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~ EVALUATION OF A CLASS OF METHODS FOR:
‘BOUNDING STEADY -STATE CREEP DEFORMATION ~

by

John J. Carey. and Richard A. Valentin

- ABSTRACT

This report evaluates theorems, due to Martin and
Palmer, for bounding steady-state creep deformation. Upper
and lower bounds on the displacement rate at any point on
the surface of a structure undergoing steady creepare deter-
mined interms of arbitrary equilibrated stress distributions,
and arbitrary consistent velocity fields. The theorems are
applied to several problems for which exact solutions are
known in order ‘to assess the accuracy of the bounds based
onaparticular stress or velocity field. A procedure utilizing
elastic finite -element analysis to compute the bounds is de-
scribed, together with an example.

I. INTRODUCTION

Bounding theorems for structural deformation can provide a useful
tool for design purposes--provided the theorems yield reasonably accurate
results, are easily applied to complex structures with arbitrary load history,
and do not require extensive computation. For situations in which structural
deformations must be limited, such theorems can be used to establish defor-
mation bounds and thus possibly avoid the use of expensive finite-element
analysis. ’

This report is concerned with an evaluation of a bounding theorem
due to Martin,! which provides an upper bound on the displacement rate at
any point on the surface of a body in a state of steady creep. Also considered
is a similar result by Palmer,? which provides a lower bound on the surface
displacement rate.

- In the past few years, various authors® > have developed several de-
formation and work bounds. For structures under constant load, these bounds
include effects of elastic and perfectly plastic material behavior in addition
to creep deformation. A recent paper by Ponter® extends these results to
structures in a state of creep subject to variable load. Such results will not
be reviewed here, but it is notable that some of the difficulties associated
with practical application of the bounding theorem to steady-creep behavior
also exist in similar applications of bounding theorems to more complicated
material response.



The bounding results due to Martin and Palmer for the steady-creep
case are reviewed in Sec. II, where the re striction to n-power stress-strain
rate relations is discussed. In Sec. III, these "theorems are applied to-several
problems for which exact solutions are available, and the accuracy of the
bounds for various equilibrated stress fields is established. A procedure
for calculating displacement-rate bounds for complex structures using the
finite -element method and the equilibrated elastic stress distribution is
described in Sec. IV, together with an example. The results and their impli-
cation are summarized in Sec. V, where particular emphasis is placed on the
potential value and general utility of bounding methods as a design tool.



II. DISPLACEMENT-RATE BOUNDING THEOREMS
FOR STEADY-STATE CREEP

Under conditions of uniaxial stress, the most commonly accepted
stress-strain-rate relationship for steady-state creep has the form

é/éo = (G/Co)n, | ' (1)

where o denotes the uniaxial stress, € is the uniaxial creep strain rate,
0o and n are material constants, and €, is the strain rate due to the stress

"go. The generalization of Eq. 1 for multiaxial states of stress may be written
as

é5/60 = 5 (06/00)" " 515/ 0, | (2)

where

1

is thé streés deviator, and Oe denotes the effective stress defined as
3
Oe =7 SijSij- , (4)

Although specific attention in this report is given to steady-state-creep
behavior defined by Eq. 2, the bounding theorems to be considered are appli-
cable to a large class of materials whose constitutive equations have the form

. . o)
iiilio = P =2 | s
3(01:3'/00) ' '

where ¢ is homogeneous of degree one,* and o®t! is a convex function** of
its argument. The necessity for restricting the class of material response to
that defined by Eq. 5 is discussed later in this section. With ¢ = ce/oo, Eq. 2
is recovered and, since o, satisfies the conditions of homogeneity and con-

vexity, the bounding theorems are applicable to materials characterized by
Eq. 2.

The upper - and lower-bound displacement-rate theorems are based
on an inequality derived by Martin’ for materials having constitutive equations

*‘P("ij/oo) is.-homogeneous of degree one, provided that </’(N3ij/°0) = W(Oij/oo) for all positive values of A. In
addition, if ¢ is homogeneous of degree one, the following identity is satisifed: (ojj/op) a(p/@(qi«j/oo)] = .
**‘P(o-ij/cl?) is a convex function if for any two arguments ;; and &;;, and any 0 < A.=< 1, #\Gjj/00) +
a-»N cij/OO] = )\‘P(aij/oo) +(1-N ¢(aij/°0)-
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of the form given by Eq. 5. This inequality states that, for a given body B of
volume V and surface area A in the absénce of body forces, :

f dV+fW dvzftfﬁgdA, S ‘ (6)

A

where

is the work function, and

oS, - -
Sy - 1 .
Q(cij) —f € chij | (8)

0

is the complementary work function; °1j and t "represent an arbitrary equili-
brated set of stresses and surface tractions, and efJ, uf represent an arbitrary
compatible set of strain rates and velocities. Equation 6 can be shown to follow
directly from Drucker's material stability postu.l'ate8 or, alternatively, from the
assumed convexity of the work function,!! together with the principle of virtual
work. '

For a material characterized by Eq. 5, simple relationships exist
between the rate of energy dissipation per unit volume, |,

and the work and complementary work functions W(¢;:) and Q(o‘ij), respectively.
Using Eq. 5 and the restrictions on ¢, Eqs. 7 and 8 become

.c _ 1l e c o ‘ ' : .
W(eij) = =7 eijcij’ . B (10)

and

. Sy _ n .S _s :
Q(oij) = o1 5% (11)

The term oJ in Eq. 10 is related to €°. through Eq. 5 and need not meet any
equilibrium requirements. Similarly, es in Eq. 11 1s related to o°. through
Eq. 5 and need not satisfy the compat1b111ty cond1t1ons With the a.1d1 of Egs. 10
and 11, inequality 6 becomes . .

1 S S n f > fs-cv s .
_ S ¢S, SuC dA.
—— folJelJ av + == | oféf av | | (12)

v : A\ A




A standard boundary-value problem is considered, for which surface
tractions t; are prescribed on a part of the boundary A, with zero velocity
prescribed on the remainder of the boundary A, = A - A,. The body -force
density is taken to be zero, and material behavior is assumed to be defined
by the stress-strain-rate relationships of Eq. 5, for some admissible func-
tion «o; S’ éij’ and {J‘i are used to denote the actual solution for this problem.

