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Abstract
Equations are developed for application to waypoint guidance. They provide a 
measure of deviation from a great circle-like course between waypoints. Ellipsoidal 
earth geometry is included. The approach utilizes planes that are described in analytic 
geometry terms. Position information input is in latitude, longitude, and altitude 
format.
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Geometric Considerations for a 
Waypoint Guidance Method

Introduction
Waypoint guidance is a technique used to steer an 

autonomous vehicle along a desired course. Waypoints 
are designated at intervals along that course. The 
guidance algorithms issue steering commands that, if 
followed, result in the vehicle’s travelling from 
waypoint to waypoint. Thus, the vehicle remains on 
or very close to the desired trajectory.

Waypoints can be specified by latitude, longitude, 
and altitude in geographic coordinates. The vehicle’s 
current location can be described similarly. This is 
enough information to determine the direction of 
travel that would take the vehicle to the waypoint.

The shortest route from one point on a spherical 
surface to another on the same surface is a great 
circle. A great circle lies in a plane that contains the 
center of the sphere. The plane also is normal to the 
surface of the sphere along the great circle (Figure 1). 
The earth actually is distorted slightly from spherical; 
it is ellipsoidal. An ellipsoidal earth model will be 
used in this report. Features of the great circle will be 
applied to effect good approximations of shortest 
routes to waypoints. Therefore, only the endpoints of 
long, straight course segments need be specified.

a-
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Figure 1. Great Circle Route on Spherical Earth
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Analytic Geometry 
Principles

Solid analytic geometry will be used here to 
define two planes in the ellipsoidal earth (Figure 2).

• Plane A will contain the earth center and a 
point v that can be on, above, or below the earth 
ellipsoid. It will be perpendicular to the equa­
torial plane.

• Plane B will contain both a destination waypoint 
w and the point v. It also will include the line 
normal to the geographic surface at point v. 
Typically, it will not be perpendicular to the 
equatorial plane, nor will it include the earth 
center.

The intersection of plane B with an ellipsoid surface 
will be used to define an approximation to the short­
est route from point v to the waypoint w. The ellip­
soid surface could be either at sea level or at altitude 
h. The course angle to the waypoint will be defined by 
the angle between plane A and plane B, clockwise 
from north. Both planes will be perpendicular to the 
ellipsoid surface at their intersection. Therefore, the 
angle obtained from analytic geometry will lie on the 
tangent to the ellipsoidal surface. The computed 
angle will be the acute angle between planes A and B. 
A simple logic scheme will determine the quadrant in 
which the course will lie.

Altitude differences between point v and the 
waypoint will be handled separately. Altitude changes 
could be made at specified rates of climb or descent.

Equations of planes
The equation of a plane can be written in the 

form

Ax -I- By + Cz + D = 0 . (i)

This equation has the following form when the plane 
is perpendicular to one of the three coordinate planes.

Ax + By -f D = 0, perpendicular to xy-plane (2)

By + Cz + D — 0, perpendicular to yz-plane (3)

Ax -f Cz + D = 0, perpendicular to xz-plane . (4)

The equation has the following form when the plane
is perpendicular to one of the coordinate axes.

Ax -f D = 0, perpendicular to x-axis

By + D = 0, perpendicular to y-axis (5)

Cz + D = 0, perpendicular to z-axis .

"Desired Ground Track 

r£///pso/u/ Surface

Course

Pia/ne A

Figure 2. Planes Defined
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Derivation of equation of a plane
This method will yield the equation of a plane 

that has the fonn of equation (1).

Ax -f By -f Cz + D = 0 .

The forms of Eqs. (2) through (5) are just special 
cases of Eq. (1). Therefore, the method will work for 
them, also.

Form the determinant

x y z 1
Xj yj zx 1
x2 y2 Z2 1 
x3 ys Z.3 1

where x,y,z are variables. The quantities 

Xi,yi,z;; i - 1,2,3

are the coordinates of three points in the plane. 
Expansion of the determinant yields

x[yi(z2 - Z3) - Zi(y2 - y3) + (y2z3 - y3z2)]

-y[xx(z2 - z3) — Zx(x2 - x3) + (x2z3 — x3z2)]

+zUx(y2 - y3) - yx(x2 - x3) + (x^ - x^)]

- txx(y2z3 - y3Z2) - yi(x2z3 - x3z2)

+ zxfxxjys - x3y2)] = 0 .

(6)

(7)

The coefficients of x,y,z will be A,B,C respectively. 
The constant term will be D.

Acute angle between planes
The acute angle 6 between two planes that inter­

sect can be calculated from the following equation.

cosd
AxA2 + BxB2 + CxC2 

VA? + B? + Cx-y/Al 4- Bi + C2
(8)

Aj,Bx,Ci are the coefficients of the equation of one 
plane. A2,B2,C2 are the coefficients of the other plane.

