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INTRODUCTION

In support of stockpile stewardship and other important nondestructive test INDT)
applications, we seek improved methods for rapid evaluation of materials to detect
degradation, warping, and shrinkage. Typically, such tests involve manual measurements
of dimensions on radiographs. We seek to speed the process and reduce the costs of
performing NDT by analyzing radiographic data using a least-square fitting technique for
rapid evaluation of industrial parts. In 1985, Whitman, Hanson, and Mueller have
demonstrated a least-square fitting technique that very accurately locates the edges of
cylindrically symmetrical objects in radiographs. [1] To test the feasibility of applying this
technique to a large number of parts, we examine whether an automated least squares
algorithm can be routinely used for measuring the dimensions and attenuations of materials
in two nested cylinders. The proposed technique involves making digital radiographs of
the cylinders and analyzing the images. In our preliminary study, however, we use
computer simulations of radiographs.

MODEL USED

In our study, we simulated radiographs of two nested, concentric cylinders where
the outer cylinder was thicker than the inner cylinder by a factor of ten. We assume that
the material in each cylinder is homogeneous. Attenuation of x-rays in each cylinder is
measured by an attenuation parameter, the product of the attenuation coefficient p of the
material and the density p of that material. The inner cylinder is much denser than the
outer cylinder and should exhibit more x-ray attenuation. For the purpose of constructing a
model, we assume that the thickness of the outer cylinder is ten times greater than that of
the inner cylinder. We also assume that the attenuation parameter for the inner cylinder is
3.5 times larger than that for the outer cylinder.




Finally, building on the assumption that the x-rays penetrate the object in a
direction perpendicular to the axis of the cylinders, we can construct a plot of the ideal
transmission through these cylinders. Figure 1 represents the ideal relative transmission
through the two cylinders, assuming a point source for the x-rays, no blurring of the x-rays,
and no noise. ‘

The vertical scale measures the relative intensity of the x-rays that reach the
detector. The horizontal scale is the relative position, in pixels, from one side of the
digitized radiographic image. Looking at this plot from left to right, the first dip in the
transmission is due to the attenuation of the x-rays through the outer cylinder. The second
dip is due to the added attenuation in-passing through the inner cylinder. The central
portion of the plot corresponds to the passage through both cylinders and the empty interior
of the two cylinders. The rise in the middle is due to a decrease in the x-ray path length.

The mathematical function used to generate this plot is given as:

2 |
x=exp(2b,.fz,<)4>) M
n=1 .

where the attenuation parameter in the nth cylinder is given by b, = —,0, and the path
length through the nth cylinder, P, (X) is given by '

B(X)=2F,(X)|S? (X - C)* -2G,(X)|R: (X -C ). @

W, is the x-ray attenuation coefficient of the nth shell and p, is the density of the mateﬁal in
the nth shell. The sum in the formula for Y is taken over the two cylinders in the object.
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Figure 1. Plot of ideal relative transmission through a set of two nested cylinders as a
function of position in pixels.




S., R, and C, refer respectively to the outer radius of the nth cylinder, the inner radius of
the nth cylinder and the common center position of the two cylinders. Note that all these
dimensions are in pixels. F (X) and G,(X) are indicator functions. F,(X)is 1 when
(X-C|<8S)) and 0 otherwise. G,(X) is 1 when |X-C|<R, and 0 otherwise.

. Figure 2 illustrates how we arrive at the above formulas for path length P(X). In
particular, it shows one half of the cross section of an arbitrary cylinder with center at
position C, an inner radius of R, and an outer radius of S. We assume that the x-rays are
directed from above and penetrate the cylinder at position X. The vertical line in the left
portion of the figure shows a path that does not pass through the interior of the cylinder.
The length of the line is given by

ST —(X-0O). 3
The vertical line in the right portion of the figure shows a path that does pass through the
interior of the cylinder. The length of the path in the shaded portion is given by

V8P = (X =C)* —R*~(X-C)* . ©

Given a realistic set of transmission data which includes blurring and noise, our
goal is to determine the values of the 7 parameters by, b,, S,, S,, R, R,, and C which
generate a curve that best fits the actual data. This is a non-linear problem requiring an
iterative algorithm. It is challenging to find non-linear least squares algorithms that
converge at all, much less converge to the global minimum. These algorithms.generally
rely on the gradient vector in parameter space. For this problem, the gradient vector as a
function of pixel position has discontinuities that hamper the search algorithm. Because of
this, it is important to produce a good set of initial estimates for the parameters before
starting any least squares algorithm.
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Figure 2. Schematic diagram for illustrating the origin of the formulas for relative
transmissions.




SPECIAL FITTING PROCEDURES

Assuming that there is a reasonably good estimate of the center of this object, the
plot can be divided into left and right halves. We then locate the smallest function value in
each half. This gives an indication of the boundary between the inner cylinder and the core
of the object. The average of these two positions will provide an estimate of the common
center, C. Half the difference between these two positions will provide an estimate of the
inner radius, R,, of the inner cylinder.

We then locate an interval of X values where we believe that R, <X <§,. From
this section of the graph, we can estimate the attenuation parameter b, and the outer radius
S, of the outer cylinder. In the outer cylinder, let Z =log(Y), then

Z=2b.[S?—(X-C) . (5)

Note that Z? is a linear function of (X-C)>. This means that a straight line can be fit to the
data and that the resulting coefficients can be used to estimate S, and b,.

