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Abstract 

Fixed point methods from nonlinear analysis are used to establish 

conditions under which the uniform complete controllability of linear 

time- varying systems is preserved under non- linear perturbations in the 

state dynamics and the zero- input uniform complete observability of 

linear time-varying systems is preserved under non- linear perturbation 

in the state dynamics and output read out map . Algorithms for computing 

the specific input to steer the perturbed systems from a given initial 

state to a given final state are also presented. 

As an application, a very specific emergency control of an inter-

connected power system is formulated as a steering problem and ~t is 

shown that this emergency control is indeed possible in finite time . 
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Section I. Introduction 

Controllability and observability are key issues in system theory. 

To be specific, consider a class of physical dynamical systems which are 

adequately modelled by ordinary differential equations with inputs u 

and a static read-out map h: more precisely, 

x = f(x,u,t) (I.l) 

y h (x, t) (I. 2) 

n. n 
with x E JR. n, u E JR. ~, y E JR. 

0
, t E JR.+ and f, h C0 functions; f 

satisfies Lipschitz and growth conditions so that solutions exist, are 

unique and can be extended to all of JR. • 
. + 

In optimal control, it is well 

known (see for e.g. [29]) that controllability has fundamental inter-

connections with the existence of optimal controls and their feedback 

synthesis. In process control, controllability and observability are 

crucial in the study of stabilizability of plants. On a more abstract 

level, it has been shown by Willems [23, 24] that if a dynamical system 

is completely controllable and observable in a suitably defined 

sense, input-output properties (notably, finite gainstability and 

dissipativeness) are reflected into properties of the state space 

description of the system (as global asymptotic stability in the sense 

of Lyapunov and the existence of a storage function, respectively). In 

the theory of diffusions arising from dynamical systems the question of the 

existence of a probability density for the diffusion, posed by Ito, have 

been answered by Elliott [9] in terms of controllability of the under-

lying dynamical system. Finally in what is perhaps the best known 

application of the concepts of complete controllability and observability 

we have Kalman's results (see for e.g. [4]) on the minimal realization 
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of linear dynamical systems. The reader will notice that we have been 

loose with our use of controllability and observability for a variety 

of related but not identical notions. Precise definitions of these for 

our purposes are relegated to Sections III and VIII. Also, fo~ the 

purposes of this paper the state space, input space and output space are 

all vector spaces. 

In view of their obvious importance there is a rather large 

literature on the controllability and observability of non-linear systems. 

We will not be exhaustive in briefly reviewing it, but will point out 

what we feel to be three approaches to this issue in the literature: 

(i) the differential geometric approach developed by Brockett [5], 

Hermann [12], Krener [14], Lobry [16], Sussmann and Jurdjevic [22]. The 

most comprehensive survey appears in a recent paper of Hermann and 

Krener [13]. 

(ii) the nonlinear analysis approach to null controllability (i.e. 

controllability to the origin) using classical Lyapunov theory and the 

more recently introduced theory of cone valued Lyapunov function. This 

approach has been developed among others by Chukwu [ 6] and, Sinha [ 20] . 

(iii) the global analysis approach to the zero-input observability 

of Marse-Smale dynamical systems, due toAeyels [1]; see also Aeyels and 

Elliott [2]. Some other work which does not fit under any of these 

headings are the paper on global (complete) observability of non-linear 

systems by Yamamoto and Sugiura [25] and the paper on global (complete) 

controllability of non-linear systems by Lukes [16]. 

The results as they stand in the differential geometric approach 

00 

have reached finalform for C systems with control u appearing linearly 

n n 
(i.e., with f (x, u, t) = f

1 
(x) + f 2 (x) u for suitably chosen f 1 : JR. -+ JR. 

nxn. n ~ oo and f
2 

: JR. -+ JR. , C functions). Implicit in the results is the 
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assumption of high ·differentiability. The results are of necessity local 

in nature and the caus~lity of physical dynamical systemsis lost in the 

formulation of the results. Further, the results are of an "existence " 

n~ture so tltat they do not explicity give controls for steering the 

system between preserib~d states. 

