospheric ozone layer. A probable value calculated for the eventual ozone
depletion due to continued release of CFMs at the 1977 level is 16.5%. \However,
changes in the tropospheric chemistry cause changes in the stratosphere. The
Rinetics of reactions resulting in HOX and NOX plays a primary role in the ozone
reduction; a moderate increase in NOX, for example, would reduce tze effect of
halocarbons on ozone. According to a recent study by Wine et al., the calcu-
lated O3 depletion due to CFM release can thus be reduced from 14 to 9.5%. 1In
calculations based on two-dimensional models,s’6 any change of ozone is not uni-
form, but shows variations with latitude and season. This enables one to account
for local ozone changes and their impact on ultraviolet radiation réacging the
7,

ground. The known relationship between skin cancer and 1V radiation implies



that enhanced UV radiation at the ground leads to an increased skin cancer inci-
dence rate.9 In addition, decreasing the average ozone concentration will increase
the average intensity of biologically damaging ultraviolet radiation (DUV) in
natural daylight causing injury to DNA.

The purpose of this report is twofold. First, we estimate the extent of the
increase of UV-B radiation as a function of wavelength and solar zenith angle for
five model atmospheres developed by McClatchey et al.10 We will confine our at-
tention to the 0.28- to 0.34-um region of the spectrum, as it is the only region
for which the ground irradiance might be significantly affected by changing ozone
concentrations. The discrete ordinates (SN) code ONETRAN,11 which has been de-
veloped to a high degree of computational efficiency and accuracy primarily for
nuclear radiation shielding applications, reduces considerably the computer time
when employed in the adjoint mode.12 Our method can thus advantageously be com-
pared to other discrete ordinate computations of the middle ultraviolet reaching

the ground.13’14

Second, we investigate the damaging ultraviolet dose rate for
erythemal and DNA action spectra. We will consider both global ozone depletions
consistent with 1-D models and latitude- and season-dependent depletions as pre-

dicted by the 2-D model of Pyle.s’6

II. PROJECTED CHANGES IN STRATOSPHERIC OZONE

Ozone occurs in the atmosphere in very small quantities. If all the ozone
in a vertical column of the atmosphere were reduced to standard pressure and
temperature, its thickness would be only about 3 mm. In comparison, the atmos-
phere is about 8 km thick when reduced to the same standard pressure and temper-
ature.15 The importance of the relatively small amount of ozone lies mainly in
its ability to absorb the biologically harmful ultraviolet radiation from the
sun and to prevent most of it from reaching the surface. In addition, ozone
plays an important role in determining the climate of the Earth.2

The overall Chapman scheme of reactions, in which ozone is both produced and
destroyed in the stratosphere by the UV Hartley/Huggins and visible Chappius ab-
sorption, leads to an excess of stratospheric ozone. Several reaction schemes
have been suggested to explain this inconsistency. They involve chemical com-
pounds that contain hydrogen (HOX), nitrogen (NOX), and chlorine (CQOX). These
compounds enter into catalytic chain reactions in which one molecule can destroy
many ozone molecules before being removed by some competing processes. For ex-

ample, the decomposition of ozone by NOX has been identified in the Climatic
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Impact Assessment Program16 as being potentially crucial, because aircraft engines
emit significant quantities of oxides of nitrogen. The release of halocarbons,
such as CFMs, seem to be of greatest and most immediate threat. It now appears,
however, that the effeét of chlorine compounds on the ozone cycle is strongly
coupled to the actions of other trace species, such as stratospheric odd-nitrogen
compounds.

The NAS report2 selects four scenarios in which the release of F-11 and F-12
remains constant at the 1977 value until 1980 or 1983 "and then is reduced by a
certain factor to correct for feedback effects and the possible existence of a
tropospheric sink. The following model estimates appear particularly signifi-
cant: (a) a 2% change of ozone has already occurred due to F-11 and F-12 release;
(b) the ozone depletion by the year 1990 due to F-11 and F-12 is near 5%, almost
independent of the assumed scenario; (c) the final steady-state ozone depletion
estimates range from 18.6 to 10.6%; and (d) half the steady-state values would
be reached in 15 to 30 years, depending on the scenario.