We now use these parameter values to construct a hypothetical plot of the
transmission through the outer cylinder. We locate where the actual graph deviates sharply
from this newly constructed plot, and from this we locate an interval of X values where we
believe that R, <X < S,. Values from this section of the graph can be used to estimate the
attenuation parameter b, and the outer radius of the inner cylinder S,. In this region, let W

= log(Y), then

W =2 =2(b, ~ b)ST — (X -C) ©)

since R, and S, are identical. Note that (W-Z)* is a linear function of (X-C)?. This means
that a straight line can be fit to the data and that the resulting coefficients can be used to
estimate S, (which equals R;) and the difference b,-b,. From all of this, an estimate for b,
is easy to generate. We now have initial estimates for all 7 of the parameters for the least
squares algorithm.

DATA GENERATION

To test these procedures, we used computer algorithms to generate simulated data.
We constructed a set of simulated data by first choosing the number of pixels that would
represent the thickness of the inner cylinder. Then we created an ideal transmission plot
using a default set of parameter values. To this we added various vectors of random,
independent Gaussian noise whose standard deviations were either 1% or 3% of the
transmission values. Each set consisted of anywhere from 25 to 100 different data plots.
For each plot, we used the algorithm described above to produce initial estimates of the
parameters. These estimates were then fed into a least squares algorithm for refinement.
We stored the final parameter values so that we could calculate their means and standard
deviations. We plotted the residuals of each fit to see if the least squares algorithm
behaved abnormally.

We generated different sets of simulated data by varying the number of pixels to
represent the inner cylinder and then setting the thickness of the outer cylinder to be ten
times the thickness of the inner cylinder. We also varied the amount of noise added to the
ideal transmission plot, but we did not blur the data prior to adding noise.




In each set of simulated data, the average of the values obtained for each parameter
indicates whether the whole procedure suffers from any bias. The standard deviations of
the values obtained for each parameter indicates the precision that can be expected from
using this procedure.

The software we used to generate and analyze the simulated data consists of a
collection of procedures and functions written in Interactive Data Language (IDL) from
Research Systems Incorporated. The least squares algorithm is a modified version of the
IDL routine called CURVEFIT[2]. CURVEFIT is an iterative nonlinear least squares
procedure based on the Marquard-Levenberg algorithm [3].

RESULTS

In all of the sets of simulated data, the average of the parameter estimates indicates
that there is no significant bias present in our procedure. '

When we varied the number of pixels representing the inner cylinder from 1 to 10
and added 1% noise to the ideal plot, we achieved the optimal precision by using an inner
cylinder thickness of only 5 pixels. We present the relative errors, in percent, that were
achieved in the optimal case in Table 1. When we performed the same procedure with 3%
noise, the relative errors were larger. Furthermore, our results were more ambiguous than -
in the case with 1% noise. Based on our simulation runs, we are uncertain what the optimal
number of pixels for the thickness of the inner cylinder should be. The residual plots also
indicated sporadic failures in the least squares algorithm. We present the relative errors, in
percent that were achieved at a pixel scale of 10, in Table 2.

Table 1. Relative error of each parameter estimate in the case of 1% noise.

Parameter Error in %
~ |common center .002
attenuation of outer cylinder 2
outer radius of outer cylinder. .003
inner radius of outer cylinder .03
attenuation of inner cylinder 6.
outer radius of inner cylinder . .04
inner radius of inner cylinder A4

Table 2. Relative error of each parameter estimate in the case of 3% noise.

Parameter Error in %
common center .007
attenuation of outer cylinder 8
outer radius of outer cylinder .01
inner radius of outer cylinder 4
attenuation of inner cylinder 16.
outer radius of inner cylinder .5
inner radius of inner cylinder 2




Figures 3, 4, 5, and 6 are plots of the relative errors for several parametersasa
function of the width of the inner cylinder in pixels. Note in Figure 3 that in the worst case
when the width of the inner cylinder is only one pixel, the relative error is less that .025%.
This corresponds to an error in the radius measurement of .05 pixels. Also note in Figure 4
that in the worst case when the width of the inner cylinder is only one pixel, the relative
error is about .3%. This corresponds to an error in the radius measurement of .6 pixels.
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Figure 3. F or 1% noise, the relative error (in percent) for the outer radius of the outer
cylinder as a function of the thickness of the inner cylinder (in pixels).
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| Figure 4. For 1% noise, the relative error (in percent) for the outer radius of the inner
cylinder as a function of the thickness of the inner cylinder (in pixels).
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Figure 5. For 1% noise, the relative error (in percent) for the attenuation in the outer
cylinder as a function of the thickness of the inner cylinder (in pixels).
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Figure 6. For 1% noise, the relative error (in percent) for the attenuation in the inner
cylinder as a function of the thickness of the inner cylinder (in pixels).




SUMMARY AND FUTURE

Our results exhibit some promise that a least squares algorithm might be used in an
automatic mode to examine objects that are axially symmetric and consist of two
concentric cylinders. The results also emphasize the importance of keeping the rms noise in
the image below 3%. Since the fitting process uses a priori knowledge about the objects
being radiographed, other geometries would require different techniques for generating the
initial parameter estimates. '

In the future we plan to examine the effect of blurring on the performance of the
least squares algorithm. The random independent noise that we now add to the data is not
realistic. We intend to use a correlated noise function. A method for treating this kind of
noise is given in [4]. We also plan to examine the maximum entropy algorithm which has
received a lot of attention. A trimmed down version of Skilling and Bryan’s [5] classic
algorithm has been developed by Shaw and Tigg [6]. This algorithm has also been studied
in conjunction with the tomographic reconstruction of radiographic images similar to the
ones we have encountered. In support of this effort, we learned much from the work of
Hanson [7,8].
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