Modification of the Finite Element
Heat and Mass Transfer Code (FEHM)
to Model Multicomponent Reactive Transport

Havri -Selvi-Viswanathan

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
empleyees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Los Alamos

NATIONAL LABORATORY
Los Alamos, New Mexico 87545

LA-s05-77-48




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best gvailable original
document.




RECEIVED
Hov 6 3 199

ACKNOWLEDGMENTS 0 N i
I would like to thank Professor Albert Valocchi, Dr. Bruce Robinson and Dr. George Zyvoloski

for making this work possible. Professor Valocchi was nice enough to take me in as his student and
spent a lot of time assisting me with my work. His expertise in reactive transport modeling was vital
to the numerical techniques presented. Dr. Bruce Robinson played an equally important role by shar-
ing his expert knowledge on FEHMN and on transport modeling at Yucca Mountain. Many of the
ideas contained within this document have their roots within Professor Valocchi and Dr. Bruce Ro-
binson. George Zyvoloski is responsible for making the collaboration with Los Alamos National
Laboratory and the University of Illinois possible. Thanks to George, I was allowed to concentrate

on the technical work rather than having to constantly worry about funding.

Thanks also go to Dr. Andy Wolfsberg who thoroughly reviewed this document and provided
- many helpful comments. Appreciation is also expressed to Caroline Tebes who aided in the FEHMN

verification studies presented in this document.

Financial support for this project is gratefully acknowledged to the Earth and Environmental

Sciences Division at Los Alamos National Laboratory.




TABLE OF CONTENTS

LISTOFFIGURES ...cviiiiiiaireecasscatasoasasacaccacscnnes
LISTOF TABLES ..t iiiiittieneenscrasctassamansassoanoses
ABSTRACT .. .iiviiiiiininireesnancascansnans P

1. INTRODUCTION ........ccuenn M eieresecsanesercrecnanas
L1 OVEIVIBW ittt et ettt ee et ee e s
1.2Background ............ i ..
1.3 Purpose and SCOPE . ... viii it

2. DEVELOPMENT OF THE REACTIVE TRANSPORT MODEL
2.0 OVEIVIBW &ttt e et eieiianaaaaenn e
2.2 Choice of Model Formulation ..........c.coovievnieiennen.n
2.3 Governing Equations of the One-Dimensional Model .........
2.4 Various Solution Schemes ........... ... .o,

2.4.1 Fully Coupled Approach ........... ..ot
2.4.2 The Sequential Species Iteration Approach .............
2.4.3 Sequential Nodes Iteration Approach .................
2.4.4 Summary of the Three Solution Algorithms ............

3. EVALUATION OF THE SOLUTION SCHEMES
USING A ONE-DIMENSIONAL MODEL ............. .

3 L OVEIVIEW ittt ettt it te i n it
3.2 Testing the Numerical Accuracy of the Solution Schemes ......
3.2.1 Nonreactive Transport Problem ......................
3.2.2 Transport Problem with First-Order Decay .............
3.2.3 Verification of Newton’s Method .. ...................
3.3 Benchmarking of the Solution Strategies ...................
3.3.1 Transport of Multiple Conservative Speciés ............
3.3.2 Transport of Multiple Reacting Species . ...............

3.3.3 The effect of varying the Courant Number and
Grid PecletNumber ........... ...t

. 3.4 Combinations of FCA/SSIA and SSIA/SNIA ................
‘ 341SSIA-SNIA ......... ... ... e
342FCA-SSIA ..
3.4.3 The Most Efficient Algorithm for FEHMN .............

4. MODIFICATION AND VERIFICATION OF THE
FEHMN REACTIVE TRANSPORT MODEL ..........

4.1 OVeIVIEW ...ttt i ettt
4.2 Incorporating FCA-SSIAintoFEHMN .. ...................
4.3 Simulating Equilibrium Reactions with a Kinetic Formulation ..
4.4 Verification of the FEHMN Reactive Transport Model ........

vil

26
26
26
26
27
29
31
32
37

40
42
42

47

49
49
49
51
53




4.4.1 Kinetic Nonlinear Adsorption and the Langmuir Isotherm .

4.4.2 Multiple Complexation, Kinetic Adsorption and Surface
- ExchangeReactions ...........ccceiiiiiinnniinnnn.

4.4.3 Sharp DissolutionFront .............coiiviii...
4.58Ummary .. ... e

5. Application of the FEHMN Reaction Module to Transport
Studies at YuccaMountain ...........oc0iiiiiiiiiiaie

S OVEIVIEW ittt ittt i e i
5.2 Carbonate Chemistry Batch Simulations ....................
5.2.1 Carbonate System Chemistry in a Closed System ........
5.2.2 Carbonate System Chemistry in an Open System .. ......

5.2.3 Carbonate System Chemistry in an Open Batch System
withCaleite ...,

5.3 Carbonate Chemistry Transport Simulations .................
5.3.1 One Dimensional CO2(g) Transport Simulations ........
5.3.2 Background on 14C Transport Studies ....... e

5.3.3 Two Dimensional 14C Transport Simulations with LANL’s
Site ScaleModel ........ .. ... .. .

5.3.3.1 The FEHMN Hydrological Flow Model .........

5.3.3.2 The FEHMN Reactive Transport Model .........

5.3.3.3 14C Transport Simulations: Sensitivity Analysis .
5.4 Performance of the FEHMN Reactive Transport Model . .. .. ...

s 253 123 ¢ £ ol AU

viii

54

57
62
64




LIST OF FIGURES
Figure 1: The structure of the equationset ..................... 13
Figure 2: Basic algorithm for testing each solution algorithm ... ... 15
Figure 3: Fully Coupled Approach ..................... .. ... 17

Figure 4: Sequentially solve for the concentration of each species by
solving a reduced equation set for each species instead of the

solving the full equation set shown in Figure 1 ......... 18
Figure 5: Sequential Species Iteration Approach ................ 20
Figure 6: Gauss-Siedel iterative process used by SSIA. ........... 21
Figure 7: The structure of the equation set for SNIA ............. 22
Figure 8: Cycle through each node solving reduced equation sets

instead of solving the full equation set shown in Figure 7 . 23
Figure 9: Sequential Nodes Iteration Approach ................. 24
Figure 10: Nonreactive transport problem ..................... 28
Figure 11: Transport problem with first order decay ............. 30
Figure 12: Comparison of the equation sets for three conservative

species undergoing transport (assume five node problem) 35
Figure 13: Benchmarking test of nonreactive species ............ 36

" Figure 14: Benchmarking test of reacting species ............... 39
Figure 15: Combination of SSIAand SNIA ................... 43
Figure 16: Combination of FCAandSSIA .......... ... ... .. 45
Figure 17: Schematic of the flow and transport models. .......... 49
Figure 18: The FEHMN solute transport module . . ... e 50
tt Figure 19: Comparison of kinetic and equilibrium Langmuir

models ... .. 56
Figure 20: Time history of species at column outlet (x=10m) ..... 61
Figure 21: Aqueous and mineral front profiles modeled by the

analytical solution ............ ... . .. ... ... ... . 62
Figure 22: Comparison of FEHMN and the analytical solutlon for

the position of the dissolved mineral front ............ 63
Figure 23: Conceptual model of carbonate chemistfy in a

closedsystem ........coiiiiiiiiii i 67
Figure 24: Conceptual model of carbonate chemlstry in an

OPEN SYSIEIM . ..ot ittt ettt ittt ieieieeeenennan 68

Figure 25: Conceptual model of an open system in
equilibrium withcalcite .......... ... .. .. ... ... 69

Figure 26: Simulated FEHMN and MINTEQ2A concentrations in
equilibrium with calcite as a function of the partial pressure
of carbondioxide ............. ... .. .. ... ... 71
Figure 27: The effect of pH on 14CO2(g) retardation (for these
simulations, temperature = 25_C and liquid

saturation =0.2) . ... ... ... 75
Figure 28: The effect of temperature on 14CO2(g) breakthrough curves

(for these simulations, pH=7 and liquid saturation = 0.2) . 76
Figure 29: The Yucca Mountain stratigraphy and the site scale model

finite elementmesh .............................. 81

ix




Figure 30: Steady state conditions from the FEHMN hydrologic flow

model used as initial conditions for the FEHMN reactive
transportmodel ........ ... .. .. Lo, ..

Figure 31: Example output for a 14C transport simulation .........

Figure 32: The effect of pH on !4C apparent ages (high
fracture permeablhtles COz(g) dlﬁusmn

coefficient = 1x107 m?%/s)

.........................

~ Figure 33: The effect of the COy(g) diffusion coefficient on 14C
apparent ages (pH = 8.0, high fracture permeabilities) .

Figure 34: The effect of fracture permeability on 14C apparent ages
(pH = 8.0, COx(g) diffusion coefficient = 1x10~> m?%/s) .

Figure 35: The effect of pH on 4C apparent ages while fixing the
I4C age at the water table to 11,500 years (high
fracture permeablhtles COz(g) diffusion

coefficient =

1x107> m?%/s)

-------------------------

87
91

94
96.

98

99




LIST OF TABLES

Table 1: Parameters for one-dimensional nonreactive transport

problem .. ... e 27
Table 2: Parameters for one-dimensional transport problcm '
withdecay ...... ... T 29
Table 3: Parameters for 10,000 node benchmarking studies . . ...... 32
Table 4: Performance of the algorithms for conservative
transportproblem . ... .. ... L L 33
Table 5: Performance of the algorithms over a range of kmetlc
rate CONSIANIS . ...ttt ettt ettt it 38
Table 6: Performance of the algorithms over a range of Courant
numbers (grid Peclet No.=1) ...... .. ... .. ... ..... 40
Table 7: Performance of the algorithms over a range of grid
Peclet numbers (Courant No. =0.1) ................... 41
Table 8: Evaluation of the mixed SSIA-SNIA algorithm over a
range of kineticrate constants . ....................... 44
Table 9: Evaluation of the mixed FCA-SSIA algorithm over a
range of kinetic rate constants ........................ 47
Table 10: Parameters common to the kinetic and equilibrium
Langmuir model simulations ....................... 55
Table 11: Kinetic and equilibrium parameters .................. 56
Table 12: FEHMN parameters used in PDREACT
comparison problem ......... ... ... . ... ... ... ..., 60
Table 13: FEHMN parameters used to model dissolution front . . . . . 63
Table 14: Comparison of FEHMN and Snoeyink & Jenkins for
a closed carbonate system .......................... 68
Table 15: Comparison of FEHMN and MINTEQA? for an open
system in equilibrium with caleite ................... 71
Table 16: Parameters for the one-dimensional CO2(g) transport
simulations ............. ..o 73

X1




i .

N
3%
“~

xii




MODIFICATION OF THE FINITE ELEMENT HEAT AND MASS TRANSFER CODE
(FEHMN) TO MODEL MULTICOMPONENT REACTIVE TRANSPORT

by
Hari Selvi Viswanathan

ABSTRACT
The finite element code FEHMN, developed by scientists at Los Alamos Na-

tional Laboratory (LANL), is a three-dimensional finite element heat and mass trans-
port simulator that can handle complex stratigraphy and nonlinear processes such as
vadose zone flow, heat flow and solute transport. Scientists at LANL have been de-
veloping hydrologic flow and transport models of the Yucca Mountain site using
FEHMN. Previous FEHMN simulations have used an equivalent Kgmodel to model
solute transport. In this thesis, FEHMN is modified making it possible to simulate
the transport of a species with a rigorous chemical model. Including the rigorous
chemical equations into FEHMN simulations should provide for more representative
transport models for highly reactive chemical species.

A fully kinetic formulation is chosen for the FEHMN reactive transport model.
Several methods are available to computationally implement a fuily kinetic formula-
tion. Different numerical algorithms are investigated in order to optimize computa-
tional efficiency and memory requirements of the reactive transport model. The best
algorithm of those investigated is then incorporated into FEHMN. The algorithm
chosen requires for the user to place strongly coupled species into groups which are
then solved for simultaneously using FEHMN. The complete reactive transport mod-
el is verified over a wide variety of problems and is shown to be working properly.

The new chemical capabilities of FEHMN are illustrated by using Los Alamos
National Laboratory’s site scale model of Yucca Mountain to model two-dimension-

al, vadose zone '4C transport. The simulations demonstrate that gas flow and car-
bonate chemistry can significantly affect 14C transport at Yucca Mountain. The sim-
ulations also prove that the new capabilities of FEHMN can can be used to refine and
buttress already existing Yucca Mountain radionulcide transport studies.

xiii




1. INTRODUCTION

1.1 Overview

Yucca Mountain, Nevada, has been chosen by the Depai’u_nent of Energy (DOE) as a possible
site for the nation’s first high level radioactive waste repositc;ry. The DOE must demonstrate that
arepository will isolate waste for at least 10,000 years. The probability of radionuclide release into
the groundwater and atmosphere must be determined, and these probabilities are then to be
compared to regulatory release limits to assess the suitability of the site. In order to predict these
probabilities, the complex flow and transport of contaminants must be modeled for at least 10,000

years.

Coupled air-water flow, heat flow, and contaminant transport are among the important pro-
cesses that need to be modeled in the saturated and unsaturated zones of Yucca Mountain. The Yucca
Mountain Project Review, an external review committee appointed by the DOE, has selected three
unsaturated zone codes for further development and application (Reeves et al., 1994). These codes
are Finite Element Heat and Mass Transfer Code (FEHMN) and TRACR3D of Los Alamos National
Laboratory, and TOUGH of Lawrence Berkeley Laboratory. Of these codes, FEHMN is the only
one that combines coupled thermal and stress capabilities with multiphase flow and transport (Zyvo-

loski, 1994).

Scientists at Los Alamos National Laboratory (LANL) have been developing hydrologic flow
and transport models of the Yucca Mountain site using FEHMN. Coupled heat, flow and transport
simulations have been used to model the transport of natural environmental isotopes. Simulations
of 14C and 36C] transport have already been conducted using half life models to simulate the decay
of the radionuclides (Robinson, 1995). Repository breach simulations of 237Np have also been car-
ried out using sorption isotherms and decay models (Robinson, 1995). These simulations provide
estimates for parameters such as the effective Ky and the retardation factor of a contaminant which

can be then be used to predict probabilities of radionuclide release into the groundwater system at

Yucca Mountain.




More complex chemical interactions with 237Np and 1#C have not been possible. Specifically,
23TNp speciation studies have shown that different 23’Np complexes differ greatly in sorption be-
havior (Benson et al., 1994). Specifically, negatively charged 227Np carbonate complexes do not
strongly éorb to Yucca Mountain mineral surfaces, wheréa; positively charged species such as
NpO,* strongly sorb to many Yucca Mountain mineral surfaces. The species NpOs* has also been
shown to participate in an ion exchange reaction with Ca?*. These complex interactions may not
be representable with an equivalent Ky because the retardation of 2’Np will be a function of the
water chemistry which is spatially variant throughout the mountain. 4C also participates in numer-
ous chemical reactions in the Yucca Mountain groundwater system. Numerous aqueous carbonate
species (e.g. H,CO3, HCO3~, CO32-) and carbonate minerals (e.g. calcite) exist in the Yucca Moun-
tain groundwater system and all of these species may play an important role in the transport of 14C
(Meijer, 1993). Again, these chemical interactions may display nonlinear effects which cannot be

modeled by an equivalent K.

FEHMN does not have the capability to model more complicated processes such as complexa-
tion, dissolution/precipitation and kinetic sorption processes. In fact, the majority of transport prob-
lems in the groundwater field are simulated as either nonreactive or are simulated with linear retarda-
tion and first order decay models. More complex models have not been widely used due to the
substantial computational demands and human effort required to simulate these problems (Walter

et al.,, 1994).

The increase in relatively inexpensive computational power in the last few years has made the
problem of multidimensional and multicomponent reactioﬁ and transport feasible (Steefel and Lasa-
ga, 1994). FEHMN can now be modified to include more complex chemical processes in the trans-
port model while maintaining reasonable computational efficiency. Thesc complex processes

should provide more representative models of radionuclide transport than the simple decay and lin-

ear retardation models used in previous studies.




The topics covered in this thesis pertain to enhancing FEHMN’s reactive transport capabilities.
The enhancements will make it possible to include more complicated reaction sequences into the
radionuclide transport models. By treating the chemical system more rigorously, more representa-
tive predictions of radionuclide transport should be possible: In addition, the equivalent Ky ap-
proach of modeling solute transport used in previous transport studies can be buttressed by these

more rigorous calculations.

1.2 Background
This section provides a brief summary of the techniques used to model reactive transport. Some

of the relevant papers are presented to develop the history of reactive transport modeling.

In areactive transport code, the transport of a species is modeled with a partial differential equa-
tion (PDE) which describes the advection, dispersion and sources/sinks in the model domain. The
method in which transport codes incorporate the chemistry varies depending on the particular code.
In general, the chemistry of the system can be modeled using either a kinetic, equilibrium or mixed

kinetic-equilibrium formulation.

The equilibrium formulation relies on the local equilibrium assumption (LEA). LEA can be
invoked when the reaction time scale is sufficiently faster than the transport time scale. A great deal
of work has been doné to examine the validity of the assumption (Lasaga and Rye, 1993; Steefel and
Cappellen, 1990; Knapp, 1989; Bahr and Rubin, 1987; Valoc‘chi, 1985). The simplification which
arises from applying LEA often results in a mixed differential/algebraic equation set (Zysett et al,
1994) because all the reaction source/sink terms can be described by algebraic equations if LEA 1s

invoked.

A kinetic formulation is always the more general approach to describing any reactive system,
and allows for both equilibrium and kinetic reactions to be modeled with the same general formula-
tion. In kinetic formulations, the chemical equations are incorporated into the transport PDE as a

source/sink term. This source/sink term due to chemical reaction is often dependent on the con-

centrations of many chemical species. Therefore, a kinetic formulation results in a system of




coupled PDEs and ODEs which are computationally more intensive to solve than the equations

which result from the equilibrium formulation (Zysett et al., 1994).