Since éi' and ﬁi are a compatible set of strain rates and velocities,
they may be used in Eq. 12 to obtain

1 § o8 n . 5. '
V

AY A

Equating internal and external energy-dissipation rates,

.<\

Eq. 13 becomes

. s n 5 . 1 S s ) ‘
D -o—— t.)u, dA s 2.ef . 1
'/(t1 e tl) uy 1 f°13€1J av ‘ (15)
A A\

Inequality 15 can now be used to obtain an upper bound on the displace-
ment rate at an arbitrary point Q on the surface A; by choosing tis on A,
equal to [n/(n+ 1)]'.t-i plus a concentrated load of arbitrary magnitude at Q. ¢
Let P; denote the added load and (1°J.Q)i the displacement rate components
at Q. For this choice of tf,

0 1 S 'S
P,(iq), £ —7 foijeij av. (16)
g

An upper bound on (ﬁQ). is thus determined in terms of an arbitrary equil-
ibrated stress field associated with surface tractions [n/(n+ 1)]':t~i plus the
added load,‘Pi. '

Finally, with the use of Eq. 2, we may write Eq. 16 for a particular
velocity component as

. 1 1 .éo s n+l
<L Lo , 17
o) Pn+1ggl f(ce) dv ~ (17)
. 2 .

11
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where o° denotes the effective stress associated with the equilibrated stresses
c.ls.. It should be remembergd that the stress field ols is a function of the ;rbi—
trary concentrated load P. In practical applications, an admissible stress

field of; is chosen and that value of P is determined that minimizes the right-
hand side of Eq. 17. The bound so obtained represents the least upper bound
associated with the chosen equilibrated field.o-lsj. ' A »

Following Palmer,? the lower-bound theorem is developed by replacing
the equilibrium set cis., t.ls with the solution set cij’ ‘c.1 in inequality 12, and
using Eq. 14 to obtainJ

1 . n ] cc .c
— [tlul dA +—7 '/‘clyelJ av ftlul aa (18)
A

A v

Multiplying inequality 18 by a positive constant # and adding inequality ‘15, we
obtain, after rearrangement,

B+n s . . C n c -C 1 s +S
f<n+1t1-t1 uldAZB tlul dA-n+1 O'1J€IJ av _1’1+1 01_']61_] dv.

A A \Y ' (19)

Let u~ denote, as before, the displacement rate at the surface poin‘t Q.
If ’c.ls is taken equal to [(B +n)/(n+1)]ti on Ag plus a concentrated load P at Q
in a direction opposite to {10, inequality 19 becomes

e

. 1 . . C n C.'C . 1 f .S .
z - U —— C.et. - 5¢”. dV].
G 2 p B‘ f’clul dA - —+ ‘/clJebiJ dv — 1 o5 €1; dv (?0)

2 .V

_The computation of a lower bound requires the selection of an admis-

- sible velocity field f;tic in addition to the choice for an equilibrated stress

field cf.. Once {Jf and o‘is- are chosen, the constants 3 and P are.deter-
mined so as to maximize the right-hand side of inequality 20. The lower
bound determined through this procedure repre sents the greatest lower

bound associated with the particular fields uf and c.ls.. :

J
Inequalities 17 and 20 provide a means for bounding the displacement
rate at a point on the surface of a structure in the process of steady creep.
The accuracy and sensitivity of these bounds to the as sumed form of the
velocity and stress fields required in inequalities 17 and 20 are considered

in Sec. III.

The restriction of the bounding theorems to materials‘ whose stress-
strain-rate relations have the form given in Eq. 5 is to ensure that the work
function W(éij)’ or the complementary work function Q(oij)’ is a constant




multiple of the rate of energy dissipation per unit volume, as given by
Eqgs. 10 and 11. In the upper -bound theorem, for example, the volume
integral appearing in inequality 6

c - ¢ ¢c |
fW(eij) dv [’*%eij v, (21)
v v

where \ = n/(n +1), can be calculated in terms of surface data through the
principle of virtual work, since \ is a constant. If )\ is not constant, the

reduction of [ W(e'-lcj) dV to a surface integral is generally not obvious.
v

To illustrate this point, we consider the steady-state creep of a ’
material whose stress-strain-rate relationship for uniaxial tension is
given by

¢ = A exp(o/a), . (22)

where A and o, are material constants.* A suitable generalization of Eq. 22
to three -dimensional states of stress is given by

B _3_4A[eXP(ce/co)].

.. 23
R e (23)
Using Eqs. 7 and 8, togethef with Eq. 23 yields
o L - (24)
°1_]) = O'_e D .- Agy,
and
W(é;) = (1-00/0,) D+ Ad, | . | (25)
where
D = cijéij = Ag, exp(ce/co). (26)
Equations 24 and 25 imply that inequality 6 may be expressed as
o‘0 -5 c e s.C
—D®dV + (1-00/0S) DAV 2 [t70y dS. (27)
o}
v ¢ v

*The results obtained using this form are typical of results obtained when the constitutive equation involves
combinations of hyperbolic functions.

13




14

There appears to be no simple representation in terms of surface
integrals for either volume integral on the left-hand side of 1nequa11ty 27;
hence the utility of this expressmn is not apparent.:

It is interesting to note that, for a one-dimensional stress-strain-rate
relationship of the form

§/éo = £(o/an), (28

where f is afbitréry, the condition that the complementary work function be
a constant multiple of the energy-dissipation-rate density, i.e., ‘

ac) = b | " o @)
where c is constant, implies that .

S - 6o
which is the one—dimensional.power law.

"The general solution of the integral equation equivalent to Eq. 29 for

three-dimensional states of stress is not immediate; however, a class of
solutions is given by "

1 Bcpn+l
n+1 i ’
Co

provided that ¢ is homogeneous of degree one in the variables g ./ . .This
solution is equivalent to restrlctlng the stress-strain-rate relatlons to the
form of Eq. 5.

éij/éo = f(Uij/Co) =

The limitation of practical bounding theorems to creep laws of the .
power -law type is not necessarily a serious disadvantage, since creep repre-
sentations such as the exponential law given by Eq. 22 can be, in many in-
stances, adequately approximated by the power-law relationship of Eq. 1
over a given stress range.
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III. APPLICATIONS OF THE BOUNDING THEOREMS

A. Analytical Optimization

The steady-state creep-displacement-rate bounding theorems described
- in Sec. II have been applied to several problems for which exact, closed-form
solutions are available. These examples give an indication of the accuracy of
the bounds for various structures and the sensitivity of the bounds to assumed
forms of the required equilibrated stress and compatible strain rate and
velocity fields.

