

DOE/ER/40264-5

FINAL FINAL REPORT Grant number DE FGO2 86ER40264/5-25351

April 16, 1997

- Introduction
- Review of Research Accomplishments
- Graduate Students
- Post-doctoral Fellows
- Publications
- C. V.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Introduction

Since what follows is the final final report that the author will ever submit to DOE, it seems appropriate to him that it should be a long-term review, since he has received support from DOE and its predecessor agencies since 1957. The report also contains some material from the earliest years of his career. The next three sections contain an account of what the author thinks he has accomplished in terms of research, of graduate students trained, and post-doctoral fellows trained. There follows a bibliography, consistently referred to in the previous sections and a C V. for completeness.

Review of research accomplishments

This section contains a brief summary of the major research accomplishments of the writer during the period since his Ph. D. (1950). Collaborators, who have often played an essential role, are listed in the bibliography.

1. *Quantum electrodynamics.* Classic papers on the hyperfine structure and Lamb shift in Hydrogen as well as the first treatment of positronium by means of the Bethe-Salpeter equation, items 2-6 of the bibliography. Later directed a thesis by Zemach on nuclear size corrections for the hyperfine structure problem, item 19.
2. *Nuclear forces.* Items 7-14, 32, 33, 37, 48, 132, 137. Much of the detailed calculation was premature in the light of present knowledge, but contributions of permanent value include the general procedure for transforming the Bethe-Salpeter (BS) equation to a single-time equation, items 8, 13, and 132, and ideas about the relation between nuclear forces and pion-nucleon scattering, items 14 and 33.
3. *Meson pair theory.* A classic paper on the treatment of an exactly soluble model in field theory, item 16, which among other firsts contains the first application to field theory problems of the theory of singular integral equations, later applied to the theory of dispersion relations by Omnes and carrying his name.
4. *Low energy theorems.* Item 17. One of the first papers to apply methods of functional differentiation with respect to external sources to the

study of S-matrix elements in field theory.

5. *Covariant theory of scattering, including bound states.* Items 20, 21, and 26.
6. *Application of Green's function methods to the many-body problem.* Pioneering work on normal fermi liquids, items 34, 35, 44, 49, 50, 60, 61; contributions to the theory of superfluid systems, items 55, 56, 57, and 59; other papers, 40 and 54.
7. *Potential scattering.* Item 36, first proof of the convergence of the Born scattering series in three dimensions; a proof of the dispersion relation for potential scattering, item 38, and a proof of the Mandelstam representation for potential scattering, item 42; related papers, items 45, 46.
8. *Broken symmetry in field theory.* Items 63, 64, 69, and 70. The last item, in particular, augers the discovery of the Higgs mechanism. Indeed, in an invited paper, delivered in the fall of 1963 at a Chicago meeting of APS, A. Klein, Bull. Am. Phys. Soc. **8**, 536 (1963), a formal theory of the Higgs mechanism was outlined.
9. *Phonons in liquid Helium.* A fundamental paper, item 71, and the last paper I wrote on the application of Green's function methods to the many body problem.
10. *Kerman-Klein method.* items 58, 62, 65, 66, 68, 72-80, 82-89, plus many later papers, but most particularly 93 and 182, which are reviews, and 107, which was our last effort, until recently to apply the original form of the method in a numerical application. As it developed this method has numerous aspects. It was originally invented as an equation of motion method for restoring the broken symmetry of the mean field field solutions encountered in nuclear physics. Subsequently it was recognized as a general method of applying Heisenberg's matrix mechanics to a wide class of quantum-mechanical and field-theoretical problems. It also implied a new method of treating collective coordinates with a phenomenological aspect, that could be studied on its own terms. Methods for expanding about well-determined mean field solutions were established, but the numerical treatment of transitional

situations is still in its infancy. Recent promising applications of this method are discussed near the end of this chapter.

11. *Equations of motion and Lie algebras.* This approach is an alternative method to implement the ideas of the KK method, that for many applications may be more practical than the original formulation. Thus, the original method combines the equations of motion with the fermion anticommutation algebra. Matrix elements of single fermion operators couple even and odd systems, which must both be treated selfconsistently. By replacing the anticommutation rules by a Lie algebra of pair and multipole operators, the study of even and odd systems could be divorced, thus simplifying the theory and the applications. Several methods of exploiting the constraints imposed by the Pauli principle were developed; exactly soluble models were studied to test methods of calculation; new variational principles were successfully tested; finally some applications to realistic nuclear systems were carried out. Despite this effort, the subject remains in its infancy. Items 92, 95-97, 100, 108, 111, 112, 114, 116-120, 124, 128, 130, 134, 144, 145, 148, 153-156, 158, 159, 164.
12. *Boson mappings of shell model algebras, early work.* The Holstein-Primakoff mapping of $SU(2)$ was reinvented and introduced into nuclear physics. One of the first connections in the literature between the TDHF method and boson mappings was made. The failure of convergence of the original Marumori mapping was explained, and a method of curing this disease was developed. The 'transition operator boson' was invented. Items 90, 91, 98, 101, 106, 110, 111, 115, 169.
13. *VMI phenomenology.* Early papers extended the variable moment of inertia method to multiband situations and explained how such a phenomenology could emerge from a microscopic theory. Later work produced a series of generalizations applicable to non-rotational nuclei, including the VMI as a special case, and a successful systematic analysis of all existing data was carried out. Items 102, 104, 105, 163, 186, 187.
14. *Stability of the vacuum in the presence of strong Coulomb fields.* We gave an explanation for the 'diving into the vacuum', i.e., the predicted

phenomenon of spontaneous production of positrons in the neighborhood of supercritically charged atomic nuclei, as a property of the Dirac equation, studied the corresponding theory for the Klein-Gordon equation and co-authored a review of the entire subject. Items 122, 125, 129, 133, 135, 139, 150, 161.

15. *Quantum theory of solitons.* The Kerman-Klein method was applied to the study of a number of field theories in one spatial dimension, each giving rise in the mean field approximation to soliton solutions. It was successfully shown how to restore the broken symmetry and how to make a systematic expansion about the soliton limit in order to include quantum corrections. This work also stimulated work on the quantal significance of solutions of the TDHF equations for heavy ion scattering, Items 138, 140, 141, 142, 149, and 152.
16. *WKB approximation.* Derivation of the standard WKB from Heisenberg matrix mechanics, items 147, 157, and the use of boson mappings for semi-classical quantization of systems described by Hamiltonians belonging to the enveloping algebra of a Lie algebra, item 170. Recent work that returned to item 157, whose fundamental significance was not quite realized at the time of writing, will be discussed below.
17. *Interacting boson model.* A complete method was described for establishing the relation between the IBM and the Bohr-Mottelson theory. A new variational principle for boson Hamiltonians was developed to serve as a basis for the microscopic derivation of the IBM. This work stimulated the new efforts in boson mappings described below. Items 167, 168, 175, 177.
18. *Invariance principle of the Schrodinger equation.* This work, which is still "crying" for further development, outlines a complete theory of collective motion, based on an idea that can be characterized as a quantum generalization of the concept of coherent state. Items 174, 185 (see also 111).
19. *Kerman-Klein revisited.* Item 191. A revised theoretical formulation with some new results and insights. Also awaits further development.

20. *New ideas in TDHF.* Items 207, 208, 214. The main thrust here is the suggestion of a method for using the existing TDHF software to obtain quantum information from the study of heavy ion collisions. We are also seeking a connection with the ideas of Balian and Veneroni for extracting two-particle correlations from TDHF calculations.
21. *Bosons, more recent work.* Stimulated by the work on IBM, we have developed two new methods for boson mapping. One involves a modification of the standard perturbative study of the commutation relations, and the second a systematic use of the easily obtained Dyson mapping followed by a unitarization procedure. The latter method was developed independently (and generalized) by a number of other authors (Rowe *et al*, Deenen and Quesne, Moshinsky *et al*) and in the hands of the first set of authors, especially, under the rubric 'Vector Coherent State Theory', has led to important new results in group representation theory. We have authored, in collaboration with E. Marshalek, item 238, a massive review article on boson mapping of Lie algebras with applications to nuclear physics. In part as an outgrowth of the review we have been able to make a futher contribution to the development of the Vector Coherent-State method, items 218, 226, 230, and especially 235.
22. *Large amplitude collective motion.* This is the project on which the writer has been most heavily engaged for the past decade and a half. We have described two different quantum foundations for a classical theory of large amplitude collective motion in the adiabatic limit, items 183, 184, 188. The remaining work has involved a systematic study of the classical theory that not only subsumes almost all previous work, but also contains a completely new pathway to applications. We have reviewed the theory, carried out several elementary applications, and begun our main program of application to realistic nuclear problems. Items 190, 194, 195, 197, 200, 203, 206, 210-212, 215, 219, 220, 221, 224, 227-229, 231, 236, 237. In connection with this general program, we have also revisited and extended the theory of quantum corrections to collective motion. Items 239, 241, 244.
23. *New theory of effective interactions in the particle-hole channel.* Items 193, 221, 222. A theory in the course of development that contains

novel phenomenological as well as microscopic aspects. The aim of this work is to include both long and short range correlations in a unified formalism that utilizes mean field approximations of practical nuclear theory as a starting point.