It is now well known that the percentage change of the ozone amount due to
the CFM release will depend strongly on the simultaneous action of both odd-
hydrogen (HOx) and odd-nitrogen (NOx) oxides, The HOx species reduce the ozone

amount due to reactions of the form

+ > + 0
HO O3 HO2 2
and
+ > + +
HO2 03 HO O2 O2
At lower altitudes, HOx reactions are more efficient than NOX reactions in cata-
lytic destruction of ozone. However, the injection of NOX at these altitudes
leads, as a net effect, to a reduction of HOX and an increase in net oxygen pro-
duction, both of which contribute to an increase in ozone. Recently, Wine et
al.4 measured the rate constant for the reaction of HO with HNO3. Their re-
sults, indicating a higher than previously accepted rate at lower temperatures,

yield a stratospheric HNO_, removal rate that is faster than currently assumed.

3
Results of model calculations show that the implication of this result depends

on the products of the reaction (that is, H20 + NO3 or HZOZ + NOZ)' If the pro-
ducts are H20 + NO3, the calculated O3 depletion due to CFM release is reduced
from 14 to 9.5%.



The figures cited thus far are based on calculations using 1-D models, in
which only vertical motions of chemical substances are considered. The justifi-
cation for this approximation is that, .when all the motions are summed over all
latitudes and longitudes, the effects of horizontal motions of substances largely
cancel and the vertical movements dominate. It is to be noted that the 1-D models
predict both the global average change of ozone within a total column and the
change of ozone as a function of altitude. 1In Ref. 2, the fractional change in
ozone for three scenarios is presented. Notwithstanding the mathematical appeal
of 1-D models and their high confidence level, the advantages of 2-D models can-
not be underestimated. These models are useful in suggesting the latitudinal
variation of the ozone change, which is needed for estimating possible local
increases of UV radiation and hence regional biological impacts of ozone changes.

In this report, we assume first a global ozone depletion of 10-20%, which
is consistent with the work of Wine et al. and with previous findings. Then,

using the predictions of the 2-D model of Pyle,s’6

we study latitude- and season-
dependent ozone changes and their biological effect involving erythemal- and DNA-

damage weighting functions.

ITI. ATMOSPHERE MODEL

Transmittance of radiation through the atmosphere is a complex function of
molecular and aerosol characteristics. In the UV window region, in addition to
the model of atmospheric attenuation based upon the US Standard Atmosphere, more
refined models describing different environmments with varying aerosol contents

have been developed.17’18

Since the scattering and absorption coefficients
depend on molecules and aerosols in the atmospheric path, a realistic represent-

ation of an atmosphere model has to contain Lhe following quantities:

Bm = molecular absorption coefficient,
Bsc = molecular scattering coetficient,
§a = aerosol absorption coefficient, and
Bas = aerosol scattering coefficient.

The radiation emitted by the sun needs to be described either in the tabulated
form of spectral irradiance data or by means of an adequate analytic approxima-

tion.



A. Ozone Distribution

The only atmospheric molecule contribﬁting'significantly to the absﬁrption
in the spectral region from 0.28 to 0.34 pm is ozone. Its absdrption coefficient,

Bm’ is given by the defining equation
B () = A, (M) p (W), €Y

where A is the wavelength (pm), h is the altitude (km), A, is the Vigroux19 ozone

\Y
absorption coefficient (cm 1), and p is the ozone concentration (cm km l). Apart
from the situations where resolutions of the order of 10_3 gm are necessary, the
experimental absorption coefficient AV can be approximated adequately by the

analytical formula

Ay (M) = kg exp [-(h - A/d] (2)
where k = 10 em ', Ay = 0.3 um, and d = 0.008 pm.
The ozone concentration profile, p(h), is determined by the choice of one
of the following atmospheric models.10
Model Ozone Amount (cm-atm)
Tropical 0.23
Midlatitude Summer 0.32
Midlatitude Winter 0.38
Subarctic Summer 0.34