For reasons discussed near the end of Sec. III.C below, much of the
work presented here concerns the determination of upper bounds on the
surface-displacement rate. In most practical applications of the upper-bound
theorem, the quantity on the right-hand side of inequality 17 cannot be
conveniently optimized analytically; therefore, numerical minimization will be
‘necessary. ‘

One type of problem for which the optimum value of the added load P
can be determined in closed form is that of a structure subjected to a concen-,
trated load R ata 'point Q on the surface. An upper bound on the displacement
rate at point Q in the direction of the load R is sought, and, from inequality 17,

. 1 1 'éo s\n+l, s
Q€ FI¥ia f(%) (05/00) 4V, ' ©2)
0V ’ '

where disj is an arbitrary stress field in equilibrium with a surface load
A = [n/(n+1)]R + P. Writing
s

O'ij = )\O'ij»

(33)
where 8i~ is any equilibrated stress distribution due to a unit load at point Q
in the direction of R, and recalling the definition of effective stress in Eq. 4,

Eq. 32 may be written as

€o n. 1 ( n )n.+1 (1_,_&1.111:’/R)n-|-l f( s)n+1('*

l‘lQ S—nR n+ \n+tl P/R ‘ e Gij/co) dv. (34)
00 . . V
From inequality 34, the optimum value of P/R is
P/R = ——; (35)
n+ 1

therefore, the least upper bound for a given stress distribution Gij is



L) s——Rn f( e)n+1 OIJ/O’ o | o (36) )
- og v '

The results given by Eq. 35 and inequality 36 can be shown to be valid
for certain other structure loading cases; however, for most problems of

practical interest, the optimum value of the added load P must be determined
numerically. ‘

B. Cantilever Beam

Consider a cantilever beam subjected to a concentrated load R at the
free end x = £, as shown in Fig. 1: The beam is in a state of steady creep
defined by the stress-strain-rate relation*

¢/é5 = |o/o,|" sgno, , . » (37)
where .
1l ifo> 0
sgno =< 0 ifc = 0 . (38) -
-1 ifo < 0.

|
|

Fig. 1

|

" 4 . Cantilever Beam with Concen-
trated Load at Free End

SOUONNNANNN

N g
N

Suppose that bounds are required on the rate of deflection & at the free

end. With the usual kinematic assumptions for beam theory, the bending stress
is given by’

o = sl sen 2, - | | (39
n : -
and the rate of deflection is

- Rn - ' : . R )
W s — (4 - %)™ 4 (n+2) 7% - P2, | (40)
0'(?In(n'*‘ 1)(n+2)

*Equation 317 is a simple modification of Eq, 1, v‘ali'd for arbitrary values of the creep exponent n.



where M denotes the bending moment, and

In = f|z|“’m+l dA | | o (41)
A ' ,

is a constant determined by the shape of the beam cross ‘section. Thus the
actual rate of deflection at x = {4 is given by '

. n,n+42 ‘ - .
j - SR L A | (42)
cgllg(n+2)

. An upper bound on § may be obtained from inequality 15 which, for this
problem, can be expressed as . ’

bef (o fleo™ dv> (43)
) : S

go(n + 1 v

where g% represents any equilibrated bending—stréss distribution due to a

concentrated load [n/(n+1)]R + P at x = 4. From the discussion in Sec. IIL.A,

the "best" upper bound for a given choice of oS occurs when P = R/(n+1).
Choosing oS to be the elastic bending stress

o8 = |z| sgn z, : ~ (44)
Il :

the least upper bound based on Eq. 44 is obtained from inequality 43 as
@ [|z]™" aa
coRMZ A

§ < : ; ‘ (45)
" oMB(n+2) [t

and by comparison with Eq. 42, the ratio of the least upper bound based on
elastic stresses to the actual value of the displacement rate at x = 4, is given
by

12 f‘Z|n+l dA

‘ O | |
Ef - [t (46)

and depends, in general, on the cross-sectional shape and creep exponent n.

For a beam with rectangular cross section, Eq. 46 implies

Bt .3 (.3n )n
n~" n42\2n+1

. and is independent of the section dimensions.

17
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We next consider a class of equilibrated bending-stress distributions
oS given by

M , ‘
cS = ——lzll/m‘ sgn z, . (48)
Im
defined by the parameter m. For m = 1, this reduces to the elastic stress
state, for m = n it gives the actual stress state, and, as m — «, it reduces

to the plastic stress state. Using Eq. 48 in inequality 43, the ratio of the
least upper bound for a given value of m in Eq. 48 to the actual displacement
rate is determined as

| |
f|z|(n+”m . N o (49)

Rm,n _n41

m
+ gt
Clearly R = E;, and we define

Pf = Lim R, , ‘ (50)

m—®

to denote the ratio of the least upper bound based on the plastic stress state
to the actual displacement rate.*

For the particular case of a rectangular cross section, Eq. 49 is
evaluated as

e = () () W

2+1/n l1+(n+1)/m

and, as with the case for m = 1, is independent of the cross-sectiondimensions,

Upper-bound data for the rectangular cross section are shown in
Figs. 2 and 3 as a function of the creep exponent n. For this and other exam-
ples considered in Sec. III, bounding data are presented for a range of creep
exponent (1<n=10) and are therefore appropriate for most structural metals
of interest. : /

Upper-bound data based on the elastic stress state shown in Fig. 2 in-
dicate a deterioration of accuracy for increasing values of n, with severe loss
of accuracy for values of n> 10.

The degree of accuracy required for an upper or lower bound depends
to a large extent on the design problem to which the bounding theorem is

applied. As an example, from Fig. 2, for a value of the creep exponent n = 5,

*The definitions of Rm ne Efh. and P} are used consistently throughout Sec III and represent a measure of the upper-
bound accuracy based on a specific choice for the equilibrated stress field oIJ



the upper bound is approximately twice the actual displacement rate §. If the
design allowable displacement rate is larger than the upper bound determined
from Fig. 2, the accuracy of the upper bound is sufficientand indeed immaterial.

30 T 1

2.6

2.2

1.0

Fig. 2. Least-upper-bound Data for Cantilever~
beam Example Based on Elastic Stresses:
Variation of Ej with Creep Exponent n

Fig. 3. Least-upper-bound Data for Cantilever-beam
Example Based on a Class of Equilibrated
Stress Distributions: Variation of‘R;n,n with

Creep Exponent n for a Beam with Rectan-
gular Cross Section

for a Beam with Rectangular Cross Section

With increased effort, the accuracy of the bounds can be improved by
"better" choices of the field variables oisj and ﬁf; therefore, at some point, a
trade-off between bound accuracy and computer cost must be established.

The variation of R;—n,n with creep exponent n as given by Eq. 51 is shown
in Fig. 3 for values of m 1 and 5, and the 1imiting case m — ». A direct
comparison between upper bounds based on the elastic stress state (m = 1) and
plastic stress state (m—>e«) is presented, and the superior accuracy of the bound
based on the plastic stress state for n = 3 is apparent. Furthermore, the bound
based on the plastic stress state is approximately constant over the range 1 <
n < 10, while the bound based on the elastic stress state varies rapidly
for small changes in creep exponent n. This behavior must be kept in mind
when applying the bounding theorems to structures where the experimentally
determined value of the creep exponent n may be subject to a large degree of
uncertainty. '

The upper-bound curve for m = 5, in Fig. 3, is representative of results
obtained for other finite values of m > 1. The "flatness" of this curve near

n = 5is encouraging and suggests that quite accurate upper bounds are possible

when the equilibrated stress field cisj is "near" the actual stress state.
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A lower bound on § is now developed through use of inéqual_ity 20 and
the particular choice of a consistent* velocity field wC, given by '

W = o[(2-x)® + 34%x - 3], | (52)
whére o is a constant. Equation 52 is appropriate for the linear case n = 1
and can be obtained from the elastic solution by simply replacing displace-

ments with displacement rates.