24. *Quantum-classical correspondence.* We have shown that the method of Heisenberg matrix mechanics in the guise of the KK method provides new results and insights into the quantum-classical correspondence and the problem of semi-classical quantization of regular non-separable systems. Items 259, 260, 267, 268. The question of whether such methods can be applied to chaotic systems remains unanswered.
25. *Possible resonances in electron-positron scattering.* We applied an equation of motion method to the derivation of a relativistic two-particle system. Stimulated by experiments that have now been withdrawn, we studied solutions for electron-positron scattering at low energies, looking for, but not expecting and not finding resonances. Items 240, 243, 246.
26. *Skyrmion theory.* The Kerman-Klein theory was applied to the problem of quantizing the Skyrmion model and to thus restoring the broken symmetry manifest in the classical solutions. Items 242, 248.
27. *Further work on large amplitude collective motion at zero temperature.* We have begun a program for the reevaluation of the fundamentals of this theory, in particular the way that Berry phase effects enter and how to generalize from the adiabatic approximation to the diabatic approximation. The latter work is still in the course of development. Fully realistic applications of this and earlier theory remain to be carried out. Items 251, 252, 255, 256.
28. *Semi-microscopic theory of odd nuclei* We have resuscitated a semi-microscopic version of the original Kerman-Klein method that is, nevertheless, more microscopic than competing core-particle models. This model has been applied successfully to a number of cases. Items 258, 264, 265, 266. We then turned to some more general questions associated with this development. We studied the relationship of our method to the conventional strong-coupling core-particle coupling model, a limiting case of our theory. item 269. Most exciting to us have been the

latest developments. First we proposed what we believe is the basically correct explanation, of a long-standing problem in this field, the so-called attenuation of the Coriolis coupling. Our solution points to a missing dipole interaction in the conventional Hamiltonian applied to this type of problem, item 270. Finally we have achieved a long-sought breakthrough of turning this model into a fully microscopic one, item 271.

29. *Large amplitude motion at finite excitation energy.* In the first work in this area, we have developed a theory and carried out a first application for the exchange of energy between collective and non-collective degrees of freedom in the self-consistent theory of large amplitude collective motion. We have particularly dealt with the limit in which the flow of energy between the subsystems is unidirectional and can be described by classical friction parameters. A microscopic theory of these parameters has been provided. Items 273, 274.
30. *Connection between density functional theory and the KK method.* The density functional theory of W. Kohn and collaborators has had a tremendous impact in the fields of atomic, molecular, and condensed-matter physics. Nevertheless, it has had only limited success in the treatment of excited states, for which the KK method is particularly suited. This has suggested a study of the possibility of adding our ideas to the density-functional field. This work is in a very early stage, item 275.

Graduate students

In this section we list and describe briefly, in so far as we are aware of the facts, the accomplishments and present whereabouts of the writer's graduate students. The topics of thesis research are identified by publications in the writer's bibliography, except where publication was not joint.

1. Bruce H. McCormick. Ph.D., Harvard U., 1955. Thesis: see (16) and (33). After an initial stint as research associate at Brookhaven Nat. Lab., worked with L. Alvarez and is mentioned by latter in his Nobel address as inventor of an automatic scanning principle. Has been professor in depts. of applied math and computing at the U. of Illinois and is now professor of electrical engineering at Texas A. and M.
2. Charles Zemach. Ph.D., Harvard U., 1955. Thesis: see (19), which is a preliminary publication. Full publication made independently later. Has been professor of physics at the U. of Cal., Berkeley, science advisor to the state dept., and is now at Los Alamos. Spent the academic year 56-57 working with the writer at the U. of Pa., see section on research associates.
3. Jeremy Bernstein. Ph.D., Harvard U., 1955. Thesis: see (18). After an early career in research, mainly in weak interactions, now a distinguished science writer and prof. of physics (emeritus) at Stevens Inst. of Tech.
4. Richard E. Norton. Ph.D., U. of Pa., 1958. Thesis: see (27) and (28). Prof. of Physics at UCLA. Research in field theory and statistical mechanics.
5. L. Donald Pearlstein. Ph.D., U. of Pa., 1960. Thesis: see (43) and (47). Has spent most of his career doing research in plasma theory, collaborating with, among others, Marshall Rosenbluth. Now at the Lawrence Livermore Lab.
6. Malcolm Younger. Ph.D., U. of Pa., 1960. Thesis: see (51). Present whereabouts and activities unknown.
7. T. Kobayashi. Research: see (31). Received job offer and returned to Japan without his Ph.D. Now professor at Tokyo Metropolitan U.

8. Narkis Tzoar. Ph.D., U. of Pa., 1961. Thesis and research: see (30), (37), and especially (54). Now professor at CUNY, working in the theory of condensed matter.
9. R. Aaron. Research: see (45). Did a thesis with R. D. Amado. Now professor of physics at Northeastern U.
10. Benjamin W. Lee. Ph.D., U. of Pa., 1961. Research: see (39) and (41). Thesis: Mandlestat Representation for K-Nucleon System, was an 'independent' research project. Distinguished particle theorist who headed the theory dept. at Fermilab at the time of his tragic death in an automobile accident more than a decade ago.
11. J. Iizuka. Ph.D., U. of Pa., 1961. Thesis: see (52) and (53). Well-known quark theorist and professor of physics at Nagoya U.
12. G. Do Dang. Ph. D., U. of Paris, 1964. Research: see (62) and (68). Long-time collaborator and currently *directeur de recherche*, a position in the CNRS, at the U. of Paris, Orsay.
13. L. Celenza. Ph.D., U. of Pa., 1966. Thesis: see (75) and (81). Now professor of physics at Brooklyn College of CUNY, where he has been engaged in a long-term collaboration with C. Shakin.
14. Robert E. Johnson. Ph.D., U. of Pa., 1968. Thesis: see (79), (87), (88), and (91). The last part of his thesis, on the derivation of the Bohr-Mottelson theory from the Kerman-Klein equations never published. Now professor at the Royal Military College in Ontario.
15. Gerard G. Dreiss. Ph.D., U. of Pa., 1969. Thesis: see (84), (85), (94), (97), and especially (107). Was associate editor of Phys. Rev. C before his tragic death in an automobile accident a few years ago.
16. Tappan K. Das. Ph.D., U. of Pa., 1970. Thesis: see (99), (102), and (105). Also unpublished part presaging the IBM-1 model. Now holds professorship at the U. of Calcutta.
17. Sho Yung Li. Ph.D., U. of Pa., 1971. Thesis: see (98), (101), (106), and (110). At last contact was group leader at the research labs of Xerox Corp.

18. Franz R. Krejs. Ph.D., U. of Pa., 1972. Thesis: see (108), (118), and (120). Currently president of a venture capital firm in Vienna.
19. Michel Vallieres. Ph.D., U. of Pa., 1973. Thesis: see (113) and (117). There was also an independent publication with R. M. Dreizler. Now professor of physics and chairman of the physics department at Drexel U.
20. Pranab K. Chattopadhyay. Ph.D., U. of Pa., 1975. Thesis: see (114), (118), (130), and (134). Now holds professorship at Mahari Dayanand U. in India.
21. Ching Teh Li. Ph.D., U. of Pa., 1978. Thesis: see (136), (144), (145), (155), and (156). Currently professor at National Taiwan University in Taipei.
22. Moyez J. Vassanji. Ph.D., U. of Pa., 1978. Thesis: see (144), (145), (148), (153), (154), and (158). Until recently in a research position at the U. of Toronto associated with David Rowe. Has published prize-winning novels and short stories and has definitely turned to full-time writing.
23. Tom Cohen. Ph.D., U. of Pa., 1985. Thesis: see (176), (178), and (179), but bulk of thesis was independent research. Now associate professor at the U. of Maryland.
24. Dennis Bonatsos. Ph.D., U. of Pa., 1985. Thesis: see (186), (187), (189), (192), (196), and (198). Currently in a permanent research position at the institute "Democritus" in Athens.
25. David Cebula. Ph. D. , U. of Pa., 1992. Thesis: see (242), (248). Currently employed at the Lincoln Laboratory.
26. Pavlos Protopapas. Ph. D. , U. of Pa., 1996. Thesis: see (258), (264), (265), and (266).

Post-doctoral fellows

In this section we list those persons who have collaborated with the writer as part of their immediate postdoctoral experiences and also refer, through the writer's bibliography, to the research accomplished. Most, though not all, of these individuals were hired as research associates by the writer. There is some overlap with the list of Ph.D. students in that several of the latter did return to do further work with the author. If no current address is given, the entry is thus identified as a former student whose whereabouts has been documented in the section on graduate students.

1. Charles Zemach (1956-1957). Research: (26), (36), and (38). The latter two papers are classic papers on potential scattering.
2. R. E. Prange (1958-1960). Research: (33), (34), and independant work. Items mentioned are classic papers on normal fermi liquids. Prange is now a distinguished condensed matter theorist and professor at the U. of Maryland.
3. D. Fivel (1960-1962). Research: (46). Now professor at the U. of Maryland.
4. R. Raphael (1959-1960). Research: (37) and (48). Now professor at U. of Alabama, Huntsville.
5. R. M. Dreizler (1964-1972). Research: (73), (74), (76), (80), (81), (83-87), (89-92), (95), (96), (98-105), (107), (108), (110), (113), (115), (117). Dreizler was the first research associate who worked with me on the nuclear many-body problem. Now professor at Frankfurt U, a leader in the field of atomic theory.
6. G. Do Dang (1966-1969). Research: (77), (78), (80), (82-86), (89), (92). Do Dang produced the first self-consistent solutions of the Kerman-Klein equations.
7. Chi Shiang Wu (1966-1967). Research: (80), (83-86), (89). Now professor at the U. of Victoria in British Columbia.
8. S. C. Pang (1969-1971). Research: (90), (94), (112). At last contact, was engaged in the field of medical physics in the Boston area.