The first codes that coupled complex chemistry with tranéport typically assumed that all chemi-
cal species in the system were in local equilibrium (EngesgaardA and Kipp, 1992; Yeh and Tripathi,
1988; Cederberg et al., 1985; Rubin , 1983). Papers by Yeh and Tripathi (1989) and Liu and Nara-
simhan. (1989) review many of these models and discuss their approaches. Due to computational
limitations and the virtually nonexistent data base of mineral-water reaction rates, the local equilibri-
um assumption was a necessity until recently. The current trend in reactive transport codes has been
to include kinetic formulations for certain types of chemistry. Studies have shown that equilibrium
conditions do not always exist in the subsurface (Steefel and Lasaga, 1994; Friedly and Rubin,
1992). Friedly and Rubin cite numerous studies which provide experimental evidence that disequi-
librium can exist in the field and especially in laboratory column experiments. EXperimental evi-
dence of kinetic limitations is shown in: Wood et al. (1990), Brusseau et al. (1989), Nicoud and
Schweich (1989), van der Zee et al. (1989), Goltz and Roberts (1986), and Hutzler et al. (1986).
In general, multi-phase reactions, such as rock-water interactions, often take place over extremely
long time scales relative to the typical groundwater transport time scales making it necessary to ac-
count for the kinetics of the system for these processes. With a rapidly increasing data base on min-
eral-water reaction rates and with the enormous increase in inexpensive computational power, multi-
dimensional kinetic and equilibrium reactive transport prot_)lems are now feasible (Steefel and

Lasaga, 1994).

Various approaches have been taken to model combined kinetic and equilibrium transport sys-
tems. These approaches will be referred to as mixed equilibrium-kinetic formulations in this thesis.
Liu and Narasimhan (1989) include kinetic solid dissolution in their otherwise equilibrium transport
code. Steefel and Lasaga (1994) and Valocchi and Pastor (1994) assume aqueous phase reactions
are in local equilibrium but include kinetic models for rock—water interactions. Friedly and Rubin

(1992) provide a general framework for modeling mixed systems of kinetic and equilibrium reac<

tions. Their method allows for kinetic and equilibrium formulations to be used interchangeably by




performing certain transformations on the matrix equations. Friedly and Rubin found that under
certain conditions, equilibrium conditions are most efficiently simulated by solving the kinetic equa-
tions with relatively large rate constants rather than mixing kinetic and equilibrium formulations.
Although, many cases exist in which a equilibrium formulation mixed with a kinetic formulation

is the most efficient formulation.

None of the models reported in the literature review are capable of modeling chemical reactions
coupled to processes such as heat flow and multiphase flow. All of these processes may be important
in modeling radionuclide transport at Yucca Mountain. Specifically, the potential repository is to
be located in the unsaturated zone of Yucca Mountain requiring an unsaturated flow model. A heat
flow model | is also necessary because the containers placed in the repository will release large
amounts of heat due to radioactive decay of the waste. The heat flow will influence the groundwater
flow near the repository (Ross, 1987). Including a chemical model into FEHMN will make it pos-
sible to study the interaction between the chemical transport processes and the groundwater flow
and heat flow processes at Yucca Mountain. These processes may be time variant requiring that

the flow and transport models are coupled as they are in FEHMN.

1.3 Purpose and Scope

This thesis discusses the development of a general reaction module that is capable of modeling
kinetic and equiﬁbrium reactions within a single framework. In Chapter 2, the formulation frame-
work for the reactive transport model is chosen and develop;d for a one-dimensional, saturated flow
transport code. Various solution algorithms are constructed to determine the best method for solving
the transport and chemical equation sets. Chapter 3 reports the evaluation of these solution strate-
gies. In Chapter 4, the most efficient scheme is then incorporated into FEHMN and the reactive
transport model is thoroughly tested and verified. After the model is verified, the new chemical ca-

pabilities of FEHMN will be illustrated in Chapter 5 by using LANL’s site scale model of Yucca

Mountain to model unsaturated zone 4C transport.




2. DEVELOPMENT OF THE REACTIVE TRANSPORT MODEL
2.1 Overview
In this chapter, the reactive transport model is developed. First, the type of formulation is cho-
sen for the reactive transport model. Various iterative schemes are then proposed to solve the system
of equations which result from the reactive transport formulation. To facilitate éomparisons be-
tween the different iterative schemes, a one-dimensional saturated flow finite difference code was

written.

2.2 Choice of Model Formulation

FEHMN is to be used for large-scale, two and three dimensional flow and transport simulations
with many nodes and will not be used to perform large geochemical calculations (i.e. 50 or more
chemical species). As stated previously, FEHMN combines coupled thermal and stress capabilities
with multiphase porous media flow and transport. Since the Yucca Mountain FEHMN simulations
are already very computer intensive, it would probably be infeasible to couple a full geochemical
model to FEHMN. In addition, major code revisions would be necessary to couple a geochemical
code to FEHMN. Instead, information from large geochemical codes will be distilled down to 10
or fewer species which can then be modeled by FEHMN. The guiding principle behind the FEHMN
reactive transport model is that a "good” model does not consider every possible reaction and spe-
cies; instead, the user of the model must apply insight in order to identify the reactions and species

that are truly significant.

The FEHMN reactive transport model should be capable of modeling several types of chemical
processes, specifically, radioactive decay, aqueous complexation, precipitation/dissolution, and ad-
sorption. Each of these reaction types can display different characteristics in a groundwater system.
Aqueous phase complexation reactions often take place over a short time scale relative to a typical
groundwater transport time scale (Steefel and Lasaga, 1994). Therefore, these reactions can usually
be treated as equilibrium reactions which leads to more simplified models. Mineral rock interactions

such as adsorption and precipitation/dissolution often display kinetic limitations in many groundwa-

- ter systems (Steefel and Lasaga, 1994). Therefore, these processes may have to be modeled as kinet-




ic reactions since the local equilibrium assumption may not always apply. Since adsorption and pre-
cipitation/dissolution reactions are important in modeling many geochemical systems, a kinetic or -
mixed equilibrium-kinetic formulation will be required for the FEHMN reactive transport model

(recall that a full equilibrium model cannot model kinetic reaetions).

Several options are available to add kinetic and equilibrium reaction capability to FEHMN. For
example, Friedly and Rubin (1992) provide a general framework for modeling both equilibrium and
kinetic reactions. However, their method requires a transformation of solution variables which

would be difficult to implement practically for a large existing code like FEHMN.

Another common technique adopted by mixed equilibrium-kinetic reactive transport codes is
the reduction of the number of independen; variables by using the idea of chemical components.
A set of chemical components is defined as the minimum number of species that uniquely describe
the chemical system (Mangold and Tsang; 1991). Most large reactive transport codes simulate the
transport of components and use an algebraic mass action expression to obtain concentrations of the
chemical species in equilibrium with each component. By transporting components rather than spe-
cies, the number of coupled PDEs is reduced. Specifically, the number of independent components
in a system is given by:

Ne = Nioy — N;

where N is the number of independent components, N; number of equilibrium reactions, and Nyg
is the total number of spcciés in the simulation (Steefel and Lasaga, 1994). For large geochemical
systems, Ny, can exceed fifty species making it necessary to simplify the system by assuming local
equilibrium for certain types of reactions while retaining kinetic capability for other reaction types.
For example, Lasaga and Steefel (1994) assume local equilibrium for all aqueous reactions, but
model mineral-rock water interactions kinetically. They state that this assumption is widely ac-
cepted to be valid for all aqueous phase reactions except for some very low temperature redox reac-

tions. Incorporating the idea of components into FEHMN would require significant software re-

structuring of the code. An equilibrium speciation routine would need to be constructed or borrowed




from another code. In addition, solute transport model of FEHMN would have to be modified to
transport chemical components rather than chemical species. However, with major software re-

structuring, this type of mixed equilibrium-kinetic formulation is an option.

-

Another option for the FEHMN reactive transport model is to use a fully kinetic formulation
to model both equilibrium and kinetic reactions. The software structure for a fully kinetic formula-
tion already exists within the code. Therefore, major software restructuring would not be necessary
to develop the reactive transport model. The primary disadvantage of this formulation is that num-
ber of species in the system is not reduced by applying the idea of components and LEA. Therefore,
due to computational limitations, the maximum number of species which can be modeled simulta-

neously would be much less than that of codes which apply LEA to model aqueous phase reactions.

A clear tradeoff exists between either implementing a mixed equilibrium-kinetic formulation
and a fully kinetic formulation. The mixed formulation solves for fewer coupled PDEs and will
therefore be more computationally efficient than the fully kinetic formulation. However, this option
requires major software restructuring of FEHMN. A fully kinetic formulation is computationally
less efficient than the mixed formulation but Wéuld be easier to implement. In weighing both op-
tions, the fully kinetic formulation appears to be the better one when considering that FEHMN will

only be used to model relatively small chemical systems.

Using a fully kinetic formulation to model both kinetic zind equilibrium reactions has several
minor advantages over the mixed formulation. Since each chemical species is transported individu-
ally, the transport parameters of each species can be different. For example, a free radionuclide can
be given different dispersion properties than a radionuclide which has sorbed onto a colloid. An
additional advantage is that any reaction can be modeled with either kinetic or equilibrium models.
As previously stated, low temperature aqueous phase reactions could be kinetically limited. Most

mixed kinetic-equilibrium formulations would be incapable of modeling any aqueous phase reac-

tions with a kinetic model.




Several methods are available to computationally implement a fully kinetic formulation into
FEHMN. The rest of the chapter will discuss different numerical algorithms which can be used

to solve the transport and chemical equation sets.

2.3 Governing Equations of the One-Dimensional Model )

FEHMN is a large complicated code. Therefore, it would be impractical to develop the reactive
transport solution scheme for FEHMN without first examining various options on a simpler code.
A finite difference code was constructed to examine various iterative solution strategies. A one-di-
mensional model was developed to mimic the reaction module of FEHMN while leaving out many
of the other features of FEHMN which are not necessary in evaluating the performance of the reac-
tive transport model. FEHMN can model non-isothermal, three-dimensional multi-phase flow. For
simplicity, the test code models one-dimensional saturated transport. In addition, the code is only
capable of modeling single phase chemical reactions, whereas FEHMN can model multi-species,
sorption and precipitation reactions. The one-dimensional model is used to evaluate Qarious solu-

tion schemes. The best scheme will then be incorporated into FEHMN.

In the model, the solute transport equation is solved for each individual species, i, present in
the system. The one-dimensional solute transport equation describes the transport of the chemical
species due to advection, dispersion, sources/sinks and is given by:

9 PG G 0

dat b ax2 X 1
where Cis the concentration, D is the hydrodynamic dispersion coefficient, u is the pore water veloc-
ity, tis ~the time, X is the spatial length scale and S is the source/sink term. The hydrodynamic disper-

sion coefficient is given by:

D=D*+au : @)
where D* is the molecular diffusion coefficient, and ¢y is the dispersivity in the x direction. Chemi-

cal reactions are treated as sources and sinks in the formulation. Multiple reactions of the following

form can be modeled:




where the a’s are the stoichiometric coefficients, k¢, is the forward rate constant, kyy is the reverse
rate constant, m is the total number of reactants in the reaction.and n is the tot_al number of chemical
species in the reaction. The reaction rate term for each chemical épecies in the above equation is giv-

en by the following kinetic formulation:

j=m j=n

1=+ ap ke, H[Cj]q(i) — Krev H [Cj]q(j) 4)
ji=1 j=m+1

where r; is defined as the loss/gain of species i per unit volume of porous media, and the exponent
q(j) is the order of the reaction with respect to C;. The subscript j loops over each chemical species
which is reacting with species i. FEHMN uses this model to calculate the reaction rate term (Zyvo-

loski, 1995a). The reaction rate term given by (4) is added into the source/sink term, S, as follows:

S; = Z r; + other sources/sinks(such as injection/extraction) (5)

all s

where r; is summed over all reactions containing species i.
The initial conditions of the transport problem are given by:
C(x,0) =0

The third type inlet inlet boundary condition allows for constant injection of each chemical species

into the system. The variable C; feeq is the concentration injected at the inlet.

aC,
x=0

The exit boundary conditions at x = X is handled with the following Neumann condition:

(aci> _o
X -
x=X

The Neumann condition allows the advective flux to leave the system, preventing a build up of mass

within the domain.
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- Example

Inthe following example, chemical species A, B, and G undergo reaction as they are transported
in the one-dimensional model. The one dimensional spatial domain is discretized into N spatial

nodes. The species participate in the following chemical reaction:

Keor
oA + BB —— G
eV
where a, § and y represent the stoichiometric coefficients. In this example it is assumed that the
order of the reaction is 1st order with respect to species A, B and G. Therefore, q(j) in equation (4)

is unity for each chemical species. The total number of chemical species in the system, M, is equal

to three in this example. The rate terms for each species are given by the following expressions:

rp = ofke CaCy — KeerCo) | (6)
tg = Bk;CaCp — krevCg) ()
16 = YlkieCq — Kio:CaCo | (8)

In order to calculate Cj(x,t), the model solves the solute transport equation at each node for each
chemical species. The resulting equation set represents a set of coupled partial differential equations
which fully describes the problem. The first step in numerically solving the problem is to finite dif-

ference the solute tranéport equation.

Equation (9) shows the finite differenced form of equation (1) for species A. The central differ-
~ence approximation was used for the advection term. Equation (9) is written for an interior spatial
node:

_Ap Ap _
At A

D k+1 k+1 k+1 _u_ [kt ~k+1
[sz (CA,p+1 20 CA,p—I) ZAX(CA,p+1 CA,p~1>

) k+1 ~k+1 ~k+1 D [~k k k
+ rA(CAp Nostent )] + (1~ x)[E(CAPH ~ock + cA,p_l)

- TX‘E(CXM - le(\,p—l) + IA(CEMP’ C;'P’ Cé’p)]

where A is the implicitness weighting factor, the subscript p denotes the spatial node, the subscripts

A,B & G denote the chemical species and k the time level. Note that the rate term, r, is left as a func-
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tion of the chemical spccieé in the system (A, B and G). Using standard finite difference notation,
A=0 is fully explicit, A=1 is fully implicit, and A=0.5 is Crank-Nicolson time differencing.

Equations of similar form to equation (9) are written for species B and G. The equations are
written at each node and are adjusted accordingly to account fo}_boundary conditions at the inlet énd
exit nodes. |

ST . : k+1 k+1 ~k+1 k+1
The finite difference equation (9) involves the five unknowns, C Ap—1° C Ap ’ C Ap+ 17 CB’p ,

k+1
CG,p , and is nonlinear due to the reaction rate terms given by equations (6), (7) and (8). Therefore,

Newton’s method is used to linearize the equation set. Newton’s method solves a set of nonlinear
equations by making use of a Taylor series expansion (e.g. Press et al. , 1986). In order to apply
Newton’s method, equation (9) is rewritten in residual form as:

k+1 k+1 ~k+1 k+1 ~k+1) _ 10
{Chrl 1 Chn’s Chi CiELCEE) = 0 (10)

Applying Newton’s method to equation (10) gives:

of of of of of
—98C, _ +—-—0C, + 8C + 0Cgp , + 6C 11
0Cpp-1 P71 8C,, AP 9Caney APY T 0Cy, PP 9Cg, OP (1)
_ k+1m k+im ~k+lm ~k+1 ~k+1
- f(CA,p-l’CA,p LGy CERL CEL )
where 8C is defined by:

SC — Ck+1,m+1 — Ck+1,m (12)

where m represents the Newton iteration number.

After applying Newton’s method to the full set of finite differenced solute transport equations

at each node for each chemical species, the equation set takes on the matrix form:

[3C = b (13)
where [J] is the Jacobian matrix and b is the vector of residuals. The Jacobian is comprised of the

derivative terms on the left hand side of equation (11) and the b vector is made up of the function

f, the right hand side of equation (11).

12
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For the example reaction, the structure of equation set (13) is shown in Figure 1:

main bands :
/ a coupling band is N spatial nodes in length
o T el o]
AN N N C b .
g, L I A dag, B f
el - * i K
e —— N — — T e S ] o o — o et
: - * 8C — b
. i .. 1 1
St i vt I e N
ron Vi 1R 8 b
Jea I JoB I Jggs | f' . .
. . AR H ‘ Each subvector is N spatial
— a | == —  — - nodes in length.

The Jacobian is broken down
into 9 submatrices all of
dimension N by N.

Figure 1: The structure of the equation set

The structure of equation (13) is obtained from applying Newton’s method to the set of finite differ-
enced solute transport equations. For example, the nonzero matrix elements for the submatrix Jaa

are given below:

I A At( _D _ u ) The subdiagonal element is obtained by
AAp,p-l: AxZ  2Ax differentiating equation (9)* with respect to: Ci:;l_ i
ar The main diagonal element is obtained b
Ah.pp: Ax? aCXL1 differentiating equation (9)* with respect to: Cz;l
] ) f D . u ) The superdiagonal element is obtained by
Adpp: M ( Ax? T 2A% differentiating equation (9)* with respect to: CIX;I_H _

* equation (9) was multiplied through by At before the derivatives
were taken.

In order to obtain the matrix elements for Jgg and Jgg, the solute transport equations for species B

and G must be differentiated using the same proéedure.

The coupling bands shown in Figure 1 represent the Jacobian cross derivative terms. These
terms exist because the reaction rate for a particular species depends upon the concentration of other

species. For example, the nonzero matrix elements of Jop are given by:

13




This coupling band is obtained by

- or ‘
JAB: A—B At . P : )
ABJj: aci;“ differentiating equation (9) with respect to: Cg":
P :

The Jap coupling band represents the dependence of the reaction rate of A on species B. Similarly,
Jpa represents the dependence of the reaction rate of B on speciés A. The nonzero matrix elements
of Jga are given by:

TBAjj Az drg At This coupling band is obtained by

aCk+1 differentiating the solute transport equatioE for
AP species B (not shown) with respect to: C Ap

The residual vector,b, contains all terms of the solute transport equation that are "known”. Spe-
cifically, the terms with concentrations evaluated at the old Newton iteration, m, and old time level,
k, make up the residual vector. The b vector for an interior node of species A is given by:

_ ~ktlm _ ok ‘D (pk+lm _ o k+lm | ~k+lm (14)
b=cCittm— )»At[sz(CA,,pH 2055+ i)

__u k+im _ ~k+Im k+1m ~k+1m ~k+1m
2AX(CA,p+1 CA,p~1) +rA(CA,p ’CB,p ’CG,p )]

_ _ D [~k _ k k __u [~k _ ok
@ }‘)At[ Ax2 (CA,pH 2CA,p + CA,p—l) 2AX2 (CA,pH CA,P-l)

+ 15(Chpr Chy c‘g,p)] =

Newton’s method uses an iterative process to solve the system of equations. The iterative pro-
cess converges as the new solution for concentration, Ck+1m+1_approaches the previous solution,
Ck+lm A Ck+lim+l apnroaches Ck+1m, the residual vector épproaches zero. The test code achieves
convergence when the normalized residual, Ibyomm!, is below a specified tolerance (i.e. 1 x 10719).