Using Eq. 52, the quantity
Q= f1u1 dA - ] '[clJe:lJ dav A (53)
A A% 4 :

in inequality 20 can be expressed as

n n c’oln( )1+(1/n) 24+(1/n)

n+l2n+1 lm 1 ’ (54)
0

Q = 2aR4? -

and the value

2R \P éoLn" | '
= : 55
o (coln) 6n+1( )n (55)
I 4+2n

is selected to give

n n+1

1 (l + Zn) (l) (RPH P2 ) |

n+ 1 n 3 . - . )

Qmax = a . E . .(56.) :
(ooln)

The equilibrated stress field is chosen as the elastic bendmg stress
given by Eq. 44, due to a concentrated load [R(B +n)/(n+1) - P]at x = £, and
the inequality 20 with the aid of Eq. 56 may be expressed as '

52.‘3&”[—% I(B,P/R)], | | (57)
O‘OI (n+2) n + _

where

I(8, P/R) = (P/R)™! [aa :- b(‘f1

)nﬂ].. L ' (58)

*A consistent or admissible velocity field is used here to denote any continuous velocity dlsmbunon that sausfle:,
the prescribed velocity boundary conditions.




a :' (n+2)(1.+ Zn)n(i)nﬂ,-

n

and : > - ' : - (59)
b = f|z|n+l
. In+1

'For a given value of P/R it may be shown that I(B, P/R has a maximum .
value along the line '

7

B = (n+1)[(2/B)"" + P/R] - n | » (60)
as P/R - ». The maximum value of T obtained is

Imax = (n41)a; B R (61)

_therefore, the ratio of the greatest lower bound based on the elastic state to

the actual displacement rate & is given by
E, = a. ‘ A : : ' (62) .

We note that Eq. 62 is valid for all beam cross.sections, which is due
to the fact that, for this problem, the greatest lower bound is independent of
the assumed equilibrated stress field and depends solely.on the choice of the
velocity w€. :

Using a similar procedure, the ratio of the greatest lower bound, based
on a class of velocity fields '

wC = o[(t - x)m+z + (m+2) Lm+1}'{ ) Lm+z-],‘ . , (63)

‘defined by the constants o and m, to the actual displacement rate is deter-

mined as

Rm,n =

n+2[m+nl+m)]” - N . '
m+2[ n{m + 2) ] - o (64)

independent of the cross-section shape. The variation of Rm n with creep ex-
ponent n is shown in Fig. 4 for several values of the parameter m. For the
elastic case (m = 1) and a creep exponent n = 5, the lower.bound is approxi-

‘mately one-half the actual displacement rate. The lower bound based on other

values of m in the range 1 < m < 10 is significantly more accurate.
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ool L 1 11 1 4 1]

Fig. 4. 'Greatest—lowgr—bound Data for Cantilever~beam Example Based
on a Class of Consistent Velocity Fields: Variation of Rpy,p with -
Creep Exponent i1 for a Beaui of Arbitrary Croee Section ’

Again, the "flatness" of the curves in the vicinity of ‘m = n suggests
that sharp lower bounds can be obtained for velocity fields that are " near" the
.actual velocity field.



C. Pressurized Cylindrical Tube

Consider a long cylindrical tube as shown in Fig. 5, subjected to con-
stant internal and external pressure, p; and Py, at the inner and outer lateral
surfaces r = r; and r = r,, respectively, with the plane ends constrained by -
smooth rigid plates. Denoting the displacement components relative to the
(r,6,z) cylindrical coordinate system by (u,v,w), symmetry and the assump-
tion of a state of generalized plane strain lead to ‘

u = u(r)

and . o | : (65)

0

&
I
o

v

The nonzero components of strain are given by

_ du |
€rr = 37 :
, (66
and (66)
€gp = u/r
and equilibrium requires
do o - %998
rr  _rr -0 (67)
dr by
together with the boundary conditions
Orr = “Pi» T = Ti
and - . : , . (68)
Opryr = =Py r = roe

Fig. 5

Pressurized Long, Circular Cylinder
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In addition, the tube is assumed to b¢ incompressible, so.that

¥+u/r=0. N R o (69)

The solution for an elastic material is given below for reference:’

\
A
c = -= + B,
rr .

r
A
O’ee—?z-'*'B,

Opz = A
and
u = C/r,
o
where
L2 )
ito
A = (Po‘Pl) rd - r2’
, .
"o , Co(m)y
B-‘Pi+(Po'Pi)rg_rz’ o ' :
i o
. 3A
C = 2E’
o

and E is Young's modulus.

The solution for steady-state creep based on the stress-strain-rate
relations of Eq. 2 can be written as ‘ ‘

O'rr = Ar-Z/n + B, w ‘ » . .
_ 2 -Z/n
oge = Afll —'-n_ r + B,
L . \ (72)
_ -2/n
OZZ = A(l —-;)r +B,_
and
u = C/r, E J

where u denotes the radial velocity and
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A = Po " P W
-2/n -z/n’
' i -~ To /
- (p, - Py) r1_2/n
B = -p; —z/n _ _-z/n L
1 o (73)

and

-2/n
Ir. -
1

: n+! - n
c VAP (con)"n< pi_p‘j_z‘/n>..

7 .

We assume that an upper bound on the velocity of the inner surface,
r = r.,is requ1red therefore, inequality 15 is applied to the case for which
tractions t are given by

s

. = * = : W

t1 st t +p r Ty,

and | S ' (74)
s _ n -
tl = o ti’ r = ro, )

where p* represents an arbitrary additive pressure. On the plane ends of
the cylinder, t is allowed to assume any value in order to satisfy equilibrium.
Accordingly, inequahty 15 becomes

(an ) p*i| < _ﬁ_'__j f(cg,):nh\:dy,m . " : " (28)

r=ry oM(n+1
where the effective stress for this problem is given by

€ 2 ee—or

oS = _\/E(cs . sr)_ | ~ : (76)

Using Eq. 76 together with the equilibrium Egq. 67, inequality 75 may be re¥
written as ' ' .
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Since équilibrium is satisfied, the only restriction on o‘ir is that it satisfy
the boundary conditions

. | )

s - : S
cIrr__n.{.lpi—p*" r =TI
and L (78) .
c§f=— o P> r=r_.
nt 1l 0 o J

Using the elastic radial stress distribution appropriate to Eqs. 78,
given by Eqgs. 70 with :