9. Carlos Dasso (1972-1974). Research: (116), (118), (119), (121), (123), (128). Now a widely known nuclear theorist who is assoc. professor at Nordita.
10. Lewis Fulcher (1972-1974). Research: (122), (129), (150), (161). This work, as well as some of the papers with Rafelski concerned the problem of spontaneous decay of the vacuum in strong Coulomb fields. Now professor at Bowling Green U.
11. J. Rafelski (1974-1975). Research: (125-127), (131), (133), (135), (139), (146), (150), (161). Now professor at the U. of Arizona.
12. T.-S. H. Lee (1974-1975). Research: (132), (137). Work on the two-nucleon problem. Now a member of the physics dept. at Argonne Nat. Lab.
13. F. Krejs (1975-1978). Research: (136), (138), (140), (141), (144), (152). This work, as well as the paper with Weldon is concerned with the quantum theory of solitons.
14. Arthur T. Weldon (1978-1979). Research: (149). Now assoc. professor at West Va. U.
15. C. T. Li (1979-1982). Research: (170), (172), (173), (175), (176), (179), (181).
16. M. Vallieres (1981-1982). Research: (167), (168), (172), (173), (175), (177), (179).
17. S. Umar (1985-1986). Research: (200), (207), (208), and (214). Now assoc. professor at Vanderbilt U.
18. A. S. Bulgac (1986-1988). Research: (210-212), (219), (220). Now asst. professor at the U. of Washington, Seattle.
19. N. R. Walet (1988-1993) Research: (228), (229), (231), (232), (235-237), (239-242), (244-246), (248, 249), (251, 252), (254-257). Now lecturer at Manchester Inst. of Technology, Manchester, England.
20. Wm. R. Greenberg. (1995-1996). Research: (259), (260), (267), and (268) Now engaged in financial work in NYC.

21. Pavlos Protopapas. (1996-1997). Research: (258), (264), (265),(266), (269), (270), (271), and (272). Currently employed as a research associate at the U. of Pa. in a project concerned with large scale rapid data processing.

Publications of Abraham Klein: refereed journals, published lectures of invited papers at conferences, and lecture series from "schools"

1. The Coupling of a Dirac Field to a Kemmer Field. Phys. Rev. **82**, 639 (1951).
2. Electrodynamic Displacement of Atomic Energy Levels. (with Robert Karplus and Julian Schwinger) Phys. Rev. **84**, 597 (1951).
3. Electrodynamic Displacement of Atomic Energy Levels. I. Hyperfine Structure. (with R. Karplus) Phys. Rev. **85**, 972 (1952).
4. Electrodynamic Displacement of Atomic Energy Levels. II. Lamb Shift. (with R. Karplus and J. Schwinger) Phys. Rev. **86**, 288 (1952).
5. Electrodynamic Corrections to the Fine Structure of Positronium. (with R. Karplus) Phys. Rev. **86**, 257 (1952).
6. Electrodynamic Displacement of Atomic Energy Levels. III. The Hyperfine Structure of Positronium. (with R. Karplus) Phys. Rev. **87**, 848 (1952).
7. Symmetric Pseudoscalar Theory of Nuclear Forces. Phys. Rev. **89**, 1158 (1953).
8. The Tamm-Dancoff Formalism and the Symmetric Pseudoscalar Theory of Nuclear Forces, Phys. Rev. **90**, 1101 (1953).
9. Convergence of the Adiabatic Nuclear Potential. Phys. Rev. **91**, 740 (1953).
10. Convergence of the Adiabatic Nuclear Potential II. Phys. Rev. **92**, 1017 (1953).
11. The Construction of Potentials in Quantum Field Theory. Phys. Rev. **91**, 1285 (1953).
12. Configuration Space Methods for the Construction of Potentials. Phys. Rev. **94**, 195 (1954).

13. Single-Time Formalisms from Covariant Equations. *Phys. Rev.* **94**, 1052 (1954).
14. Suppression of Pair Coupling in Nuclear Forces. *Phys. Rev.* **95**, 1061 (1954).
15. New Tamm-Danoff Formalism. *Phys. Rev.* **95**, 1676 (1954).
16. Meson Pair Theory. (with Bruce H. McCormick). *Phys. Rev.* **98**, 1428 (1955).
17. Low-Energy Theorems for Renormalizable Field Theories. *Phys. Rev.* **99**, 998 (1955).
18. Electromagnetic Properties of the Deuteron. I. Charge Density and Quadrupole Moment. (with Jeremy Bernstein) *Phys. Rev.* **99**, 966 (1955).
19. Spatial Extension of the Proton Magnetic Moment from the Hyperfine Structure of Hydrogen. (with W. M. Moellerling, F. E. Low, and A. C. Zemach), *Phys. Rev.* **100**, 441 (1955).
20. Scattering Matrix in the Heisenberg Representation for a System with Bound States. *Prog. Theoret. Phys.* **14**, No. 6 (1955).
21. Derivation of Low Scattering Formalism. *Phys. Rev.* **102**, 913 (1956).
22. Dispersion Relations for Fixed-Source Meson Theories. *Phys. Rev.* **104**, 1131 (1956).
23. Dispersion Relations for Fixed-Source Meson Theories: Effective-Range Relations. *Phys. Rev.* **104**, 1136 (1956).
24. Construction of the Adiabatic Nuclear Potential: Formalism. *Phys. Rev.* **104**, 1747 (1956).
25. Transition Amplitudes for Photoproduction of Mesons from Nucleons and Photodisintegration of the Deuteron. (with L. Donald Pearlstein). *Phys. Rev.* **107**, 836 (1957).

26. Many-Body Problem in Quantum Field Theory. (with Charles Zemach) Phys. Rev. **108**, 126 (1957).
27. Complete Set of Dispersion Relations for a Class of Fixed-Source Meson Theories. (with R. E. Norton). Phys. Rev. **109**, 584 (1958).
28. Significance of the Redundant Solutions of the Low-Wick Equation. (with R. E. Norton). Phys. Rev. **109**, 991 (1958).
29. Phenomenological Analysis of μ Decay. (with S. A. Bludman) Phys. Rev. **109**, 550 (1958).
30. Inner Bremsstrahlung in μ -Meson Decay. (with N. Tzoar) Nuovo Cimento **8**, 482 (1958).
31. Remarks on a Model for S-Wave Meson-Nucleon Scattering. (with T. Kobayashi) Nuovo Cimento **8**, 850 (1958).
32. On the Concept of Potential in Quantum Field Theory. Prog. Theor. Phys. **20**, 257 (1958).
33. Derivation of the Two-Nucleon Potential. (with B. H. McCormick) Prog. Theor. Phys. **20**, 876 (1958).
34. Perturbation Theory for an Infinite Medium of Fermions. (with Richard Prange) Phys. Rev. **112**, 994 (1958).
35. Generalized Reaction Matrix Approach to the Theory of the Infinite Medium of Fermions. (with Richard Prange) Phys. Rev. **112**, 1008 (1958).
36. The Born Expansion in Non-Relativistic Quantum Theory. (with C. Zemach) Nuovo Cimento **10**, 1078 (1958).
37. Meson Theoretical Origin of the Spin-Orbit Coupling between Two Nucleons. (with N. Tzoar and R. Raphael) Phys. Rev. Lett. **2**, 433 (1959).
38. Analytic Properties of the Amplitude for the Scattering of a Particle by a Central Potential. (with C. Zemach) Annals of Physics **7**, 440 (1959).

39. Application of the Chew-Low Formalism of Multi-Channel Reactions. (with B. W. Lee) *Nuovo Cimento* **13**, 891 (1959).
40. Many-Particle Approach to the One-Electron Problem in Insulators and Semiconductors. *Phys. Rev.* **115**, 1136 (1959).
41. A Novel Dispersion Relation for Potential Scattering. (with B. W. Lee) *Nuovo Cimento* **14**, 856 (1959).
42. Mandelstem Representation for Potential Scattering. *J. Math. Phys.* **1**, 41 (1960).
43. Theory of the Photodisintegration of the Deuteron. (with L. D. Pearlstein) *Phys. Rev.* **118**, 193 (1960).
44. Linked Cluster Expansion Applicable to Nonspherical Situations. *Phys. Rev. Lett.* **4**, 601 (1960).
45. Convergence of the Born Expansion. (with R. Aaron) *J. Math. Phys.* **1**, 131 (1960).
46. On the Analytic Properties of Partial Wave Amplitudes in Yukawa Potential Scattering. (with D. Fivel) *J. Math. Phys.* **1**, 131 (1960).
47. Theory of Photo-Disintegration of the Deuteron. (with L. D. Pearlstein) *Nuclear Forces and the Few Nucleon Problem*, ed. by T. C. Griffith and E. A. Power (Pergamon Press, Vol. **1**, p. 329-340 (1960).
48. Meson-Theoretical Calculation of the Spin-Orbit Coupling between Two Nucleons. (with N. Tzoar and R. Raphael) *Nuclear Forces and the Few Nucleon Problem*, ed. by T. C. Griffith and E. A. Power (Pergamon Press, Vol. **1**, p. 143-152 (1960).
49. Perturbation Theory for an Infinite Medium of Fermions. II. *Phys. Rev.* **121**, 950 (1961).
50. Perturbation Theory for an Infinite Medium of Fermions. III. Derivation of the Landau Theory of Fermi Liquids. *Phys. Rev.* **121**, 957 (1961).