The normalized residual is given by:

|Brorm| = {i N'(bi,p)z} @s)--

i=lp=1
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Therefore, Ibporm! represents how accurately the entire equation set is being solved at each node for
every species.
2.4 Various Solution Schemes

As mentioned in the previous section, Newton’s meth(;’d.is used to linearize the equation set.
Newton’s method introduces an iterative scheme into the solution algorithm. Figure 2 shows the
general framework under which several solution strategies are to be evaluated. Sections2.4.1~2.4.3
will describe the various solution algorithms that can be used to solve equation (13). Three different
methodologies will be examined to solve the chemical equation set shown in Figure 1. Each solu-
tion scheme will differ in how the cross derivative terms are treated in solving the equation set.
Therefore, the schemes will vary in their CPU requirements and memory requirements. Chapter 3
will compare and contrast the various schemes in an effort to determine the best solution algorithm

for the FEHMN reaction module.

Specify initial condition

v

Take a time step

v

Solve for concentrations
at the current time step.
See solution algorithms
Proceed to (Sections 2.4.1-2.4.3)

next time
More time steps B
to be taken?

step

Done

Figure 2: Basic algorithm for testing each solution algorithm
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2.4.1 Fully Coupled Approach

The idea behind the Fully Coupled Approach (FCA) is to solve the entire equétion set in one
step. FCA has similarities to the Yeh and Tripathi (1989) Direct Substitution Approach in that both
algorithms solve a set of coupled PDEs. However, they deal with an equilibrium formulation rather

than the kinetic formulation developed in this thesis.

FCA solves a set of coupled PDEs simultaneously. Specifically, once all of the matrix elements
in equation (13) are calculated, the system of equations can be solved by the linear equation solver,
GZSOLVE (Zyvoloski and Robinson, 1995b). GZSOLVE solves the matrix equation set of the form
of equation (13) using incomplete factorization and a Generalized Minimum Residual (GMRES)

acceleration method.

The Fully Coupled Approach simply solves equation (13) without performing any iterations
outside the linear equation solver. The entire Jacobian and vector of residuals are directly ”fed” into
the solver which computes the vector of 8C for each species. In effect, the entire set of coupled par-
tial differential equations is solved simultaneously. The equation set structure solved by FCA was

shown in Figure 1. Figure 3 shows a detailed schematic of the solution algorithm.

Solving the entire matrix equation at once can be very computer intensive for a problem with
a high number of chemical species or spatial nodes. In Chapter 3, the Fully Coupled Approach algo-

rithm will be evaluated.

2.4.2 The Sequential Species Iteration Approach
The Sequentiql Species Iteration Approach (SSIA) attempts to circumvent the problem of solv-
ing the entire system of equations simultaneously in order to achieve better computational efficien-
cy. Again, SSIA has similarities to Yeh and Tripathi’s (1989) SIA algorithm, but is slightly different
since they deal with an equilibrium formulation. The Yeh and Tripathi method requires iterating
between their PDE solver and the chemical s>ystem which is described by algebraic equations. Their
method cycles through each chemical component in the system. The SSIA in this thesis cycle_s__

through each chemical species in the system and solves a small subset of the full equation set.
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« Enter solution |
« algorithmona ,
« time step X

<

Work on chemical species i
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Differentiate solute

with respect to species j

v
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>I transport equation fj

Calculate transport
and reaction deriva-
tives at each node

Calculate reaction
derivatives at each

node
|

j=j+1 \

More derivatives?
Work on

next submatrix

Work on
next species

More species?

N
Figure 1

I ['Solve matrix equation:
[J16C =b

v

Update concentrations

Is Ibporml small?

...............

' Converge at current !

I~ 1
|Yes[ : 1
i

“ H

1
1

Perform another
Newton iteration

i=1
j=1

Figure 3: Fully Coupled Approach -
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Returning to the example, SSIA does ndt solve the entire equation set as shown by Figure 1.
Instead the full set of equations is separated into an equation set for each chemical speéies. The re-
duced equation sets are then fed” into to the linear equation solver GZSOLVE. The equations sets
that result are shown in Figure 4. For this simple one—dimensi_qnal example, the reduced equation
sets are tridiagonal and could be solved with a tridiagonal matrix solver. However to properly bench-

mark this solution algorithm in Chapter 3, GZSOLVE is used to solve the equation sets.

main bands
e | P[] T
AQ§\§ N R Each subvector is N spatial
i D= == —“~ nodes in length.
NI dCp b
JBQ\ | 1= ? *Note that all of the
N ] L coupling bands
— —_ — — have been neglected
Q\J\ [SICG bf, g
SN LT L
The Jacobian submatrices are
of dimension N by N.

Figure 4: Sequentially solve for the concentration of each species by solving a
reduced equation set for each species instead of the solving the full
equation set shown in Figure 1

Figure 4 shows that SSIA neglects the J acobian cross derivative terms given by the coupling
bands shown in Figure 1. These coupling bands will be referred to as SSIA coupling bands in order
to avoid confusion with the SNIA coupling bands which are discussed in the next section. Newton’s
method can still be used to solve each reduced equation set. For example, a Newton solution is per-

formed on the reduced equation set for species A. The Newton solution converges when the normal-

ized residual for species i, Ibyoml;, is below a specified tolerance. The parameter Ibyorml; is given

Iaom; = {Z (b‘,pf} (16)
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Once the Newton solution has converged, SSIA cycles thvrough to solve a reduced equation set for
species B and subsequently, species G. When solving for the concentration of species B, the pre-
viously computed solution for the C4 is used in evaluating the reaction term. Likewise, the previous-
ly computed solutions for Ca and Cg are used to evaluate thek-rg_:action term in the solution for species
G. A sweep through the all the species comprises one outer iteration. After each outer iteration,
the normalized residual Ibpom! is checked for convergence (see equation (15)). If Ibyom! does not
meet the specified tolerance, the algorithm will perform an additional outer iteration. Figure 5

shows a schematic of the SSIA algorithm.

The reason the SSIA outer iteration results in convergence of the overall equation set can be
explained by looking at the Gauss-Siedel Method (e.g. Vichnevetsky, 1981). Using simple matrix

algebra, the equation set shown in Figure 1 can be written as:

JGA8CA + JGBSCB + JGGBCG = bG

where J’s are submatrices and the 8C’s and b’s are subvectors. The Sequential Iteration Approach
essentially uses the Gauss-Siedel Method as it cycles through each matrix equation. The iterative

process used by SSIA is shown in Figure 6.

In Figure 6, "0ld” represents the values of 8C at the previous iteration and “new” represents
the current 8C values. As shown above, SSIA converges on a Newton solution for a particular spe-
cies before cycling through to the next species. The Newton solution converges as dC approaches

zero. Therefore, the matrix equations written above simplify down to:

JA8C,™ " = b,
JBBﬁcgnew = bB

JGGﬁcGnew = bG
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Enter solution !
algorithmona !
time step '

Work on chemical species i K

Differentiate solute
transport equation fj
with respect to species i

Calculate transport and
reaction derivatives at

| eachnode Perform another
See Figure 4 v Newton iteration
Solve matrix equation:
[1;3C; = b;
Update C;

Is [bporml small? No
Work on
next species
Note that [bporm! must _More species? Yes
be checked. Checking = == o4l
the residual for each
reduced equation set No
is not sufficient.
N . Perform another

Quter iteration

Is |bnorm|_sini‘lw/ No =1
=
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Figure 5: Sequential Species Iteration Approach
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Solve reduced matrix equation‘ for A:

new
N7
| Update C BV |

Convergence?

iteration.

No: Use updated concentrations for another Newton

I YES: §CA W ~2 0, converged on Newton solutionl
N2

Solve reduced matrix equation for B:
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7
|Update. Cylev |

ﬁ

iteration.
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I YES: 8Cg™e¥ =2 0, converged on Newton solution]
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AP
|Update Carev |

iteration.
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l YES: 8CgP*¥ == 0, converged on Newton soluu’onl
\l/ -
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Check Ibpoml, Is the entire
equation solved accurately?
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Figure 6: Gauss-Siedel iterative process
used by SSIA.
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Cycling through each species in this manner leads to convergence of the entire equation set just as

the Gauss-Siedel Method leads to convergence.

The tradeoff between SSIA and FCA is clear. SSIA attempts to solve several reduced equation
sets to cut down on the time spent in the linear equation solver inexchange for performing additional
outer iterations. FCA requires no outer iterations but must send the full equation set into the solver.

Chapter 3 will compare these solutions algorithms.

2.4.3 Sequential Nodes Iteration Approach
The Sequential Nodes Iteration Approach (SNIA), similarly to SSIA, attempts to avoid solving

the entire system of equations simultaneously in order to attain better computational speed. SNIA
cycles through each spétial node and solves a small subset of the full equation set. SNIA includes
all of the derivatives with respect to node p but neglects derivatives from the neighboring nodes, p—1

and p+1. The derivatives neglected by SNIA will be called SNIA coupling bands.

In order to obtain the reduced equation set solved by SNIA, the equations are renumbered. The
equation structure shown in Figure 1 is rearranged to obtain Figure 7. For simplicity, a five node

problem is assumed to clearly show the equation structure.

main a SNIA
bands coupling band
See Figure 8 for
C XXX x /o 8Cai bar | details on the matrix
(XXX X o oCg1 bg; elements and vector
1]
s 3Cq) 2a1 entries
:x XXX | x ! x T x )
¢ X XXX : X ' X X
: Xxx , Xt x x
““f""r-xtx'x-l-'-* ----------- .
X X x _ x These equations are
T X Tt xXxxxt+t x ¢ X — X b
Cooxlxxxl_xL % X for species A, B and
‘ o " "3t -~ @ Fe--- .
tx XXX, x x x G respectively at
x o rxxxe X x x node 1
vooxaxxx, XAl x|l X_. ’
'x o xxx x X
r X txXxxx X X
o Kxxx x x
Jacobian 8C Residual

AFigure 7: The structure of the equation set for SNIA
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The entire equation set in Figure 7 can be rewritten in block matrix notation. An arbitrary node

point p would have the following matrix notation:

where the dimensions of the J matrices, 8C and b vectors are equal to the number of species. Figure 8

shows the structure for J, and Jp, for the three species example.

i,  of, af, 5c . A |
3Cpp 9Cpp 9Cg, Ap Ap 3Cap+1

afy afy ofy

8Cg, | — | bg ofp
GCA’p GCB’p~ GCG'p P — P aCB,p +1
Co bg,
3C,, 9Cp, Cq, P i Cgp+1
. main bands , An example coupling band. Note
. N . that the coupling bands are
Equation set solved by Reaction Approach neglected by SNIA.

Figure 8: Cycle through each node solving reduced equation
sets instead of solving the full equation set shown in
Figure 7
Again, the Gauss—Siedel approach is used to develop the general algorithm shown in Figure 9.
The SNIA coupling bands are neglected when solving each reduced equation set. Similarly to SSIA,

an outer iteration is performed to correct for neglecting the coupling bands. The Sequential Nodes

Iteration Approach is compared to SSIA and FCA in Chapter 3.

2.4.4 Summary of the Three Solution Algorithms

All three solution algorithms solve equation (13). Both SSIA and SNIA send a small subset
of the full equation set into the linear equation solver thereby decreasing the time spent in the solver.
However, in order obtain reduced equation sets, terms in the full equation set must be neglected.
Therefore, an outer iteration is necessary for these algorithms to ensure that the entire equation set
is being solved accurately. SSIA and SNIA neglect different terms and will behave differently.de-

pending on the simulation. FCA simply solves the full equation set simultaneously. Since SSIA and

23




Enter solution
algorithm on a
time step

p=1
Work on spatial node p . K

Differentiate solute
transport equation f, with
respect to each chemica
species —

Calculate transport and
reaction derivatives for
each species Perform another
\V Newton iteration

See Figure 8

Solve matrix equation:
[J1,8C;, = b,

1

2 Update C,,

~

M
Ibnorm l p= {Z(bi,p)z}
i=1

No

IS byormlp small?

Work on
next node

p=p+1

Note that bpom! must
be checked. Checking
the residual for each

reduced equation set No
is not sufficient.

—|| Yes |'

More nodes? >

Perform another
Quter iteration

p=1

small?

Is Ibnoml//

No

Figure 9: Sequential Nodes Iteration Approach
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SNIA neglect terms, these algorithms may not converge under all conditions or may require many -
outer iterations for convergence. On the other hand, FCA should converge under the same general
conditions for which Newton’s method converges. The memory requirements for the algorithms
are also quite different. FCA is much more memory intensive than SSIA or SNIA since it inclﬁdes

all of the terms in the Jacobian. These algorithms will be tested and evaluated in Chapter 3.




3. EVALUATION OF THE SOLUTION SCHEMES
USING A ONE-DIMENSIONAL MODEL

3.1 Overview

The solution methods proposed in Chapter 2 are tested and evaluated in this chapter. Each meth-
od will be shown to have certain advantages and disadvantagéé.— Therefore, two mixed algorithms
are constructed which attempt to take advantage of each method by combining the FCA, SSIA, and
SNIA techniques. The Chapter concludes by proving that the SSIA-FCA algorithm is the best

scheme for FEHMN.

3.2 Testing the Numerical Accuracy of the Solution Schemes

3.2.1 Nonreactive Transport Problem

In order confirm that the transport portion of each solution algorithm was working properly,
the algorithms were compared with an analytical solution. The analytical solution for one-dimen-
sional solute transport with the 3rd type inlet boundary condition and Neumann exit boundary condi-

tion is given by (Javandel et al., 1984):

C(x, t) _1 x — ut u’t _x- Ut)2 17
Cog 2 rfc( 2ot ) T VTP T b an

1 ux X + ut

2(1+D D)exp( )erfc(zf_>
where u is the pore water velocity, D is the hydrodynamic dispersion coefficient, t is the time, X is
the position, and C is the concentration. The initial conditions and boundary conditions for this prob-

lem are given in Section 2.3. Table 1 shoWs the parameters used to test the numerical algorithms.

The Courant and grid Peclet numbers were chosen to guarantee numerical accuracy.
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Table 1: Parameters for one-dimenstonal nonreactive transport problem

u, the pore water velocity  [0.005 m/day

D, the dispersion coefficient | 2.5 x 10~4 m%day

At, time step 1 day

Ax, the mesh spacing 0.05m 1
Grid Peclet No., uAx/D |1 '
Courant No., uAt/Ax 0.1

Simulation Time 100 days

Reactor Length Im

Cfecd I mole/L

The analytical solution and the numerical solutions are compared in Figure 10. As expected,
the numerical solutions from FCA, SSIA, and SNIA are nearly identical to the analytical solution.
For this test case, FCA and SSIA solve the same system of equations since only one chemical species
is simulated. SNIA solves a reduced equations set for each spatial node to obtain the solution. How-
ever, each algorithm uses Ibyom! to check for convergence. Therefore, numerical accuracy of each
algorithm is the same. Except for some roundoff error,‘the numerical solutions were nearly identical

and are shown in Figure 10.

Since this transport problem was run for a single conservative chemical species, the FCA and
SSTA numerical algorithms solve a tridiagonal matrix equation. A direct tridiagonal matrix solver
based upon the Thomas algorithm (Pinder and Gray, 1977) was used to confirm that GZSOLVE was
working properly. The tridiagonal solver and GZSOLVE produced identical results.

3.2.2 Transport Problem with First-Order Decay

The reaction:

k
£
A —% Products

is incorporated into the transport problem discussed in Section 3.2.1 . For this reaction, the rate law
given by equation (4) simplifies to:

_9Cs (18)

Tp = at = kfvorCA
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Figure 10: Nonreactive transport problem

The analytical solution for one-dimensional solute transport with first-order decay is given by (Ja-

vendal et al., 1984):

Cxt _ _ u cXP[X(u - U)]crfc[x - Ut] (19)

Cfeed u+U 2D zﬁ
u x+U)] x4 Ut
+u_Ue7;p D -erfc _—2,/_5{

o oL
+ __._u__e EX. —_— k { crfc X_'_*ﬂ
2Dk, P|D ~ “er "PC S By
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where U = Ju? + 4Dk, . Again, the initial conditions and boundary conditions are given in Seé-

tion 2.3. For this simulation, the parameters shown in Table 2 are used.

Table 2: Parameters for one-dimensional transport problem-with decay

u, the pore water velocity  }0.005 m/day

D, the dispersion coefficient | 2.5 x 104 m%/day
At , time step - I day

Ax, the mesh spacing 0.05m
Simulation Time 100 days

Reactor Length Im

Creed 1 mole/L

kfor, decay constant 0.005 day™!

Figure 11 shows that the numerical solutions closely match the analytical solution.

3.2.3 Verification of Newton’s Method

The test problems shown in Sections 3.2.1 and 3.2.2 result in a set of linear finite difference
equations. Recall from Chapter 2 that only the reaction rate term can cause the finite difference form
of the solute transport equation to become nonlinear. For linear problems, Newton’s method con-
verges after one iteration. However, chemical reactions of order greater than one result in nonlinear
rate laws, and for these cases, the Jacobian will contain terms which are dependent on concentration.
Since the concentrations in the Jacobian matrix must be evaluated at the previous Newton iteration,
Newton’s method requires more than one iteration to solve the equation set. Since FCA, SSIA, and

SNIA all employ Newton’s method, a second order reaction was simulated to check the Newton-

Raphson iterative scheme. The reaction:

k
fi
A '—Oré Products

is again used. However, the kinetics of the reaction is second order and so the rate law is given by:

_ _9Ca

2 20
I, = _—5t_=kforCA ( )

where the rate constant, Koy, has units of day2. All parameters used in this simulation are identical

to those given in Table 2. An analytical solution which accounts for dispersion was not found for
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Figure 11: Transport problem with first order decay

this test problem. However, the steady state concentration at the exit can be calculated for a case

that assumes no dispersion. Separating variables and integrating equation (20) yields:

] 1 1 .
Cpeit Cao

where 7 is the mean residence time of the solute and is equal to L/u=200 days. Solving equation (21)

for Cp gives:

Cao (22)-

CA’C)dt N CAOkfort +1 )
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With Cag = 1, k¢or = 0.005 /day, C should equal 0.5 moles/liters at steady state. The simulations
were run out to 600 days to ensure that the system reached steady state. The numerical solution algo-
rithms reached a steady state concentration of 0.51 at the exit. As expected, FCA, SSIA, and SNIA
took an average of 3 to 4 Newton iterations per time step to ét?nverge due to the nonlinearity of the

problem.