Application of Analytic 
Geometry

Plane A in this application will always be perpen­
dicular to the xy-plane and will include the z-axis and 
origin. It will have the form given by Eq. (2). The 
constant term D for plane A will be zero since the 
plane includes the origin, i.e., the earth center.

A,B,C and D are determined by the coordinates of 
points in the plane. Earth geometry is required for 
locations of a few points. The normal to earth surface 
through a point such as v or w is shown generically in 
Figure 3. The point at which a normal to the surface 
intersects the equatorial plane is denoted as E. The 
point at which that normal intersects the earth sur­
face (the ellipsoid) is denoted as S. Other geometric 
parameters are given in Table 1.
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Table 1: Earth Geometry Parameters

D0 = esin2L -f e;e « 0 
e = ellipticity of earth ellipsoid 

= (re - rp)/re 
= 1/298.25 
= 0.0033529 

re = 6378160. meters 
r0 = re(l - esm2L) 
rp = re(l - e) 
k2 = 2e(l — e/2)

= 0.006694558
Pe “ r0(cosLcosD0 4- sinLsinD0)
Pp == r0(sinLcosD0 — cosLsinD0)

The equation for Plane B will have the form of 
Eq. (1). It will include the points v and w. Plane B also 
will include the point Ev where the normal to the 
surface at point v intersects the equatorial plane.

The point v has the coordinates

Kpev + hvCosLyXicosAv + jsinXv)], k(ppv + hvsinLv) (9)

where i,j,k are unit vectors on the x,y,z axes, respec­
tively. Latitude is L, longitude is X, and altitude above 
the earth ellipsoid is h. The point w at the waypoint 
has the coordinates

[(Pe* + hwcosLw)(icosAw + jsinAj], klpp* + h^sinL,,) . (10)

The coordinates of the point Ev, which is below point 
v and on the equatorial plane, are

(k 2pevcosAv),(jK VevSinAv) . (11)

The points defined by Eqs. (9), (10), and (11) are 
sufficient to define and derive equations for planes A 
and B. Once that is done, then the course angle to the 
waypoint can be computed using Eq. (8).

The quadrant that contains the course to the 
waypoint can be determined by the logic diagram 
given in Figure 4.

Notes:
Pomi v is erf origin. 
0=Course angle
GmAcuie angle beiween

planes A iB

Figure 4. Logic to Determine Quadrant of Course Angle
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Distance From 
Desired Path

The foregoing geometric considerations are suit­
able for partitioning the guidance problem into two 
planes of control:

• Altitude (vertical)
• Course (horizontal)

Altitude position errors can be determined by refer­
ence to an altimeter or the computed altitude of an 
inertial navigation system (INS).

Horizontal course errors can be determined from 
geometry and the latitude, longitude, and altitude 
(L,X, and h) outputs of an INS.

The distance from a point xa,ya,za to a plane that 
is represented by the equation

Ax -f By + Cz + D = 0

is

= Axa 4- Bya + Cza + D (12)
VA2 + B2 + C2

Whether course error is to the left or right of the 
desired course can be defined by the following equa­
tions. Refer also to Figure 5.

= ip — (xa,ya,za) is right of course (13)

and

Pe ~ P ~ Pa > 0; (xa,ya,za) is left of course (14)

where

p = desired course angle on the desired track 
p& = bearing angle from point v to the aircraft 

position
P* = P ~ Pa-

The logic described in Figure 4 can be used to 
assist in the determination of pe.

Point

North

'Plane A

Figure 5. Determination of Error Polarity
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Implementation
Consider a desired flight path in which a previous 

waypoint is at point v (see Figure 2) and the next 
waypoint is at point w.

Compute xEv,yEv,zEv.

The intersection of the equatorial plane and the 
normal to the ellipsoid surface through point v has 
the following coordinates.

Compute xv,yv,zv from Lv,XvJhv.

The coordinates of point v, referenced to a rect­
angular, earth centered system, are

Xv,yv>Zv == (Pev “t* hyCosLv) cosXv,

(Pev + hvCosLv)sinXv,ppv + hvsinLv (15)

where

XEv ^ pgyCOSXy

YEv “ K2pevsinXv

zev = 0 by definition of point E , 

where

x2 = 0.006694558

(22)

Pev = rov(cosLvcosD0v 4- sinLvSinDov)

Ppv = ^ovCs^^hyCosEov 4“ cosLvSinDov) 

and from Table 1

r0v = re(l — esin2Ly)

Dov = esin2Lv •

re = 6378160.m, e = .0033529

(16)

(17)

(18)

Compute xw,yw,zw from Lw,XWJhw.

The waypoint coordinates at point w, in the 
earth-centered rectangular axes are

^wjYwjAv ^ (pew 4- hwcosLiW)cosXw,

(Pew 4- hwcosLw)sinXWjppw 4- hwSinLw (19)

where

Pew = row(cosLwcosDow 4- sinlvdnDoJ (20)

PPw = row(sinLwcosDow 4- cosLwSinDo,,) (21)

and

row = re(l - esin2Lw)

Dow = esin2Lw.

