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EVALUATION OF A CLASS OF METHODS FOR
BOUNDING STEADY -STATE CREEP DEFORMATION

by

John J. Carey and Richard A. Valentin

ABSTRACT

This report evaluates theorems, due to Martin and
Falmer, for bounding steady-state creep deformation. Upper
and lower bounds on the displacement rate at any point on
the surface of a structure undergoing steady creep are deter-
mined interms of arbittary equilibrated stress distributions,
and arbitrary consistent velocity fields. The theorems are
applied to several problems for which exact solutions are
known in order to assess the accuracy of the bounds based
on a particular stress or velocity field. A procedure utilizing
elastic finite -element analysis to compute the bounds is  de -
scribed, together with an example.

I. INTRODUCTION

Bounding theorems for structural deformation can provide a useful
tool for design purposes --provided the theorems yield reasonably accurate

results, are easily applied to complex structures with arbitrary load history,
and do not require extensive computation. For situations in which structural
deformations must be limited, such theorems can be used to establish defor-
mation bounds  and thus pos sibly avoid the  use of expensive finite-element

analysis.

This report is concerned with an evaluation of a bounding theorem
due to Martin,1 which provides an upper bound on the displacement rate at
any point on the surface of a body in a state of steady creep. Also considered
is a similar result by Palmer,z which provides a lower bound on the surface
displacernent rate.

In the past few years, various authors3-5 have developed several de-
formation and work bounds. For structures under constant load, these bounds
include effects of elastic and perfectly plastic material behavior in addition

-            to creep deformation. A recent paper by Ponter6 extends these results to
structures in a state of creep subject to variable load. Such results will not
be reviewed here, but it is notable that some of the difficulties associated
with practical application of the bounding theorem to steady-creep behavior
also exist in similar applications of bounding theorems to more complicated
rnaterial response.
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The bounding results  due to Martin and Palmer  for the steady -creep
case are reviewed in Sec. II, where the restriction to Il-power stress-strain
rate relations is discussed.  In Sec. III, these theorems are applied to several

problems for which exact solutions are available, and the accuracy of the
bounds for various equilibrated stress fields is established. A procedure
for calculating displacement-rate bounds for complex structures using the
finite -element method  and the equilibrated elastic  stre ss distribution is
described in Sec. IV, together with an example. The results and their impli-
cation are summarized in Sec. V, where particular emphasis is placed on the
potential value and general utility of bounding methods as a design tool.
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II.   DISPLACEMENT -RATE BOUNDING THEOREMS
FOR STEADY-STATE CREEP

Under conditions of uniaxial stress, the most commonly accepted
stress-strain-rate relationship for steady-state creep has the form

6/60 = (c/co)n,                                     (1)
where c denotes the uniaxial stress, 6 is the uniaxial creep strain rate,
co and n are material constants, and do is the strain rate due to the stress

co. The generalization of Eq. 1 for multiaxial states of stress may be written
as

6../60 = 3 (ce/co)n-l s··/co,                                        (2)1J                              1J

where

s. .     =     C.  .    -  1   Ckk 6                                                                                                                                                                                      (3)1J 1J 3 ij

is the stress deviator, and ce denotes the effective stress defined as

4 - 1                                                                   (4)-    2    sijsij.

Although specific attention in this report is given to steady-state-creep
behavior defined by Eq.  2, the bounding theorems to be considered are appli -
cable to a large class of materials whose constitutive equations have the form

n    39                                                     (5)
d i j /6 0    =     B       a(aij /0 0) 

where <p is homogeneous of degree one,* and epn+1 is a convex function** of
its argument. The necessity for restricting the class of material response to
that defined by Eq. 5 is discussed later in this section.  With cp = ce/co, Eq. 2
is recovered and, since ce satisfies the conditions of homogeneity and con-
vexity, the bounding theorems are applicable to materials characterized by

Eq. 2.

The upper - and lower-bound displacement-rate theorems are based
on an inequality derived by Martin7 for materials having constitutive equations

*404/00, is.homogeneous of degree one, provided that 9(Aaij/CO)  =  AQ(cij/00) for all positive values of X.   In
addition.  if 9 is homogeneous of degree  one, the following identity is satisifed: (aij/00) 89,70(qi j/00)]  =   41.

***cij/00)  is a convex function if for any two arguments ai j  and Bij,  and  any 0  s  X.s  1,   [1(Bij/ao)  +
(1-,4  Si j /00]  s  Ag(Gi j /00)   +   (1 - X)  *Sij/Co)·
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6f the form given by Eq. 5. This inequality states that, for a given body B of            *
volume  V and surface area .A, in the absence of body forces,

FO(as.) dv +  1 W(69.) dv 2 JI trfir dA,                           (6)j V J 4
V                           V                             A

whe re

rifjw(69.) = 1
c..   d 6. . (7)

1J JO 1J 1J
is the work function, and

FS                                                                                                          (8)0 (as.) = 1 6..   dc. ·1J J 1J 1J
0

is the complementary work function; ofj and t; represent an arbitrary equili-
brated set of stresses and surface tractions, and ic.. fic represent an arbitrary

lj'   1

compatible set of strain rates and velocities. Equation 6 can be shown to follow
directly from Drucker's material stability postulate8 or, alternatively,  from the
assumed convexity of the wolk function,11 together with the principle of virtual
work. .

For a material characterized by Eq. 5, simple relationships exist
between the rate of energy dissipation per unit volume,,

b     =      T i j  Cij,                                                                                                                                                                                                                                         
       (9)

and the work and complementary work functions W(6··) and 0(c··). respectively.
1J             1J

Using Eq. 5 and the restrictions on 9, Eqs. 7 and 8 become

w(6 9. )    =          1          I c. cc, (10)1J    n+1  i J 1 J

and

 ( a     =        n       6 s. CS . (11)
1J n+1 1J  1J

The term 09. in Eq. 10 is related to 69. through Eq. 5 and need not meet any
lJ                                                     /J . 0equilibrium requirements. Similarly.  fip. in Eq. 11 is related to c.s. through

.lJEq.  5  and need not satisfy the compatibility conditions.  With· the aic Jof. Eqs.  10
and 11, inequality 6 becomes

1

I    cs. 6 s.   dv   +  -2-       1  c:. 6 9.   dv  2     j' .t i: f dA. (12)n+1 J 1J 1J n+l j 1J  1J

V                                       V                           A
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A standard boundary-value problem is considered, for which surface

tractions ti are prescribed on a part of the boundary A. ' with zero velocity
prescribed on the remainder of the boundary Au =A- AV The body-force
density is taken to be zero, and material behavior is assumed to be defined
by the stress-strain-rate relationships of Eq.  5, for some admissible func -
tion cP; cij' dij, and fii are used to denote the actual solution for this problem.