3.3 Benchmarking of the Solution Strategies

The problems in Sections 3.2.1-3.2.3 confirm the numerical accuracy of the solution algo-
rithms for one chemical species undergoing transport and reaction. For multiple chemical species
undergoing transport and reaction among one another, the solution strategies employ different itera-
tive schemes. Each strategy will still provide a numerically accurate solution. However, the comput-
er time required for convergence will be dependent on the solution algorithm and the particular prob-

lem.

Each solution algorithm varies in its computational and memory requirements for several rea-
sons. Each solution algorithm sends different equation sets into the solver. FCA sends the full equa-
tion set into solver, whereas SSIA and SNIA send reduced equation sets. Both SSIA and SNIA ne-
glect éertain terms to achieve the reduced equation sets and therefore require an outer iteration to
ensure the entire equation set is solved accurately. Therefore, the time spent in the solver per itera-
tion is no longer the same and the number of calls to the equation solver will be different for each
strategy. In addition, the time required to formulate the coefficients to send into the solver will also
be different. FCA requires the calculation of all of the Jacobian derivative terms, whereas SNIA and

SSIA do not have to calculate some Jacobian cross derivative terms.

In this section, a benchmarking study is performed to evaluate the solution strategies. The test
problems have been chosen to highlight the advantages and disadvantages of each solution algo-
rithm. Section 3.4 will describe the construction of two mixed algdrithms which attempt to incorpo-
rate the advantages of each method by combining the FCA, SSIA, and SNIA techniques. The solu-

tion algorithms were tested on a Sun Sparc 20 Workstation. The CPU times were obtained by using
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the UNIX command GPROEFE. In order to obtain CPU times, 10,000 node test problems were used
in the benchmarking tests. A 10,000 node problem allowed the time spent in each solutioﬁ algorithm
to be ’significant.” The GPROF routine ga\}e CPU times that were accurate to within 10% for these
10,000 node problems. It should be noted that for problems tontaining less than 1000 nodes, the
GPROF routine provided times with errors up to 25%. The inaécuracy was due to the minimal time

spent in the solution algorithm for the 1000 node simulations.

In order to simulate these 10,000 node problems, the time step, the pore water velocity, and hy-
drodynamic dispersion coefficients were adjusted accordingly to obtain a grid Peclet number of 1
and a Courant number of 0.1. The transport parameters used in the following simulations are given

in Table 3. The test problems discussed in 3.2.1~3.2.3 were rerun with these new parameters.

Table 3: Parameters for 10,000 node benchmarking studies

u, pore water velocity 0.01 m/day

D, the dispersion coefficient 1.0x10-° m?/day
At, time step 0.001 days

Ax, the mesh spacing 0.0001 m

Grid Peclet No., uAx/D 1

Courant No., uAt/Ax 0.1

L, the reactor length I1m

Simulation Time 1 day

3.3.1 Transport of Multiple Conservative Species

In this section, the transport problem described in Section 3.2.1 is run with multiple conserva-
tive species transporting simultaneously. This example will be used to study the relationship be-

tween the computational cost of each strategy and the number of species in the simulation.

Table 4 shows the relationship between the number of conservative species simulated and the
CPU time per time step. It should be noted that each algorithm required only one Newton iteration

per time step to achieve convergence.
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Table 4: Performance of the algorithms for conservative transport problem

"Number | FCA SSIA SNIA

ofspecies [Cpytime  |#Outer |CPUtime |#Outer |CPU time
per time step | Iterations |per time step |Iterations |per time step
(seconds) " |(seconds) (seco‘t_\ds)

1 1.1 1 1.1 3 0.8

2 13.5 1 24 3 2.8

3 11.6 1 3.9 4 9.6

4 14.9 1 5.6 4 21.6

6 67.5 1 8.8 4 70.0

8 296.3 1 12.0 4 1354

These trials were designed to show the extreme case in which SSIA outperforms FCA and
SNIA. The SSIA coupling bands are nonexistent for this test problem, SSIA converges after per-
forming one outer iteration. Recall that the approximation made by SSIA is that the reaction cross
derivative terms are neglected. Since there is no reaction in these trials, these derivatives are equal
to zero. Since SSIA solves reduced equation sets and does not have to perform any additional outer
iterations, SSIA runs faster than FCA. For this problem the SNIA coupling bands are significant,
therefore SNIA requires several outer iterations for convergence. Therefore, SSIA runs faster than

SNIA for this problem.

The trends shown in Table 4 can be explained by examining the equation sets solved by each
algorithm (Figure 12). FCA is slower than SSIA because it sends a larger problem to the linear equa-
tion solver. For example, when simulating three species, FCA must solve one large equation set of
dimension 3N by 3N. SSIA solves three reduced equation sets of dimension N by N. It is clear that
the FCA equation set is nine times larger than each of the three reduced systems solved by SSIA.
For this same three species case, SNIA solves N reduced equation sets of dimension three by three.
However, Table 4 shows that SNIA requires additional outer iterations to achieve convergence for
this problem. Therefore, even though SNIA sends reduced equation sets to the solver, .the additional
outer iterations result in slow convergence compared to SSIA. The structure of the equation séts

solved by FCA, SSIA and SNIA for a problem with three species and five spatial nodes (N=5) is
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shown in Figure 12. A more detailed of explanation of these matrix structures can be found in Chap-

ter 2.

From this first benchmarking study, it .is clear that the number of additional outer iterations will
be a major factor in determining whether SSIA and SNIA wiil‘ outperform FCA. As seen from the
flowcharts in Chapter 2, an outer iteration réturns to the beginning of the solution algorithm with
new guesses for the concentration vector. All the calculations in the algorithm are carried out again.

In effect, the solution algorithm is called again for every additional outer iteration.

Another major factor in performance will be the solver type used by the algorithms. FCA and
SSIA both use GZSOLVE (Zyvoloski, 1995b) which utilizes the GMRES algorithm (Barrett et al.,
1994; Dongarra et al., 1991) to solve the banded equation sets. SNIA uses a direct solver to solve
the small, dense equation sets. The direct solver employs LU Decomposition followed by back sub-
stitution to solve each equétion set (e.g. Press et al., 1992). For a problem with many species and
many nodes, the different solvers could have a significant effect on the performance of the algo-

rithms for simulations with a large number of nodes and chemical species.

Plotting the results of Table 4 produces some trends which effectively explain the behavior of
the solution algorithms. Figure 13 shows a plot of CPU time / time step versus the number of conser-

vative species in the simulation.

For this problem, SSIA’s time for convergence increases linearly with the number of species.
The SSIA reduced equation sets are the same size whether one or more species are simulated. There-
fore, the increase in overall CPU time is simply due to the number of times the solver is called. For,
examplé, the solver is call once per outer iteration for the one species case, whereas, the solver is

called three times per outer iteration for the three species case.

The convergence time behavior for SNIA is more complex. SNIA’s convergence time increases
at amuch greater rate as the number of species increases. The reduced equation sets solved by SNIA
increase in dimension as the number of species increase. The direct solver which solves the reduced

equation sets uses LU decomposition followed by back substitution. For this procedure, approxi-
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Figure 13: Benchmarking test of nonreactive species

mately N3/3 operations are necessary to solve each reduced equation set (Press et al., 1986). The
CPU time required to solve the equation set is directly proportional to the number of operations.
Therefore, the overall time for convergence for SNIA greatly increases with the number of species.
In fact, the CPU time per outer iteration increases by an approximate factor of N3 for SNIA. For

example, if the number of chemical species is doubled, the CPU time per outef iteration approxi-

mately increases by a factor of 8.

The FCA curve shows that the time for convérgence for FCA increases exponentially with the
number of species. Although FCA has no real upper limit on the number of species being modeled,

solving for number species simultaneously will be very computationally intensive.

This test problem was used to examine the extreme case in which no coupling exists between
any of the chemical species and was therefore ideal for the SSIA algorithm. FCA and SNIA clearly
become increasingly inefficient as the number species in the simulation increases, whereas, SSIA’s

convergence time per time step increases linearly. This example was used to study the relationship
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between the computational cost of each strategy and the number species in the simulation. Based
on this analysis, one should never solve for the transport‘ of multiple conservative species using any
of these algorithms because the most cost effective approach would be to solve for each species inde-
pendently. However, the real purpose of these algorithms ié_to simulate the transport of chemical

species which interact with one another. The behavior of the solution strategies for multiple reacting

species will be shown in the next section.

3.3.2 Transport of Multiple Reacting Species

In this section, the three reaction strategies are used to simulate reversible reactions in which
the transporting species interact with one another. Therefore, the SSIA coupling bands become sig-

nificant in these problems.

The first reaction to be simulated is given below.

k

for
— N\
AT—B
k
eV
The rate law of the reaction is given by:

rA = - I'B = kaI'CA - krevCB (23)

Species A and B transport from the inlet to the outlet of the reactor. Both species start with concentra-
tions of zero within the reactor. Species A is injected into the inlet node with a concentration of 1
M. As A enters the reactor it reacts to form species B according the reaction given above. The for-
ward dnd reverse rate constants are chosen to be equal for each simulation. If the rate constants are
high enough to simulate equilibrium conditions, the concentration of A and B will be equal to each
other at every spatial node. At steady state, the concentration of species A énd B should equal 0.5

M.

For this reaction, the SSIA coupling bands (returning to Chapter 2 notation) are given by:

JAB:j’j = )‘krevAt and JBAJJ = }\kforAt
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Examining these coupling bands, it is clear that as the kinetics of the reaction increase, the coupling
bands increase in value. Therefore, one would expect the efficiency of the SSIA algorithm to de-

crease as the kinetics of the reaction increases.

Table 5 compares the performance of the three algorithms for various rate constants. It is clear
that kinetic rate constants do not affect the time for convergence for SNIA and FCA. However, SSIA
takes more outer iterations as the kinetics of the reaction increases. Therefore, the time for conver-

gence for SSIA is greatly affected.

Table 5: Performance of the algorithms over a range of kinetic rate constants

Rate FCA SSIA SNIA
Constants [Cpytime | #Outer |CPUtimeper |#Outer |CPU time
kf°’=_ li‘"e" per time step | Iterations |time step Iterations |per time step
(day™) (seconds) (seconds) (seconds)
1 3.6 1 2.4 3 2.7
1x10! |35 2 4.6 3 2.9
1x102 |3.7 3 7.2 3 2.8
1x10°  |3.6 7 16.8 3 2.9
1x10* |3.5 37 85.1 3 2.9
1x10° |3.6 120 312 3 2.8
1x10° 3.6 - no convergence |3 2.9

Figure 14 shows these trends graphically. Table 5 and Figure 14 indicate that the kinetics of
the reaction has no effect on FCA and SNIA. There is no effect because these methods include all
of the reaction cross derivatives when solving the equation set- On the other hand, the SSIA coupling
bands become increasingly important as the rate constants increase. Therefore, SSIA’s approxima-
tion of neglecting the coupling bands becomes worse as the rate constants increase in value. For
SSIA, the time spent in the solver per outer iteration is not dependent on the kinetics of the reaction.
However, the number of outer iterations greatly increases for fast kinetic reactions. Therefore, the

amount of time for convergence greatly increases with the kinetics of the reaction.

This test problems brings into question SSIA’s ability to model an equilibrium reaction. Table 5
shows that kinetic constants higher than 100 day~ ! result in relatively slow convergence for SSIA.

However, if kinetic constants 100 day~! are sufficiently fast enough to simulate local equilibrium
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Figure 14: Benchmarking test of reacting species

for this problem, SSIA would still be an acceptable scheme to model both equilibrium and kinetic

reactions. For this reaction, Valocchi (1985) found that the local equilibrium assumption is valid

when;

K BE = 100 - 24)
where the dimensionless quantity, keyAx/u, is a dimensionless rate parameter also known as the
Damkéhler number. For this simulation, u = 0.01 meters/day and Ax = 0.0001 meters. Therefore,
-krev should be greater than 10,000 day~! for local equilibrium conditions to be simulated at each
spatial node. Table 5 shows that for a keey = 10,000 day~!, SSIA requires 312 outer iterations to
converge. Upon convergence, equilibrium conditions are simulated at each spatial node. However,
SSIA is clearly an impractical solution technique for simulating equilibrium reactions and is only

an efficient algorithm for simulating slow kinetic reactions.
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3.3.3 The effect of varying the Courant Number and Grid Peclet Number

Unlike SSIA which neglects coupling bands which contain reaction terms, SNIA neglects cou-
pling bands which describe the advective and dispersive transport between a node and it’s neighbors.
Therefére, the number of SNIA outer iterations should be sensitive to transport parameters rather
than chemical kinetic parameters. For the one-dimensional caSe, transport parameters such as the
Courant number (uAt/Ax) and grid Peclet number (uAx/D) are the primary factors which control

the number of outer iterations necessary for SNIA to achieve convergence.

The nonreactive transport problem shown in Section 3.3.1 was rerun. Two sets of simulations
were run in which Ax was kept constant. In the first set, the Courant number was varied by adjusting
the pore water velocity. The grid Peclet number was kept constant by adjusting the hydrodynamic
dispersion coefficient. In the second set, the grid Peclet number was varied while keeping the Cou-
rant number constant. The “rules of thumb” to guarantee an accurate numerical solution for one-di-
mensional transport require that the Courant number be less than 1 and the grid Peclet number less
than 2 (Pinder and Gray, 1977). Therefore, the parameters in the tables were kept within these limits.

Table 6 shows the first set of trials and Table 7 shows the second set.

Table 6: Performance of the algorithms over a range of Courant numbers (grid Peclet No. = 1)

Courant FCA SSIA SNIA

No. CPUtime |#Outer |CPUtimeper |#Outer |CPU time
per time step | Iterations | time step Iterations |per time step
(seconds) (seconds) (seconds)

0.001 |15.1 1 5.6 1 49

0.01 14.0 1 5.8 2 10.8

0.1 14.8 1 5.6 4 20.6

05 - 144 1 5.8 7 35.7

1 14.7 1 5.6 11 58.3
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Table 7: Performance of the algorithms over a range of grid Peclet numbers (Courant No. = 0.1)

Grid FCA SSIA SNIA

Peclet CPU time #Quter |CPUtimeper {#Quter |CPU time

No. per time step | Iterations | time step Iterations |per time step
(seconds) {seconds) (seconds)

0.1 14.8 1 5.6 11 57.2

1 14.7 1 5.6 4 20.6

2 14.4 1 5.6 2 11.2

As expected, FCA is not sensitive to changes in the Courant number and grid Peclet number
as long as Ax is kept constant. Since this is a conservative transport problem, no conclusions can
be drawn from the performance on SSIA. Recall that SSIA requires only one outer iteration to con-
verge for conservative transport problems. SNIA requires additional outer iterations for conver-
gence as the Courant number increases and as the grid Peclet number decreases. Higher Courant
numbers result in a solute front which moves faster from node to node. The SNIA coupling bands
become more significant as the solute front speed increases. The grid Peclet number controls the
spreading of the front. Low grid Peclet numbers signify a more disperse solute front. The solute
front will spread faster throughout the domain for a lower grid Peclet number, again making the

SNIA coupling bands more significant.

The limits on the grid Peclet number and Courant number bring into question SNIA’s flexibility.
SNIA is very sensitive to these transport parameters. For th;se one-dimensional simulations, it has
been shown that SNIA performs efficiently if the grid Peclet number and Courant number are chosen
carefully. However, SNIA has not been examined for two or three dimensional problems. Since
FEHMN is a finite element code capable modeling three dimensional geometries, the main bands
shown in Figure 1 would contain 27 bands for the three-dimensional case rather than 3 bands for
the one-dimensional case. Therefore, SNIA would neglect 26 coupling bands for a three-dimension-
al simulation rather than the 2 coupling bands neglected in the one-dimensional case. Restrictions
on the Courant number and grid Peclet number will most certainly be more stringent for two and

three dimensional problems.
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Incorporating SNIA into FEHMN would simply not be practical. FEHMN is capable of using
three-dimensional unstructured grids and variable time stcppihg. Therefore, the Courant and grid
Peclet numbers are not easily controlled over the entire domain or the over the entire simulation time
for an FEHMN simulation. SNIA simply does not have the nc%;@ssary robustness to be able to model

a wide variety of FEHMN reactive transport problems.

3.4 Combinations of FCA/SSIA and SSIA/SNIA

The benchmarking tests showed that each solution algorithm has certain advantages and disad-
vantages. FCA’s performance was independent of the transport or reaction parameters of the prob-
lem. However, FCA has a practical limit of modeling four chemical species simultaneously. Simu-
lations with more than four chemical species require a large amount of memory and CPU time.
Specifically, a Sparc 20 Workstation is not capable of modeling more than four species simulta-
neously for simulations with more than one thousand nodes. SSIA is extremely efficient for simu-
lating multi-species, slow kinetic reactions but cannot simulate fast kinetic or equilibrium reactijons.
SNIA is better than FCA and SSIA for a problem with relatively slow transport and fast reactions.
However, SNIA is extremely sensitive to the grid Peclet number and Courant number. This section
describes the construction of two mixed algorithms which attempt to take advantage of each method
by combining the FCA, SSIA, and SNIA techniques. In particular, combinations of SSIA-SNIA
and FCA-SSIA were constructed.

3.4.1 SSTA-SNIA

SSIA and SNIA attempt to solve several reduced equation sets to cut down on the time spent
in the linear equation solver in exchange for performing additional outer iterations. Both algorithms
neglect coupling bands in order to solve the reduced equation sets, SSIA neglecting the reaction cou-
pling among species at a given node and SNIA neglecting the transport coupling between adjacent
nodes. SSIA-SNIA alternates between solving the SNIA and SSIA equation sets. The goal of
SSTA-SNIA is to allow for SSIA to accurately describe the transport processes and for SNIA to accu-
rately solve for the reaction processes. In doing so, the objective is to reduce the number of outer

iterations necessary for convergence while still only solving reduced equation sets. Combining the
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two algorithms is quite straightforward in that the same outer iteration loop can be used to check for

overall convergence equation set. The schematic of SSIA and SNIA éan be merged to generate the

schematic for SSIA-SNIA (Figure 15).