Compute Coefficients A, B, C, and D of 
plane A.

Three points that lie in plane A are (refer to 
Figure 3)

Xy,yy,zv given in Eq. (15)

Xy,yv,0

0,0,ppV; ppy is given in Eq. (17) .

The coefficients of the equation for plane A can be 
computed by referring to Eq. (7).

Aa yv(0 ppv) * Zy(yv 0) 4~ (yvPpy 0)

BA = — [Xy(0 - Ppy) - Zy(XV ~ 0) + (XyPpy ~ 0)]

CA = 0 since plane A is perpendicular to the 
xy-plane

Da = 0

since plane A contains the origin of the xyz-axes. 

Simplification yields

Aa — yyZy
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cA — o
da = 0,

Therefore plane A has the equation 

— (yvzv)x + (xvzv)y = 0 .

Compute Coefficients A, B, C, and D of 
plane B.

Three points in plane B are 

Xv.YvZv, given in Eq (15)

Xw,yw,zw, given in Eq (19)

XEv,yEv, o, given in Eq (22).

The coefficients in the equation for plane B are

Ab = yv(zw - 0) - zv(yw - yEv) + (yw0 - yEvZw)

Be “ [xv(zw 0) zv(xw xEv) “I- (xw0 xEvzw)] 

CB = xv(yw - yEv) - yv(xw - xEv) + (xwyEv - xEvyw) 

Db = - [xv(yw0 - yEvZw) - yv (xw0 - xEvzw)

+ zv(xwyEv ~ xEvyw)] .

Simplification yields 

Ab == yvzw ywzv "I" yEvZv yEvZw

Bb Xvzw -j- XwZy “f" xEv (zw zv)

CB = xv(yw - yEv) - yv(xw - xEv)

+ (xwyEv - xEvyw)

Qb = xvyEvzw xEvyvzw 

- zv(xwyEv— xEvyw)

Therefore, the equation for plane B is 

x[yvZw - ywzv + yEv(zv - zw)] 

y[ Xvzw -j- xwzv4” xEv(zw zv)] (26)

+z[xv(yw - yEv) - yv(xw - xEv) + (xwyEv - xEvyw)] 

+ (xvyEv - xEvyv)zw - (xwyEv - xEvyw)zv - 0 .

Compute course angle of desired track.
(24) The acute angle between plane A and plane B is

(25)

0 — cos' AaAb + BaBb + CACB (27)
VAi + Bi + CAyAE + Bb + Cb

Now, the course angle can be computed by determin­
ing the quandrant in which theta applies. Refer to 
Figure 4.

Lv • Lw 
Av - Aw

^ • (28)

Determine distance of aircraft from 
desired track.

The desired track of travel is the line of intersec­
tion of plane B and the ellipsoidal surface at the 
desired altitude, h. The horizontal distance of the 
aircraft (at a point xa,ya,za) from the desired track is 
the distance between the aircraft and plane B. That 
distance is

ABXa + BBya + CfiZa + Db

>/Ab + Bi + C|
(29)

The vertical distance of the aircraft from the desired 
altitude is

berror hc]esjre(j ha . (30)

Determine position of aircraft relative to 
plane B.

Course angles are computed as positive, clockwise 
from north. Recall the notation in Figure 5. The 
expression

Sign[^e = lA — '/'al (31)

must be evaluated; therefore, ^a must be determined. 
This will require that

12



• the equation of a plane (plane C) similar to 
plane B but containing the aircraft position and 
the waypoint v be derived

• the acute angle 0 between plane A and plane C 
be computed

• \f/a be determined
• \f/e be determined, using Eqs. (13) and (14), and 

Figure (5)
• the following logic be resolved

Signt^el < 0 => Aircraft to right of course line 
Signj^e] > 0 ==* Aircraft to left of course line .

The equation for plane C will have the same form as 
that for plane B. It will be

x[yaZv - yvZa + yEa (za ~ Zv)]

+y[—XaZv + XvZa + xEa(zv - Za)]

+z[xa(yv - yEa) - ya(xv - xEa) (32)

+ (xvyEa — XEayv)]

d-XayEaZv — xe^Zv — za(xvyEa — xEayv) = 0

where

xa = (Pea + haCOsLa)cOsXa 
ya = (Pea + hacosLa)sinXa 
Za Ppa “f~ hasinLa .

Pea = roa(cosLacosDoa + sinLasinDoa)
(33)

Ppa = roa(sinLacosDoa + cosLasinDoa)

roa = re (1 — esin2La)

Doa = esin2La .

Concluding Remarks
The information about d, \}/, ipe and altitude error 

is sufficient for a waypoint guidance scheme that does 
not require the time rate of change of ^ or i^e. The rate 
of change of altitude is available from inertial navi­
gation systems.
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