51. On the Validity of the Static Approximation for the Evaluation of the Two-Nucleon Potential. (with Malcolm Younger) Journ. of the Franklin Institute Vol. **271**, No. 6 (1961).
52. Theory of Single Pion Production in Proton-Proton Collisions. (with J. Iizuka) Phys. Rev. **123**, 669 (1961).
53. Dispersion Relations for Virtual Pion-Nucleon Scattering. (with J. Iizuka) Prog. Theor. Phys. **25**, 1017 (1961).
54. Absorption of Electromagnetic Radiation by an Electron Gas. (with N. Tzoar) Phys. Rev. **124**, 1297 (1961).
55. On the Exact Solution of the BCS Reduced Hamiltonian and a Systematic Perturbation Theory Constructed Therefrom. Proceedings Midwest Conf. on Theoretical Physics, 1961.
56. Theory of Fermion Systems with Attractive Interactions: Exact Solution of the BCS Reduced Hamiltonian. Nuovo Cimento **24**, 788 (1962).
57. The Description of Superfluid Fermi Systems with Anisotropic Features. Nuovo Cimento **23**, 919 (1962).
58. The Description of Rotating Nuclei. (with A. K. Kerman) Physics Letters **1**, 185 (1962).
59. $l \neq 0$ Coupling in Superconductors and the Use of Field Quantization Methods in the Many-Body Problem. Phys. Letters **1**, 311 (1962).
60. Theory of Normal Fermion Systems. *Lectures on Many Body Problem* p. 279-334. Ed. by E. R. Caianiello, Academic Press, N.Y. (1962).
61. Theory of Normal Fermion Systems. *Cargese Lectures, 1961*, ed. by M. Levy, W. A. Benjamin (1963), pp. II (1-43).
62. Higher Random-Phase Approximations and the Theory of the Electron Gas. (with G. Do Dang) Phys. Rev. **130**, 2572 (1963).
63. Broken Symmetries and Massless Particles. Proc. 1963 Midwest Conf. on Theoretical Physics, U. of Notre Dame, pp. 50-64 (1963). (with S. A. Bludman).

64. Broken Symmetries and Massless Particles. (with S. A. Bludman) Phys. Rev. **131**, 2364 (1963).
65. Generalized Hartree-Fock Approximation for the Calculation of Collective States of a Finite Many-Particle System. (with A. K. Kerman) Phys. Rev. **132**, 1326 (1963).
66. Theory of Collective Motion in Finite Many Particle Systems. Proc. of 1963 Eastern Conference on Theoretical Physics, U. of North Carolina (20pp.) (with A. K. Kerman)(1963).
67. Invariant Operators of the Unitary Unimodular Group in n Dimensions. J. Math. Phys. **4**, 1283 (1963).
68. Theory of Anharmonicity in the Vibrational Motion of Even-Even Spherical Nuclei. (with G. Do Dang) Phys. Rev. **133**, B257 (1964).
69. Broken Symmetry and Unconventional Solutions of Standard Field Theory, Proceedings of the Seminar on Unified Theories of Elementary Particles, U. of Rochester, pp. 125-159 (1963).
70. Does Spontaneous Breakdown of Symmetry Imply Zero-Mass Particles. (with B. W. Lee) Phys. Rev. Lett. **12**, 266 (1964).
71. Phonons in Liquid Helium. (with K. Huang) Ann. Phys. **30**, 203 (1964).
72. Collective Motion in Finite Many-Particle Systems. II. (with A. K.. Kerman) Phys. Rev. **138**, B1323 (1965).
73. Self-Consistent Theory of Bounded Rotational Spectra. I. Two- Dimensional Rotator. (with R. M. Dreizler) Nucl. Phys. **75**, 321 (1966).
74. The Generalized Hartree-Fock Approximation and its Possible Application to the Excited Rotational Spectrum of 0^{16} , Proceedings of the 1965 Midwestern Conf. on Theoretical Physics, Ohio State University (23 pp.) (with R. M. Dreizler)(1965).
75. Collective Motion in Finite Many-Particle Systems. III. Foundation of a Theory of Rotational Spectra of Deformed Nuclei. (with L. Celenza and A. Kerman) Phys. Rev. **140**, B245 (1965).

76. Interpretation of Higher Rotational States of Deformed Nuclei and Foundations of the Self-Consistent Cranking Model. (with R. Dreizler) Phys. Rev. Letters **15**, 893 (1965).
77. Number-Conserving Approximation for the Theory of the Pairing Interaction in Nuclei. (with G. Do Dang) Phys. Rev. **143**, 735 (1966).
78. Number-Conserving Approximations for the Theory of the Pairing Interaction in Nuclei. II. (with G. Do Dang) Phys. Rev. **147**, 689 (1966).
79. Toward a Self-Consistent Theory of the Nuclear Collective Hamiltonian. (with R. E. Johnson) Prog. of Theor. Phys. Suppl. Nos. **37** and **38**, pp. 211-233 (1966).
80. Quadrupole Moment of the First Excited State of Spherical Nuclei. (with Dreizler, Do Dang and Wu) Phys. Rev. Letters **17**, 709 (1966).
81. Collective States of Positive Parity in $^{16}0$. (with Celenza, Dreizler and Dreiss) Phys. Lett. **23**, 241 (1966).
82. Toward a New Theory of Spherical Nuclei. I. (with G. Do Dang) Phys. Rev. **156**, 1159 (1967).
83. Toward a New Theory of Spherical Nuclei. II. (with Dreizler, Do Dang and Wu) Phys. Rev. **156**, 1167 (1967).
84. Theory of Self-Consistent Core-Particle Coupling Models. I. Relation to Phenomenological Models (with Do Dang, Dreiss, Dreizler and Wu) Nucl. Phys. **A114**, 481 (1968).
85. Variational Principles for a Self-Consistent Theory of Collective Motion. (with Do Dang, Dreiss, Dreizler and Wu) Nucl. Phys. **A114**, 501 (1968).
86. A New Theory of Vibrating Nuclei. (with Do Dang, Dreizler and Wu). Proceedings of Tokyo Intl. Conf. on Nuclear Structure, ed. by J. Sawada, Suppl. J. Phys. Soc. Japan **24**, 568-575 (1967).
87. Concept of Ideal Collective Coordinate as the Foundation for a Phenomenological Theory of Nuclear Collective Motion: Basic Ideas and

Relation to Other Phenomenological Methods. (with Dreizler and Johnson) Phys. Rev. **171**, 1216 (1968).

88. Application of the Concept of Ideal Collective Coordinate to a Simple Microscopic Model. (with Johnson) Phys. Rev. **171**, 1224 (1968).
89. Self-Consistent Theory of Nuclear Spectra: Pairing Force Model. (with Do Dang, Dreizler and Wu) Phys. Rev. **172**, 1022 (1968).
90. Study of Boson Expansion Methods in an Exactly Soluble Two-Level Shell Model. (with Pang and Dreizler) Ann. Phys. (N.Y.) **46**, 477-495 (1968).
91. Relation Between the Time-Dependent Hartree-Fock Method and Boson Expansion Methods in a Two-Level Model. (with R. E. Johnson and R. M. Dreizler) Annals of Physics **49**, 496 (1968).
92. Growth of Multipole Moments of Low-Lying Nuclear Excited States in the Random Phase Approximation: An Extension of Thouless' Theorem. (with Do Dang) Phys. Letters **28B**, 579 (1969).
93. Theory of Collective Motion in Nuclei. In *Quantum Fields and Nuclear Matter*, ed. by K. T. Mahanthappa and W. E. Brittain (Gordon and Breach, New York, 1969), p. 1-55.
94. Variational Method without Wave Functions in the Nuclear Many-Body Problem. (with G. J. Dreiss and S. C. Pang) Phys. Lett. **29B**, 465 (1969).
95. A New Theoretical Method for the Study of the Phase Transition from Spherical to Deformed Nuclei. (with R. M. Dreizler) Phys. Lett. **30B**, 236 (1969).
96. Methods for Calculating Ground-State Correlations of Vibrational Nuclei. (with R. E. Johnson and R. M. Dreizler) Phys. Rev. **186**, 1289 (1969).
97. The Algebra of Currents as a Complete Dynamical Method in the Nuclear Many-Body Problem: Application to an Exactly Soluble Model. (with G. J. Dreiss) Nucl. Phys. **A139**, 81 (1969).

98. Boson Expansions for an Exactly Soluble Model of Interacting Fermions with SU(3) symmetry. (with S. Y. Li and R. M. Dreizler) *J. Math. Phys.* **11**, 975 (1970).
99. Equivalence and Theoretical Foundation of Recent Phenomenological Descriptions of Rotational Bands in Deformed Nuclei (with R. M. Dreizler and T. K. Das) *Physics Lett.* **31B**, 333 (1970).
100. Algebraic Approach to the Theory of Nuclear Structure (with R. M. Dreizler) *Proceedings of the Midwest Conference on Theoretical Physics*, U. of Notre Dame, Notre Dame, Ind. (1970).
101. Effect of the Pauli Principle on the Representation of Nucleon Pair Operators by Means of Bosons. (with S. Y. Li and R. M. Dreizler) *Phys. Lett.* **32B**, 169 (1970).
102. Phenomenological Analysis of Quasirotational Spectra and Possible Evidence for Higher-Phonon States. (with T. K. Das and R. M. Dreizler) *Phys. Rev.* **C2**, 632-638 (1970).
103. Application of the Hartree-Fock Variational Method to Center-of- Mass Motion. (with R. M. Dreizler and F. R. Krejs) *Nucl. Phys.* **A155**, 33 (1970).
104. Phenomenological Model for the Simultaneous Analysis of Several Rotational Bands (with T. K. Das and R. M. Dreizler) *Phys. Rev. Lett.* **25**, 1626-1628 (1970).
105. Theoretical Foundation of Variable Moment of Inertia Models (with T. K. Das and R. M. Dreizler) *Phys. Lett.* **34B**, 235 (1971).
106. Application of the Marumori Boson Expansion to the Problem of Particle- Hole Excitation in Closed-Shell Nuclei. (with S. Y. Li) *Phys. Rev. C3*, 1871 (1971).
107. Self-Consistent Theory of Nuclear Spectra: The Pairing-Plus-Quadrupole Interaction Model Applied to the Tin Isotopes. (with G. J. Dreiss and R. M. Dreizler) *Phys. Rev. C3*, 2412 (1971).