Subarctic Winter 0.44

In Ref. 20, the vertical profiles of Bm are tabulated for several typical laser
wavelengths. Using the values corresponding to A = 0.3371 pm, by virtue of Egs.
(1) and (2), we obtain

B (A,h) = B (A =0.3371,h) exp [(0.3371 - A)/d] . (3)

Equation (3) is used to determine the molecular absorption coefficient over the
entire UV-B spectral window. For the different amounts of ozone depletion used
in the various calculations presented in the next section, we used a fixed shape

for density profiles and simply scaled this density at all heights by.an.appro—
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priate factor. Thus, instead of B (A,h), as given by Eq. (3), we use
m q

B, Ab) =5 B (b, (4)

where Soz is the scaling factor chosen to represent the desired ozone reduction.

B. Molecular Scattering

The molecular scattering coefficient depends only on the number density of
molecules in the radiation path--in contrast to the molecular absorption coeffi-
cient, which is also a function of the local temperature and pressure of the
gas. The wavelength dependence of molecular (Rayleigh) scattering is very
nearly ﬁsc ~ A-4. In thig report, we employ for extracting molecular scattering
profiles the AFGL data base, which uses the models described in Refs. 17 and 18.
The data at A = 0.55 pm are thus rescaled, with the aid of Rayleigh's law, to
obtain the profile at a required wavelength. If BO.SS denotes the molecular
scattering coefficient at wavelength A = 0.55 um, our scaling law is expressed

by the simple formula

' 4
0.55
] , (5)

Bx = PBo.ss [ A

where A is the wavelength in micrometers. .

C. Aerosol Model

As described in Ref. 18, the variation of the aerosol optical properties
with altitude is modeled by dividing the atmosphere into four altitude regions,
each having a different‘type of aerosol distribution function. These regions
are the boundary mixing layer (0-2 km), the upper troposphere (2-10 km), the
lower stratosphere (10-30 km), and the upper atmosphere (30-100 km). The range
of conditions in the boundary layer is represented by three different aerosol
models (rural, urban, or maritime) for each of several meteorological ranges
beween 2 and 50 km, and as a function of humidity. In £he’following, we select
the rural model, intended to represent the aerosol conditions one finds in
continental areas that are not directly influenced by urban or industrial aerosol
sources. The rural aerosols are assumed to be composed of a mixture of 70% of

water-soluble substance (ammonium and calcium sulfate with organic compounds)



and 30% dust-like aerosols. For simplicity the humidity effects will be neglect-

ed, since the effect is much less pronounced as compared with other factors.

D. Mixing Molecules and Aerosol Data

The aerosol angular scattering is represented by a Henyey-Greenstein phase

function

-3/2

Py (D) = (1/4m [1 - 2101 + g7(h) - 2g(n)f] 6)

in which the asymmetry parameter g, depends on height h, and {i is the cosine of
the scattering angle. In terms of the Legendre polynomials, PH_G(h,ﬁ) has the

expansion
. L 2en 2 o
P = 3 T [em1” By (). (7
2=0
The ONETRAN code performs, for each altitude zone and for each wavelength group,
the mixing of aerosol scattering coefficients, Bﬁs = Bas [g(h)]z, and molecular

scattering coefficients describing Rayleigh scattering. The latter are obtained

after Legendre expansion of Rayleigh's phase function, which has the form
. ~ ~2
Po() = (3/16m) (1 + p7). (8)

: . .. 2 . .
Therefore, the expansion coefficients O, for molecular Rayleigh scattering,

defined through the equation

(o]
o 20 + 1 2 R
O L ®
are
o 0 = 1,
sC
s ' = o,
scC
o %2 = 0.1,
sC



and

) = 0 , for £ > 2.

The mixing, reduced here to a simple superposition, is performed as follows:

2 _ o2 2 -
Brotar = Pas T B » 23 L » Ly
2 _ 2 . . .
where B = PB__ 0 . Similarly, the total absorption coefficient
sc sc scC
(abs) _
Btotal - Ba * Bm (10)

is a sum of aerosol and molecular absorption coefficients.