Since  6..  and fii  are a compatible  set of strain rates and velocities,
1Jthey may be used in Eq. 12 to obtain

1      f'
- jl 08.69. dv +  n   1 c..6.. dV 2  1 tsfi. dA.                (13)n+1 1J V n+l J 1J 1J J 1 1
V V A

Equating internal and external energy-dissipation rates,

fc·.6.. dv = ftifii dA,                                          (14)J 4 4
V A

Eq. 13 becomes

fit·   n
, 1 r- t. 1 u. dA 6- Ics. 6 s.   dV. (15)i n+1 1/ 1 n+1 j ijlJ

A V

Inequality  15  can now be used to obtain an upper bound on the displace -
ment rate at an arbitrary point Q on the surface At by choosing tf on At
equal to  [n/(n + 1)] ti plus a concentrated load of arbitrary magnitude  at  Q.    F
Let Pi denote the added load and (11Q)i the displacement rate components
at Q.  For this choice of tf,

Pi(izQ)i  6 n- 1    j  c:.6.s.  dV.                                                                                   (16)J 4 11
V

An upper bound on  (LEQ)i  is thus determined in terms  of an arbitrary equil -
ibrated stress field associated with surface tractions [n/(n+ 1)] ti plus the
added load Pi·

Finally, with the use of Eq. 2, we may write Eq. 16 for a particular
ve16 city component as

1 1 Jo f n+1

':'Q   s F  n  I--1   an   j   (a ) dV, (17)

V
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where as denotes the effective stress associated with the equilibrated stresses

as..  It should be remembered that the stress field c.s.  is a function o'f the arbi -
4                                  

                                   
          4

trary concentrated load P. In practical applications, an admissible stress

field c j is choisen and that value of P is determined that minimize al the right-

hand side of Eq. 17. The bound so obtained represents the least upper bound

associated·with the cho.sen equilibrated field  cs.
1J

Following Palmer, 2 the lower-bound theorem is developed by replacing

the equilibrium set c:., tP with the solution set c.., t. ininequality 12, and
13    1

using Eq. 14 to obtai 

1        F
I   t· 6·   dA + n             F   cs.  65.   dy   2       [  t. up   dA. (18)

ntlj11 n t l j  iJ' 1:1
j l i

A                                  V                           A

Multiplying inequality 18 by a positive constant B A.nd adding inequality 15, we

obtain, after rearrangement,

1        F

i  tlviti -th   fi,  dA  24    f tifit   d. -  s-1    f  ··tj,tj   , j
- 1 CREs dV.
n+1 J 1J  1 

(A                               V                                        V                     (19)

Let UQ denote, as before, the displacement rate at the surface point Q.

If ts is taken equal to [(4+n)/(n+ 1)]ti on Atplusaconcentrated load P at Q -

in a direction opposite to dQ, inequality 19 becomes
-

· --B fti«ic  dA  -n i     fatidi:j  «·A   -          1      t  as.4:.  dV   .             (20)1

uQ 2 P  A
J 1J 1J

V V
-            

             
             

             
  -

The  computation  of a lower bound requires the selection of an admis -

sible velocity field ic in addition to the choice for an equilibrated stress

field cs.. Once fit- and c j are chosen, the constants B and P are deter-

1J
mined so as to maximize the right-hand side of inequality 20. The lower

bound determined through this procedure represents the greatest lower

bound as sociated with the particular fields  uf  and   c:..
1J

Inequalities  17 and 20 provide a means for bounding the displacement

rate at a point on the surface of a structure in the process of steady creep.

The accuracy and sensitivity of these bounds to the assumed form of the

velocity and stress fields required in inequalities 17 and 20 are considered

in Sec. III.

The restriction of the bounding theorems .to materials whose stress-

strain-rate relations have the form given in Eq. 5 is to ensure that the work

function W(i··) orthe complementary work function Q(c··). isaconstant
- 1J

, 1J
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multiple of the rate of energy dissipation per unit volume, as given by
Eqs. 10 and 11.  In the upper-bound theorem, for example, the volume

integral appearing in inequality 6

F W(6 c. )   dV     =        CAcc. 6 9. dV, (21)
4     J  V ll

V V

where  k  =  n/(n + 1),  can be calculated in terms of surface data through the

principle of virtual work, since X is a constant.  If k is not constant, the

reduction of f W(ic.) dV to a surface integral is generally not obvious.
V 1J

To illustrate this point, we consider the steady-state creep of a
material whose stress-strain-rate relationship for uniaxial tension is

given by

6 . A exp(a/co), (22)

where A and co are material constants.* A suitable generalization of Eq. 22
to three-dimensional states of stress is given by

3 A[exp(Ce/co)]
(23)sij   -  2             ce              sij

Using Eqs. 7 and 8, together with Eq. 23 yields

Co                                                                                   (24)0(c··) = -D -Aco,1J Ce

and

W (6..-)   =   (1  - co/ce)  D  + Aco, (25)
1.J

whe re

(26)D = c··6.· = Ace exp(ce/co).
1J  1J

Equations 24 and 25 imply that inequality 6 may be expressed as

    °e dN +   (1 -c°/ cD f)c dN 2  tt  dS·                (27)V                           V                                            S

*The results obtained using this form are typiCal of results obtained when the constitutive equation involves

combinations of hyperbolic functions.
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There appears to be no simple representation in terms of surface
integrals for either volume integral on the left-hand side of inequality 27;
hence the utility of this expression is not apparent.

It is interesting to note that, for a one-dimensional stress-strain-rate

relationship of the form

6/60 = f(c/00), (28)

where    f is arbitrary, the condition  that the complementary  work  function  be·
a constant multiple of the energy-dissipation-rate density, i.e.,

0(c) = cD (29)

where c is constant, implies that
1-C

i = alcor, (30)

which is the one-dimensional power law.

The general solution of the integral equation equivalent to Eq. 29 for
three-dimensional states of stress is not immediate; however, a class of
solutions is given by

n+1
6../60 = f(c··/0,) =  1 Bop

(31)4   4 . n +  1      /c··\'
B (-11

C 00 1

provided that cp is homogeneous of degree one in the variables cij/co. This
solution is equivalent to restricting the stress-strain-rate relations to the
form of Eq. 5.

The limitation of practical bounaing theorems to creep laws of the
power-law type is not necessarily a serious disadvantage, since creep repre-
sentations such as the exponential law given by Eq. 22 can be, in many in-
stances, adequately approximated by the power-law relationship of Eq. 1
over a given stress range.
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III. APPLICATIONS OF THE BOUNDING THEOREMS

A. Analytical Optimization

The steady-state creep-displacement-rate bounding theorems described
in Sec. II have been applied to several problems for which exact, closed-form
solutions are available. These examples give an indication of the accuracy of
the bounds for various structures and the sensitivity of the bounds to assumed
forms of the required equilibrated stress and compatible strain rate and

velocity fields.

For reasons discussed near the end of Sec. III.C below, much of the
work presented here concerns the determination of upper bounds on the
surface-displacement rate.  In most practical applications of the upper-bound
theorem, the quantity on the right-hand side of inequality 17 cannot be
conveniently optimized analytically; therefore, numerical minimization will be
necessary.