108. Ground State Correlations as Variational Parameters in the Nuclear Many-Body Problem. (with R. M. Dreizler and F. R. Krejs) *Nucl. Phys.* **A166**, 624 (1971).
109. Formal Theory of Finite Nuclear Systems. *Annals of Physics* **66**, 390-404 (1971).
110. Boson Expansions for Fermion Pair Operators: The Single j Level. (with S. Y. Li and R. M. Dreizler) *Phys. Rev.* **C4**, 1571-1591 (1971).
111. Theories of Collective Motion. *Dynamic Structure of Nuclear States*, ed. by D. J. Rowe et al., U. of Toronto Press (1972) pp. 38-100.
112. Number-Conserving Algebraic Method for Pairing Theory. (with S. C. Pang) *Canadian J. of Phys.* **50**, No. 7, (1971) pp. 655-660.
113. A Simplified Microscopic Model of the Coriolis Anti-Pairing Transition. (with M. Vallieres and R. M. Dreizler) *Phys. Lett.* **41B**, pp. 125-129 (1972).
114. An Exactly Soluble Shell Model with $R(5)$ Symmetry Exhibiting Two-Dimensional Vibrations and Rotations (with P. K. Chattopadhyay and F. Krejs) *Phys. Lett.* **42B**, 315-318 (1972).
115. Concept of Transition-Operator Boson and Its Application to an Exactly Soluble Model. (with R. M. Dreizler) *Phys. Rev.* **C7**, 512-521 (1973),
116. Algebraic Method Applied to the Pairing Interaction (with C. Dasso, C.-Y. Wang-Keiser and G. J. Dreiss) *Nucl. Phys.* **A205**, 200-210 (1973).
117. Algebraic Approach to the Theory of Collective Motion: Spherical to Deformed Transition in the Single- j Shell. (with M. Vallieres and R. M. Dreizler) *Phys. Rev.* **C7**, 2188-2204 (1973).
118. Validity of an Algebraic-Variational Approach to the Theory of Collective Motion for an Exactly Soluble Shell Model with $R(5)$ Symmetry. (with C. Dasso, F. Krejs and P. K. Chattopadhyay) *Nucl. Phys.* **A210**, 429-442 (1973).

119. An Intrinsic State Generating the Ground State Rotational Band of a Deformed Nucleus and its Approximate Equivalence to an Algebraic-Variational Treatment: Illustration by an Exactly Soluble Model. (with C. Dasso) *Nucl. Phys.* **A210**, 443-457 (1973).
120. Theory of Ground State Correlations of Closed Shell Nuclei: A Density Matrix Formulation. (with F. Krejs) *J. Math. Phys.* **14**, 1155-1162 (1973).
121. Remarks Concerning the Kerman-Klein Theory of Collective Motion. (with C. Dasso) *Phys. Rev. C8*, 2511-2514 (1973).
122. Stability of the Vacuum and Quantization of the Electron-Positron Field for Strong External Fields. (with Lewis Fulcher) *Phys. Rev. D8*, 2455-2457 (1973).
123. Simple Estimate of Deformations in the Aligned Coupling Scheme. (with C. Dasso) *Phys. Rev. C9*, 414-415 (1974).
124. Lie Algebras, Exactly Soluble Shell Models and Theories of Collective Motion. *Revista Mexicana di Fisica* **23**, 59-79 (1974).
125. Instabilities of Matter in Strong External Fields and at High Density (with Johann Rafelski) in *Fundamental Theories in Physics*, edited by S. L. Mintz, L. Mittag, and S. M. Widmayer, Plenum Press (N.Y. 1974) pp. 153-221.
126. Possible Measurement of the Vacuum Polarization in Heavy-Ion Scattering. (with J. Rafelski) *Phys. Rev. C9*, 1756-1759 (1974).
127. On Contributions to the Pion-Nucleus Optical Potential Non- Linear in Nuclear Density: The Ericson-Ericson Lorentz-Lorentz Correction. (with J. Rafelski) *Phys. Lett.* **49B**, 318-322 (1974).
128. The Coriolis Anti-Pairing Transition in a Simplified Shell Model with the Symmetry of $R(5) \times R(5)$. (with C. Dasso) *Nucl. Phys.* **A222**, 445-458 (1974).
129. Remarks Concerning a Model Field Theory Suggested by Quantum Electrodynamics in a Strong Electric Field. (with L. Fulcher) *Annals of Physics* **84**, 335-347 (1974).

130. Boson-Like Expansions without Bosons: Application to Several Exactly Soluble Shell Models with Collective Features. (with P. K. Chattopadhyay and F. Krejs) *Nucl. Phys.* **A229**, 509-532 (1974).
131. What Can We Learn About Quantum Electrodynamics from Heavy Ion Collisions. (with J. Rafelski) (North-Holland Publishing Co., Amsterdam, 1974) pp. 397-415. *Proc. Nashville Conf. on Heavy Ion Reactions.*
132. Derivation of Relativistic Three-Dimensional Formalisms from the Bethe-Salpeter Equation. (with T.-S. H. Lee) *Phys. Rev.* **D10**, 4308-4312 (1974).
133. Quantum Electrodynamics of Spin One-Half and Spin Zero Particles in External Electrostatic Fields of Arbitrary Strength. (with J. Rafelski) in *AIP Proceedings No. 23, Particles and Fields Subseries No. 10.* (edited by C. E. Carlsson, A.I.P., New York) pp. 356-375 (1975).
134. Inclusion of Pauli Principle Constraints in Equations of Motion for the Nuclear Many-Body Problem. (with P. K. Chattopadhyay) *Phys. Rev.* **C11**, 610-6213 (1975).
135. Bose Condensation in Supercritical External Fields. (with J. Rafelski) *Phys. Rev.* **D11**, 300-311 (1975).
136. Matrix Mechanics as a Practical Tool in Quantum Theory: The Anharmonic Oscillator. (with C. T. Li and F. Krejs) *Phys. Rev.* **D12**, 2311 (1975).
137. Nonperturbative Three-dimensional Formalism for the Study of the Nucleon-Nucleon Interaction. (with T.-S. H. Lee) *Phys. Rev.* **C12**, 1381 (1975).
138. Lorentz-Covariant Quantization of Nonlinear Waves. (with F. Krejs) *Phys. Rev.* **D12**, 3112 (1975).
139. Comments on 'Bose Condensation in Supercritical External Fields'. (with J. Rafelski) *Phys. Rev.* **D12**, 1194 (1975).

140. Nonlinear Schrodinger Equation: A Testing Ground for the Quantization of Nonlinear Waves. (with F. Krejs) *Phys. Rev. D13*, 3282 (1976).
141. Particle Spectrum in Model Field Theories from Semi-Classical Solutions of the Field Equations. (with F. Krejs) *Phys. Rev. D13*, 3295 (1976).
142. Bound States and Solitons in the Gross-Neveu Model. *Phys. Rev. D14*, 558 (1976).
143. Quantum Corrections to Classical Confinement. (with A. Chodos) *Phys. Rev. D14*, 1663 (1976).
144. A Nonlinear Extension of the RPA and its Application to the Even Nickel Isotopes. (with C. T. Li, M. Vassanji, P. K. Chattopadhyay and F. Krejs) *Phys. Lett. 68B*, 209 (1977).
145. An Equations-of-Motion Method for Anharmonic Vibrations: Application to a Degenerate Shell Model. (with M. G. Vassanji, C. T. Li and P.K. Chattopadhyay) *Nucl. Phys. A283*, 423 (1977).
146. Bose Condensation in Supercritical External Fields: Charged Condensates. (with J. Rafelski) *Z. Physik A284*, 71 (1978).
147. WKB Approximation for Bound States by Heisenberg Matrix Mechanics. *J. Math. Phys. 19*, 292 (1978).
148. Algebraic Approach to Vibrational Collective Motion in a Model with Both Collective and Noncollective Degrees of Freedom. (with M. J. Vassanji) *Phys. Rev. C17*, 755 (1978).
149. Equations of Motion, Variational Principles, and W.K.B. Approximations in Quantum Mechanics and Quantum Field Theory: Bound States. (with A. Weldon) *D17*, 1009 (1978).
150. Fermions and Bosons Interacting with Arbitrarily Strong External Fields. (with J. Rafelski and L. Fulcher) *Physics Reports 38C*, 227-361 (1978).
151. Alternative Formula for the Classical Deflection Function in a Central Field. *Am. J. Phys. 46*, 1019 (1978).

152. Validity and Significance of Time-Dependent Hartree Approximation for a One-Dimensional System of Bosons with Attractive δ -function Interactions. (with F. Krejs) *Phys. Rev. A* **18**, 1343 (1978).
153. Microscopic Description of the Nuclear Triaxial Rotor at High Angular Momentum near the Yrast Line. (with M. G. Vassanji) *Phys. Rev. Lett.* **42**, 436 (1979).
154. Microscopic Derivation of Cranking for Nuclear Systems with Large Angular Momentum (with M. G. Vassanji) *Nucl. Phys. A* **317**, 116 (1979).
155. Nonlinear Generalization of the Quasiparticle Random Phase Approximation for Description of Anharmonic Effects in Vibrational Nuclei: Method. (with C. T. Li, P. K. Chattopadhyay and M. G. Vassanji) *Phys. Rev. C* **19**, 2002 (1979).
156. Nonlinear Generalization of the Quasiparticle Random Phase Approximation for Description of Anharmonic Effects in Vibrational Spectra: Application to the Even Ni Isotopes. (with C. T. Li) *Phys. Rev. C* **19**, 2023 (1979).
157. Semiclassical Quantization of Nonseparable Systems. (with C. T. Li) *J. Math. Phys.* **20**, 572 (1979).
158. Application of Matrix Mechanics to the Asymmetric Rotor in the High-Spin Limit. (with M. G. Vassanji) *Phys. Rev. C* **19**, 2349-2358 (1979).
159. Variational Principles and Heisenberg Matrix Mechanics. (with C. T. Li) *Physica* **96A**, 243 (1979).
160. Application of Hamilton's Principle to the Study of the Anharmonic Oscillator in Classical Mechanics. (with H. Gilmartin and C. T. Li) *Am. J. Phys.* **47**, 636 (1979).
161. The Decay of the Vacuum. (with L. P. Fulcher and J. Rafelski) *Scientific American* Vol. **241**, pp. 150-159 (1979).
162. Symmetry Breaking, Spontaneous. *Encyclopedia of Physics* (eds. Lerner/ Trigg) Addison Wesley Pub. Co., Reading, Mass. 1981, pp. 1009-1013.