In the null controllability results using Lyapunov and cone valued 

Laypunov techniques,conditions are imposed on the non linearities of the 

state dynamics so as to make the domain of null controllability the 

entire state space. The results are rather restrictive in that they 

discuss only controllability to the origin. 

In the global analysis [1,2] approach we have a sufficient condition 

for the global (complete) observability of Marse-Smale systems to be the · 

rank condition of Kalman for complete observability of linear sytems 

applied to the linearized dynamics and linearized output map at each of 

the (finitely many) fixed points and orbits of the flow. The tools used 

are the properties of Marse-Smale systems and a Banach space implicit 

function theorem. In the paper of Yamamoto and Sugiura the contraction 

mapping theorem (see for e.g. Marsden [17]) is used to obtain some results 

for the observability of non linear systems with "small" nonlinearities. 

In the paper of Lukes, controllability of an autonomous dynaxnical systere 

is treated as a boundary value problem and sufficient conditions for the 

controllability of certain perturbed, linear time-invariant systems is 

derived using compactness arguments (Arzela-Ascoli theorem) in a Banach 

space. In fact, Theorem V.l of the present paper has also been proven 

·by Lukes. The present proof is of course new. 

We now discuss the philosophy of o~r approach: In the present paper, 

we take the engineers view of complete controllability: 3 T E IR+ such 
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that given any t , initial time, and any two states x , the initial 
0 0 

state and x
1

, the final state, there exists a control that will steer 

the system from x at t to x
1 

at t + T. The same vie•AT is held of 
0 0 0 

zero-input observability: 3 T ER such that given any t and the + 0 

output of the system with zero-input on [t , t + T] we can determine 
0 0 

(uniquely) the state of the system at time t • In keeping with our 
0 

view point we give, wherever we prove complete controllability, a 

procedure for obtaining explicitly a control law to perform any required 

steering and wherever we prove complete observability, a procedure for 

obtaining explicitly the initial state of the system. Since our results 

are global (complete) controllability and observability results for 

nonlinear systems which are in some sense close to being linear, we 

choose to think of our results as being robustness·results for the uniform 

controllability and observability of linear time-varying systems (precise 

definitiornare given in Sections III and VIII) in the presence of nonlinear 

perturbations of various types. 

The major mathematical tool for the paper is a solvability theorem 

for operator equations with a quasibounded nonlinearity, due to Granas 

[11], which is reminiscent of the small gain theorem (see for e.g. 

Desoer and Vidyasagar [ 7l) • The heart of the theroem lies in the Rothe 

(or equivalently the Schauder) fixed point theorems, which are essentially 

topoligical tools in nonlinear analysis. 

We illustrate the use of our results in the derivation of control 

laws, during a very specific emergency, for interconnected power systems, 

by posing the emergency control problem.as a steering problem. That this 

formulation is indeed the right one for emergency control has been suggested 

by a recent research report ·[10]. We mention that another application 

may be in economics for establishing the existence of homeostatic 

trajectories for certain adapting economic systems which. satisfy differ-

entia! equations rather than inclusions, as is suggested in a paper 
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of Aubin and Day [3]. 
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Section II. Notation 

The dynamical systems that we study are differential dynamical 

systems (DDS) with finite dimensional vector spaces as input, output and 
n. 

state space, respectively JR 
1 

n 
JR 0 a~d JR n with the representation 

x = f(x,u,t) (II.l) 

y h(x, t) (II. 2) 
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n. 
where t E JR.+, f is a C0 function from lR n x lR ~ x JR.+ + lR n which . 

is globally Lipschitz continuous in its first argument (to guarantee 

uniqueness of solution to (2 .1) when the initial condi.tion is given) 
n 

and h is a C0 function from lR.n x lR + lR 0
• Finite Dimensional + 

Linear Dynamical Systems (FDLS) with a bounded realization are 

differential dynamical systems of the form (11:.;3) ,::... (J:I.4) 

x = A(t)x + B(t)u 

y "" C(t)x 

with IIA(·)II, IIB(·)II, llc(·)ll bounded on JR.+. 