E. Incident Sunlight

To a reasonable approximation the extraterrestrial solar irradiance H(A) in
low resolution in the 0.28- to 0.34-ym region may be approximated by the linear

relationship13
H(A) = K[1 + (A - AO)/d] , (1)

where K = 552.0 W/m2 pm, d = 0.37 pum, and AO = 0.3 um. This formula is consistent

with the solar spectral irradiance data as compiled by Johnson.20

IV. DOWNWARD SOLAR FLUX REACHING THE GROUND

By varying the scaling factor Soz’ introduced in Eq. (4), we have consi-

dered, in addition to standard ozone for each of the five models discussed in
Sec. III.A, the following ozone depletions: 1, 2, 3, 4, 5, 10, 15, and 20%.

Throughout, the adjoint mode of the transport equation was used. For the sake
of completeness, and having in mind the computation of DUV doses in Sec. V, we

summarize here the essential steps of our procedure.

A. Theoretical Preliminaries

A linear Boltzmann operator L may be defined by writing the time-independent

s . 1
form of the radiative transfer equation as



L (X)Q)A) = Q (X,Qak) : ’ ) (12)

In Eq. (12), where plané geometry is assumed, x denotes the linear coordinate
along the axis normal to the plane of stratification directed from the top of
the atmosphere towards the ground, Q is the unit vector specifying some direc-
tion at x, and A is the wavelength. We note that Q is defined in terms of polar
and azimuthal angles 6 and ¢ or, equivalently, in terms of p and ¢, where p =
cos 0.

In the case of elastic scattering considered hervre, the operator L in

Eq. (12) is
W (62,0 = B = GG + 5 (x,A) $(x,Q,0)

- [ a0 Zs(x,k) f(x,2' » Q,A) $(x,0',A) (13)

where ¥ and Zt denote the (volume) scattering and extinction coefficients in

km—l, while f is the scattering phase function. In terms of the notation of
> = = + + 13-

Sec. III, zs Bsc + Bas and Zt Bm Bsc + Ba Bas' If only solar radia

tion is considered, then the source distribution Q in Eq. (12) may be written as
Q (x,2,M) =y, H(A) 8(x) 82 - Q) , (14)
where H(A) is the solar spectral irradiance in watts per m2 and pm, 90 identifies
the incident direction for the monodirectional solar flux, and the symbol 6 stands
for the Dirac delta function. The main objective of our calculations, the down-
ward directed solar flux (irradiance) at ground level x = h, is defined as
o
Fyv(x = h) = [ dx [ dQ R(x,2,0) $(x,2,A) o (15)
i : .
with a response function R that is independent of ¢ and A, defined as

R(x,u) = M 6(x - h) 8(n) . | (16)

Here, 6(M) is the Heavyside step function, which is 1 for gy > 0 and O for p < 0.



+
An operator L that is adjoint to L is defined by the requirement that
+
for any function ¥ , fulfilling continuity and boundary conditions which may be

different from those on {, the following relation be satisfied.

WL = L) (17)

where the scalar product notation (Y,¢) implies integration of Y * ¢ over the en-
tire accessible range of independent variables. Explicitly, L+ is obtained from
L in Eq. (13) by changing the sign of the derivative-term and by interchanging
Qf and § under the integral sign.21 We now formulate the adjoint transport prob-
lem with the external source being given by Eq. (16), which represents the re-
sponse function of the forward problem. Therefore, the adjoint transfer equation

is
L ¢ = R. (18)
From the defining Eq. (17) and by virtue of Egs. (12) and (18), we see that

FA¢(x = h) as defined in Eq. (15) is given in terms of the solution to Eq. (18)

as
Fod(x=h) = ,Q) . (19)

Inserting Q from Eq. (14), this becomes

Fyb(x = h) = 47 (x = 0,15,00,A) HQA by (20)
Actually, symmetry considerations for a plane-parallel atmosphere enable us to
drop the azimuthal dependence in Eq. (20). In fact, since the response function
in Eq. (16) is ¢-independent, the downward-directed solar flux can be computed by
using a l-angle plane geometry transport equation instead of a 2-angle plane geo-
metry equation.29 This implies that the actually monodirectional incident solar
flux is replaced by a fictitious flux distributed over a cone forming an angle