163. Relation of Variable Moment of Inertia (VMI) Concept with the Interacting Boson Model. *Physics Letters* **93B**, 1-6 (1980).
164. Variational Principles for Particles and Fields in Heisenberg Matrix Mechanics. (With C. T. Li and M. J. Vassanji) *J. Math. Phys.* **21**, 2521 (1980).
165. Examples of the Relationship between the Shell Model and the Bohr Collective Hamiltonian: The Multilevel Extension of the Lipkin-Meshkov-Glick Model. *Physics Letters* **95B**, No. 3, 4, 327-330 (1980).
166. Perspectives in the Theory of Nuclear Collective Motion. *Nucl. Phys.* **A347**, 3-30 (1980).
167. New Method for Studying the Microscopic Foundations of the Interacting Boson Model. (with M. Vallieres) *Phys. Lett.* **98B**, 5-10 (1981).
168. On the Relationship between the Bohr Collective Hamiltonian and the Interacting Boson Model. (with M. Vallieres) *Phys. Rev. Lett.* **46**, 586 (1981).
169. IBM Hamiltonian, Bohr Collective Hamiltonian, and Classical Limit for an Exactly Soluble Model with the Symmetry of $O(5)$. (with H. Rafelski and J. Rafelski) *Nucl. Phys.* **A355**, 189 (1981).
170. Wentzel-Kramers-Brillouin Quantization of Pseudo-Spin Hamiltonians. (with C. T. Li) *Phys. Rev. Lett.* **46**, 895 (1981).
171. Band Structure and Nuclear Dynamics. Comments on Particle and Nuclear Structure **10**, 9-17 (1981).
172. Applications of Generalized Holstein-Primakoff Transformations to Problems of Nuclear Collective Motion, in *Recent Progress in Many-Body Theories, Lecture Notes in Physics*, Vol. **42**, 76-86 (1981), (with C. T. Li and M. Vallieres).
173. Relationship between the Interacting Boson Model and the Bohr Collective Hamiltonian. (with C. T. Li and M. Vallieres) *Physica Scripta* **25**, 452-458 (1982).

174. Formally Exact Quantum Variational Principles for Collective Motion Based on the Invariance Principle of the Schrodinger Equation. (with T. Marumori and T. Une), *Phys. Lett.* **109B**, 237-241 (1982).
175. Relationship between the Bohr-Mottelson Model and the Interacting Boson Model. (with C. T. Li and M. Vallieres) *Phys. Rev.* **C25**, 2733-2742 (1982).
176. Boson Mappings for Schematic Nuclear Models with the Symmetry of $SO(5)$. (with T. D. Cohen and C. T. Li) *Ann. Phys. (N.Y.)* **141**, 382-410 (1982).
177. Use of a Boson Mapping to Elucidate the Relationship between the IBM and the Bohr Collective Hamiltonian... in *Contemporary Research Topics in Nuclear Physics*, edited by D. H. Feng, M. Vallieres, M. W. Guidry and L. L. Riedinger, p. 487-493 (Plenum Press, N.Y., 1982) (with M. Vallieres).
178. Derivation and Test of Accuracy of an IBM-Like Hamiltonian with the Symmetry of $SO(5) \times SO(5)$. (with T. D. Cohen) *Nucl. Phys.* **A390**, 1-18 (1982).
179. Phenomenological Concepts of Nuclear Collective Motion and Their Possible Microscopic Foundations, *Progress in Part. and Nucl. Phys.*, Vol. 9, ed. by D. Wilkinson (Pergamon Press, Oxford, 1982) 183-232. (with C. T. Li, T. D. Cohen and M. Vallieres).
180. Boson Mappings in Nuclear Physics, A Brief and Prejudiced Survey, *Group Theoretical Methods in Physics*, Lecture Notes in Physics, Vol. 180, ed. by M. Serdaroglu and E. Inonu (Springer-Verlag, Berlin, 1983) 422-435.
181. Current Viewpoints Concerning the Algebraic Approach to Nuclear Collective Motion. (with C. T. Li) *Suppl. to Prog. Theor. Phys.*, Nos. 74 and 75, 237-250 (1983).
182. Algebraic Methods for a Direct Calculus of Observables in the Theory of Nuclear Band Structure, *Progress in Part. and Nucl. Phys.*, Vol. 10, ed. by D. Wilkinson (Pergamon Press, Oxford, 1983) p. 39-129.

183. Equations of Motion Approach to Large Amplitude Collective Motion: Coupled Bosons. *Nucl. Phys.* **A410**, 74-92 (1983).
184. Formally Exact Quantum Variational Principles for Collective Motion Based on the Invariance Principle of the Schrodinger Equation. (with T. Marumori and T. Une) *Phys. Rev. C29*, 240-252 (1984).
185. Variational Principles for Collective Motion: Relation between Invariance Principle of the Schrodinger Equation and the Trace Variational Principle. (with K. Tanabe) *Phys. Lett. 135B*, 255-257 (1984).
186. Energies of Ground-State Bands of Even Nuclei from Generalized Variable Moment of Inertia Models. (with D. Bonatsos) *Atomic Data and Nuclear Data Tables 30*, 27-47 (1984).
187. Generalized Phenomenological Models of the Yrast Band. (with D. Bonatsos) *Phys. Rev. C29*, 1879-1886 (1984).
188. Revised Equation of Motion Method, Semi-Classical Limit, and Mathematically Closed Theory of Large Amplitude Collective Motion. *Journal de Physique 45*, Colloque C6, 111-119 (1984).
189. Commutator Method for Boson Mapping in the Seniority Scheme. (with D. Bonatsos and C. T. Li) *Nucl. Phys. A425*, 521-547 (1984).
190. Equations of Motion Approach to a Quantum Theory of Large Amplitude Collective Motion. *Nucl. Phys. A432*, 90-124 (1984).
191. Revised Generalized Density Matrix Method for the Study of Nuclear Collective Motion. *Phys. Rev. C30*, 1680-1701 (1984).
192. Exact Boson Mappings for the Nuclear Neutron (proton) p-Shell with the Symmetry $SO(7) \supset SU(3)$. (with D. Bonatsos) *Phys. Rev. C31*, 992-1006 (1985).
193. New Variational Derivation of the Coupled Cluster Expansion and its Relation to Green Functions and Diagrams. (with T. Une) *Z. Phys. A321*, 499-505 (1985).

194. General Semi-Classical Method for Collective Motion and its Connection with the Rowe-Basserman and Marumori Theories, and Adiabatic Limits. (with G. Do Dang) *Nucl. Phys.* **A441**, 271-290 (1985).
195. Theory and Some Elementary Applications of a Fully Self-Consistent Formulation of Large Amplitude Collective Motion. (with G. Do Dang) In *Nuclear Shell Models*, ed. by M. Vallieres and B. H. Wildenthal (World Scientific) p. 387-397 (1985).
196. Number Conserving Mappings of Shell-Model Algebras with $SU(3)$ Subalgebras. (with Dennis Bonatsos) in *Nuclear Shell Models*, ed. by M. Vallieres and B. Wildenthal (World Scientific) p. 635-644 (1985).
197. Is There a Consistent Theory of Large-Amplitude Collective Motion? (with G. Do Dang) *Phys. Rev. Lett.* **55**, 2265-2268 (1985).
198. Exact Boson Mappings for Nuclear Neutron (Proton) Shell-Model Algebras having $SU(3)$ Subalgebras. (with D. Bonatsos) *Ann. of Phys.* **169**, 61-103 (1986).
199. Closed, Analytic, Boson Realization for $Sp(4)$. (with Qing-Ying Zhang) *J. of Math. Phys.* **27** 1987-1933 (1986).
200. Application of a Self-Consistent Theory of Large Amplitude Collective Motion to the Generalized Meshkov-Glick-Lipkin Model. (with A. S. Umar) *Nucl. Phys.* **A458**, 246-268 (1986).
201. New Form for the Belyaev-Zelevinsky-Marshalek Boson Realization of Shell Model Algebras $SO(2\Sigma; (2J; + 1))$. (with D. Bonatsos and Q.-Y. Zhang) *Phys. Lett.* **B175**, 249 (1986).
202. Simplified Boson Mappings of Symplectic Shell Model Algebras. (with D. Bonatsos and Q.-Y. Zhang) *Phys. Rev. C* **34**, 686-692 (1986).
203. Quantum Foundations for a Theory of Collective Motion. Semiclassical Approximations and the Theory of Large Amplitude Collective Motion, in *Symmetries and Semi-Classical Features in Nuclear Dynamics*, Lecture Notes in Physics, vol. 279, ed. A. A. Raduta (Springer-Verlag, 1987), pp 2-43.