(II. 3) 

(II. 4) 

(II. 5) 

Section III. Characterization of controllability for finite dimensional 

.linear systems. 

The definitions and propositions of this section are well known, 

though not standardized. We restate them here to establish the 

terminology and notation. The definitions aredrawn from Silverman [19] 

and the proofs may be found in standard books (see for e.g. [4]). 

Definition III.!. (Uniform. complete controllability (UCC).) 

·A differential dynamical system represented by (II.l), (II.2) is 

said to be uniformly completely controllable if :3 T > 0 such that 
n. 

an input u E L2~([t ,t +T]) which drives 
0 0 

the system. from x(t ) = x to x(t +T)' = ·x
1

: 
0 0 0 

ll 

For FDLS with bounded realization a simple characterization of UCC 

accrues from the fact that equation (II.3) can be solved explicitly 
n. 

on [ t
0

, t
0 

+T] given x(t
0

) = x
0 

and input u E L
2 
~ ( [ t

0
, t

0 
+T]) to yield 

equation (III.!). 
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X (t) <P(t,t )x 
0 0 

+ Jt ~(t,T) B(T) u(T)dT 
t 

Vt E [t ,t +T] 
0 0 

0 

nxn where ~(t,t ) E JR. denotes the fundamental solution of the 
0 

homogeneous matrix equation 

X(t) = A(t) X(t), 

with X(t) E JR nxn. 

X(t ) = I 
0 

To obtain the desired characterization define, for fixed t
0 

E JR+' 
n. 

linear map 4 (called 

n 

the reachability map) from L2
1 ([t ,t +T]) to . 0 0 

JR'- by 

t +T 

~u= J o 
t 

0 

~(t +T,T) B(T) U(T)dT 
0 

Then at t = t + T, equation (III.!) may be rewritten as: 
0 

x(t
0

+T) = IP(t +T,t )x +f. u 
o o o R 

(III.l) 

. (II. 2) 

the 

(III. 3) 

(III. 4) 

The adjoint map of 4• denoted .t;, then is the linear map from JR n to 
n. 

L
2

1 ([t ,t +T]) defined by 
0 0 

Since the realization (II.3) is bounded ~ay by K)we have from the 

Bellman Gronwall lemma that 

llcj>(t,T)II < exp K(t-T) 

Also, 

IIB(T) II < IC VT E JR. . +. 

Using (III. 6), (III. 7) it is easy to check that 4 and 4 are 

continuous linear maps. 
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Theorem III.l. (Characterization of Uniform Complete controllability 

for FDLS) 

The FDLS with bounded realization represented by (II.3) and (II.4) 

is unifoftnl.y completely controllable ~ Vt
0 

E 1R+' the reachability map 
n 

~ :L
2
i([t ,t +T]) + lR.n defined in (III.3) is onto ~vt E lR+ thecomposition 

~ 0 0 . 0 

of the reachability map and its adjoint namely/R~/' R.n +R n iS' a bijection. 

Jl 

Comment 

The second characterization of uniform complete controllability 

is particularly handy since it is in terms of the rank of a linear map 

~i.* n n RR:lR +lR. The properties of this linear map will be of use in 

the sequel and hence we define its representation explicitly. 

Definition III.2. (Reachability grammian) 

Given t E lR , the matrix representation of the continuous linear 
9 + 

map .;lrh: lR.n + lR.n is the reachability grammian, denoted WR[t
0
,t

0
+T] 

e 1R rum 

WR[t ,t + T] 
0 0 

(III.8) 

Jl 

Thus, the FDLS with bounded realization given by equations (II.3), 

(II.4) is uniformly completely controllable iff WR[t
0
,t

0
+T] is non­

singular Vt
0 

E lR+. Notice, however, that the FDLS can be uniformly 

completely controllable with the smallest eigenvalue of WR[t ,t +T] 
0 0 

tending to 0 as t + "'· . 0 

In addition to providing a test for uniform complete controllability 

the reachability grammian provides information about the minimum size 

of the 1
2 

norm (energy) of the input required to make the transfer 

from :X E lR n to x. 
1
· E lR n in [ t. , t +T] as stated below. 