Specify Intial Condtions

Take a Time Step

A4

Alternate between

v 1 SNIA and SSIA K

Perform one outer iteration of Perform one outer iteration of
SSIA (See Figure 5). SNIA (See Figure 9).

I l

Perform another
QOuter Iteration

Is Ibporm! in—lili?/ No

Proceed to

Next Time

Step

M1 More Time Steps
LYes | to be Taken? —

Done
Figure 15: Combination of SSIA and SNIA
The reactive transport problem discussed in Section 3.3.2 is also a good test for the SSIA-SNIA

algorithm. Recall that as the kinetics of the reaction increases SSIA begins to tak¢ additional outer
iterations for convergence (see Table 5). SNIA was not affected by the kinetics of the reaction but
only by the Courant and Grid Peclet numbers. For this problem the Courant number was 0.1 and

the Grid Peclet Number was 1. The problem was rerun to study the performance of SSIA-SNIA.

Table 8 shows that combining the two algorithms results in an overall performance which is

between the performance of SSIA and SNIA. The SSIA-SNIA algorithm never outperforms SNIA
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for this example. Athigher kinetics, the SSIA iterations hinder the SNIA iterations from converging
upon a solution. The purpose of SSIA-SNIA was to achieve convergence with fewer outer iterations
than SSIA or SNIA. Unfortunately, alternating methods does not achieve this goal. Therefore, the

SSIA-SNIA method is not an effective scheme for FEHMN . )

Table 8: Evaluation of the mixed SSIA-SNIA algorithm over a range of kinetic rate constants

Rate SSTA SNIA SSIA-SNIA
Constants {4 Oueer | CPU time per |#Outer |CPU time #Outer |CPU time
Ktor=Krev | [terations | time step Iterations |per time step |Iterations |per time step
(day™) (seconds) (seconds) (seconds)

1 1 24 3 2.7 1 2.7

1x10%2 |3 7.2 3 2.8 3 5.7

1x103 |7 16.8 3 2.9 5 8.9

1x10% |37 85.1 3 2.9 6 9.6

1x10° — no convergence |3 2.9 6 9.6

3.4.2 FCA-SSIA

FCA-SSIA was designed to take advantage of the computationally efficient properties of FCA
and SSTA. The mixed algorithm allows the user the place highly coupled species into groupings.
For example, all species in an equilibrium reaction are strongly coupled to one another and should
be placed in a grouping. In FCA-SSIA, all species in a particular grouping are solved by the FCA
method. Since each grouping is not strongly coupled to the other groupings, an outer loop using the
SSIA method is used to solve the entire equation set by sequentially looping through each grouping.
For FCA-SSIA to work properly, the user must choose grouf)ings which are not strongly coupled

to one another. Figure 16 shows the basic schematic of the FCA-SSIA algorithm.

The performance of the FCA-SSIA algorithm can be shown by studying the following set of

reversible reactions in series:
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Figure 16: Combination of FCA and SSIA
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In this example, reactions 1, 3 and 4 are equilibrium reactions and reaction 2 is a kinetic reaction.
Since reaction 2 is kine"ticaliy limited, it is the rate limiting step in the reaction sequence. The equi-
librium reactions are simulated by using rate constants that are high enough to achieve local equilib-
rium throughout the domain. Recall that a kinetic formulation has been chosen to model both equi-
librium and kinetic reactions. Each reaction is of the same form as the reaction shown in Section
3.3.2. Therefore, forward and reverse rate constants greater than 1x10% day~! will result in equilibri-
um conditions. For this set of simulations, the rate constants for reaction 2 are varied to study the
behavior of the FCA-SSIA algorithm (the rate constants for reactions 1, 3 and 4 are kept constant

at 10,000 day! to ensure equilibrium conditions for this reaction).

In this test problem, FCA-SSIA will be compared to the FCA algorithm. SSIA cannot be used

in the comparison since reactions 1, 3 and 4 are equilibrium reactions which cannot be handled by
SSIA. To use the FCA-SSIA algorithm, the user must place. the strongly coupled chemical species
into groupings. Since reaction 2 is the rate limiting step of—the reaction sequence, the two logical
groupings for this problem are: A-B, and C-D-E. The kinetic parameters for reaction 2 will control
the number of outer iterations required by FCA-SSIA to attain convergence. Table 9 shows the

compares the performance of FCA-SSIA against FCA for this reaction sequence.
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Table 9: Evaluation of the mixed FCA-SSIA algorithm over a range of kinetic rate constants

Rate Constants FCA-SSIA FCA

kforz=krev2 #Outer |CPUtime - |CPU time per

(day™) Iterations |per time step |time step

(seconds) {seconds) -

1x10-3 1 37.3 52.3

1x102 1 37.3 50.5

1x1071 3 102.6 55.2

1x100 5 169.0 53.7

1x10! 17 632.4 55.5

1x102 137  14986.8 57.3

This problem illustrates that FCA-SSIA groupings take advantage of the properties of FCA and
SSIA. FCA—SSIA outperforms FCA for kinetic rate constants lower than 1x10-2 day~!. For these
trials, the groupings are weakly coupled. However, as the kinetic constants are increased, the group-
ing become strongly coupled and FCA-SSIA requires additional outer iterations making it ineffi-
cient. Itis clear that if the chemical species in the system can be placed into groupings which are
weakly coupled to one another, then the FCA-SSIA algorithm will be much more efficient than the
FCA algorithm. If no weakly coupled groupings can be found, FCA-SSIA can still be used to solve
for all species simultaneously by simply placing all the species together into one grouping. Under
these conditions, FCA-SSIA reduces down to the FCA algorithm.

The FCA-SSIA algorithm is better than either the FCA or the SSIA algorithm. In the worst of
circumstances FCA-SSIA will reduce down to the FCA algorithm. In many circumstances in which

appropriate groupings can be found, FCA-SSIA will out perform the FCA algorithm.

3.4.3 The Most Efficient Algorithm for FEHMN
Except for FCA-SSIA, each of the algorithms described in the preceding sections have major
limitations which make them inappropriate algorithms for the FEHMN reactive transport model.
In summary, the major limitations to these schemes are: |
1. SSIA cannot model equilibrium reactions.

2. SNIA is too sensitive to the grid Peclet number and the Courant number.
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3. SSIA-SNIA proved to be less efficient than SSIA or SNIA.
4. FCA-SSIA can always be reduced down to FCA.

FCA-SSIA proved to be a flexible algorithm since it is capable of modeling mixed kinetic-equi-
librium problems. In addition, FCA-SSIA has no theoretical upper limit on the number of species
which can be modeled. However, FCA-SSIA does have a major practical limitation. The major
limitation of FCA-SSIA is that numerous strongly coupled species (i.e. numerous equilibrium reac-
tions) cannot be modeled simultaneously since the SSIA portion of the algorithm cannot be used to
simplify the problem. For these problems, the FCA portion of the algorithm must solve the ‘entire
transport and chemical system simultaneously resulting in computationally inefficient behavior.
However, this scenario should rarely occur since FEHMN will be used to model relatively small
chemical systems (i.e. less than 10 species). The only way to avoid this computationally inefficient
behavior would be to completely restructure FEHMN so that a mixed kinetic-equilibrium formula-

tion would be used rather than fully kinetic formulation.

The FCA-SSIA algorithm should be adequate for the FEHMN reactive transport model. The
chemical processes that are to be studied by FEHMN will be very specific. Information from large
geochemical codes will be distilled down to 10 or fewer species which can then be modeled by
FEHMN. The reactions modeled by FEHMN will be used to refine transport calculations which
assumed an equivalent K4 to simulate retardation effects. Yeh and Tripathi (1991) showed that it
may be inappropriate to use an equivalent K to simulate retardation effects due to nonlinear effects
caused by the chemical equations. Therefore, simplifying assumptions using an equivalent Kq
should be supported by performing more rigorous chemical transport calculations. The FCA-SSIA
algorithm should be sufficient for these small chemical simulations (e.g. less than 10 species)

coupled to large scale heat and flow simulations ( 10,000 spatial node problems).

48




4. MODIFICATION AND VERIFICATION OF THE
FEHMN REACTIVE TRANSPORT MODEL

4.1 Overview

In this chapter, the FCA-SSIA algorithm will be incorpordted into FEHMN. In a’ddition, atech-
nique will be developed to allow the user to simulate an equilibfium reaction by entering the equilib-
rium constant for the reaction. This method will prevent the user from having to manually adjust
the kinetic rate constants for each problem in which equilibrium conditions are to be simulated. The

last sections of this chapter consider verification of the FEHMN reactive transport model.

4.2 Incorporating FCA-SSIA into FEHMN

The one-dimensional transport codes discussed in Chapter 3 were developed to mimic the reac-
tion module of FEHMN while leaving out many of the other features which were not necessary in
evaluating the performance of the reactive transport model. The first version of the FEHMN reac-
tion module used the SSIA algorithm. Chapter 3 showed that the SSIA algorithm cannot model equi-
librium reactions. After evaluating the algorithms in Chapter 3, the FCA-SSIA algorithm was

shown to be the best solution scheme for FEHMN.

Incorporating the FCA-SSIA algorithm to FEHMN is a straightforward procedure. Figure 17
shows a very general schematic of how the FEHMN reactive transport model utilizes the FEHMN
flow solution. Figure 18 shows the schematic for the FEHMN reactive transport model after FCA-

SSIA algorithm has been incorporated.

Take a Flow Time Step: solve for heat &
mass variables (e.g. liquid velocity, &
gas velocity, temperature, and saturation)

v

Take specified number of solute time
steps with the Reactive Transport Model
(see Figure 18).

Proceed to next flow time step

Figure 17: Schematic of the flow and transport models.
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Enter FEHMN solute transport module after
taking performing a heat & mass solution

{ BEGIN CSOLVE |
|

>{_ Take zit'ime step "
[ BEGINCNSWER | -
r 1
‘Work on grouping q
]
( l Work on species i in current grouping q K
i
I Differentiate species i with respect to species j l/l\
[no} lw.1=J'7 ), yes
THERMC: compute sourcefsink, and
storage terms for each node
]
REACT: compute dr; /6C; CONEQ1: compute advection and dispersion
for each node terms for each node
REACT: compute reaction rate terms r; and
drj /3C; for each node
ss1A{FCAT 7
j=j+1
v =
i=i+]
i [yes]
GENCON: solve for concentrations of species
in current grouping using GZSOLVE Perform another
= Newton iteration
L @erged on Newton So@ 1" no ll =1
[yes]
IPAL q=q+1
Perform another outer
: T _—— iteration
{ < s overall residual small? > {no |
¥

| END CI;ISWEM
—< More time steps to be taken?>

$
| END CSOLVE: Exit FEHMN solute transport module|
Figure 18: The FEHMN solute transport module
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4.3 Simulating Equilibrium Reactions with a Kinetic Formulation

Some of the geochemical reactions required in the FEHMN simulations of Yucca Mountain are
often modeled with the local equilibrium assumption because the transport time scale is slower than
the reaction time scale. Since FEHMN uses a fully kinetic formulation, an automatic method was
developed to select kinetic rate constants high enough to simulélte equilibrium reactions. With this
technique, the user enters equilibrium coefficients and the code calculates the appropria{e kinetic

rate constants to model equilibrium conditions.

- The method uses the kinetic view of equilibrium in order to simulate an equilibrium reaction.

FEHMN can model reactions of the general form:

. kf
21Cy + 2,C; + o + anCn 2 2041Cimys + 8s2Cnsz + o + 81Ca (25)

The rate of disappearance of C; by the forward reaction is:

=me 1a) ;
I forward = T ai{kfor E[Cj]q } (26)

and the rate of formation of C; by the reverse reaction is:

I=n G
e reverse = ai{krcv H [Cj]q } (27)

i=m+1

At equilibrium there is no net formation of Cj, hence:

=0 (28)

I'C“forward + rCLrevcrse
Equations (26)-(28) can be used to develop an equation which can be used to check for equilibrium

conditions. For simplicity two ratios can be defined:

Krev
e
j=m+1
ST
E{C;]
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When the system is in equilibrium, Q=Keq. Similarly, if Q # Keg, the system is not in equilibrium

(Levenspiel, 1972).

When a user specifies an equilibrium reaction in FEHMN, the reaction should be at equilibrium
at every node in the domain at each time step. For each equilibrium reaction in the system, the fol-

lowing expression is used to check for equilibrium conditions at each time step for node point p:

maX( rxn)p < Ytol

(29
where ym,=1——Q—- 9)

Keq
The variable ¢ is a specified tolerance (e.g. 1.0x1074). As Q approaches Kcq, the reaction ap-

proaches equilibrium and max(Yxn)p approaches zero. If equation (29) is not satisfied within the
specified tolerance, the following relationships can be used to estimate the increased rate constants
necessary for equilibrium conditions:

{1 Q) Koo 30
kfor,ncw (1 Keq) rate_factor ( )

The variable rate_factor is an acceleration parameter entered by the user which controls the increase
in the rate constants. A value of rate_factor of 1x10~3 was found to result in equilibrium conditions
for most problems. The adjusted forward rate constant, k¢ new 1S used to calculate the reverse rate

constant, Krey new using equation (31).

krev,new = kfIcz;:cw = (31)

The adjusted rate constants given by equations (30) and (31) estimate the increase in the rate

constants required to achieve equilibrium. However, these equations do not necessarily guarantee
equilibrium. Therefore, an equilibrium iteration is introduced into FEHMN. For each equilibrium
reaction, FEHMN reads in a temperature dependent equilibrium constant. Since FEHMN simula-
tions of Yucca Mountain geochemical transport are often nonisothermal, the equilibrium constant
can vary spatially by over an order of magnitude. FEHMN calculates kg, and kyey such that kor/Krev
= Keq at all locations. In the subroutine REACT, equation (29) is used to flag nodes for which fhe

kinetic constants do not meet the equilibrium criteria throughout the domain. Before taking another
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time step, the subroutine CSOLVE checks the equilibrium flag for each equilibrium reaction to de-
termine whether the rate constants must be increased in order to achieve equilibrium conditions.
If the rate constants require adjustment, FEHMN again solves the equation set with the adjusted rate

constants. This sequence comprises an FEHMN equilibrium iteration.

Redoing all of the calculations starting with CSOLVE is very computer intensive. However,
equilibrium iterations are often only necessary for the first few time steps. For the first time step,
the rate constants are started at values which are usually high enough to guarantee equilibrium for
many problems. At each new time step, the rate constants from the previous time steps are used.
Equation (29) is again used to flag nodes for which the kinetic constants do not meet the equilibrium
criteria throughout the domain. For many FEHMN simulations, the rate constants are adjusted at
the first time step and these rate constants are usually high enough to maintain equilibrium condi-
tions for the rest of the simulation. For these simulations, very few equilibrium iterations are neces-
sary. However simulations exist in which transport and flow time scales are time variant requiring

equilibrium iterations at many time steps throughout the simulation.

4.4 Verification of the FEHMN Reactive Transport Model

FEHMN has been thoroughly tested against analytical solutions and against other well-docu-
mented porous flow codes. These verification runs are documented in the V&V Report (Dash,
1995b) for the FEHMN Application and the V&V Plan and Procedures for the FEHMN Application
(Dash, 1995a). After the new reactive transport was added to FEHMN, these verification runs were
rerun to confirm that FEHMN was still working properly after the numerous code revisions. The -
verification runs presented in this section were used check the new reactive features of FEHMN.
First, the test problems used to validate the one-dimensional algorithms of Chapter 3 were used to
check that the FCA-SSIA algorithm was properly incorporated into FEHMN. As expected, the
FEHMN reactive transport model behaved similarly to the FCA-SSIA algorithm for these test prob-
lems. These test problems are not presented in this thesis to prevent unnecessary repetition. The
next three sections will confirm that FEHMN is working properly for more complicated and rea1i§tic

reaction sequences.
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4.4.1 Kinetic Nonlinear Adsorption and the Langmuir Isotherm

The Langmuir isotherm commonly used to model adSorption data from a column experiment
or tracer test. By definition, an isotherm assumes that the adsorbed phase concentration is in equilib-
rium with the aqueous phase concentration. Frequently column studies are kinetically limited be-
cause the aqueous concentration and the adsorbent concentration do not have time to reach equilibri-
um over the duration of the study. For these cases, a kinetic Langmuir model (bilinear adsorption

model) is often used to model data (Fetter, 1993).

In this test problem, a nonlinear kinetic Langmuir adsorption reaction is introduced into a oné-
dimensional transport simulation. The kinetic Langmuir model should reduce down to the Lang-
muir isotherm if the kinetics of the reaction are much faster than the time scale of transport. The
kinetic Langmuir model can be incorporated into the FEHMN reactive transport model. In addition,
FEHMN has a special option for modeling the Langmuir isotherm. These models will be compared

for kinetic rate constants with different magnitudes.

The following reaction is modeled:

k
for
C, + sorbent;:_‘__‘A Sy
kI'CV
The rate law is given by:
aC
‘gtl = kforcl(smax - Sl) = krevS; (32)

where Sj is the adsorbed concentration, C; is the aqueous phase concentration, S,y is the maximum
possible adsorbed concentration. This example introduces a solid-aqueous phase reaction. All solid
phase concentrations in FEHMN are expressed in moles per kilogram of rock and aqueous phase
concentrations are in moles per kilogram of water. Equation (32) simplifies to the Langmuir iso-
therm for fast reaction kinetics (Fetter, 1993). As k;, — « and krey — %, the Langmuir isotherm

results and the dissolved phase can be related to the adsorbed phase by the simple expression: |
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_ KegSunCy 33
(Sl)cq - 1+ chcl ( )

where Keq = kfor/krev and (S1)eq is the equilibrium concentration of the adsorbed phase. The kinetic
formulation is compared to the Langmuir isotherm for different values of ko, and Krey. To make a
valid comparison, the Langmuir isotherm parameters must be rélated to the rate constants. FEHMN
rqquires two input parameters to mode] a Langmuir isotherm. The parameters, aj and ay, fit into the

model as follows:

__aG 34

where a1 = Kior*Smax/Krev and a2 = Kgor/krev. Table 10 shows the parameters used that are shared by

the kinetic and equilibrium simulations.