I.               ..                                     .  ,

One type of problem for which the optimum value of the added load P
:"

* :can be determined in closed form is that of a structure subjected to a concen--
trated load R at a point Q on the surface. An upper bound on the displacement
rate at point Q in the direction of the load R is sought, and, from inequality 17,

1                1             -so           f,       s,n t i (32)< Q  6  F i --:I.-i    J  lae)       (Cr j/co)  dV,

where a j is an arbitrary stress field in equilibrium with a surface load
1 = In/(n+1)] R + P. Writing

a S.  = X 8· . . (33)
1J       1J'

where 8· · is any equilibrated stress distribution due to a unit load at point  Q
1Jin the direction of R, and recalling the definition of effective stress in Eq. 4,

Eq. 32 may be written as

/ n+1 \ n+l

io    n    l   i   n  ) n+1 (1
+

n    P R             (a:.):1+1(6··/a-)  dV.                         (34)GQ  si-R R    27-1 (nti/ P/R 1J U
CO V

From inequality 34, the optimum value of P/R is

1

P/R = - · (35)
n + 1'

therefore, the least upper bound for a given stress distribution 6-ij is
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<IQ 51 60 Rn  l '(as)n-1-1 -. ./a ) dV.n            J   ,    e,          (a l j 0 (36)
00 V

The results given by Eq. 35 and inequality 36 can be shown to be valid
for certain other structure loading cases; however, for most problems of
practical interest, the optimum value of the added load P must be determined
nurnerically.

B. Cantilever Beam

Consider a cantilever beam subjected to a concentrated load R at the
free end x = 1, as shown in Fig. 1.  The beam is in a state of steady creep
defined by the stress-strain-rate relation*

6/to   =    la/co In sgna, (37)

where

.

1  i f c>  0

sgna E 0  i f a  = 0 (38)

-1   i f a  <  0.

1                                       R
I/A 1                      -'

I
Fig 1

-tx

' Cantilever Beam with Concen-Y

A.IT
trated  Load  at  Free End

6 z
Z

Suppose that bounds are required on the rate of deflection 6 at the free
end.  With the usual kinematic assumptions for beam theory, the bending stress
is given by'

M i ,1/n
a =

In'z'
sgn z, (39)

and the rate of deflection is

60Rn
W= [(1 - x)n+2 + (n + 2) ln+ix - ln+21, (40)

conIN(n +1)(n +2)

*Equation 37 is a simple modification of Eq. 1, valid for arbitrary values of the creep exponent  n.
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.,         where M denotes the bending moment, and

r ,  IN/n)+l
In E

J 'ZI dA (41)

· A

is a constant determined by the shape of thebeam cross section.  Thus the
actual rate of deflection at x=l i s given by

8 = ioRntn+2 (42)

colIn(n +2)

An upper bound  on   6   may be obtained from inequality 15 which, for thi s
problem, can be expressed as

6 5    60     P-1 f los'n+1 d  ,                                      (43)con(n +1)             V

where as represents any equilibrated bending-stress distribution due to a
concentrated load [n/(n + 1) ]R+P a t x= 1.  From the discussion in Sec. III.A,
the "best" upper bound foragiven choice of as occurs when P = R/(n+1).
Choosing as to be the elastic bending stress

(44)as = P.  z sgn z.

the least upper bound based on Eq. 44 is obtained from inequality 43 as

Inn   f  I z In+1   dA
6 5                           '

loRn.tn+2 A (45)
ConIR(n + 2) Ihtl

and by comparison with Eq. 42, the ratio of the least upper bound based on

elastic stresses to the actual value of the displacement rate at x = 1, is given
by

IR f Izin+1 dA

EA = A                                                        (46)
In+1

and depends, in general, on the cross-sectional shape and creep exponent n.

For a beam with rectangular cross section, Eq. 46 implies

E +   =   _L (in.-ln (47)n     n + 2 \2n +1/

and is independent of the section dimensions.
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We next consider a class of equilib rated bending-stress distributions
c s  given by

Cs = MIzli/m sgn z, (48)
Irn

defined by the parameter m.  For m = 1, this reduces to the elastic stress
state, for m=n i t gives the actual stress state, and, as m- c o,i t reduces
to the plastic stress state. Using Eq. 48 in inequality 43, the ratio of the
least upper bound for a given value of m in Eq. 48 to the actual displacement
rate is determined as

T 1

R ,n    = -in-. ,(nti)/m
|*l dA. (49)

l;N- 1   A

Clearly Rt. n = E;t, and we define

PA = Lim R+ (50)
m -+00          In, n

to denote the ratio of the least upper bound based on the plastic stress state
to the actual displacement rate.*

For the particular case of a rectangular cross section, Eq. 49 is
eva.luated as

Rit,,n  =  (2 + 1/m'In (   2+ 1/m ) (51)
\2+1/n/ \1+(n+1)/m/

and, as with the case for m =  1, is independent of the cross-sectiondimensions.

Upper-bound data for the rectangular cross section are shown in

Figs. 2 and 3 as a function of the creep exponent n.  For this and other exam-

ples considered in Sec. III, bounding data are presented for a range of creep
exponent (15 ng 10) and are therefore appropriate for most structural metals
of interest.                                                                         /

Upper-bound data based on the elastic stress state shown in Fig. 2 in-
dicate a deterioration of accuracy for increasing values of n, with severe loss

of accuracy for values of n > 10.

The degree of accttracy required for an upper or lower bound depends
to a large extent on the design problem to which the bounding theorem is
applied.  As an example, from Fig. 2, for a value of the creep exponent n = 5,

*The  definitions  of R+m, n,  EA,  and  PA  are used consistently throughout  Sec.  III and represent a measure  of the upper-
bound accuracy based on a specific choice for the equilibrated stress field as .

11·
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the upper bound is approximately twice the actual displacement rate 6.  If the

design allowable displacement rate is larger than the upper bound determined

from Fig.  2, the accuracy of the upper bound is sufficient and indeed immaterial.

3.0

I 0

9 2.6
m.1%0-

8

7                                                            2.2

6                                        
             c

+9                                                                  +ET
W                                           2

5                                                                1.8

4

m-+ (D
3                                                                \.4

2                                                          m=51.-
1 1.0
12345 6 7 8 9 1 0 12345678910

n                                                                       n

Fig. 2. Least-upper-bound Data for Cantilever- Fig. 3.  Least-upper-bound Data for Cantilever-beam
beam Example Based on Elastic Stresses: Example Based on a Class of Equilibrated

Variation of EA with Creep Exponent n Stress Distributions: Variation   of  RAt, n   with
for a Beam with Rectangular Cross Section Creep Exponent n for a Beam with Rectan-

gular Cross Section

With increased effort, the accuracy of the bounds can be improved by
"better" choices of the field variables a j and d ; therefore, at some point, a
trade-off between bound accuracy and computer cost must be established.

The variation of R ,n with creep exponent n as given by Eq. 51 is shown

in Fig. 3 for values of m=  1  and 5, and the limiting case m- + oo. A direct

comparison between upper bounds based on the elastic stress state (m = 1) and

plastic stress state (m--) is presented, and the superior accuracy of the bound

based on the plastic stress state for n 2 3 i s apparent. Furthermore, the bound

based on the plastic stress state is approximately constant over the range 1 w
n 6 10, while the bound based on the elastic stress state varies rapidly
for small changes in creep exponent n. This behavior must be kept in mind
when applying the bounding theorems to structures where the experimentally
determined value of the creep exponent n may be subject to a large degree of

uncertainty.