.
A = cp) —2 k22 : 79)
271 Po Pl).rg_rz T 2 : . (79)

i o i o :

and minimizing the right-hand side of inequality 77, the least uppei' bound
based on elastic stresses is obtained as

n+l n 2.2
i . («3)" [Pi~Po riro gt (80)
Hr=ry 77, 7 2 oon 2/n_ p2/m)" v -
(r.o -
where '
2n - 2/m|?
1 - (r:/r.) 1 - (r;/r.) v
E;rl = ,n-1 1/ "o 1” 0O | ) (81)

1= (r3/ro)* |1 - (ry/r)?

is, by comparison of inequality 80 with Eqs. 72 and 73, the ratio of the least
upper bound based.on elastic stresses to the actual value of the radial velocity
at r = r;. For thin cylindrical shells of thickness t, Eq. 81 can be approxi-
mated by : : _ o

gt -4 2o+ 1) (t/x;)? + 6(‘C/ri)3, 4 | A (82)

n 6n

which indicates that, for a given value of the creep exponent n, the least

upper bound rapidly approaches the actual velocity as ri/ro - 1.

-~

The class of radial stress distributions

s _ -2/m ' ) ’ o
opy = AT + By (83)
that contains the. elastic state for m = 1, the actual stress state for m = n, and

the plastic stress state in the limit as m - «, is considered. The constants Am
and By, are determined from the boundary conditions of Eqs. 78. '
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Using Eq. 83 in inequality 77, the ratio of the least upper bound for

a specific value of m to the actual velocity at the inner surface, r = ry, is
given by
. n p2/mpz/m ! . ‘ (rz/n - f?/n)n
+ _[(n -y © (z/m)(m-n-1) (2/m)im-n-1) o 1
Rm,n - (-r;) (m-n-1) l z2/m 2/1n [ro - / " ] r2pl ’ (84)
. I‘o - i 10
and it may be shown that
Rn,n =1,
+ _ +
Rl,l’l = En,
and
v n
1 : 2 n 4 2/n
» N —z[l -(ri/ro)] "2‘[1 - (x3/75) /]
Pl = lim R, (85)

n m-—»® i (I'i/ro)2 in (ri/ro) tn (ri/ro)

As before, Pi’-’l represents the ratio of the least upper bound based on the
plastic stress state to the actual value of the velocity.

The variation of E; with creep exponent n for a cylinder with ri/ro =
0.5 is shown in Fig. 6, and the variation of E, as a function of ri/ro is shown
in Fig. 7, for various values of n. These data indicate that the accuracy of

0.0 02 - 0.4 0.6 0.8 1.0

10
/10
Fig. 6. Least-upper-bound Data for Pressurized Fig. 7. Least-upper~bound Data for Pressurized
Circular Tube Based on Elastic Stress Circular Tube Based on Elastic Stress
Distribution: Variation of E;, with Creep . Disuibution: Variation of Ef with r;/ry

Exponent n for a Tube with 1;/ry = 0.5 for Several Values of Creep Exponent n
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the upper bound deteriorates rapidly for large values of n. For n = 8, and
for rl/ro = 1/2, the upper bound based on elastic stresses is apprommately
an order of magnitude greater than the actual velocity. Errors of this mag-
nitude may be too severe for design purposes, and improvements are required.

The curves in Fig. 7 and Eq. 82 indicate that accurate bounds are ob-
tained for relatively thin structures (ri/ro > 0.7), even for large values of
the creep exponent n.

T 1. 1 1T 1 1 1 .
Figure 8 compares the least

upper bounds based on the elastic and

plastic stress states for a cylinder with

ri/ro = 1/2. For values of the creep

pe exponent n in the range of interest,

e " ‘ "] bounds based on the plastic stress state
€ are far superior to those based on the
elastic stress state. For a material
with creep exponent n = 8, the least
upper bound based on the plastic stress
Loal n N state is about 10% larger than the actual

value of the velocity and represents a
useful bound from a design point of view.
1.00 I IO (N NN SRS W S Unfortunately, at present, the cost in-

i 2 3 4 s 6 1 8 8 10 volved in generating the plastic state of

1.16 1

1.08 — —

stress for a given structure at collapse
is significantly greater than the cost for

Fig. 8. Least-upper-bound Data for Pressurized developing an elastic solution.

Circular Tube Based on a Classof Equili-
brated Stress Distributions: Variation of

Riy n with Creep Exponent n for a Tube Application of the lower -bound

with 1/1g = 0.5 theorem, in the form of inequality 20,
to this problem leads to a determina-
tion of an exact lower bound on the radial velocity at the inner surface r = rj.

Any assumed velocity field u must be consistent with the incompressibility
condition of Eq. 69 and therefore must be of the form

o = C/r, | - (86)

1

which is the actual velocity field for the appropriate value of the constant C.

The pressurized tube and the other remaining problems considered in
Sec. III are essentially kinematically determinant. Constraint equations on
the velocity field, such as incompressibility, dictate the required functional
form for the velocity; therefore, the use of arbitrary velocity fields in-the
lower-bound theorem is severely restricted. Although these problems do not
provide good examples with respect to application of the lower-bound theorem,
the velocity-constraint equations, in many cases, afford exact solutions for
materials governed by the nonlinear stress-strain-rate Egs. 2.



D, Three-bar Truss

Consider a simple truss consisting of three bars of similar material
and cross-sectional area A subjected to a vertical load W at point O, as shown
in Fig. 9. If the vertical displacement at

AL/ /L v £ // point O is denoted by u, the axial strains in
D D bars 1 and 2 are given by S

€, = u/t
and , (87)
e, = (u/4,) cos®
i and equilibrium requires that the correspond-
w ing axial stresses o, and 0, satisfy

Fig. 9. Three-bar Truss : o, + Zéz‘coé o = W/A. (88)

The solution for an elastic material is given by

N
S W, 3 41
u = EA(1+v2cos )7,
o, = (W/A)(1+2 cos® @)™, . (89)
and '
o, = (W/A) cos® o(1+2 cos’ @)1,
. P
and the solution for steady-state creep defined by the stress-strain-rate
Eq. 1 is given by
‘ W\ | G/m) Y ™ :
u = e::0'?/1(1,_\_0;) (1+2 cositt?/n O!) )
” -n
o, = (%)(1+2 cos!t@/M o) L
(90)
and
_ : W ‘ -n
- 0p = (X) cos?/M o1 +2 cos' /M o)
p

Assume that an upper bound on the velocity U is required. From
inequality- 15, we obtain : ‘
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(n+1) og cos &

o s Seth p*[(of)“w : (of)““], - o1

where o} and o5 are any stresses satisfying the equilibrium equation

1 n . .
oS + 20; cos @ = K<n+1W+P>. (92)