Table 10: Parameters common to the kinetic and equilibrium Langmuir model simulations

reactor length 1m

reactor cross sectional area |1 m?

of, fluid density 1000 kg/m3

Ob, bulk rock density 2500 kg/m3

0, porosity 0.3

u, pore water velocity 0.075 m/s

o, dispersivity 0.033m

At , maximum time step 0.1s

Ax, mesh spacing 0.005 m
simulation time 100 s N
mean residence time, T 133s

Cjij, inlet concentration 1.0 mole/kg H,O

A Spax of 0.12 mole/ kg rock was chosen for the kinetic simulations. Three kinetic simulations
were carried out with rate constants of varying magnitudes while fixing the ratio between the rate

constants. Table 11 shows the parameters used in the four trials.
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Table 11: Kinetic and equilibrium paiamcters

Trial |Reaction Parameters

{1 equilibrium |a; = 0.12 kg HyO/kg rock , ap = 1 kg HoO/ mole
2 kinetic Kfor = 1x1076 kg HpO/(mole*s), Krey = 1x1076 571
3 kinetic kfor = 1x107 kg HyO/(mole*s), kreyf;.lx10"5 s~1
4 kinetic kfor = 1x10~% kg HoO/(mole*s), Keey = 1x10~4 5~1

Asexpected, as the magnitude of the kinetic rate constants increase, the kinetic Langmuir model
approaches the Langmuir isotherm. The breakthrough curves of the exit concentration are shown

in Figure 19.
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Figure 19: Comparison of kinetic and equilibrium Langmuir models
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This test problem confirms that FEHMN correctly models a nonlinear adsorption reaction. The
next problem will examine a more complicated reaction sequence to prove that the FEHMN reactive

transport model is working properly for multiple kinetic and equilibrium reactions.

-

4.4.2 Multiple Complexation, Kinetic Adsorption and Surface Exchange Reactions

This example shows areal scenario for which the FEHMN reactive transport model can be used
to gain insight into a complex problem. Over the past 40 years soils and groundwaters at DOE facili-
ties have been contaminated by complex mixtures of radioactive, inorganic and organic chemical
wastes. Cobalt, as 99Co, is an important radioactive contaminant found migrating in the subsurface
at several DOE facilities. The migration of %°Co has been greater than anticipated due to complexa-
tion of divalent cobalt with organic ligands such as EDTA. EDTA is a decontaminating agent also
found in the subsurface at these DOE facilities. Experimental studies have shown that the complexa-
tion of EDTA with cobalt greatly increases the mobility of the cobalt. Specifically, complexed co-
balt does not adsorb as much as free metal cobalt thereby allowing for greater migration of the toxic
metal. The subsurface chemistry of these DOE sites is complex making prediction of contaminant

migration difficult (Szecsody et al., 1994).

At Pacific Northwest Laboratories, several column experiments on CoEDTA transport through
iron-oxide coded sand have been performed. Valocchi et al. (1994) have developed a two-dimen-
sional multicomponent reactive transport code, PDREACT, which has been used to model the physi-
cal and chemical processes of the column experiments. The most important reactions targeted for

initial stady were:

Co(aq) + EDTA(aq) = CoEDTA(aq)  ;Keq; = 1x10!8 kg/mole
Fe(aq) + EDTA(aq) —— FeEDTA(agq)  ; Keqy = 6.31x10%* kg/mole
k

b { .
Co(ag) —= Co(s) Kor3 = 2.7x1074 571, Kpoy3 = 5.48x1075 571
I‘CV3
Keop, . —
CoEDTA(aq) & CoEDTA(s)  ; Kfora = 2.7x107* 571, kpey3 = 5.21x107# 571 .

rev,
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ke
FeEDTA(aq) =— TFeEDTA(s)  ; Kiors =2.7x1074 57, keeys = 6.5x 10 571

revs

‘CoEDTACGs) + FC(OH):),(S)E%-} Co(s) + FeEDTA(s)  ; kfors = 1.3125 mole/(kg*s)

In the reactive system, EDTA(aq) complexes with both Fe(aq) and Co(aq). Each of the aqueous com-
ponents also adsorb to the iron oxide sand which fills the column. A kinetic linear model] was chosen
to model the adsorption. An irreversible surface exchange reaction between the solid species in the
system also takeé place as the contaminants migrate through the column. All of these reactions
coupled to the transport result in complex nonlinear behavior which cannot be accurately modeled

with a simple effective Kg.

PDREACT was thoroughly tested and matched against experimental data for this reactive sys-
tem. Specifically, PDREACT showed reasonable agreement with the experimentally determined
breakthrough curve. The agreement was only possible if the sorption kinetics were kinetically con-
trolled and if the surface exchange reaction proceeds at a much faster rate than that estimated exper-
imentally at Pacific Northwest Laboratory. These column experiments are an example of when the
local equilibrium assumption cannot be assumed for all of the reactions. The FEHMN reactive trans-
port model is also capable modeling this reactive transport problem. Since this simulation contains
eight species (Fe(OH)3(s) exists in abundance and is not modeled), the species must be grouped to
obtain optimum computational efficiency. Many possible sets of group are possible to obtain effi-
cient convergence. However, the best set of groups for this problem is given by:

Group 1: Co(aq), EDTA(aq), CoEDTA(aq)
Group 2: Fe(aq), EDTA(aq), FeEDTA(aq)
Group 3: Co(s)
Group 4: CoEDTAC(s)
Group 5: FeEDTA(s)
In this example, the species in the first two equilibrium reactions are placed in groups 1 and 2 since

these species are strongly coupled to one another. Groups 3, 4 and 5 simply contain the remaining
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species in the simulation since all species must be present in at least one group. This set of groups
results in efficient convergence since the strongly coupled species are grouped together and the
groups are weakly coupled to one another. Specifically, FEHMN took an average of 2-3 outer itera-

tions per time step and only required 8 equilibrium iterations ét__the first time step for this simulation.

The comparison of the two codes provides a check of FEHMN’s reactive transport mode] for
a complicatéd realistic system. FEHMN and PDREACT solve the reactive transport problem using
completely different methods. FEHMN uses a fully kinetic formulation to model relatively small
chemical systems. FEHMN is intended for large scale simulations in which coupled processes such
as heat, unsaturated and saturated flow, and geochemical processes are important. On the other hand,
PDREACT contains a mixed kinetic-equilibrium formulation. PDREACT was developed to model

complex chemical problems under isothermal and saturated flow conditions.

The key assumption made by PDREACT which is not made by FEHMN is that chemical sys-
tems in porous media can be represented accurately by assuming that all aqueous-phase reactions
go to equilibrium, while all solid-phase reactions are kinetically controlled. This assumption is com-
- monly made in reactive transport codes and is widely accepted to be valid (Lasaga and Steefel,
1994). FEHMN does not make this assumption for practical reasons. Specifically, it would have
required major software restructuring to introduce a mixed kinetic-equilibrium formulation into
FEHMN (see discussion in Section 2.2 for further discussion on the choice of formulation). In sum-
mary, the different approaches taken in the codes are a result of the different applications for which

they are to be used.

A one-dimensional FEHMN simulation was constructed to match the results obtained by
PDREACT. The simulation involved a pulse containing a mixture of ®0Co, Fe, and EDTA which
was injected for 76 hours. The parameters used by both FEHMN and PDREACT are provided in

Table 12.
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Table 12: FEHMN paraxheters used in PDREACT comparison problem

reactor length 10 m

reactor cross sectional area |1 m?

o, fluid density 1000 kg/m3

Ob, bulk rock density 1500 kg/m?3 h
0, porosity 0.4 -
u, pore water velocity 1 m/hr

oy, dispersivity 0.05m

At , maximum time step 0.1 hr

Ax, mesh spacing 0.1m

simulation time 150 hr :

Co inlet concentration 3.1623x10~ moles’kg H,0
Fe inlet concentration 1x10710 moles/kg HyO
EDTA inlet concentration  |3.1623x10~ moles/kg H,0

Figure 20 shows the time history of both the aqueous and solid species concentrations at the exit
of the column. FEHMN and PDREACT produce nearly identical results. Both codes accurately
mode] the complex chemistry that takes place in this reactive system. The aqueous species time his-
tory plot shows that Co(aq) and EDTA(aq) complex to form CoEDTA(aq). Although Fe(aq) is in-
jected into the column at an extremely low concentration, FeEDTA(aq) shows up at significant con-
centrations due to the surface exchange reaction and the desorption of FEEDTA(s) to FeEDTA (aqg).
Co(aq) is retarded by the complex chemistry but begins to build as the simulation progresses show-

ing that the Co(aq) is effectively mobilized.

Figure 20 shows that the solid species all display complex behavior also. The surface exchange
reaction results in Co(s) adsorbing in significant quantities. Co(s) then desorbs resulting in the mo-
bile aqueous cobalt, Co(aq). In summary, the EDTA is shown to greatly increase the mobility of
Co(aq), CoEDTA(aq) and FeEDTA(aq). The increase mobility could not be accurately predicted

without accounting for the complex chemistry which takes place in the column.

The fact that both codes produce nearly identical results for this problem is a very promising
result. This result proves that the fully kinetic formulation used by FEHMN reduces down to the

mixed equilibrium-kinetic formulation used by PDREACT for a complicated chemical system.
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Figure 20: Time history of species at column outlet (x=10 m)
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4.4.3 Sharp Dissolution Front

The analytical solution for the movement of a sharp moving, equilibrium mineral front has been
used to verify numerical simulations of precipitation-dissolution reactions in the past (e.g. Enges-
gaard, 1991, Schweich and Sardin, 1985, Walsh et al., 1984). Ip this c;xample, the analytical solution
is used to check FEHMN’’s ability to model a precipitation—dissiﬂution reaction. The analytical solu-
tion neglects dispersion and is given by:

Umineral — uAgiaq (35)
ACaq + .G—ACSOHd

where u is the pore water velocity, upy, is the velocity of the mineral front, gy, is the bulk rock density,
8 is the porosity, AC; is the change in solid concentration across the front and ACyq is the change
in aqueous concentration across the front. Figure 21 illustrates the mineral front described by the
analytical solution. Referring to the figure, concentrations to the right of the front represent loca-
tions in the column where mineral is still present, whereas concentrations preceding the front repre-

sent locations in the column where the mineral has dissolved away.
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Figure 21: Aqueous and mineral front profiles modeled by the analytical solution

A one dimensional numerical simulation was constructed to simulate the dissolution of calcite
(CaCOs(s)). In this example, Ca?*, CO32~ and CaCOj are the only species in the system. The col-

umn initially is in equilibrium with calcite. Inlet concentrations were [Ca2*] = [CO327] = 0 moles/
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kg water. A FEHMN simulation was configured in which the dispersivity was set to a very low value.

The parameters used in the simulation are shown in Table 13.

Table 13: FEHMN parameters used to model dissolution front

reactor length 0.50 m
reactor cross sectional area |1 m?

or, fluid density 1000 kg/m>
Qb, bulk rock density 1800 kg/m?

0, porosity 0.32

u, pore water velocity 9.37x10% m/s
0y, dispersivity 0.001 m

At , maximum time step 100 s

Ax, mesh spacing 1.151x103 m
simulation time 1x10° s

Ca?* initial concentration

6.26x107° moles/kg H,0O

CO32~ initial concentration

6.26x107° moles/kg H,0

CaCOs initial concentration

2x1075 moles/kg rock

Ca?* inlet concentration

0.0 moles’kg H,O

CO32~ inlet concentration

0.0 moles’kg H,O

Figure 22 shows that the analytical solution and FEHMN compare closely in predicting the

location of the mineral front. FEHMN’s numerical solutions exhibit a very slight spreading of the
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Figure 22: Comparison of FEHMN and the analytical solution
' for the position of the dissolved mineral front
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front due to the small, but nonnegligible dispersivity. Nonetheless, the position of the front agrees

with the predicted value with a maximum error of 2.4%.

4.5 Summary
The test problems presented in this Chapter ensure that {_h_e solution algorithm of FEHMN is

capable of modeling multiple kinetic and equilibrium reactions for one-dimensional saturated flow
problems. Additional reactive test pfoblems are documented in the V&V Report for the FEHMN
Application (Dash, 1995b) and the V&V Plan and Procedures for the FEHMN Application (Dash,
1995a). Although numerous verification tests have been conducted, FEHMN is simply too complex
for complete and unarhbiguous verification and validation. However, the reacﬁve transport model
appears to be working properly over a wide variety of problems. Therefore, the next logical step
is to begin using the enhanced reaction cépabilities‘ of FEHMN to refine the Los Alamos National
Laboratory’s site scale model of the Yucca Mountain Site. In Chapter 5, LANL’s site scale model

of Yucca Mountain is used to model unsaturated zone 14C transport at Yucca Mountain.
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5. APPLICATION OF THE FEHMN REACTION MODEL
TO TRANSPORT STUDIES AT YUCCA MOUNTAIN

5.1_ Overview

Scientists at Los Alamos National Laboratory (LANL) have been developing hydrolbo gic flow
and transport models of the Yucca Mountain site using FEHMN. The FEHMN solute transport mod-
el has been used to conduct simulations of the transport of environmental isotopes to provide data
to calibrate the hydrologic flow models. Simulations of 14C and 36Cl transport have already been
conducted with LANL. Transport studies for these species have been carried out using a simple half
life model to simulate decay. However, more complex chemical interactions with 14C and 36Cl have
not yet been examined. The enhancements of the FEHMN reactive transport model now make it
possible to include more complicated réaction sequences into the transport models for }4C and 36CL.
By treating the chemical system more rigorously, more representative predictions of transport
should be possible. In addition, the equivalent K4 approach of modeling solute transport used in

previous transport studies can be buttressed by these more rigorous calculations.

A good introductory application for the reactive transport model is to model the significant reac-

tions which influence the transport of C at Yucca Mountain. The following sections will detail

~ the steps taken to develop a chemical model for 14C. Sections 5.2.1-5.2.3 develop and verify that
the multiphase carbonate chemistry is working properly in FEHMN for a batch system. Next, Sec-
tion 5.3.1 models one-dimensional transport of CO,(g) in an unsaturated column to examine the

effect of temperature and pH on CO,(g) retardation. The chaptef concludes with Sections

5.3.2-5.3.3 which discuss the incorporation of the 14C chemical equations into LANL’s site scale

model.

5.2 Carbonate Chemistry Batch Simulations

To simulate the most basic reactions in the carbonate system, the FEHMN reaction module is

given the following reactions:
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COx(g) < COy(aq); Ky(T)
H,CO; — H* + HCOj; K, (T)
HCO; ——= H" +CO0%~; K, 5(T)

where Ky, K, 1 and K, 5 are functions of temperature. Thesg-.polynomial functions were obtained
from Plummer et al. (1982) and can be directly incorporated into FEHMN. In thé above reactions,

the equilibrium between aqueous and vapor carbon dioxide is given by Henry’s law. In addition,

H,CO4 and CO,(aq) are combined into a hypothetical species H,CO3 to represent the sum of

H,CO; andCO,(aq). This is a common technique since H,CO3; and CO,(aq) are difficult to distin-

guish between in analytical procedures (Snoeyink'and Jenkins, 1980). The equilibrium reactions

for these reactions are given by:

_ [CO,(aq)] 16)
Ku(D = oo, @) %)
_ [H*]HCO;] 37
%D = 007 7
CO2-1[H+
KD = i (3)

More complexity can be added to the reaction sequence if other chemical reactions are to be consid-

ered. For example, Section 5.2.3 includes the calcite dissolution reaction into the model.

A common assumption in 14C studies is to assume that the concentrations of 14C are proportion-
al to those of 12C (Ross et al., 1992). Therefore, equations (36)—(38) hold for 14C. In addition,
activity coefficients are assumed to be unity for these simulations. This assumption holds for solu-
tions with low jonic strength. Ionic strength data of Yucca Mountain groundwater is hecessary to

check this assumption. For these preliminary studies, the assumption will be made for convenience.
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5.2.1 Carbonate System Chemistry in a Closed System

IANAAAAAAAAN
H,COip)  H*
/.

HCO; —— C03~

Figure 23: Conceptual model of carbonate chemistry in a closed system

Before any work began on incorporating the 14C transport into the site scale model, several tests
on FEHMN’s carbonate chemistry calculations need to be performed. In this section, we verify that

the aqueous carbonate species are partitioning correctly for a given Cp o, ata fixed pH in a closed

system (Figure 23). CT,C03 is is defined by equation (39).

Crco, = [H,CO3] + [HCOF] + [CO7] (39)
By fixing Cr ¢, the constraint that the system be in equilibrium with a partial pressure of carbon
dioxide has been removed. Therefore, equation (36) is not necessary in this simulation. By eliminat-
ing this equation, the problem is reduced to a one phase batch simulation and H,CO3 can be treated
as a nonvolatile diprotic acid. This reaction sequence contains three chemical equations (37)-(39)
and four chemical species (H*, H,CO3, HCO3 and CO2™). Fixing the pH fully constrains the

chemical system.

In order to check the partitioning of the aqueous carbonate species, a simple four node problem
with no flow or transport was formulated. Equations (37) and (38) were entered into the reaction
module of FEHMN as equilibrium reactions. The simulation started with initial concentrations of
[H,CO3}=105 M ,[HCO3 1=0 M and [CO%~]=0 M. FEHMN then calculates the equilibrium con-
centrations of each species. The concentrations of the carbonate species fora [Cpco,] = 10 ~Sat
25 °C for a closed system are documented by Snoeyink and Jenkins (1980). Table 14 shows that the

FEHMN results are identical to those presented by Snoeyink and Jenkins. The simulation results

were also checked by back substituting the species concentrations into equations (37) and (38) con-
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firming that these equations were satisfied. This simulation confirmed that the aqueous carbonate

species are partitioning correctly.