The upper-bound curve for m  =  5, in Fig.  3; is representative of results

obtained for other finite values of m > 1.  The " flatness" of this curve near

n = 5 is encouraging and suggests that quite accurate upper bounds are possible
when the equilibrated stress field as. is "near" the actual stress state.

1J
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A lower bound on 6 is now developed through use of inequality 20 and
the particular choice of a cpnsistent* velocity field *,c, given by

ec  = of[(1 - x)3 + 312x - 13]. (52)

where ot is a constant. Equation 52 is appropriate for the linear case n=1
and can be obtained frorn the elastic solution by sinlply replacing displace-
ments with displacement rates.

Using Eq. 52, the quantity

n   r c.c
Q   E   . 'tiaF  dA   -  irri   yl  a i j€i j d V                                                                                             (5 3)
A V

in inequality 20 can be expressed as

Q = 2aR13 - _1_   n coin 1+(1/n) 2+(1/n)
- (60)      1                          (54)

n + 1 2 n + 1 .1/n
€O

and the value

(y = / 2RL)rl 20'Lil-1
(55)

(coIn)   6nti /  n   )n
\1 + 2n/

is selected to give

1    (1 + 2n\n, 1  nti
nti (n    <3   (Rn+iln+260)

Qmax = (56)

(aoIn) n

The equilibrated stress field is chosen as the elastic bending stress
given by Eq. 44, due toaconcentrated load [R(B+n)/(n+1) - Plat x = 1, and
the inequality 20 with the aid of Eq. 56 may be expressed as

6 22 60Rntn+2  -LI(B, P/R) ,                            (57)conIR.(n + 2) Ln +· 1

where                                                           '

I(B,P/R) . (P/R)-1 laB - bi- -P/R)  , (58)
/8 + n \ nt 17

\n+1

*A consistent or admissible velocity field is used here to denote any continuous velocity distribution that satisfies
the prescribed velocity boundary conditions.
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with
1

/1 + 2n n/1, ntia = (n+2)1\   n    /   (3/     '

and                                >·                                     (59)

In    r,  ,nti
b= -1  z  dA.

In+1 JA

For a given value of P/R, it may be shown that I(B, P/R) has a maximum
value along the line

B = (n +1)[(a/b)1/nt P/R]- n (60)

as P/R - co. The maximum value of I obtained is

Imax = (n+1)a; (61)

therefore, the ratio of the greatest lower bound based on the elastic state to
the actual displacement rate 6 is given by

EA =a. (62)

We note that Eq. 62 is valid for all beam cross sections, which is due
to the fact that, for this problem, the greatest lower bound is independent of
the assumed equilibrated stress field and depends solely on the choice of the
velocity *C.

Using a similar procedure, the ratio of the greatest lower bound, based
on a class of velocity fields

dic = ot[(1 - x)m+2 + (m+2) trn+ix - trn+21, (63)

defined by the constants ot and m, to the actual displacement rate is deter-
mined as

n + 2 Frn + n(1 +mAn (64)R
m,n = m + 2 L n(m+2) 1 1

independent of the cross-section shape. The variation of RAn,n with creep ex-
ponent n is shown in Fig. 4 for several values of the parameter m.  For the
elastic case (m = 1) and a creep exponent n = 5, the lower bound is approxi-
mately one-half the actual displacement  rate. The lower bound based  on  othe r
values of m i n the range 1 6 rn 6 1 0 i s significantly more accurate.
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IE-                                      m=1
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Fig. 4.  Greatest-lower-bound Data for Cantilever-beam Example Based

on a Class of Consistent Velocity Fields: Variation of R-m,n witli
Creep Exponent n for a Bealll of Arbitrary Crocs Section

Again, the "flatness" of the curves inthe vicinity of m = n  suggests
that sharp lower bounds can be obtai·ned for velocity fields that are "near" the
actual velocity field.
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C. Pressurized Cylindrical Tube

Consider a long cylindrical tube as shown in Fig. 5, subjected to con-
stant internal and external pressure, pi and po, at the inner and outer lateral

surfaces r=r i and r=r respectively, with the plane ends constrained by0'

smooth rigid plates. Denoting the displacement components relative to the

(r,0,z) cylindrical coordinate system by (u,v,w), symmetry and the assump-
tion of a state of generalized plane strain lead to

u = u(r)

and

v  =   w  =   0 -                  
                                   

                                   
                                   

(65)

The nonzero components of strain are given by
.

   = flurr   dr
>                                                                                 (66)

and

£ee = u/r.

and equilibrium requires

darr + arr - aee = O (67)
dr        r

together with the boundary conditions

7

C r r    =     -P i,             r    =    r i,

and                           >                                          (68)

orr = - '  r - ro· ,

£

--

Fig. 5

Pressurized Long. Circular Cylinder

r0

r'   P,

Po
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In addition, the tube is assumed to be incompressible, so.that

du-    r   u I  r     = n (69)
dr          v

The  solution for an elastic material is given below for reference:

.'

orr = -  + B,
' A

aee = 7+B,
>                                              (70)

c  =A
ZZ

and

u = C/r,
*

where

1
2     2

riro

A =  (Po -Pi) rb - rl '
2

ro        ,                                   (71)
B =  -Pi + (Po -Pi) rz - rz '

1 0

3A
c =  TIE'

j

and   E i s Young 's modulus.

The solution for steady-state creep based on the stress-strain-rate
relations of Eq. 2 can be written as

1

a               =      A r-2/n   +    B,rr

cee =  A l - ·  r-2/n + B,
(72)

'zz = A(l - 1) r-2/n + B,

and

fl =  C Ir,                            /

where 11 denotes the radial velocity and
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1

Po-Pi

A -  r- 2/n - r62/n '

(P  - Pi) ri-2/n
B=

-Pi -  ri-2/n - riz/n '                                           (73)
and

/ rintl                     n
6 0 \43) Pi - Po   \C=

(Con)-n ri   - ro ,
*

2 -2/n -Un 1

We assume that an upper bound on the velocity of the inner .surface,

r = ri' is required; therefore, inequality 15 is applied to the case for which

tractions tf are given by

t:   =         n      t.  +  p* ,    r   =   r i,
1       n+1 1

and                                >                                   (74)

n
ti'   - n+iti, r = ro,

'

where p* represents an arbitrary additive pressure.  On the plane ends of

i the cylinder, tf is allowed to assume any value in order to satisfy equilibrium.
Accordingly, inequality 15 becomes

(2TT ril) P* iiI (ce) dVi·g €O r  S ntl.
(75)

r= ri        081(n +  1)      

where the effective stress for this problem is given by

s_     vT/_ s._s ) (76)ue - 2(uee Wrr/'
Using Eq. 76 together with the equilibrium Eq. 67, inequality 75 may be re-
written as

ntt

fi|r=ri 5
to

\   dr /
r i(n  +   1)    con

 3 +1 -i, fl  t. 1:14. r dr.             (77)

...
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Since equilibrium is satisfied, the only restriction on as  is that it satisfy
rr

the boundary conditions

1
n

a;r    =    -ntl   Pi-   P*,           r.=    ri,

and                                      >                            (78)

S n
arr  -  - IF--1 Po' r = ro

.