Consider the class of stress states defined by

-1
oS = A= [1 + 2 cos'TE/™ or] .
1 nt+l ‘
and
o5 = A'l(—+-1 W+ P)[l + 2 cos!t(a/m) cv] cos?/M g, (93)
which contains the elastic and plastic stress states for m = 1 and m — ®,

respectively. Using Eq. 93 in inequality 91, the ratio of the least upper bound
to the actual velocity is given by

rt o 1+2 c:os(z/nq)(m-l)'l o|1+2 cos'T?™ 4 (94)
m,n 1 +2 cosl+(z/m)'d 1+2 cosl+(2/m) o
For reference, from Eq. 94, we obtain
ot 1+ 2cos®oll 4 2 cos!t?/M) 4
Ef = 3 : (95)
1+ 2cos’«o 1+ 2 cos®o
. and
- n
p+ _ cos @ |1+ 2 cosl+(?‘/n) o : (96)
n " 1+ 2cos¢ 1+ 2cos o '

Figures 10 and 11 show the variation of the upper bound based on the

- elastic stress state as a function of the creep exponent n and geometry, de-

fined by the truss half-angle @. These data indicate that, in general, the
accuracy of the upper‘bound may be severely dependéent on the structure
geometry. For a.reasonable value of the creep exponent (n = 7), the upper
bound on the velocity at point O is 1.5 times the actual velocity for a truss -
with o = 30% for o = 60°, the upper bound is about 11 times the actual ve-
locity. Similar results are observed for other values of the creep exponent n.
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Fig. 10

Least-upper-bound Data for Pressurized Circular i
Tube Based on Elastic Stresses: Variation of E;'l
with Creep Exponent n for Truss Half-angles

o - 30°and & = 60°

12
l [ I
11— —
10 — —
o n=7 7
8 —]
Fig.
ig. 11 7h— —_
Least-upper-bound Data for Three-bar-truss 6
Example Based on Elastic Stresses: Variation i .
of Ef with Truss Half-angle « for CreepEx- . 5 - —
ponents n = 5 and n = 7 s
3 n=5 -]
21— —
, | 1 | |
o] ] 30 45 60 75 90
a, degrees

Figure 12 compares least upper bounds based on the elastic (m=1)

and plastic (m — ») stress states for a truss with half-angle o = 30°. The

upper bound based on the plastic stress state is extremely accurate, with an
error less than or equal to 2% over the entire range of n, and’is far superior
to the upper bound determined by the elastic stress state for values of n = 2.

Figure 13 compares least upper bounds based on the elastic .and plastic
stress states as a function of the truss half-angle @ for a material with creep
exponent n = 7. Except for values of o given approximately by 80° < o < 90°
the bound based on the plastic stress-state is preferable. The upper-bound
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curve based on the plastic stress state for. n = 1 is included to show that,
except for @ in the range 80° £ o < 90° the bounds based on the plastic state
are relatively insensitive to the angle ¢.

YT T T T T T T 1
- gt
.16 — " —
112 — 1 Fig. 12
< T
+E ) Least-upper-bound Data for Three-bar-truss
x ‘ Example Based on.a Class of Equilibrated .Stress
1.08 |— . — Distributions: Variation of R}, , with Creep Ex-
ponent n for Truss Half-angle o = 30°
104 |— -—
+
/"
ok L I T T T T
1 2 3 4 5 6 7 8 9 10
n
'2 | | | | 1
" —
10— =
R%7
9 — —
8 — —]
Fig. 13
ig 2 |
Least-upper-bound Data for Three—bar—truss €
Example Based on a Class of Equilibrated +£ &
Stress Distributions: Variation of Rf, , with 5 —
Truss Half-angle o ol ‘ R'o,1 N
3 —
2= Rw,7 \|
| = l
o] 15 30 45 60 75 20

a , degrees



* E. Torsion of a Cylindrical Tube

"Consider a circular cylinder of internal and external radii r; and r,
respectively, fixed at one end and subjected to a twisting moment M, as shown
in Fig. 14. The components of displacement relative to the rectangular co-
ordinate system (x,x;,%x3), with the x; axis taken along the axis of the cylinder,
are given by

uy T -0XpXs,
u; = ox X3,

nd (97)
uy = 0,

where o is the angle of twist per unit length. The nonzero components of
strain are given by

€3 = 39X _
and ) : ’ ' . (98)

- 1
€31 = 29X

and equilibrium of the cylinder is satisfied in the overall sense, provided the
shearing stresses o;;-and o3 are such that

M = A[(X1°32 -X20'31)_ dA. ' (99)

For an elastic material,

Ca3 = HOX . .
O31 = -Hpox;
X2 and Eq. 99 is satisfied
M
o = —, 101
= aoy
where P is the elastic shear
modulus and
. o
2 To = 5(xh -] (102)

Using Egs. 100 and 101, the result-
Fig. 14. Circular Tube under Twist ant shear stress
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' 1/2
T = (1) o : (103)
at any point
r = (xf+x§_)l/2

is given by
T = Mr/J,. _ : : (104)

Denoting the rate of twist per unit length of the cylinder by &, the solu- '
tion for steady-state creep defined by the sf;‘es~s—strain-rate relations of Eq. 2
can be expressed as :

1/n
p = (3+1/n) Mr . - (105)
2n[r3+(“m _ r:g.+(1/n)]‘e : ' :
o i .

and

&M (V3" (3 +1/n)"
@ = — - (106)
(Zﬂcp)n (’rzﬂl/n) _‘ri+(1~/r_1)) 4

Assume that an upper bound on the rate of twist is required. Applying
inequality 15, we choose '

t.s -0 ’ {r = ri},

1 | r =r,
and

s - .o * -

ti = o T1 ti + t:1 X3 £,

where tfl" is some arb‘it'rary‘ additive shear stress. The left-hand side of

" inequality 15 can then be evaluated as

~ f(tf’ n%l ti) U; dA = @AM, ' - (107)
A ' 4

where M* represents the added twisting moment. .

The effective stress is related to the resultant shear stress by

dze _ ‘3TZ,- o . - o (108)
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and it follows that

: : . (n+l)"/2 To .
. 2nidey - 3 A
fo-s~e-s. dv = 0 / ('rs)n.Jrl rdr (109)
VvV r .

1) 1) op i

where 7% is any equilibrated shear st'”res_s due to a twisting moment-
[n/(n+ 1)] M + M*. Using Eqgs. 107 'and 108 in inequality 15, we obtain

2még - 3@ME e B
& < (M*) ™! ' (+5)?M 1 ar, (110)
/(n+1) og r;

t
!

It may be shown that the ratio of the least upper bound based on the
elastic-shear-stress distribution

5 = {n/(n+1)] M + M*} /7,

to the actual rate of twist, is given by

'_|_ | 4 ( 4n )n [1 - (ri/ro)n+3]

_ (ri/ro) " /m]n

Ef = [1_ (111)
n+3 3n+1» '[1_(1‘./1. )4]n+1 .