Table 14: Comparison of FEHMN and Snoeyink & Jenkins for a closed carbonate system

pH=5.7 H,CO3™ HCOs;~ COs~
Snoeyink & Jenkins |10~ 10757 . 10-104
FEHMN 10—51 10—5.7 10—.] 0.4
pH=7.6 H,CO5™ HCO5~ CO32-
Snoeyink & Jenkins | 10704 105 10-7-6
FEHMN 1064 . 105 1076
pH=9.0 H2CO3* HCO5~ CO32_
Snoeyink & Jenkins | 107 10-° 10763
FEHMN 10-7:6 10°3 1063

5.2.2 Carbonate System Chemistry in an Open System

CO4(g)

H,COxg) g+

7/

HCO; = €0}~

Figure 24: Conceptual model of carbonate chemistry in an open system

The next logical step is to simulate carbonate system chemistry in an air-water system
(Figure 24). The two phase model capability for FEHMN is necessary for this simulation. Equation
(36) is used along with equations (37) and (38) to model an open system. Equation (36) is used to

control the concentration of CO,(aq) in equilibrium with CO,(g). One additional variable, COx(g),

is added to the system but equation (36) is also added. Therefore, the problem is again fully
constrained by fixing pH and the concentration CO,(g). Fixing the concentration COo(g) is equiva-
lent to fixing the partial pressure of CO, which is an accurate assumption in an open system. As

in the previous example, a simple four node problem with no flow and transport was constructed.

Light et al. (1989) define the gas-liquid distribution coefficient for inorganic carbon to be: -




X [H,CO3] + [HCOz ] + [CO%-|
D = '
[Coz<g>]

AtapH of 7 and a temperature of 50 °C, they report a Kp = 3 m? air/m3 water. FEHMN should obtain

(40)

this same distribution coefficient under these conditions. To simulate this problem with FEHMN,
a fixed concentration of CO5(g) is input along with a fixed H* concentration of 1x10~7 moles/ kg
water. The FEHMN reaction module then calculates the appropriate equilibrium concentrations.
The concentrations of each species are output by FEHMN. Substituting the FEHMN species con-
centrations into equation (40) results in a Kp of 3.1, proving that FEHMN is properly simulating

this air-water system.

5.2.3 Carbonate System Chemistry in an Open Batch System with Calcite

COx(g)

NV%AMA/\/WW\MN\/W

H,CO3(g) H+

/A

HCO; —— CO}~ + Ca?* == CaCOs(s)

Figure 25: Conceptual model of an open system in equilibrium with
calcite

Minerals play an important role in controlling pH and alkalinity in most geochemical systems.
Calcite is present in Yucca Mountain core samples from the_unsaturated zone. In addition, calcite
precipitation-dissolution kinetics are fast relative to the groundwater flow suggesting that equilibri-
um saturation with calcite is a reasonable assumption in the unsaturated zone of Yucca Mountain
(Ross, 1992, Meijer, 1993). In this simulation, FEHMN will be used to model -and open system
in equilibrium with calcite (Figure 25). In order to simulate saturation with respect to calcite, the
solubility product expression for calcite must be included in the reaction sequence. The expression
is given by:

CaCO4(s) T==Ca?* + CO2~; Kp(T)

This reaction results in the following solubility product:
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KSP(T) = [Ca?*][CO}7] (41)

Adding equation (41) to the reaction sequence introduces Ca* as a variable. It should be noted that
solid species dissolution is a zero order process, solid species’f'a‘ctivity is unity, and that CaCO3 is not
an additional Véﬂ'able in the system. Therefore, fixing the ﬁartial pressure of CO,(g) and the pH
would appear to constrain the chemical system with five equations and five unknowns. However,
equation (39) no longer holds for the chemical system. The total amount of carbonate in the system
is now affected by the presence of calcite. Therefore, one more constraint must be added to the sys-
tem. The electroneutrality expression can be used to fully constrain the chemical system. The ex-

pression is given by:

2[CaZ*] + [H*] = [HCO7] + 2[CO2"] + [OH"] (42)

For the range of partial pressure of COy(g) found in groundwater, equation (42) simplifies to:

2[Ca?+] =~ [HCO5] (43)

since all the other species exist at low concentrations.

In these simulations, for a fixed concentration of COy(g) (equivalent to a fixed partial pressure
of CO,) , FEHMN calculates the pH of the system along with the concentrations of each species in
equilibrium with calcite. MINTEQ2A (Allison, 1991), a well known batch geochemical equilibri-
um code, was used verify that the FEHMN simulated this chemical system properly. MINTEQA2
is capable of modeling activity corrections unlike FEHMN. Therefore, the ionic strength for the
MINTEQAZ2 simulations was held at zero. In addition, the exact same equilibrinm coefficients were

used in both codes. Therefore, both codes should produce nearly identical results.

Figure 26 shows simulated dissolved species concentrations as a function of the partial pressure
of carbon dioxide. MINTEQAZ2 was run for the two partial pressure values indicated in Figure 26.
As seen in Figure 26 and Table 15, FEHMN and MINTEQAZ2 produced nearly identical results. The
slight discrepancies are most likely due to numerical errors. FEHMN uses a fully kinetic formula-

tion with high rate constants to simulate the equilibrium behavior, whereas, MINTEQA2 is strictly
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an equilibrium code. This problem shows that FEHMN correctly models the geochemistry of the

system when a mineral is present.

107

Concentration (moles/ kg water)
o
&

107

10"

10~

10’10 i i i
107 10 10 107 107 107" 10° 10°

Partial pressure of CO; (bars)

Figure 26: Simulated FEHMN and MINTEQ2A concentrations in equilibrium
with calcite as a function of the partial pressure of carbon dioxide

Table 15: Comparison of FEHMN and MINTEQA2 for an open system in equilibrium with calcite

S

partial pressure H,CO3* HCO5_ CO3?%- Ca2* pH
COx(g) = 102 bars | (molality) (molality) (molality) (molality)
MINTEQA2 3.32x104  |2.76x10°3  [2.42x107¢  [1.38x10°3 |7.27
 |FEHMN 3.32x104  [2.76x10-3 [2.41x10¢ [1.38x103 |7.27
MINTEQA2 3.32x10¢  |5.87x104 |[1.09x10°> |3.07x10% |8.60
FEHMN 332x10%  |5.87x10% |1.09x10° |3.07x10* |8.60

"FEHMN can now be used to check the assumption that the Yucca Mountain groundwater is in
equilibrium with calcite. The partial pressure of COy(g) was measured in gas samples at intervals
to a depth of 1200 feet in Yucca Mountain (Yang, 1994). A characteristic value from these measure-
ments is 0.0011 bars. FEHMN indicates that the pH of a water in equilibrium with calcite at this
partial pressure is about 8.0. Measurements of unsaturated zone water near Rainier Mesa (near Yuc-

ca Mountain) yield pH values between 7 and 8 (Ross, 1992). Benson et al.(1983) found pH values
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between 7 and 8.0 in the Yucca Mountain area. Values of pH below 8 indicate that either the water
is not in equilibrium with calcite throughout the mountain or the partial pressure of carbon dioxide
must vary from about 0.5 to 00075 bars throughout the mountain. Another possible explanation for

the range of pH values could be due to measurement errors.

At this time the calcite reaction cannot be used to gain additional insight about the carbonate
chemistry at Yucca Mountain since the spatial distributions of calcite and other minerals are not
known. Therefore, for these preliminary studies, the chemical properties are assumed homogeneous.
The calicte reaction could still be included, making the assumption that the Yucca Mountain ground-
water is in equilibrium with calcite throughout the mountain. The partial pressure of CO5(g) could
then be varied in each simulation to obtain a characteristic pH. However, since spatial distributions
are not known, the pH of the simulations can be simply fixed numerically to a characteristic value
instead of using the calcite reaction to buffer the pH. This will reduce the number of species from

six to four thereby reducing the computational effort required to solve the problem.

For the preliminary runs discussed in the next section, equations (36)—(38) will be used to simu-
late the carbonate chemistry. Therefore, the simulations that will be conducted in this thesis are not
more chemically sophisticated than those that use an equivalent K4 (equation (40)). It is clear that
that an equivalent K4 approach is the computationally better option if only equations (36)—(38) are
necessary to accurately model the carbonate chemistry at Yucca Mountain. However, an equivalent
K4 model cannot be further refined as more geochemical information becomes available. In the fu-
ture more information on the mineral assemblage will allow for spatial distributions of various min-
erals to be incorporated into the site scale model. In addition, aqueous phase chemical reactions oth-
er thén equations (36)—(38) may also be shown to be important in describing carbonate chemistry
at Yucca Mountain. As additional experimental data becomes available, more chemically sophisti-
cated models for the carbonate chemistry at Yucca Mountain can be simulated using the FEHMN
reactive transport model. Equations (36)—(38) can be thought of as the base” reactions for the car-
bonate model. These “base” reactions will serve to confirm that the reactive transport model is work-

ing properly when used in conjunction with the site scale model.
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5.3 Carbonate Chemistry Transport Simulations

The previous simulations tested the carbonate chemistry in a batch system. Section 5.3.1 will
test the carbonate chemistry by simulating CO5(g) transport in a one-dimensional unsaturated col-
umn. Sections 5.3.2-5.3.3 will discuss the 14C transport simulations with the Los Alamos National

Laboratory site scale model.

. 5.3.1 One Dimensional CO,(g) Transport Simulations

The next set of tests will study CO,(g) transport in a one dimensional transport simulation. It
is assumed that a constant concentration of CO,(g) is injected with the incoming air into the unsatu-
rated column. The air is mobile and the water is stagnant in these simulationé. Therefore, as CO2(g)
dissolves in the water, it will be retarded by the immobile water. The amount of CO(g) that can
dissolve in water is governed by equations (36)-(38), and therefore these chemical equations de-
scribe CO,(g) retardation for this problem. It is clear from the chemical equations that the [H*] con-
centration is a factor in the amount of CO5(g) retardation. Also, these reactions are controlled by
the temperature dependent equilibrium constants. Therefore, the amount of retardation is also de-
pendent on temperature. In these simulations, the‘effect of pH and temperature on CO,(g) transport

will be studied. The parameters used in the one dimensional simulations are given in Table 16.

Table 16: Parameters for the one-dimensional CO(g) transport simulations

reactor length Im _
o, fluid density 1000 kg/m? —
0, porosity 0.3

s, liquid saturation 0.2

u, pore air velocity 0.01 m/day

oy, dispersivity 0.033m

At , maximum time step 2 days

Ax, mesh spacing 0.05m

simulation time 1000 days

C;, inlet concentration 1.0 mole CO2(g) /kg air

In order to analyze these simulations, it is useful to define an effective retardation factor givén

by:
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R=1+Kd[1is} | | (44)

where s is the liquid saturation, R is the effective retardation factor and K is the gas-liquid distribu-
tion coefficient defined in equation (40). For this chemical system, the effective retardation factor

can be used to check that FEHMN is correctly modeling the fall chemical system.

Figure 27 shows that carbon retardation increases with pH. As pH increases, equations
(35)-(37) produce more bicarbonate and carbonate allowing for more CO;(g) to be dissolved into
the immobile water. The controliing reaction for COy(g) retardation is equation (37). As the pH
increases above K, j (K, 1~10793 at 25 °C), the retardation increases significantly. The previous
section showed that Yucca Mountain pH can vary between 7 and 8.0. Therefore, the retardation of

COx(g) is very sensitive to pH over the pH range of interest to the Yucca Mountain project.

As expected, the results of these simulations with the full chemical system matched the simula-
tions with the effective retardation factor for all of the cases. Figure 27 shows that the effective re-
tardation factor given in equation (44) matches the full chemical model for the pH=8.0 case. The

additional cases were not shown on Figure 27 to prevent cluttering of the graph.

Figure 28 shows that temperature also affects CO(g) retardation. COx(g) retardation decreases
with temperature as consequence of the temperature dependent equilibrium constants. For the l4c
environmental isotope transport calculations that will be performed in the next section, the tempera-
ture gradient only varies from 18-28 °C. Therefore, the effects on retardation due to temperature
will appear to be minimal for these environmental isotope transport calculations. However, the next
sections will show that temperature effects are an important factor in the two dimensional Yucca
Mountéin hydrological flow model. Temperature and pressure gradicnts are the driving forces for

air movement throughout the unsaturated zone.

5.3.2 Background on 14C Transport Studies

Prior to above ground nuclear testing in 1953, 14C in the atmosphere was produced solely from
nitrogen transmutation caused by the bombardment of cosmic rays (Freeze and Cherry, 1979). Any

14C in the atmosphere is quickly oxidized to form carbon dioxide and thereby enters the carbonate
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Figure 27: The effect of pH on 4CO,(g) retardation (for these simulations,
temperature = 25°C and liquid saturation = 0.2)
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Figure 28: The effect of temperature on 4CO,(g) breakthrough curves (for

0.2)

these simulations, pH=7 and liquid saturation
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system. 14C js radioactive and decays with a half life of 5730 years (CRC, 1981). Two types of 14C
transport are of interest to the Yucca Mountain Mountain Project: natural 14C background studies
and 14C repository breach simulations. The study conducted in this thesis will only be concerned

with conducting studies on natural 4C background concentrations.

Natural 14C background concentrations can in principal be used to date infiltrating groundwater
at different depths throughout the mountain since the only source of 14C is from the surface of the
mountain. The half life of 5730 years, allows for apparent ages between ~1,000 to 40,000 years
to be measured accurately. Apparent groundwater ages should provide insight on the hydrologic
flow and the time scales of transport at Yucca Mountain. In the unsaturated zone, gas phase transport
of 14C could greatly affect the concentration of 14C present in the water, thereby affecting the 14C

apparent age.

The initial focus of the 14C studies is to aid in calibrating the hydrological flow model of the
site. 14C, 36C], and tritium data have been collected from numerous boreholes at Yucca Mountain.
These radioisotopes are being used in attempts to identify the travel time of precipitating water from
tthe ground surface to points where the measurements are taken. Since the surface is the only source
of the radioisotopes, the radiometric analysis yields the apparent ages of the water. Apparent ages
of sampled water based on 36Cl analysis are about two orders of magnitude older than the 14C appar-
ent ages (Liu etal., 1995). One possible explanation for the discrepancy between 14C and 36Cl ages
is that they transport via different mechanisms. 14C transports in both the vaﬁor and aqueous phase,
whereas, 36C] travels solely in the aqueous phase. Thus one hypothesis is that 14C travels more
quickly in the gas phase than in the aqueous phase and gives water samples a younger age signature

via partitioning of CO, from the gas to the aqueous phase.

To examine the possibility of 14C transport in the gas phase, we take a hypothetical case in which
the vapor and liquid fluxes are about equal in magnitude. The transport velocity of the vapor solute

would be greater than the liquid velocity by a factor of:
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Q15 ‘
OvSv ‘ (45)

where Qj is the liquid density, s; is the liquid saturation, Qy is the vapor density and sy is the vapor
saturation. Uhder most conditions the ratio between the densities is the major factor in determining
the difference between the vapor and liquid velocities. Specifically, the ratio of liquid density to
vapor density is approximately a factor of 1000, whereas , the ratio of saturations is typically closer
to unity. Therefore, under typical unsaturated zone conditions, the gas velocity is about three orders
of magnitude faster than the liquid velocity. Therefore, the 3°Cl ages may be more representative
of the groundwater age, whereas, 14C ages may reflect the transport time of a species that partitions
between the air and water in the unsaturated zone of the mountain. In order to study this hypothesis,

FEHMN will be used to model two-dimensional, multi-phase, temperature dependent 14C transport.

Transport studies of 14C that have already been conducted within the Yucca Mountain Project
take an “equivalent K4” approach to simulate the partitioning of 14C between the liquid and vapor
phases (Ross, 1992). The equivalent K4 is a function of pH and temperature and is often obtained
from using equilibrium geochemical codes to simulate the complex chemistry (equation (40)). In
addition !4C retardation is a strong function of saturation (equation (;14)). This approach does not
directly couple the chemistry to the heat and unsaturated flow problem but rather applies average
time-invariant values of pH, temperature and saturation throughout the simulation. The enhance-
ments to FEHMN now make it possible to simulate the carbonate system reactions directly. The
chemistry calculations can be directly coupled to the thermohydrologic calculations. More repre-
sentative predictions of 14C transport should be possible due to the more rigorous treatment of the

chemical and physical system (Robinson, 1995).

5.3.3 Two Dimensional 14C Transport Simulations with LANL?s Site Scale Model

The previous sections confirmed that the carbonate system chemistry is being simulated cor-
rectly by the FEHMN reactive transport model. The carbonate chemistry can now be incorporated
with confidence into ILANL's site scale model. The primary goal of this investigation is to examine

the hypothesis that gas phase transport of 14C is an important process at Yucca Mountain. The effect
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of fracture permeability, pH, and diffusion on 1#C ages and retardation will be studied. These param-
eters were chosen because: 1) they can significantly affect 14C transport 2) they are not known with

a great deal of accuracy.

A typical simulation consists of a two step process. First FEHMN is used to establish a steady
state hydrologic flow field across a two dimensional cross section of the mountain. The second step
is to conduct the 14C transport simulation using the steady state flow field. An East-West cross sec-
tion taken from the three dimensional site scale model was used for thesé simulations.. This cross
section represents an area that cuts through the repository horizon and was generated from Sandia’s
CALMA Model (Robinson, 1995). The cross section shown in Figure 29 is discretized into an
approximately 1000 node unstructured grid which distinguishes between 11 stratigraphic units. The
landform is composed of alternating layers of interbedded and welded tuffs that have been uplifted,
tilted, fractured and faulted (Liu et al., 1995). The units labeled with ”w” are welded tuffs and the
units labeled with ’n” are nonwelded tuffs. Further details on the stratigraphy used in these simula-
tions can be found in Three-Dimensional Model of Reference Thermal/Mechanical and Hydrologi-

cal Stratigraphy at Yucca Mountain (Ortiz et al., 1985).

5.3.3.1 The FEHMN Hydrological Flow Model

Model Description

The flow field is solved by FEHMN using coupled flow and energy transport equations. The
processes which are simulated include: two phase (water and air/water vapor) flow, heat and mass
transfer with pressure and temperature dependent fluid and gas properties. The document, Model
and Methods Summary for the FEHMN Application, details these processes (Zyvoloski et al.,
1995). A great deal of work has gone into constructing LANL’s site scale model. The purpose of
this thesis is not to discuss the intricacies of the model but to discuss the chemical transport modeling.
Therefore, only a brief summary of the assumptions and processes simulated by the flow mode] will
be discussed. Sources for more information will be provided which discuss each individual process

in greater detail.
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The '4C simulations use LANL’s Equivalent Continuum Model (ECM) instead of LANL’s more
complex Dual Permeability Model (DPM). The ECM uses a weighted average between fracture and
matrix permeability to calculate the saturated permeability, whereas, the DPM models both fracture
and rock matrix permeabilities separately. The ECM assumes lo_cal thermodynamic equilibrium be-
tween the rock matrix and fractures. Specifically, the rock and fractures are in capillary pressure
equilibrium. Where applicablé, the model provides a major simplification in modeling fluid and
heat flow in fractured porous media. The literature has indicated that gas flow tends to transport
primarily through fractures and that advective and diffusive transport between the fractures and the

matrix is rapid enough to use the ECM for these 14C simulations (Pruess et al., 1990).