Using the elastic radial stress distribution appropriate to Eqs. 78,
given by Eqs. 70 with

. 44 r rz

A =-   (Po -Pi)   2      2  -P    2 2' (79)n+1
ri_ ro ri- ro

and minimizing the right-hand side of inequality 77, the least upper bound
based on elastic stresses is obtained as

ntl,        n       2 2

111       5 -L (43-      (Pi -Po 
riro        +

n En' (80)
r=ri        ri L \ con

(r 2/n  -   re/n)0    1)
-                                -

where

2n ,2/n n1 - (ri/ro) 1 - (ri/ro)
E n    -    nn

-1
(81)

1 - (ri/ro)2 1 - (ri/ro)2
-      --

is, by  comparison of inequality 80 with Eqs.  72  and 73, the ratio of the least
upper bound based on elastic stresses to the actual value of the radial velocity
at r =  ri·  For thin cylindrical shells of thickness t, Eq. 81 can be approxi-
mated by                                                                                      4

E+ =1+ (n-1)2(n+1)(t/rip + 0(t/ri)3, (82)6n

which indicates that, for a given value of the creep exponent n, the least
upper bound rapidly approaches the actual velocity as ri/ro - 1

The class of radial stress distributions

as  = A  r-2/In + Brr rn rn (83)

that contains the. elastic state for m =  1, the actual stress state for m = n,. and
the plastic stress state in the limit as m - co, is considered. The constants Am
and Bm are determined from the boundary conditions of Eqs. 78.
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Using Eq. 83 in inequality 77, the ratio of the least upper bound for
a bpecific value of m to the actual velocity at the inner surface, r = ri, is
given by

ntt                                          n
/ -2/m-2/m 1 , Crz/n - rf/n)

R+·   = (-1"In(m-n- 1)-11 .i  *o
m,n\m/ 1 2/rri 2/I 1,      1'2/rn)(m-n-l)-ri2/m)(m-n-1)  c 0 2 2 1' '    (84)jro

_

ri

riro

and it may be shown that

Rn,n   =     1,

R+  = E+
1,n n,

and

-                 n

- [1 - Cri/,„)21     -f[1 - C.,/r„)21"]++Pn - lim R   =                                    (85)
in -+co rn,n    (ri/ro)2 tn (ri/ro) tn (ri/ro)

As before, P;t represents the ratio of the least upper bound based on the
plastic stress state to the actual value of the velocity.

The variation of E  with creep exponent n for a cylinder with ri/ro =
0.5 is shown in Fig. 6, and the variation of E  as a function of ri/ro is shown
in Fig. 7, for various values of n. These data indicate that the accuracy of

21                     1                    1
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19     1    1
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17 n=717 --
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W+C                                              9

W
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7
7- n=3
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5-

3
3-

1 0.0 0.2 0.4 0.6 0.8 1.0

12345678910
ri / ron

Fig.  6.    Least-upper-bound    Data for Pressurized Fig. 7. Least-upper-bound Data for Pressurized

Circular Tube Based on Elastic Stress Circular Tube Based on Elastic Stress

Distribution: Variation of E+n with Creep Dis tribution: Variation of EA with ri/ro
Exponent n for a Tube with ri/ro = 0.5 for Several Values of Creep Exponent n
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the upper bound deteriorates rapidly for large values of n.  For n = 8, and
for ri/ro = 1/2, the upper bound based on elastic stresses is approximately
an order of magnitude greater than the actual velocity. Errors of this mag-
nitude may be too severe for design purposes, and improvements are required.

The curves in Fig. 7 and Eq. 82 indicate that accurate bounds are ob-
tained for relatively thin structures (ri/ro >  0.7),  even for large values of

the creep exponent n.
1.20                    l                         I

Figure 8 compares the least

upper bounds based on the elastic and
1.16 plastic stress states for a cylinder with

ri/ro =  1/2. For values of the creep

1.12
pn. exponent n in the raiige of interest,

bounds based on the plastic stress state

+&                                              are far superior to those based on the
/ elastic stress state.  For a material

1.08 with creep exponent n = 8, the least

upper bound based on the plastic stress
E+n                                 state is about 10% larger than the actual

1.04 value of the velocity and represents a
useful bound from a design point of view.

1.00 l i l l i Unfortunately, at present, the cost in-
1234 5 6 78910 volved in generating the plastic state of

n stress for a given structure at collapse
is significantly greater than the cost for

Fig.  8.    Least-upper-bound    Data for Pressurized developing an elastic solution.
Circular Tube Based  on a Class of Equili-
brated Stress Distributions: Variation of

Application  of the lower -bound
RAl.n with Creep Exponent n for a Tube
with ri/ro = 0.5 theorem, in the form of inequality 20,

to this problem leads to a determina-
tion of an exact lower bound on the radial velocity at the inner surface r =  ri.
Any assumed velocity field d  must be consistent with the incompressibility
condition of Eq. 69 and therefore must be of the form

4 = CIr, ---
(86)

which is the actual velocity field for the appropriate value of the constant C.

The pressurized tube and the other remaining problems considered in
Sec. III are essentially kinematically determinant. Constraint equations on
the velocity field, such as incompressibility, dictate the required functional
form for the velocity; therefore, the use of arbitrary velocity fields in the
lower-bound theorem is severely restricted. Although these problems do not
provide good examples with respect to application of the lower-bound theorem,
the velocity-constraint equations, in many cases, afford exact solutions for
materials governed by the nonlinear stress-strain-rate Eqs. 2.
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D. Three-bar Truss

Consider a simple truss consisting of three bars of similar material

and cross-sectional area A subjected to a vertical load W at point 0,· as shown
in Fig. 9.  If the vertical displacement at

S»,

point 0 is denoted by u, the axial strains in
bar s   1   and   2   ar e given  by

61 = U/11

and                                  (87)

€2 = (U/11) cosz 01

and equilibrium requires that the correspond-
P W ing axial stresses al and az satisfy

Fig. 9. Three-bar Truss al + 262' cos 01  = W/A. (88)
·1·,!

The solution for an elastic material is given by
1

u = 3 11(1 + 2 cos3 at)-1,EA

al - (W/A)(1 + 2 cos3 01)-1,          >                               (89)
and

02 = (W/A) cosz 0/(1 + 2 cos3 cY)-1,
I                                                                        .

and the solution for steady- state creep defined by the stress-strain-rate

Eq.   1 i s given  by

  = fols,(AWQ, '(1 + 2 cosit<*/n) el)-n,

/W\/ 1+(2/n)  '1
-n

01 = |-|\1+2 cos Ul
\ A/                                             >                                 (90)

and

/W\ 1+(2/n) 0rn.
02   =      X     cosz/11  0/ 1 +  2  cos .