60 = cos-1 Ho with the z-axis. Consequently, in the adjoint problem, the simpler

l1-angle plane geometry formulation can also be employed. The final expression

for the irradiance at ground level thus becomes

10



Fybx = h) = 47 (x = 0, p, M) HQ) wy (21)

+
where ¥y is a solution to the adjoint transfer equation in l-angle plane geometry.
Equation (21) enables one to obtain the irradiance for all solar zenith angles
Oo = cos-1 Ho and all desired wavelengths simultaneously.

B. Numerical Results

By using the ONETRAN discrete ordinates transport code in the adjoint mode,
the downward solar flux at ground level (irradiance) was calculated for the en-
tire UV-B spectrum from 0.2825 to 0.3400 pm. We have chosen angular quadrature
order SN = 40 and 24 wavelength groups. Since the number of different solar
zenith angles is SN/Z, this has resulted in 20 zenith angles whose values are
fixed by the ONETRAN code. These values are Oe = 4.75, 10.89, 17.04, 23.14,
29.17, 35.11, 40.94, 46,62, 52.13, 57.43, 62.50, 67.29, 71.25, 75.84, 79.51,
82.71, 85.39, 87.43, 88.97, and 89.80°. Our choice of 24 wavelength

values implies that the interval 0.28-0.34 pm was subdivided into wavelength

bins of width 0.0025 pm.

To illustrate the significance of seasonal and latitude changes, we show
the downward flux at ground level as a function of wavelength (at a fixed solar
zenith angle) and as a function of zenith angle (at fixed wavelength) for the
midlatitude winter model in Figs. 1-14, for the subarctic summer model, Figs.

15-26, and for the subarctic winter model, Figs. 27-38.

V. BIOLOGICALLY EFFECTIVE UV RADIATION

The relative effectiveness of different wavelengths (the action spectrum)
increases with decreasing wavelehgth for most biologically damaging effects.l At
any given wavelength A, the product of the action spectrum E(A) aﬁd the solar ir-
radiance, I(A) = FA¢(x = h), gives a value that reflects the number of photons
within a spectral bin dA, weighted by their biological effectiveness. The biologi-

cally effective solar UV-B irradiance, designated as DUV dose rate, is defined as

0.32 pm

.32 , ‘
[ 1 EN o, (22)
0.28 um
where A is the wavelength in micrometers.

11



With minor modifications, the results of the preceding section permit us to
study the DUV dose rate as a function of solar zenith angle. To this end, we

note that Eq. (22) combined with Eqs. (15) and (16) yields

0.32 pm ® .
Duv = f dA fdx f dQ E(A) pé(x - h) o(u) ¥(x,Q,A) , (23)
0.28 um 0

where we have replaced the irradiance I(A) with FA¢(X = h) from Eq. (15). By

inspection, the new response function R'(x,M,A) in Eq. (23) is
R'(6,0,0) = EQA) b 8(x - h) O(n) . (24)

Once again, the response function is ¢-independent.

As in Sec. IV, we now formulate the adjoint problem

L ¢ = R' (25)

with vacuum boundary condition and with ground-levél boundary source R'. Tn terms

ot the scalar product notation introduced earlier, we obtain
! +
puv. = (y,R) = (¥ ,Q). (26)
More explicitly, Eq. (26) is written as
DUV = S Sdx S dQ p HQD 6(x) 8(2 - ) ¥ (x,Q,\) . (27)
Finaliy, when the integrations over x and ) are carried out, we obtain

0.32 pm

J ) 60,200 o (28)
0.28 um

DUV

+ +
In plane geometry, s (O,QO,A) is actually a function ¥ (O,pO,A) with no azimuthal
dependence. When the concept of the effective zenith angle is introduced in
Sec. VI.A, we will be able to translate the zenith angle dcpendence into a 2-D

function of latitude and season.