0 0 0 
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Proposition III.l. (Least L 2 norm of control) 
. 

If the FDLS with bounded realization given by equations (II.3), 

(II.4) is uniformly completely controllable; then, the least L 2 norm 

of the control required to transfer the system from x
0 

at t
0 

to x1 at 

t +'.!.' is given by 
0 

* -1 1/2 
[(x1-~(t +T,t

0
)x) (WR[t ,t +T]) (x1-~(t +T,t )x )] 

0 0 oo 0 00 
(III.9) 

Comment. 

control 

From Proposition (III.l) it follows that the least 1 2 norm 

n required to reach x
1 

E lR at t
0 

+ T from the origin at t
0 

is given by 

Uniform complete controllability does not guarantee that this quantity 

is bounded vx1 E JRn and Vt
0 

E JR+ as was noted after definition (11.2). 

To guarantee this ~e define a slightly stronger form of controllability. 

Definition (III.3). (Strong Uniform Complete Controllability) 

A FDLS with bounded realization represented by (II.3) and (II.4) 

is strongly, uniformly completely controllable if j T > 0, A.s > 0 such 

that Vt E lR 
0 + 

WR[t ,t + T] ~ ~t 2 I 
" 0 0 s 

(III.lO) 

Comments 

(i) The boundedness of the realization guarantees that 3 A.1 E JR+ such 

that Vt E lR 
0 + 

A.
1
2 I ~ · sup WR [ t , t + 't'] 

~[O,T] o o 
(III.ll) 
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(ii) It is obvious that it is more costly to reach certain directions 

th<!ln others (the l!OSt. is the minimal 12 norm of the input required to 

reach a unit norm vector in a certain direction starting from the 

origin). Motivated by the condition number of numerical analysis (see 

fur example, Ortega [28]) we define the reachability condition over T 

seconds of a strongly uniformly controllable FDLS. 

Definition III.4. (Reachability condition number) 

Consider a strongly uniformly controllable FDLS with bounded 

realization, let X1 > 0 and Xs > 0 be defined by 

and 

A 
s 

sup sup 
t EJR tE[O, T] 

0 + 

A (W [t t + T])l/Z 
max R o' o 

= inf 
t EJR 

0 + 

A • (WR[t , t m.J.n o o 
+ T])l/2 

(III.l2) 

(III.l3) 

then the reachability condition number over T seconds xR is defined by 

(III .14) 

The burden of this paper consists in demonstrating the robustness 

of strong uniform complete controllability of an FDLS in the face of 

nonlinear perturbations in the dynamics both bounded and unbounded. Our 

methods seem to indic.ate that FDLS with Slll.iiller reachability condition 

number are more robust than others with larger reachability condition 

number. 

Section IV. Solvability of an operator equation with a quasibounded 

nonlinearity in normed spaces 

The main mathematicai tool used in the investigation of the 

robustness of controllability is a solvability theorem for an operator 
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equation in normed spaces with a quasibounded nonlinearity proved in its 

present form by Granas [11]; see also Mawhin [18]. The heart of the 

theorem lies in fixed point methods in nonlinear analysis:specifically, 

th~ Rothe fixed point theorem which we state in the Appendix. For 

details, the reader is referred to the excellent monograph of Smart [21]. 

Definition IV.l. [Quasibounded maps] 

Given X and ~Banachspaces with 

map from 1 to ~· F is said to be 

respective norms 1·1 and 1·1 and 
X 2J 

F a quasibounded if the number 

p (F) := inf 
I F(x) I . 

sup ~ 
I x lz ~ p T x 'x 

is finite and this number is called the quasinorm of F. 

Cormnents 

(i) A continuous linear map is. quasibounded and its quasinorm 

corresponds to the usual induced norm. 