Unsaturated zone flow is modeled through the use of relative permeabilities. Relative perme-

ability can be thought of as an “effective” unsaturated zone permeability and is defined as:
k; = rksy (46)

where kj is the relative permeability, and kg, is the saturated permeability. The variable rj results
from the van Genuchten equations and is used to calculate the relative permeability as a function
saturation (van Genuchten, 1980). Measurements for the van Genuchten relative perméability as

a function of stratigraphy were obtained and were used in LANL’s Equivalent Continuum Model.

The temperature boundary conditions as well as the permeability and porosity of the geological
units were obtained from Total-System Performance Assessment for Yucca Mountain-SNL Second
Iteration (Wilson et al., 1993). The temperature along the water table (bottom boundary) is set to
27 °C and the surface temperature was set using equétions which account for topographic effects
and the surface air temperature. Further details are given by Wilson et al. (1993). FEHMN is then
used to calculate a steady state temperature field throughout the cross section. The permeability and
porosity are highly variable among the geologic units. The general trend is that the nonwelded tuffs
have higher matrix permeabilities and porosities but lower fracture permeabilities and porosities

than the welded tuffs.
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The pressure boundary conditions were obtained from Numerical Studies of Rock-Gas Flow
in Yucca Mountain (Ross, 1992). The water table and the left and right boundaries are no flow
boundaries for the gas and liquid flow. The gas pressure at the top boundary is set using equations
derived by Ross et al. (1992). The equations use linear vaﬂafion as a function of elevation and the
ideal gas law to solve for pressure as a function of elevation. The temperature and pressure gradients

are the predominant factors in driving the gas flow through the mountain.

Establishing a pseudo-steady state flow field
The FEHMN transport simulations conducted in this thesis use a steady state flow field. A two

step process is used to obtain the pseudo-steady state flow field necessary for the 14C transport simu-
lations. First, FEHMN performs an isothermal flow simulation with constant infiltration to obtain
a saturation field representative of the Yucca Mountain cross section. In the second step, the infiltra-
tion is turned off and the temperature and pressure boundary conditions are imposed on the flow
field. Recall that the goal of these simulations was to study the effect of gas flow on !4C transport,
therefore the water flow (infiltration) is turned off. This second step is used to achieve a steady state
temperature and gas velocity field. It should be noted that the saturation field never attains steady
state once the gas flow begins. The gas flow acts to slowly dry out the mountain and slowly changes
the saturation field obtéined from the first step. However, this is a very slow process and the satura-
tion field can be considered in pseudo-steady state condition. The flow field can now be used to

conduct the 14C transport studies.

The key assumptions made to obtain the steady state ﬂ-ow field are:
1. The water infiltration rate is assumed to be equal to the rate of evaporation (no
infiltration, no evaporation). Specifically, the capillary forces at each spatial loca—
tion are balanced by the gravitational forces.
2. The boundary conditions are not time variant. Daily and seasonal changes in

temperature or barometric pressure are not taken into account.
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Figure 30 shows the saturation, temperature, and velocity flow fields from an example simula-
tion. The saturation field clearly reflects the parameters in Athé various geologic units. Most notably,
the nonwelded tuff units such as the PTn and and CHn’s (Figure 29) are much lower in saturation
than the welded tuffs. This is an expected trend since the matrix permeabilities of the nonwelded
units are much higher than the welded tuff. These high matrix peﬁneabilities allowthe PTnand CHn
to transmit more water flow but less gas flow than the other units. Since only gas ﬂowé in these simu-
lations, the nonwelded tuffs act as barriers to transport. The stratigraphic effects of the PTn can also
be seen in the gas velocity field. The velocity field indicates that gas flow enters the valleys and exits
out of the peaks due the pressure and temperature gradients which form due to the elevation change.
The PTn acts as a barrier to the gas flow. The velocity field appears to be conceptually correct and
corresponds well to the velocity fields given in Numerical Studies of Rock-Gas Flow in Yucca
Mountain (Ross, 1992). The temperature gradient is straightforward in that it varies linearly with
elevation with the exception of the topographic effects near the mountain surface. The steady state

conditions of the hydrological flow model are next used to simulate !“C transport.

5.3.3.2 The FEHMN Reactive Transport Model

Model Description

Afer establishing the steady state flow field, FEHMN is used to conduct the 4C transport stud-

ies. FEHMN’s Reactive Transport Model is used to perform a sens'itivity analysis to determine the

effect of fracture permeability, pH, and CO, molecular diffusion coefficient on !4C retardation and
14C age distributions. These preliminary calculations will be used to refine the gas flow in the hydro-

logical model.

The steady state flow field is used to model *4C transport and decay. Equations (36)—(38) are
used to define the !*C chemical system. Each species with 4C (H}*CO;(aq) , H'*COj3 (aq),

14 CO%“(aq), 14 CO,(g) ) decays with a half life of 5730 years. A normalized concentration of
14CO(g) is injected with the gas flow entering from the surface of the mountain. Since the only

source of 14C is from the surface, the amount of 4C that has decayed at each spatial location in the

85

_———_,,




2Ry

86




e e

e water/ volume void

emperature Profile




{5taEs

88




mesh can be used to calculate the 14C age. Specifically, the 14C age can be calculated by (Freeze

and Cherry, 1979):

A.
age = — E(%S_)bg(l—;) (47)

where age is the '4C apparent age in years, T is the halfIife of 14C (5730 years), A; is the concentra-

tion of 14C at a spatial location and A, is the surface concentration of !4C.

In these simulations, the pH, CO»(g) dispersion and the fracture permeability will be varied to
determine their effect on 4C retardation. The pH is an important factor for the reasons discussed
in Section 5.3.1. Specifically, the pH of the solution determines the amount of CO,(g) that can dis-
solve into the immobile water. A reasonable pH range for Yucca Mountain is from 7 to 8 (Ross et
al., 1992; Benson et al.,1983). Since water is stagnant in these simulations, molecular diffusion is
the only mechanism that can transpbrt 14C into regions where there is no gas flow. The free molecu-
lar diffusion coefficient of CO5(g) into air is 1.39x107° m%/s (CRC, 1981). A diffusion coefficient
between 1x107 m?/s to 1x10~6 m?/s will be used in the sensitivity analysis to account for tortuosity
effects that occur in porous media. The fracture permeability in the relative permeability model is
a difficult parameter to determine experimentally. The fracture permeability varies a great deal be-
tween sfratigraphic units. A characteristic set of high and low fracture permeabilities will be used
in the sensitivity analysis. Specifically, the high set will contain fracture permeabilities that are one

order of magnitude higher than the low permeabilities for each stratigraphic unit.

Example HC Transport Simulation

The results of a typical '4C transport run can be postprocessed to obtain 4C air-liquid distribu-
tion coefficients (K 4), retardation factors and ages as a function of spatial position (Figure 31). The
simulation results shown in Figure 31 use a pH of 8, a CO,(g) diffusion coefficient of 1x10~5 m%s,

and a characteristic set of fracture permeabilities.

The K4 values vary from 79 to 87 m? air/ m3 water. Recall from equation (40), that K4 is a func-
tion of pH and temperature. Since pH is constant spatially in the simulation, the variation in Kg is

due solely to the temperature field.
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The map of effective retardation factors is a function of saturation and K4 (recall K4is a function
of temperaturé and pH). Equétion (44) illustrates that the retardation factor is much more sernisitive
to saturation than K for the range of Kq and saturation in this simulation. Therefore, the map of
retardation factors greatly reflects the saturation profile shown in Figure 30. Low saturation regions
exhibit little CO,(g) retardation since there is not enough water {6 retard the COxy(g). Regions with
an extremely large retardation factor due to large saturations represent locations with very little gas
flow. Any gas which does enter these locations is tied up by the large amount of water in these re-

gions.

The map of 14C ages reflects the CO,(g) velocity field. Young !4C ages result at locations close
to where fresh 14C in the form of CO4( g) enters from the surface. The oldest 14C ages result in areas
where 14C can only transport via diffusion (e.g. locations with little or no gas flow). AtapH of 8.0,

the age ranges from 0 to 36000 years.

5.3.3.3 14C Transport Simulations: Sensitivity Analysis
In this section, the pH, CO,(g) dispersion and the fracture permeability will be varied to deter-

mine their effect on '4C retardation. In each simulation, one parameter will be varied while holding

the other parameters constant in order to isolate the processes which control 14C retardation.

PH sensitivity

The first set of simulations was constructed to determine the effect of pH on 14C retardation.

Simulations of pH = 7, 7.5 and 8 were run. These pH values reflect measurements taken at Yucca

Mountain. A molecular diffusion coefficient of 1x10~3 m?/s and the set of high fracture permeabili-
ties were used in the simulations. Figure 32 shows that as pH increases, the CO,(g) retardation also
incre;ases. This result confirms the trend shown in the one-dimensional simulations of Section 5.3.1.
The age distributions all follow the same pattern in that the young ages are near the valleys on the
surface where fresh 1%CO; enters the system, whereas, the old ages exist at locations where the
CO4(g) can only transport through diffusion. These simulations show that for a set of high fracture
permeability and high CO(g) diffusion, pH values less than 7.5 allow for relatively rapid 14C vapor

transport. Values of pH which are higher than 7.5 result in significant 14C retardation.
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Figure 32: The effect of pH on '*C apparent ages (high fracture permeabilities,
CO(g) diffusion coefficient = 1x10~> m?/s)
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| Measurements of pH as a function of spatial position at Yucca Mountain would be helpful in
further calibrating the 14C transport model. ‘Calcium concentration distributions could also be used
to generate a pH map by making the assumption that the water is in equilibrium with calcite. Ifcal-
cium concentrations are available along with measurements of COx(g) partial pressure, the Feactive
transport model could calculate pH by including the calcite soluf)‘ility product e}ipression (equation
(41)) into the chemical model.
CO;(g) diffusion sensitivity

COy(g) diffusion could be an important parameter which affects the modeling of CO(g) trans-

port. The free COz(g) diffusion coefficient into air is 1.39x10~> m?%/s (CRC, 1981). However, this
constant must be adjusted in porous media due to tortuosity effects. The tortuosity of the rocks at
Yucca Mountain is parameter with a large amount uncertainty associated with it. In these simula-
tions, the effect of varying CO,(g) diffusion is examined by performing simulations for a character-
istically high and low values of CO,(g) diffusion. Specifically, the diffusion coefficient was varied
from 1x10~5 m2/s to 1x10-6 m%/s. The simulations were run at a pH of 8.0 with a high set of fracture

permeabilities.

Figure 33 shows 1C age profiles for a high and low set of COy(g) diffusion. As the COx(g)
diffusion coefficient decreéses, older 14C ages result in the regions where there is little or no advec-

tive transport of CO2(g). For this reason, the low diffusion simulation results in much sharper age

contours. CO»(g) diffusion coefficient is most critical in modeling these regions in which there is

little of no advective transport of gas.

Fracture permeability sensitivity

The fracture permeability in the relative permeability model is a difficult parameter to deter-
mine experimentally. Therefore, substantial uncertainty is associated with this parameter. Two sim-
ulations were run using a high and low set of fracture permeabilities. The first simulation contains
high fracture permeability parameters, whereas the second set contained low fracture permeability
parameters. The values represent high and low estimates for the fracture permeability at Yucca

Mountain. In each simulation, the fracture permeability varies between each of the 11 stratigraphic
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Figure 33: The effect of the CO(g) diffusion coefficient on 4C apparent ages
(pH = 8.0, high fracture permeabilities)
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units. Each stratigraphic unit in the high fracture permeability set is one order of magnitude higher
than the corresponding unit in the lower set for these simulations. Both simulations used a CO(g)

diffusion coefficient of 1x10~5 m2/s and were run at a pH of 8.

Figure 34 shows the 14C age distributions for a high and low set of fracture permeabilities. Gas
flow transport primarily occurs in the fractures. Therefore, the high fracture permeability set trans-
ports CO,(g) much faster than in the low set. For this reason, the I4C ages are much younger in the
high permeability set. As with the pH studies, the pattern of the age profiles are similar with the only

difference being the magnitude of the ages.

The effect of fixing the 14C age at the water table

All of the previous simulations have assumed that the only source of C is from the COy(g)
entering with the gas flow at the surface of the mountain. This assumption was made since air flow
is typically much faster than groundwater flow in the unsaturated zone. However, the water below
the water table could travel much faster since saturated zone permeabilities are usually higher than
unsaturated zone permeabilities. In fact, water in the unsaturated zone of Yucca Mountain has been
measured to be extremely old at certain locations (~100,000 years according to the 36CI measure- |
ments), whereas, the saturated zone water rﬂay be much younger (~11,500 years according to 4C
ages) (Benson et al., 1983). Ages of 11,500 years are young enough for significant quéntitiés of
14C0Oy(g) to still be dissolved in the saturated zone water considering that the half life of 14C is 5730
years. Therefore, the water table can act as an additional sc;urce of 14C. This hypothesis is tested
in the next simulation by fixing the apparent age of 14C at the bottom boundary. The assumption
made by fixing the 14C apparent age at the bottom boundary is that 14C at the water table is in equilib-

rium with the CO»(g) immediately above the water table.

The pH=7 and pH=8 simulations were rerun with the additional constraint of fixing the '4C age
at the bottom boundary. The COo(g) diffusion coefficient was 1x10~ m%/s and the high set of frac-
ture permeabilities were used for both simulations. Figure 35 shows that adding this constraint re-

sults in much younger ages for the pH=7 and pH=8 simulations. Diffusion of COy(g) from direcﬂy
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Figure 34: The effect of fracture permeability on 14C apparent ages
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Figure 35: The effect of pH on !4C apparent ages while fixing the 14C age at the
water table to 11,500 years (high fracture permeabilities, CO(g) diffusion
coefficient = 1x10-5 m?%/s)
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above the water table acts to eliminate many of the old ages that occur in the previous simulations.

This simulation shows that the oldest apparent C ages no longer exist due to the additional source

of 14C.

Conclusions from the Sensitivity Analysis

These preliminary 14C transport simulations have sho@n that gas flow through the unsaturated
zone of Yucca Mountain can be a very significant factor in 4C transport. In fact, simulations with
no groundwater flow resulted in rzither complex-MC age distributions. Therefore, gas flow should
definitely be considered when interpreting 14C apparent ages. The only true conclusion which can
be reached from these runs is that the discrepancy between !4C and 36Cl ages can be explained by
gas transport through fractures at Yucca Mountain. However, more experimental data is required

to determine whether this hypothesis is correct.

5.4 Performance of the FEHMN Reactive Transport Model

The background !4C transport simulations proved to be a good introductory application for the
FEHMN reactive transport model. The simulations successfully used LANL’s site scale model to
model the retardation of CO5(g) due to chemical reactions. The simulations proved that gas flow
at Yucca Mountain could be a significant transport mechanism for 14C transport. However, many

of the important capabilities of FEHMN were not brought out in this example.

The coupling of the flow and transport solutions was not used in the problem. Specifically, for
natural 14C background simulations, the flow field is first allowed to reach steady state béfore the
transport simulations begin. The next application of the?eactive transport model, simulated 14C
transport from a repository breach, will take advantage of the coupling between the flow and trans-
port model. 14C transport from a breach of the potential repository can be simulated once a model
of the repository is incorporated into the finite element mesh. Gas flow should be even more impor-
tant for the repository calculations as heat from the repository gives rise to gas phase buoyant con-
vection. The heating of the repository will produce time variant processes in temperature, flow, and

saturation. These time variant processes will be directly coupled to the chemistry in these simula-

tions which should result in some very interesting coupled processes.
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The kinetic capability' of the reactive transport solution was also not used in the !4C natural
background studies. The reactive transport model was designed so that both equilibrium and kinetic
reactions could be modeled. However, the 14C simulations conducted in this thesis assumed that
all reactions were at local equilibrium since the natural background simulations are modeled for over
10,000 years. Therefore, kinetic limitations are not a considérétion for these long simulations. In
fact, this application could have been simulated more efficiently with a fully equilibrium formula-
tion. However, many other FEHMN simulations will require the kinetic capabilities of the code.
Kinetic limitations will play a role for the repository breach simulations. The time scales of transport
will be much shorter for these simulations and kinetic sorption and precipitation/dissolution reac-
tions may be necessary to describe the transport of contaminants such as 237Np. Therefore, the fuilly

kinetic formulation used by FEHMN should prove to be useful in the future.

The example problems shown in Chapter 4 and the application problems shown in Chapter 5
tested the FEHMN reactive transport capabilities for a wide variety of conditions. The model is ca-
pable of simulating multi-dimensional transport of small chemical systems (less than 10 species)
quite rigorously. The transport models of various radioisotopes and other contaminants can now be
refined using the model. Atthis time, the need for modeling more complex chemical systems (more

than 10 species) appears to be unnecessary.

‘Two options exist to increase the number of species that can be modeled by FEHMN. The first
option is to refine the solver technology used by FEHMN. Specifically, the limit of 10 species arises
due to CPU and memory limitations incurred by the linear equation solver GZSOLVE. Methods
may be available to simplify the chemical equation sets within the solver to increase the capacity
of the reactive transport model. An advantage of this option is that the code development would be
conducted within the solver thereby leaving the software structure of FEHMN intact. In addition,
the solver is also used for the flow equation sets. Therefore, better solver technology would increase
both FEHMN’’s flow and chemical transport capability. The second option is to incorporate a mixed
equilibrium-kinetic formulation into FEHMN. The mixed formulation would make use of the local

equilibrium assumption to reduce the number of coupled PDEs in the chemical equation set. As
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mentioned in Section 2.2, significant software restructuring would be necessary to incorporate Va
mixed formulation into FEHMN. An equilibrium speciation routine would need to be constructed
or borrowed from another code. In addition, the solute transport model of FEHMN would have to
be modified to transport chemical components rather than chemical species. However, the mixed
formulation would greatly increase the capability of the rea;tive transport model. Both options may

be explored in the future if additional geochemical modeling capability is nec‘ess'ary.
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