12



A. Erythemal Action Spectrum

In view of the concern about the possibility of increases in skin cancer due
to ozone depletion, we focus on the human erythemal (sunburn) action spectrum for
the weighting function E(A). It is believed, moreover, that although human sun-
burn is not itself relevant to effects in other organisms, use of an erythemal
weighting function yields a reasonable relative DUV reduction measurement for a
typical biological effect.1 The standard weighting function describing the
erythemal dose was measured by Coblentz and Stair.22 The figures that follow
show, for each atmospheric model described in Sec. III.A, both the percentage
change in DUV dose rate and the radiation amplification factor (RAF) as a func-
tion of solar zenith angle. The RAF is defined as a percentage increase in the
relative DUV dose per percentage decrease in.the ozone-layer thickness (or total

ozoue amount in cm atm):

A% DUV dose
-A% total ozone amount

As can be seen from Figs. 39-58, the RAF shows pronounced variations with
the percentage of ozone depletion, latitude, and season.

In general, Earth's curvature has a greater influencé on path length (and
hence on the transmittance) than atmospheric refraction. For long slant paths
with zenith angles close to 90°, in the lower atmosphere refractive effects can
cause a significant increase in the path length.23 As indicated by Kondratyv,24
optical air mass is adequately described by a simple sec @O law only for solar
zenith angles Oo < 60°. As the ONETRAN code, applicd to plane geometry, has no
built-in capability to account for Earth curvature effects or for atmospheric
refraction, all our results for zenith angles larger than about 75° cannot be
considered accurate for realistically curved atmospheres. Although some of our
computer plots extend to full 90° the data for 00 > 75° should not be used un-
less corrections for the Earth's curvature and for atmospheric refraction are

applied. Such corrections for a spherical atmosphere were considered in some

detail by Shettle and Green.13

B. DNA Action Spectrum

Lesions in human tissue may result when DNA absorbs UV radiation, most com-
monly in pyrimidine bases. These lesions result in loss of DNA biological

13



activity.25 Green and Miller26 calculated an analytic representation of the
long-wavelength tail of a DNA action spectrum compiled by Setlow.27 In the

foilowing, we use their representation, which has the form

— 1
Epna (M) = exp ;k[1 + exp[(A - AO)/Af]]" 1$ ’ (29)

where k = 13.82, AO = 0.31 pm, and Af = 0.009 pm. In Figs. 59-78, we show per-

centage change in DUV dose and RAF as a function of solar zenith angle.

VI. DUV VARIATION AS A FUNCTION OF LATITUDE AND SEASON

As shown previously, the solar flux at ground level depends strongly on the
solar zenith angle 60, whiéh, in turn, varies with the time of day, latitude, and
season. Therefore, if daily values of DUV or RAF are desired, an integration
over the diurnal variation of 60 must be performed. However, these diurnal sums
will still vary with latitude and season because OO depends on latitude and date
of the year. Our aim is, therefore, to determine an effective solar zenith angle
that is averaged over any given day and can be given as a function of latitude
and season (date). Considering such an effective solar zenith angle we can then
correlate daily DUV doses or RAF values with latitude and season. Once the ef-
fective solar zenith angle is determined for a given latitude and date, the per-
centage change in the daily DUV dose and the RAFs can be read off the graphs
described in Sec. V. Considering also the latitudinal and seasonal variation
of the estimated ozone depletions, for example as given by Pyle and Derwent,6
contour plots of RAFs vs latitude and season can be derived, as presented in

Sec. VI.B.

A. Effective Solar Zenith Angle

Considering the celestial sphere, spherical trigonometry allows the deriva-
tion of the following relation for the solar zenith angle 00 as a function of

time and location on the Earth's surface.