Assume that an upper bound on the velocity ,11 is required.  From

inequality·  1 5, we obtain
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11 5  to,All  P-1 -(cs,n+1    2  , s,Il+1 
(n +  1) con L

1,   cos Oll'2)   1,               
         ·(91)

where a  and cf are any stresses satisfying the equilibrium equation

cist 20:  cos  GY  =   1-<;Hh- W + P . (92)

Consider the class of stress states defined by

7-1

a  -  A-' n  l W + F  [l + 2 cos"C,/rn) «]   ,
and

azs A
-'Gh W. P)[1 + 2 cosi+(z/rn) 0 -1 cosz/rn 0,               (93)

which contains the elastic and plastic stress states for rn =  1  and m - 00,

respectively. Using Eq. 93 in inequality 91, the ratio of the least upper bound
to the actual velocity is given by

n
(2/m)(ntl)-1 1+02/n)  +       1+2 cos 0 1+2 cos

R     =                                                           (94)
rn,n 1  +  2 cos it (2/rn).0   1 + 2 cosl+(2/m) 0

-                 -

For reference, from Eq. 94, we obtain

-                 n

E  .  1+2 cos 0 1+2 cos
(95)

2n+1 1+(2/n) 0

1 + 2 cos301 1 + 2 cos3 0

and

2                              n1+
1+(2/n) Q+                    cos w 1  +  2 cos

(96)P =
n    1+2 cos ot 1  +  2  cos  a,

Figures 10 and 11 show the variation of the upper bound based on the
elastic stress state as a function of the creep exponent n and geometry, de-
fined by the truss half-angle a. These data indicate that, in general, the
accuracy of the upper bound may be severely dependent on the structure
geometry.  For a reasonable value of the creep exponent (n =  7), the upper
bound onthe velocity atpoint Ois 1.5 times the actual velocity for atruss
with w = 300; for w = 600, the upper bound is about 11 times the actual ve-
locity. Similar results are observed for other values of the creep exponent n.
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Figure 12 compares least upper bounds based on the elastic (m = 1)
and plastic (m - co) stress states for a truss with half-angle 01 =  30:  The
upper bound based on the plastic stress state is extremely accurate, with an
error less than or equal to 2% over the entire range of n, and is far superior
to the upper bound determined by the elastic stress state for values of n 2 2.

Figure 13 compares least upper bounds based on the elastic .and plastic
stress states  as a function  of the truss half- angle   ot   for a material with creep

exponent n = 7. Except for values of ot given approximately by 800 6 0 < 90',
the bound based on the plastic stress state is preferable. The upper-bound
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curve based  on the plastic stress state   for    n= l i s included  to   show  that,
except for a in the range 80' 5  01 < 90 , the bounds based on the plastic state
are relatively insensitive to the angle 0/.

1.20                                              1

1.16 Et

1.12
Fig.  1 2
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  Example Based on a Class of Equilibrated Stress

1.08 Distributions: Variation of R+m. n with Creep Ex-
ponent n for Tniss Half-angle a = 30'
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E.  Torsion of a Cylindrical Tube

Consider a circular cylinder of internal and external radii ri and ro,
respectively, fixed at one end and subjected to a twisting moment M, as shown

in  Fig.  14. The components of displacement relative to the rectangular  co -

ordinate system (]Cl,X2, ]C3 ) ' with the x3 axis taken along the axis of the cylinder,

are given by

Ul      =       - (ZXZX3,

UZ    =     01]Cl X3,
(97)

and

U3=0,    -

where ot is the angle of twist per unit length. The nonzero components of
strain are given by

-

623  =  '  01Xl
(98)and

1

631     =     I 01XZ
.

and equilibrium of the cylinder is satisfied in the overall sense, provided the
shearing stresses  032· and C31 are such that

M=    (Xl 032  - X2 031) dA. (99)

A

For an elastic material,

023        =         BOYX1

-  (100)and              b
031       =        -1101xz j

x2      and Eq. 99 is satisfied

7                                                                                                           M
\                                        of = -, (101)

FJO
li                        r,

i Iii i                                      '  -    x 3   where 11 is the elastic shear
4/ 1

./
r 

modulus and

-,                                   .e                                                   =                                                                                                 J o     =  -(r40 -rt).        (102)
I

XI

Using Eqs. 100 and 101, the result-

Fig. 14. Circular Tube under Twist ant shear stress
,.
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1 /2
T =  0 2 + Ci1) (103)

at any point

r = (xf txi 1/2

i s  given  by

r = Mr/Jo. (104)

Denoting the rate of twist per unit length of the cylinder by 6, the solu-
tion for steady-state creep defined by the stres·s-strain-rate relations of Eq. 2
can be expressed as

1/n
(3 + 1/n) .Mr=                 „                                  (105)'

277 r30+(1/n) - ri+(1/n)]

and

AoMn(43)n-1-1  (3 + 1/n)n
(106)

=  (2'r,co)n (rl+(1/n)- r,+(1/n   

Assume that an upper bound on the rate of twist is required. Applying
inequality 15, we choose

tr = 0 f r = ril,l r  =  roj
and

ts = -n   t. + t    x3 = 1,1       n+1   1

where tt is some arbifrary additive shear stress. The left-hand side of
inequality  15  can then be evaluated as

  (t  - n -1 ti) di dA = 6,1M*,                                         (107)

where M* represents the added twisting moment.

The effective stress is related to the resultant shear stress by
4

4 = 372'  .                                    (108)
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and it follows that

(ntl)/2 rrO
lf, c:.69. dV = 2TTLdo .

3

 ri  (Ts)nti
r dr (109)

4 4 4        W

where Ts is any equilibrated shear stress due to a twisting moment

In/(n +1)] M + M*. Using Eqs.  107 and 108 in inequality 15, we obtain

2·[Tdo · 3(0+1)F        rrdc (M* ) -1            Q   (T s )11+1 r dr. (110)

 (n+1)
c 

J ri

It may be shown that the ratio of the least upper bound based on the
elastic-shear-stress distribution

·rs = {[n/(nt 1)]M+M*}r/Jo,
to the actual rate of twist, is given by

Et  _      41     (.   4n    rl   1  -  (ri/ro)       1   l1  - (ri/ro) -1.(-1 /rl  11
/         , n+31     F

(111)n - n+3(3n+1/ 47 n +1

Il - (ri/ro) 1

For extremely thin tubes of thickness t, Eq. 111 may be approximated by

1 /        1\
E  = 1 +   2n»-5n + 4 - /1(t/ri)2 to(t/ri)3. (112)

Finally, a class of shear stress distributions is considered that con-
tains the elastic and plastic stress distributions as limiting states. The ratio

of the least upper bound to the actual rate of twist is determined as

/ 1\
/1 3+(l,n)ln

,ntl /

R+     = F+Id)     (2n  In+1), Il -(ri/ro)Grn+n+,)/m] [1 -(9/ro)
In,n     1ln

13 +-1 fl - (ri/ro)3+(1/In) n+1\   n/
(113)

In particular, for the plastic stress state,

3+(1/n) n
+ --1/ 3n \n -1 - (ri/ro)2 .1 - (ri/ro) (114)

Pn  -  2 \3n + lj|     1 -(r./r )3 1 - (ri/ro)3 .1.  0
-           -

The  ratio  of the upper bound based on the elastic stres s distribution to
the actual rate of twist is shown in Fig. 15 as a function of the creep exponent n
for ri/ro = 0.5, and in Fig. 16 as a function of ri/ro, for several values of the
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creep exponent. The bounds are extremely accurate for thin tubes and deteri -
orate with increasing values  of n. Moreover, the overall accuracy  of  the  uppe r
bound based on the elastic stress state is quite reasonable, in comparison
with results for other examples considered in Sec. III.