For extremely thin tubes of thickness t, Eq. 111 may be approximated by

1 1 | '
E:fl =1 '+-1—2(2n2 -5n+4 --r-l-)(t/ri)z +O(t/r;). (112)
Finally, a class of shear stress distributions is considered that con-

tains the elastic and plastic stress distributions as limiting states. The ratio
of the least upper bound to the actual rate of twist is determined as

(3 +é)n+l (Z—Irl_j-rl_rﬁl) [1 - (ri/ro)(sz’nﬂ’/m] [1 § (ri/‘ro)3+(1./n‘)]n.

RY = . :
m,n n +1
(3 +l> [1 - (ri/ro)3+(l /m)]n o
n
(113)
In particular, for the plastic stress state,
o ' - 340 /mt '4
+ 3( 3n\P 1- (ri/ro)?‘ 11 -(x;/r,) /
P == (114)
2\3n+1

1 - (r.l_/rc-))3 1 - (r-l/ro)3 .

The ratio of the upper bound based on the elastic stress distribution to
the actual rate of twist is shown in Fig. 15 as a function of the creep exponent n
for ri/ro = 0.5, and in Fig. 16 as a function of ri/ro, for several values of the
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creep exponent. The bounds are extremely accurate for thin tubes and deteri -
orate with increasing values of n. Moreover, the overall accuracy of the upper
bound based on the elastic stress state is quite reasonable, in comparison
with results for other examples considered in See. III.

T 1T T T T T T 1

2.6 — —

n ri / "o
Fig. 15. Least-upper-bound Data for Torsion of a | Fig. 16. Least-upper-bound Data for Torsion of a
Circular Tube Based on Elastic Stress Circular Tube Based on Elastic Stress
Distribution: Variation of E} with Creep Distribution: Variation of E; with r;/ry
Exponent n for a Tube with rj/ry = 0.5 for Seveial Valucs of Creep Exponent n

Figure 17 compares upper bounds based on the elastic and plastic stress
states, which indicate, as in previous examples, the extreme accuracy of the

W=7 177 1T T T T 1
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Fig. 117
C- .
+E N Least-upper-bound Data for Torsion of a Circular Tube
1.08 — R Based on a Class of Equilibrated Stress Distributions:

Variation of R;‘n p WithCreep Exponent n for r;/ry = 0.5




bounds based on plastic stresses. Over the range 3 <n <9, the upper bound
based on the plastic stress state is about 2% larger than the actual rate of
twist.

F. Pressurized Spherical Shell

Consider a spherical shell of arbitrary thickness t, subjected to inter-
nal pressure p; and external pressure pg, as shown in Fig. 18. Displacement
components relative to a spherical coordinate system (r,8,¢) are denoted by
(u,v,w) and, from symmetry, -

u = ulr)

and : | | - (115)

Po ' o
/",, Pressu:ize: iSg ;'Jhlesric al Shell
&

The nonzero strain components are given by

<
I

&
I

o

du
dr

and , : ‘ ' (116)
€ 96 = ecp(p = u/r
and equilibrium is satisfied, provided the nonzero stress components 0., and

Ogg = O 2T related by

doypy 2(orr- c96)
+ =
dr r

0, (117)

in addition to the boundary conditions

Oprr = “Pi» r=r

and . : _ (118)

Opr = “Po’ r=r
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The material is assumed to be incompressible; therefore, from
Eqs. 116, the radial displacement u must satisfy ’

du u
— +2— =
dr r 0
The solution for an elastic material is give
3.3
Lo 2 -po) riTo )
4Er* 1} - 1
B
s) = A +— s
rr r3 L
and
B‘
dgg = A - —,
2r? J
where

ro(pi - Po) )
A= p; + o‘\Pi o’
r3 - r3
o i
, >
B = 'rlro(pi"po)’
ry - ‘ri )

and the solution for steady-state creep, as
Eqgs. 2, can be written as

(119)

n by

(120)

(121)

defined by the stress-strain-rate

L . (122)

_ B A
Opr = A L3/m
3 B
%90 = %pp A +(1‘_E;1) 3/n’
and
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. S0 [3('9'1 'po)]n TiTo
u' = 2I_Z 2ngy (‘r3/n—r2/n)’
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where u denotes the radial velocity,
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Assume that an upper bound on the radial velocity at the inner surface
r = rj is required. Following the procedure used for the pressurized cylin-
drical tube, the ratio of the least upper bound based on elastic stresses to the

actual radial velocity at r = r; is determined as

R nn—xi - (ri/ro |1 - (ry/r PP (124)
n 1 - (ri/ro)3 . 1 - (ri‘/ro)3 a

which for thin shells has the expahsion

3(n-1)2 (n+1
8n

E ) (t/ry + O/ . (125)

+
n

=1+

.For the class of equilibrated radial stress distributions

or = At Brnr"3hn, | ' o C : (126)

with the constants A, and B, determined from Egs. 118, we obtain
. G/mim-n-1) r(3/m)(rn-n-1)

1 n . nr
Rho = (@) (7o) =2 1

m o 1 3.3
Tito
r;:;/mr3/m n+l
_ % (127)
3/ 3/m
T m _ r} m
For the plastic stress state, we obtain, from Eq. 127,
-1 3 _nry oL 3/n\ 2
N o, 300 - (e /x P) (-3 - (xy /2 PP
P = Lim R} . = : (128)

m=e TR (r /1 PIn (/1) In (r;/r,)

Figure 19 shows the dependence of E' on the creep exponent n for a
sphere with r-l/r0 = 0.5. Again, the accuracy of the upper bound diminishes
rapidly for large values of n. Figure 20 gives the variation of E; with ri/ro
for several values of n, and it appears that reasonably accurate upper bounds
based on elastic stresses are obtained only for thin shells. '
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Figure 21 compares bounds based on the elastic and plastic stress

. étates for a sphere with r-l/r0 = 0.5, and it is evident, as with the previous:

examples, that the plastic stress state leads to upper bounds that are ex-
tremely accurate compared with those based on the elastic stress state.
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IV. APPLICATION OF BOUNDING THEOREMS
TO COMPLEX STRUCTURES

Application of the upper- and lower-bound displacement-rate theorems
to complex structures requires the determination of an appropriate equili-
brated stress distribution cisj, and a consistent velocity field uf Since the
objective is to obtain close upper and lower bounds and thereby provide an
accurate estimate of the true displacement rate, it is necessary to develop
‘general methods for constructing the fields O'is- and ﬁic to yield bounds of
specified quality. Unfortunately, these géneral methods have yet tobe developed.