204. Equation of Motion Methods: Foundations and Selected Applications, in Microscopic Approaches to Nuclear Structure Calculations, ed. by A. Covello (Ital. Phys. Soc., 1986) pp. 127-144.
205. Summary Talk: Theoretical NATO Advanced Study Institute on 'Physics of Strong Fields', ed. W. Greiner, (Plenum Press, 1987), pp. 965-978.
206. Belyaev-Zelevinsky-Marshalek Boson Mappings for Unitary Symplectic Algebras. (with D. Bonatsos). in Nuclear Structure, Reactions and Symmetries, (World Scientific), Vol. 2, p. 1001-1007, (1986).
207. Physical Interpretation and Quantization of Periodic Time-Dependent Hartree-Fock Solutions. (with A. S. Umar), Phys. Rev. **C34** 1965-1968 (1986).
208. Physical Interpretation of Time-Dependent Hartree-Fock Density Matrix for Heavy Ion Scattering (with A. S. Umar), Phys. Rev. **C35** 1672-1677 (1987).
209. Extended Commutator Method for Boson Mapping in the Seniority Scheme (Two Non-Degenerate j -Shells with $|j_1 - j_2| = 2$). (with D. Bonatsos), Nucl. Phys. **A469** p. 253- (1987).
210. Uniqueness of the Collective Submanifold in the Adiabatic Theory of Large Amplitude Collective Motion (with A. Bulgac and G. Do Dang), Phys. Letters **B191**, 217-221 (1987).
211. Determination of the Collective Hamiltonian in a Self-Consistent Theory of Large Amplitude Adiabatic Motion (with G. Do Dang and A. Bulgac), Phys. Rev. **C36**, 2661-2671, (1987).
212. Application of a Theory of Large Amplitude Collective Motion to a Generalized Landscape Model (with A. Bulgac and G. Do Dang), Phys. Rev. **C36** 2672-2679 (1987).
213. Summary Talk, Theoretical, in Symmetries and Semi-Classical Features of Nuclear Dynamics, ed. by A. A. Raduta, Lecture Notes in Physics, vol. 279. (Springer, 1987) pp 434-448.

214. Extraction of Exclusive Amplitudes from Time Dependent Hartree-Fock Calculations for Heavy Ion Scattering (with A. S. Umar) in Workshop on Relations between Structure and Reactions in Nuclear Physics, ed. D. H. Feng, M. Vallieres, B. H. Wildenthal (World Scientific 1987), pp. 257-292.
215. Some Recent Results on Boson Mappings of Symplectic Shell Model Algebras (with Q. Y. Zhang) in Windsurfing the Fermi Sea, Vol. II, ed. T. T. S. Kuo and J. Speth (Elsevier, 1987), pp. 249-257.
216. Extended Commutator Method for Boson Mapping in the Seniority Scheme: Many non-degenerate j -shells (with D. P. Menzes and D. Bonatsos) Nucl. Phys. **A474**, 381-396 (1987).
217. Octupole Bosons of Negative Parity in Multi-Level Seniority Boson Mappings (with D. Bonatsos and D. P. Menezes) J. Phys. G: Nucl. Phys. **14**, L45-L50 (1988).
218. A New Derivation of the Marhsalek-Okubo Realization of the Shell-Model Algebra $SO(2\nu + 1)$ for Even and Odd Systems with ν Single-Particle Levels (with E. R. Marshalek) Zeit f. Phys. **A329**, 441-449 (1988).
219. Decoupling a Collective Degree of Freedom from a Model for Tunneling in Many-Particle Systems (with A. Bulgac and G. Do Dang), Phys. Rev **C37**, 2156-2161 (1988).
220. Theory and Application of Large Amplitude Collective Motion (with A. Bulgac and G. Do Dang), Proceedings of the Novosibirsk Symposium on Modern Developments in Nuclear Theory, ed. O. P. Suskov, (World Scientific, 1989), 373-391.
221. Relation between the Local Harmonic Formulation and the Generalized Valley Formulation in the Self-Consistent Theory of Large Amplitude Collective Motion (with A. Bulgac and G. Do Dang), Nucl. Phys. **A490**, 275-286 (1988).
222. New Pseudo-Hamiltonian Approach to a Theory of Effective Interactions in the Particle-Hole Channel: Phenomenology (with T. Une), Phys. Rev. **C38**, 1886-1896 (1988).

223. New Pseudo-Hamiltonian Approach to a Theory of Effective Interactions in the Particle-Hole Channel: Microscopic Foundations (with T. Une), *Phys. Rev. C* **38**, 1897-1910 (1988).
224. Construction of a Collective Hamiltonian from a Many-Body Theory of Nuclei (with A. Bulgac and G. Do Dang), *Proc. Conf. on Contemporary Topics in Nuclear Structure Physics*, pp. 79-89 (1988) (World Scientific).
225. Perspectives on Large Amplitude Collective Motion. (with A. Bulgac and G. Do Dang), *Proc. Conf. on Contemporary Topics in Nuclear Structure Physics*, pp. 103-106 (1988) (World Scientific).
226. On the Boson-Quasifermion Realization of the Particle-Hole $SO(2\Omega+1)$ Algebra (with E. Marshalek) *J. Math. Phys.* **30** 219-232, (1989).
227. Large Amplitude Collective Motion: Theory and Initial Applications (with A. Bulgac and G. Do Dang), *Proc. Second. Intl. Symposium on Nuclear Structure*, ed. by A. Covello, World Scientific, 1989, 365-386.
228. Adiabatic Time-Dependent Hartree-Fock Theory in the Generalized Valley Approximation (with A. Bulgac, G. Do Dang and N. Walet) *Phys. Rev. C* **40** 945 (1989).
229. Reaction Paths and Generalized Valley Approximation (with N. Walet and G. Do Dang) *J. Chem. Phys.* **91**, 2848-2858 (1989).
230. Generalization of the Quantized Bogoliubov-Valatin Transformation (with F.J.W. Hahne), *Phys. Lett.* **229B**, 1-5 (1989).
231. Generalized Valley Approximation Applied to a Schematic Model of the Monopole Excitation (with N. R. Walet, G. Do Dang, and A. Bulgac), *Phys. Rev. C* **41**, 318-328 (1990).
232. Thermal Boson Expansions and Dynamical Symmetry (with N. R. Walet), *Nucl. Phys. A* **510**, 261-284 (1990).
233. Some Structural and Numerical Aspects of Heisenberg Matrix Mechanics with Applications to One-Dimensional Systems (with C. T. Li), *Fizika (G. Alaga Memorial Volume)*, **22**, 67-87 (1990).

234. Boson Realizations of Lie Algebras with Applications to Nuclear Physics (with E. R. Marshalek) in *Understanding the Variety of Nuclear Excitations*, ed. by A. Covello (World Scientific, Singapore, 1991), 265-281.
235. Generalization of the Quantized Bogoliubov-Valatin Transformation and Relation to the Method of the Vector Coherent State: the case of U(3) (with N. R. Walet), *Nucl. Phys. A515*, 207-225 (1990).
236. Classical Theory of Collective Motion in the Large Amplitude, Small Velocity Regime. (with Niels R. Walet and G. Do Dang) *Ann. Phys. (NY)* **208**, 90-148 (1991).
237. Theory of Large Amplitude Collective Motion Applied to the Structure of ^{28}Si . (With Niels R. Walet and G. Do Dang) *Phys. Rev. C43*, 2254-2266 (1991).
238. Boson Realizations of Lie Algebras with Applications to Nuclear Physics (With E. R. Marshalek) *Rev. Mod. Phys.* **63**, 375-558 (1991).
239. Ground State Correlations and Restoration of Broken Symmetry to Nuclear Mean Field Theory (with N. R. Walet and G. Do Dang), *Nucl. Phys. A535* (1991).
240. On the Occurrence of Particle-Antiparticle Resonances in Scalar QED (with N. R. Walet and R. M. Dreizler), *Phys. Lett. B273*, 1-5 (1991).
241. Quantum Corrections to the Potential Energy for Large Amplitude Collective Motion (with N. R. Walet and G. Do Dang), *Phys. Rev. C45*, 249-260 (1992).
242. Recoil Effects in a Quantum Theory of the Skyrmiion (with David P. Cebula and Niels R. Walet), *J. Phys. G: Nucl. Part. Phys.* **18**, 499-520 (1992).
243. Alternative Derivation of Relativistic Two-Body Equations (with R. M. Dreizler), *Phys. Rev. A45*, 4340-4345 (1992).
244. Quantum Corrections to the Cranking Model, (with N. R. Walet and G. Do Dang), *J. Mod. Phys. E1* 95-130 (1992).

245. Vector Coherent State, Quantized Bogoliubov Transformation, and Boson Expansions, (with N. R. Walet, H. B. Geyer, and F. J. W. Hahne), in *Group Theory and Special Symmetries in Physics* ed. by J. P. Draayer and J. Jänecke (World Scientific, Singapore, 1992) pp.233-247.

246. Can e^+e^- Peaks be Explained as Resonances in Bhabha Scattering? (with N. R. Walet and R. M. Dreizler) *Phys. Rev. D* **47** 844-852 (1993).

247. Approximate Seniority-dictated Boson-quasifermion Mapping and Derivation of the Interacting Boson Fermion Model, (with J. Q. Chen) *Phys. Rev. C* **47** 612-622 (1993).

248. Quantization of the Skyrmion, (with David Cebula (thesis) and N. R. Walet) *Phys. Rev. D* **47** 2113-2130 (1993).

249. Three Decades of the Kerman-Klein Method in Quantum Mechanics, in Quantum Field Theory, and in Nuclear Physics, in *Proc. Int. Workshop on Nuclear Structure Models*, ed. by R. Bengtsson, J. Draayer, and W. Nazarewicz, (World Scientific, Singapore, 1993) pp. 229-257.

250. Factorization of Commutators: The Wick Theorem for Coupled Operators, (with J. Q. Chen and B. Q. Chen) *Nucl. Phys. A* **554** 61-76 (1993).

251. Quantum Theory of Large Amplitude Collective Motion and the Born-Oppenheimer Method, (with Niels R. Walet), *Phys. Rev. C* **48** 178-191 (1993).

252. Classical Mappings of the Symplectic Model and Their Application to the Theory of Large-Amplitude Collective Motion (with Niels R. Walet), *Phys. Rev. C* **49**, 840-851 (1994).