2.2

3,0  1     1 1

2.0 n=7

2.6

1.8

2.2

+C U  1.6 n.5
W

1.8

1.4

1.4 n=3
1.2

1.0 1.0

1234 5 6 7 8 9 10  0 0·2 0.4 0.6 0.8 1.0

n                                                                            ri/To

Fig. 15. Least-upper-bound Data for Torsion of a Fig. 16. Least-upper-bound   Data for Torsion of a
Circular Tube Based on Elastic Stress Circular Tube Based on Elastic Stress
Distribution: Variation of EA with Creep Distribution: Variation of EA with ri/ro
Exponent n for a Tube with ri/ro = 0.5 for Several Valuct of Creep Exponenr n

Figure 17 compares upper bounds based on the elastic and plastic stress
states, which indicate, as in previous examples, the extreme accuracy of the

1.20

I.16 En 

1.12
Fig. 17

.

+<E                                                                                                 Least-upper-bound Data for Torsion of a Circular Tube
1.08 Based on a Class of Equilibrated Stress Distributions:

Variation of R , n with Creep Exponent n for ri/ro = 0.5

.0. T.
1.00

12345678910
n
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bounds based onplastic stresses.  Over the range 3 5 n 6 9, theupper bound

based on the plastic stress state is about 2% larger than the actual rate of

twi st.

F. Pressurized Spherical Shell

Consider a spherical shell of arbitrary thickness t, subjected to inter -

nal pressure Pi and external pressure po, as shown in Fig. 18. Displacement

components relative to a spherical coordinate system (r, 0, cp) are denoted by

(u,v,w) and, from symmetry,

u = u(r)
(115)and

V=W=0.

Po

Fig. 18

- r /(*r r<A Pressurized  S pheric al  Shell

r.< di r.4
ro

The nonzero strain components are given by

du      1
arr = dr

>                                                                      (116)
and

£0 0  =  €     =  u/ropm     -

and equilibrium is satisfied, provided the nonzero stress components c andrr

cee = c are related by99

dc
2(orr  -  aee)   = 0 (117)rr-+

dr        r

in addition to the boundary conditions

I

Crr = -pi,  r = ri
(118)

and >.

orr = -Po'   r = ro,
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The material is assumed to be incompressible; therefore, from
Eqs. 116, the radial displacement u must satisfy

du   u                                                                 -
--- + 2-- = 0. (119)
dr    r

The solution for an elastic material is given by

3 (Pi- po)        r  rl
U =

4Erz         r3    -  rA0 1

arr = A +- ,             >                                     (120)
and

B
ces = A --,

2 ri                                    -

whe r e

rl (pi -po)    --
A - -Pi +

rl-ri
4                                                             (121)

-rirl(pi -po)
B=

"30 - 4         -

and the solution for steady-state creep, as defined by the stress-strain-rate

Eqs. 2, can he written as

B
orr  =  A+   3/n'r

3\ B
000 =  c     = A+ (1. - -1-CDCD C     Zn/ r3/n'

>                                             (122)
and

60    1-3 (pi   -  po 1 n               rirl

U = zrz L zn co -1 (·rl/n - r3/11) 'i    ' .

where d denote s the radial velocity,
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r30/n(Pi - Po)
A = -Pi +

rlin   -   r i
3/n

-                           and                                                                                           >                                                                                                     (1 2 3)

r  tnrl/n
B  =  -(Pi- P- 

u     rl/n   -   ri/n .

Assume that an upper bound on the radial velocity at the inner surface

r = ri is required. Following the procedure used for the pressurized cylin-
drical tube, Llie1 ratio of the least upper bound based on elastic stresses to the
actual radial velocity at r = ri is determined as

- -n

+    n-1 1 - (ri/ro)3n 1 - (ri/ro)3IlE = n                                         (124)n 1 - (ri/ro)3  1 - (ri/ro)3
.-           -

which for thin shells has the expansion

E  .=. 1 + 3(n-1)2 (n +1) (t/ri)2 +0(t/Fi)3. (125)
8n

For the class of equilibrated radial stress distributions

c r = Am + Bmr-3 rn,                                                 (126)
with the constants Am and Bm determined from Eqs. 118, we obtain

(3/rn)(m-n-1) (3/m)(m-n-1)

RA' , „     =„'   -   t-    1  ( 2)"(,1/n  -  r:/n) n    r o                                           -  rir3 r31 0

n +1

/ ritrnrl/rn   (127)

(r30/rn - r},rn ·/1     /

For the plastic stress state, we obtain, from Eq. 127,

P+   =    Lirn   R +
n             rn-#.On          rn, n =  -i  Il 3 nri 'I    -'Illn- (  /rroo 3/nl)..               (128)

*                       Figure 19 shows the dependence of E+ on the· creep exponent n for a
sphere with ri/ro = 0.5. Again, the accuracy of the upper bound diminishes
rapidly for lar-ge values of n. Figure 20 gives the variation of E+ with ri/ro
for several values of n, and it appears that reasonably accurate upper bounds

based on elastic stresses are obtained only for thin shells.



40

21                                                             21                                  1

19
19 -

n=5

I 7 17

15
l 5

13 n=7
13

+ c 11 +47 11 -
W

99-
n.3

7-
7-

5-5-

3-
3

1
I 0 0.2 0.4 0.6 0.8 1.0

1234567 8    9    10

n                                                                                                           4/4

Fig. 19. Least-upper-bound Data for Pressurized Fig. 20. Least-upper-bound Data for Pressurized

Spherical Shell Based on Elastic Stress Spherical Shell Based on Elastic Stress

Distribution: Variation of EA with Creep Distribution: Variation of E+n with ri/ro
Exponent n for a Shell with ri/ro = 0.5 for Several Values of Creep Exponent n

Figure 21 compares bounds based on the elastic and plastic stress

states for a sphere with ri/ro = 0.5, and it is evident, as with the previous
examples, that the plastic stress state leads to upper bounds that are ex-

tremely accurate compared with those based  on the elastic stress state.
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-                         IV.· APPLICATION OF BOUNDING THEOREMS
TO COMPLEX STRUCTURES

Application of the upper- and lower-bound displacement-rate theorems
to complex structures requires the determination of an appropriate equili-
brated stress distribution a f·  and a consistent velocity field OF. Since the

1J,

objective is to obtain close upper and lower bounds and thereby provide an
accurate estimate of the true displacement rate, it is necessary to develop
general methods for constructing the fields a  and <lF to yield bounds of
specified quality. Unfortunately, these general methods have yet tobe developed.