Due to the enormous capability of the finite-element method as applied
to elastostatic analysis, a logical starting point is the use of the elastic solution
state for the required quantities oisj and uf The vast majority of engineering
problems in the domain of elastic structural analysis can be solved accurately
and economically through the use of finite-element techniques. Without going
into unnecessary details at this point, it should be clear that results for the
elastic stress and displacement fields obtained through use of the finite-
element method mustbe regarded as approximate and may not always exactly

satisfy the stated requirements for cis- and uf This does notappeartobea serious

.disadvantage and simply means that we must be satisfied with approximate

determinations of upper-and lower bounds. The usefulness of this approach -
can be established only throughapplications and suitable computer experiments.

" The basic procedure will be demonstrated for the upper-bound theorem,
as represented by the inequality 17. The original structure of volume V is
subdivided into N regions or elements of volume VJ-, and inequality 17 is re-
placed with ‘

] N
: €o -1 syn+1 .
@ —2 P ZZ f(ce)j dv;. | | (129)

A value of the added load P is selected and a finite-element solution is gen-
erated for the appropriately modified boundary conditions, as discussed in
Sec. II. The approximate value of the effective elastic stress so obtained is
denoted by Ge. Substituting G for of in inequality 129, an approximate deter-
mination of an upper bound for U* is established for the given choice of the
the added load P. The process is then repeated for several other values of P
in. order to determine a "best" upper bound. Three or four calculations with
di_fferént"values of the added load P should be sufficient to obtain a reasonable
estimate of the minimum upper bound. ’

The.above method has been successfully applied to the cantilever-
beam and pressurized-cylindrical-tube examples discussed in Sec. IIL
Results for the pressurized-tube problem are summarized below. A thick
cylindrical tube subjected to internal pressure was modeled with 12 constant-
strain quadrilateral ring elements as shown in Fig. 22.
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- Fig. 22. Finite-element Idealization of a Thick-walled Cylinder

The finite-element program AXICRPY was used to generate the elastic
solution for the optimum value of the added pressure p* = p;/(n+ 1) An upper
" bound on the velocity at the inner surface, u(r;), was computed using 1nequa1-
ity 129. For this problem, inequality 129 can be expressed as

12 2 2

. 1 ~ 41 55 - Fj- ‘
alrrel s — ¥ @B 1525, (130)
P; ) 2
1j=1 .

where (Ue)j is the effective elastic stress in element j; r j-1 and. r; denote,
respectively, the inner and outer radii of element j; and for convenience we
have taken é, = 1. The right-hand side of inequality 130 was evaluated for
several values of the creep exponent; the results are summarlzed in Table I.

TABLE I. Coniparison of Analytical
and Finite-element Upper Bounds

a(rj)riog
S
Upper Bound Using. . —n
n Exact " AXICRP Analytical AXICRP
1 23.74 24.25 o 1.00 = 1.02
3. 1_21'.7x 105 147.7 x 10° 118 ¢ 1.21

4.4 119.5x 10° 185.4 x 10° 1.50 1.55

- The "exact" result is determined from Eqgs. 72 and 73, and the upper bound
using AXICRP is determined from ‘inequality 130. The analytical evaluation
of inequality 17 based on the elastic stress state, and the upper bound based
on AXICRP, are then used to compute the comparable values of En, which is
the ratio of the upper bound to the exact solution of the problem. The small
differences in the En results between exact and finite- element evaluation of
the bound indicate that the use of the finite- element method does not lead to

any appreciable deterioration of the bound.



Using the complete AXICRP solution for the pressurized circular
cylinder shown in Fig. 22, an upper bound on the radial velocity at the inner
surface of the cylinder was calculated using the computed stress distribution
at various times during the stress-redistribution process from the initial -

Yor— 1 1 T |

rR*

Fig. 23. Figure-of-merit Measuring Approachto
Steady-state Upper Bound as a Function
of Dimensionless Time to Steady State

elastic to final stationary state. The ratio
of the upper bound based on the stress:
state at time t to the actual velocity in
the stationary state for times t 2 tgg,
where tgg denotes the time required to
achieve a stationary state, is denoted by
Rt and is shown in Fig. 23 as a function
of the dimensionless time 7 = t/tgs.

These results illustrate the rapid
improvement in accuracy of the upper
bound, based initially on the elastic state,
during the early stages of the stress-
redistribution process. For the class
of equilibrated stress states generated
from elastic to steady-state creep behav-
ior, small deviations from the elastic
stress distribution Gis-, such that the inte-
gral é (88)“+1 dV is reduced in value,
lead to large increases in the accuracy
of the upper bound determined by inequal-
ity 17. Although this result is strictly

applicable to the sequence of stress distributions obtained with the AXICRP
code, it provides an incentive for the development of numerical procedures to
obtain equilibrated stress states that represent small variations from the
elastic state but lead through inequality 17 to the determination of extremely
accurate upper bounds. The fact that relatively small adjustments in the
stress distribution provide large improvements in the bound leads one to be-
lieve that any automated search procedure for bound minimization would be
numerically stable and that "convergence" in a practical sense would be very

rapid.
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- V. CONCLUSIONS

This report describes an initial effort in the area of bounding and
approximation methods for inelastic analysis. The evaluation of surface-
velocity bounding theorems for steady-slate creep dcformation has been con- -
sidered, and the accuracy of these bounding theorems based on elastic- and
plastic-solution states for several simple structures has been established.

For the several examples considered, upper bounds based on the
plastic stress state were remarkably accurate. However, the determination
of the plastic stress state at collapse is a formidable problem; for even ‘
relatively simple structures, only a few solutions have been obtained at
present. On the other hand, deformation-rate bounds based on the elastic
stress state can be easily obtained for most structures through the use of
standard finite-element techniques. These bounds were rather inaccurate for
certain structures and for relatively large values of the creep exponent
(n> 10). For materials having creep exponents on the order of n = 4 or
‘n = 5, the results provided reasonable bounds for most values of the geo-
metric parameters. 4

- The potential value of the bounding theorems as a general-purpose
design tool depends on the development of automated procedures for applica-
tion to arbitrary structures. Further, it is necessary that these procedures
give accurate bounds for relative small expenditures of computing effort.
The example presented in Sec. IV indicates that such a method, based on the
finite-element method, can be developed. It seems desirable to first develop
these procedures for basic structural elements such as beams, plates, and
shells. The result would be a readily usable tool for accurately estimating
surface velocities for these basic structures in a state of steady creep. This
should be possible for a fraction of the cost of generating the complete
steady-state creep solution, since only a few elastic finite-element computa-
tions should be needed. A o

Finally, the numerical procedures developed for calculating velocity
bounds for steady-sta'te creep behavior can be used to determine appropriate
‘equilibrated stress and“' consistent velocity fields for bounding theorems
applicable to other forms of inelastic material response.
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