My = cos 00 = sin ¢ sin 6 + cos ¢ cos & cos w , (30)

where ¢ is the latitude, 6 is the sun's declination against the celestial equator,
and w = 2; * t is the hour angle of the sun with T the duration of daylight. An

effective solar zenith angle

14



Z. = cos ! <p0> (31)
can now be defined as the daily average zenith angle calculated from

t
sunset

/ Ho(t) dt , (32)

t .
sunrise

I

<p0> =

where po(t) is taken from Eq. (30). The limits of integration, as well as the

duration of sunlight, T, depend on latitude and date of the year and must be ob-
tained separately. Inserting po(t) from Eq. (30) into Eq. (32) the integration
can be performed analytically because the solar declination 6 can be considered

time independent for any one day.

+w

1 0 '
Mo> = Fx J Ho (W) dw

0

%'(w0 sin ¢ sin 6 + sin w, cos ¢ cos §) . (33)

0

The value of W, at given latitude and § is obtained from the sunrise and sunset

condition for the solar zenith angle of 90° when My = 0. From Eq. (30) follows
then

cos wy = -tan ¢ tan & . (34)

For high latitudes, when the sun does not set for 24 hours, w, = 1 is appropri-
ate.

Figure 79 gives a contour plot of the effective solar zenith angle ZO vs lat-

> 75 (near the areas ot polar

0

itude and season. In the polar zones where Z0
darkness) the definition of an effective solar zenith angle remains useful only
for an Earth without the atmosphere, under which condition the above derivations
were performed. However, for such large solar zenith angles atmospheric refrac-
tion effects should also be considered and Eq. (33) corrected accordingly. We
did not apply such corrcctione and have, therefore, shaded these areas on our

contour plot of ¥Fig. 79.
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B. Radiation Amplification Factors

In accordance with our discussion in Sec. II, we assume global ozone
depletions of 10, 15, and 20%. The values 15 and 20% are consistent with the
steady-state values as predicted by the scenarios mentioned in Ref. 2, while
the 10% value corresponds to the recent findings of Wine et a1.4

The results shown in Figs. 80-85 represent the RAF-contour plots for ery-
themal and DNA action spectra. For DNA, the RAF is higher, .especially in the
subarctic regions. In Figs. 86 and 87 absolute DUV dose changes at 15% ozone re-
duction are shown. By considering the estimated reductions in the ozone amount
until 1992, as given by Pyle and Derwent,6 as a function of latitude and season,
we have produced the contour plots depicting RAF on the month of year-latitude
plane. As can be seen from Figs. 88 and 89, the DNA damage appears more sensi-
tive to ozone reduction even when the percentage depletion is contained between
1 and 6%.

We note that the RAF plotted as a function of zenith angle, as described in
Sec. V, displays a characteristic dip for zenith angles in the vicinity of 85°.
We are not in a position to decide whether those dips have a physical meaning or
whether they arise from applying the plane geometry ONETRAN code to a curved
atmosphere. When the curves of Sec. V are extrapolated in such a way that the
- dips are ignored, slightly different contour plots, shown in Figs. 90 and 91,

result; differences from Figs. 88 and 89 are significant only in the polar regions.

VII. CONCLUSION

We have performed accurate radiative transfer calculations for varying
amounts of stratospheric ozone applicable to different latitudes and seasons.

Our main results comprise downward solar UV fluxes at the ground level as a func-
tion of wavelength and solar zenith angles, as well as DUV dose rates and RAFs
for erythemal and DNA action spectra.

The popular statement that a 1% depletion in ozone is equivalent to a 2% in-
crease in DUV should be modified as already emphasized by Pyle and Derwent.6 As
our modeling, in which higher values of ozone depletion were assumed, indicates,
the "folklore" value of 2 should rather be replaced by a nonlinear functional
relationship; the larger the ozone depletion the faster the growth of RAF.

Our results show that the range of variation of RAF, however, is much less
pronounced over latitudinal and seasonal variations than would follow from the

calculations of Pyle and Derwent. Using their percentage depletion values, we
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arrive at an RAF range between 2.5 and 3.0 for DNA-weighted DUV dose and between
1.95 and 2.25 for erythemally weighted DUV dose.

Influences of changing atmospheric conditions (for example, due to aerosols)
have not been considered in the calculations presented here. Analyses are in

progress that quantify the effects of aerosols on UV-B radiation and DUV doses.
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