253. Autobiographical Notes, in *Symposium on Contemporary Physics*, ed. by M. Vallières and D. H. Feng (World Scientific, 1993), p. 3-60.

254. Generation of Collective Subspaces and Self-Consistent Cranking Operators (with G. Do Dang and Niels R. Walet), *Phys. Lett. B* **322**, 11-16 (1994).

255. Quantum Theory of Large Amplitude Collective Motion: Natural Fit Between the Born-Oppenheimer and Kerman-Klein Methods, (with Niels R. Walet), Phys. Rev. **C49**, 1428-1438. (1994).

256. Quantum Theory of Large Amplitude Collective Motion: Bosonization of all Degrees of Freedom, (with Niels R. Walet), Phys. Rev. **C49**, 1439-1448 (1994).

257. Boson Realization for Shell Model Algebras $Sp(2\Lambda)$, (with Qing-Ying Zheng), Science in China **A23**, 283-292 (1993) (in Chinese).

258. Calculation of the Properties of the Rotational Bands of $^{155,157}Gd$, (with Pavlos Protopapas and Niels R. Walet), Phys. Rev. **C50**, 245-256 (1994).

259. Invariant Tori and Heisenberg Matrix Mechanics: a new Window on the Quantum-Classical Correspondence, (with W. R. Greenberg and C. T. Li), Phys. Rev. Lett. **75**, 1244-1247 (1995).

260. Invariant Tori and Heisenberg Matrix Mechanics: a new Window on the Quantum-Classical Correspondence, (with W. R. Greenberg and C. T. Li), in Phys. Reps. **264**, 167-181 (1996)

261. Some Reflections after four and a half decades in Theoretical Physics, lecture given on the occasion of the award of a doctorate *honoris causa*, Nov. 10, 1995, by the U. of Frankfurt, published by Fachbereich Physik of Frankfurt U. 8-16.

262. Recollections of Julian Schwinger, in *Julian Schwinger, the Physicist, the Teacher, and the Man* ed. by Y. Jack Ng, (World Scientific, Singapore, 1996) 1-8.

263. Point-Group Symmetrized Boson Representations: Algebraic Solution for Symmetry-Adapted Bases of O_h (with J.Q. Chen and J. L. Ping), J. Math. Phys. **37**, 2400-2425 (1996).

264. Further application of a semimicroscopic core-particle coupling method to the properties of $^{155,157}Gd$ and ^{159}Dy (with P. Protopapas and N. R. Walet), Phys. Rev. **C53**, 1655-1659 (1996).

265. The Kerman-Klein-Dönau-Frauendorf Method, a Semi-Microscopic Theory of Odd Nuclei: Theory and Applications, (with P. Protopapas and N. R. Walet), in *New Perspectives in Nuclear Structure*, ed. by A. Covello, (World Scientific, Singapore, 1996) 281-290.
266. Application of a semimicroscopic core-particle coupling model to the backbending of odd deformed nuclei, (with P. Protopapas and N. R. Walet), *Phys. Rev. C* **54**, 638-645 (1996).
267. From Heisenberg matrix mechanics to EBK quantization: theory and first applications (with Wm. R. Greenberg, I. Zlatev, and C. T. Li) *Phys. Rev. A* **54**, 1820-1837 (1996).
268. Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence (with Wm. R. Greenberg and C. T. Li) in *Current Developments in Mathematics* (International Press, Cambridge, 1996) 33-45.
269. Derivation and assessment of strong-coupling core-particle model from the Kerman-Klein Dönau-Frauendorf theory (with P. Protopapas), *Phys. Rev. C* **55**, 699-713 (1997).
270. Possible solution of the Coriolis attenuation problem (with P. Protopapas), *Phys. Rev. C* **55**, 1810-1818 (1997).
271. Application of the Kerman-Klein method to the solution of a spherical shell model for a deformed rare-earthe nucleus (with P. Protopapas), submitted to PRL.
272. Kerman-Klein method for Nuclear Structure: Accomplishments and Opportunities (with P. Protopapas), Proceedings Drexel Symposium on the Shell Model (1996), to be published.
273. Model of a self-consistent theory of large amplitude collective motion at finite excitation energy (with G. Do Dang and P. G. Reinhard), in preparation.
274. Self-consistent theory of large amplitude collective motion at finite excitation energy (with G. Do Dang and P. G. Reinhard), in preparation.

275. Variational principle for ground state energy as a functional of the one-particle density matrix: a generalization of Hartree-Fock theory (with R. M. Dreizler), in preparation.

Curriculum vitae of Abraham Klein

Born:

Graduated: B.A. Brooklyn College, January, 1947

Higher Degrees: M.A., Harvard University, June, 1948

Ph.D., Harvard University, June, 1950

Married (1950), 2 children

Societies

- American Physical Society (Fellow)
- AAUP
- AAPT

Fellowships and Honors

1. Brooklyn College, Summa Cum Laude, 1st in class of 1500.
2. AEC Pre-Doctoral Fellow, Harvard Univ. (1949-1950).
3. Sigma Xi (1950).
4. Junior Fellow, Society of Fellows, Harvard Univ. (1952-1955).
5. National Science Foundation Senior Postdoctoral Fellow (1961-62).
6. Alfred P. Sloan Foundation Fellow (1961-1963).
7. Distinguished Alumnus Award, Brooklyn College (1966).
8. J. S. Guggenheim Fellowship (1975).
9. Alexander von Humboldt Foundation Senior Scientist Award (1987).
10. Honorary doctorate, Frankfurt U. (1995).
11. Humboldt Award extension (1995).

Services

1. Associate Editor, Physical Review (1965-68).
2. Program Committee, Division of Nuclear Physics (1973-75).
3. Associate Chairman for Graduate Education, Physics Dept., U. of Pa. (1980-1983).
4. Co-chairman, Organizing Committee 13th Eastern Theory Conference at U. of Pa. (1974).
5. Organizing Committee 15th Eastern Theory Conference at Univ. of Georgia (1976).
6. Organizing Committee, International Conference on Band Structure and Nuclear Dynamics, New Orleans (1980).
7. Scientific Committee, Int. School of Quantum Electrodynamics of Strong Fields, Lahnstein/Rhein (Germany) (1981).
8. International Advisory Committee, Conference on Nuclear Structure, Reactions and Symmetries - Dubrovnik, Yugoslavia (1986).
9. International Advisory Committee, 1st International Spring Seminar on Nuclear Physics, Sorrento, Italy (1986).
10. International Advisory Committee, Symposium on Modern Developments in Nuclear Physics, Novosibirsk, USSR (1987).
11. International Advisory Committee, 2nd International Spring Seminar On Nuclear Physics, Capri, Italy (1988).
12. International Advisory Committee, 3rd International Spring Seminar On Nuclear Physics, Ischia, Italy (1990).
13. Co-chair, Organizing Committee for Symposium to honor S. T. Belyaev, Drexel University, Philadelphia (1994).

Professional Record:

1. Graduate Assistant, Harvard	1947-49
2. AEC Pre-Doctoral Fellow, Harvard	1949-50
3. Instructor, Harvard	1950-52
4. Society of Fellows, Harvard	1952-55
5. Research Associate, Harvard Nuclear Laboratory, Summer	1951
6. Physicist, M.I.T., Summer reactor program (AEC), Summer	1952
7. Visiting Physicist, U. of Rochester, Summer	1953
8. Visiting Physicist, Brookhaven National Laboratory, Summer	1954
9. Visiting Physicist, Brookhaven National Laboratory, Summer	1956
10. Visiting Physicist, Radiation Laboratory, U. of California, Summer	1957
11. Consultant, RIAS, Baltimore, Md., Summer	1959
12. Consultant, Convair Corporation	1960
13. Lecturer, International Spring School of Theoretical Physics, Naples	1960
14. Associate Professor of Physics, U. of P.	1955-58
15. Professor of Physics, U. of P.	1958-1994
16. N.S.F. Senior Postdoctoral Fellow, U. of Paris (Sabbatical Leave)	1961-62
17. Alfred P. Sloan Foundation Fellow, U. of P.	1961-63
18. Lecturer, Summer School of Theoretical Physics, U. of Paris	1962
19. Visiting Physicist, Brookhaven National Laboratory, Summer	1963
20. Visiting Professor, Faculty of Science, Univ. of Paris, Summer	1966
21. Lecturer, Summer Inst. for Theor. Physics, Univ. of Colorado, Summer	1968
22. Visiting Professor, Princeton Univ. (Sabbatical leave)	1968-69
23. Visiting Professor, University of Frankfurt, June	1971
24. Lecturer, Mont Tremblant International Summer School(Canada), August	1971
25. Research Associate, Center for Theor. Physics, M.I.T. (Sabbatical Leave)	1975-76
26. Summer Visitor, Ecole Normale Supérieure, Paris - Summer	1976
27. Visitor, Nordita and the Niels Bohr Institute, December	1980
28. Special Foreign Visiting Professor, U. of Tsukuba, Japan, June-Aug.	1981
29. Lecturer in School "Collective Bands in Nuclei", Erice, Sicily, March-April	1982
30. Visiting Professor, Yale U., Fall term	1983

31.	Visiting Professor, Tech. U. Munich, January-March	1984
32.	Research Associate, CNRS (French National Research Organization) U. of Paris, April-August,	1984
33.	Lecturer in school "Symmetries and Semi-Classical Features of Nuclear Dynamics", Brasov, Romania, September	1986
34.	Visiting Professor, Frankfurt U., Fall term	1987
35.	Visiting Professor, Frankfurt U., Fall term	1988
36.	Visiting Professor, Stellenbosch U., March	1991
37.	Professor Emeritus, U. of Pennsylvania	1994-
38.	Distinguished Guest Professor, Drexel University	1994-
39.	Visiting Professor, U. of Paris XI, November	1994