Due to the enormous capability of the finite-element method as applied
to elastostatic analysis, a logical starting point is the use of the elastic solution
state for the required quantities aisj and fiic.  The vast majority of engineering
problems in the domain of elastic structural analysis can be solved accurately
and ecohomically through the use of finite-element techniques. Without going
into unnecessary details at this point, it should be clear that results for the
elastic stress and displacement fields obtained through use of the finite-
element method mustbe regarded as approximate and may not always exactly
satisfy the stated requirements for as· and GF.  This does notappearto be a serious

1J

disadvantage and simply means that we must be satisfied with approximate
determinations of upper and lower bounds. The usefulness of this approach
can be established only throughapplications and suitable computer expe riments.

The basic procedure will be demonstrated for the upper-bound theorem,
as represented by the inequality 17. The original structure of volume V is
subdivided into N regions or elements of volume Vj, and inequality 17 is re-
placed with

61 S   60  p-, I f (a:)"+1 dV .                                                (129)
col(n +1)

j=1 Vj

J

A value of the added load P is selected and a finite-element solution is gen-
erated for the appropriately modified boundary conditions, as discussed in
Sec. II. The approximate value of the effective elastic stress so obtained is
denoted by 8 e. Substituting ae for ag in inequality 129, an approximate deter-
mination of an upper bound for 6* i·s established for the given choice of the
the added load P. The process is then repeated for several other values of P
in. order to determine a "best" upper bound. Three or four calculations with
different values of the added load P should be sufficient to obtain a reasonable
estimate of the minimum upper bound.

The above method has been successfully applied to the cantilever-
beam and pressurized-cylindrical-tube examples discussed in Sec. III.
Results for the pressurized-tube problem are summarized below. A thick
cylindrical tube subjected to internal pressure was modeled with 12 constant-
strain quadrilateral ring elements as shown in Fig. 22.
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Pi = 365 psi
CREEP  LAW = €e = 6.4 x 1618 C.e4.4

CYLINDER AXIS .

Vt/ t*  LH W W W 42,9 9, 4  441 44
.-.

'E    1       1/14  ,¥7  TY,  291  r¥4  ,¥1  NT  ,¥7  1¥7  th  ty,  ryl , r*

ri = 016"  --

ro= 0.25"

Fig. 22. .Finite-element Idealization of a Thick-walled Cylinder

The finite-element program AXICRPw was used to generate the elastic

solution for the optimum value of the added pressure p* = Pi/(n+1). Anupper

bound on the velocity at the inner surface, u(ri), was computed using inequal-
ity 129.  For this problem, inequality 129 can be expressed as

12            r%    r%

1£(ri)ricon g -1 2 ee) +1  1 - 3-1 (1.30)
2     '

Pi j=i

where (Ge)j is the effective elastic stress in element j; rj-1 and. rj denote,
respectively, the inner and outer radii of element j; and for convenience we

have taken  to   =1. The right-hand  side of inequality  1 3 0 was evaluated  for
several values of the creep exponent; the results are summarized in Table I.

TABLE I. Comparison of Analytical
and Finite-element Upper Bounds

61(ri) ricon
EA

Upper Bound Using.
n Exact AXICRP Analytical AXICRP

1 23.74 24.25 1.00 1.02

3    121.7 x 105 147.7 x 105 1.18 1.21

4.4   119.5 x 109 185.4 x 109 1.50 1.55

The "exact" result is determined from Eqs. 72 and 73, and the upper bound

using AXICRP is determined f rom inequality  130. The analytical evaluation

of inequality 17 based on the elastic stress state, and the zippe r bound 'based

on AXICRP, are then used to compute the comparable values of Eit, which is
the ratio of the upper bound to the exact solution of the problem. The small
differences in the E A results Setween exact and finite-element etaluation of

the bound indicate that the use of the finite-element method does not lead to

any appreciable deterioration of the bound.
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Using the complete AXICRP solution for the pressurized circular
cylinder shown in Fig. 22, an upper bound on the radial velocity at the inner
surface of the cylinder was calculated using the computed stress distribution
at various times during the stress-redistribution process from the initial

elastic to final stationary state. The ratio
1.6       lili           of the upper bound based on the stress

state at time t to the actual velocity in
the stationary state for times t & tss,1.5

where tsS denotes the time required to
achieve a stationary state, is denoted by

1.4                                                               - R+ and is shown in Fig.  23 as a function
of the dimensionless time •r = t/tss.

t:   1.3

These results illustrate the rapid
improvement in accuracy of the upper

1.2 -
bound, based initially on the elastic state,
during the early stages of the stress-

1, redistribution process.  For the class
of equilibrated stress states generated
from elastic to steady-state creep behav-

1.0                                     
           1

0 0.2 0.4 0.6 0.8 1.0 ior, small deviations from the elastic
T                                                                                                                                       ASstress distribution aij, such that the inte-

gral J (6g)n+1 dV is reduced in value,
Fig. 23. Figure-of-merit Measuring Approach to                         V

Steady-state Upper Bound as a Function lead to large increases in the accuracy ...

of Dimensionless Time to Steady State of the upper bound determined by inequal-         a
ity 17. Although this result is strictly

applicable to the sequence of stress distributions obtained with the AXICRP

code, it provides an incentive for the development of numerical procedures to
obtain equilibrated stress states that reprebent small variations from the
elastic state but lead through inequality  17 to the determination of extremely
accurate upper bounds.  The fact that relatively small adjustments in the
stress distribution provide large improvements in the bound leads one to be-
lieve that any automated search procedure for bound minimization would be

numerically stable and that "convergence" in a practical sense would be very
rapid.
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V. CONCLUSIONS

This report describes an initial effort in the area of bounding and
approximation methods for inelastic analysis. The evaluation of surface-
velocity bounding theorems for steady-slate creep dcformation has heen con-
sidered, and the accuracy of these bounding theorems based on elastic- and

plastic-solution states for several simple structures has been established.

For the several examples considered, upper bounds based on the
plastic stress state were remarkably accurate. However, the determination
of the plastic stress state at collapse is a formidable problem; for even
relatively simple structures, only a few solutions have been obtained at
present.  On the other hand, deformation-rate bounds based on the elastic
stress state can be easily obtained for most structures through the use of
standard finite-element techniques. These bounds were rather inaccurate for
certain structures and for relatively large values of the creep exponent

(n > 10). For materials having creep exponents on the order of n =  4 o r
n = 5, the results provided reasonable bounds for most values of the geo-
nnetric pararneters.

The potential value of the bounding theorems as a general-purpose
design tool depends 6n the development of automated procedures for applica-
tion to arbitrary structures. Further, it is necessary that these procedures
give accurate bounds for relative small expenditures of computing effort.
The example presented in Sec. IV indicates that such a method, based on the
finite-element method, can be developed. It seems desirable to first develop
these procedures for basic structural elements such as beams, plates. and
shells. The result would be a readily usable tool for accurately estimatitig
surface velocities for these basic structures in a state of steady creep.  This
should be possible for a fraction of the cost of generating the complete
steady-state creep solution, since only a few elastic finite-element computa-
tions should be needed. ,''

f

Finally, the numerical procedures developed for calculating velocity
bounds for steady-state creep behavior can be used to determine appropriate
equilibrated stress and consistent velocity fields for bounding theorems
applicable to other forms of inelastic material response.

:
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