(ii) If for instance for some c1 ,c2,c
3 

E R 

IF(x) I~~ c1 1xiX + c2 

Vx E { x : I x I ~ c 
3

} 
X 

(IV.l) 

ll 

(IV.2) 

(that is, (IV.2) holds for all x E)( outside a ball of radius c3) then 

F is quasibounded and its quasinorm is less than or equal to c
1

. In 

particular, if c1 = 0 then the quasinorm of F is zero 

(iii) If F is a compact map on X then F is quasibounded 

~ IF (x) I~ ~ c1 1 x IX+ c2 for some c1 , c2 E R . 

(Recall that a continuous map F : J:: + 1j is said to be compact if the 

closure of the image of any bounded set is compact). 
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Theorem IV.l. (Solvability Theorem) 

If F ! X~ 1 is a continuous, quasibounded, compact map on the Banach 

space X and if 

p(F) < 1 

·then the equation 

x + F(x) = y 

has at least one solution for every y EJr. 

Proof. Let y 
0 

be an arbitrary point in X We shall prove that 3 x
0 

such that x· + F(x ) = y
0

• Let F: X~ X be a compact map defined by 
0 0 

F(x) = y
0 

- F(x) for x E Jr 

Now p(F) < 1 implies that 

'i~l)l < 0 < 1 

(IV. 3) 

where o and r 1 are some constants. Choose € > 0 such that € + o < 1 

and definer:= max(r1 ,ly0 j/E)~ Now Sr = {x EX: lxl = r} is the 

(topological) boundary of the ball B = {x EX: lx! = r} and for x E S r r 

we have 

(by the definition of r) 

By the definition of € we have 

jF(x)! < lxl (IV.4) 
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From (IV.4), F(S ) C B • Since F is a compact map we have by the Rothe 
r r 

fixed point th~urt:!m (see Appendix) that F has at least one fixed point 

x E B • Hence, o r 

F(x ) = y - F(x ) = ~0 • 
0 0 0 

completing the proof. a 

Couunent. 

Theorem IV.! bears a resemblance to the well known small-gain 

theorem in the analysis of feedback systems (see for e.g. [7]), if 

the operator F were thought of as representing the plant in a unity 

feedback gain control system. At the cost of a topological restriction 

(continuous, compact) on the plant operator F (there are no topological 

restrictions in the small gain theorem) Theorem (IV.l) yields the 

existence of a b,ounded solution to the feedback equation (IV. 3) for 

every y EX provided the "asymptotic gain" (quasinorm) of F is less 

than 1. 

Section V. Robustness of strong uniform complete controllability under 

bounded perturbations in the dynamics 

In· this section we consider the uniform, complete controllability 

of the F.D.L.S. of (II.3), (II.4) whose dynamics are perturbed by a 
n. 

bounded C0 function h : JR n x JR ~ x JR+ + JR n which is in addition 

globally Lipschitz continuous in its first argument (to assure uniqueness 

of solution of the resulting differential equation, given the initial 

condition) to give the state evolution equation of (V.l) 

i(t) = A(t)x + B(t)u + h(x,u,t) (V .1) 

with 
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sup 
n. 

n 1 
:x.ER , uE1R , tE1R ·I 

jh(x,u,t)j = K < ~ 
0 

Such a perturbation might arise from the study of a DDS of the form 

(V.2) 

(II.l) which is in addition "almost linear" in the sense of (V.l), (V.2) 

above. Yet another application of the study of such perturbation is 

illustrated in Section X for emergency c9ntrol of an interconnected 

power system. In Section (V.l) we prove the main result of this 

section which is the following theorem. 

Theorem V. 1. (Robustness of uniform complete controllability under 

bounded perturbations in the dynamics) 

Given that the FDLS with bounded realization of equations (II.3), 

(TI.4) is strongly uniformly completely controllable over T seconds, 

the perturbed. system represented by equations (V.l), (V.2) is uniformly 

completely controllable over T seconds. tl 

In Section (V.2) we give an algorithm for·the computation of an 

input u to take the perturbed system from any initial state x
0 

E lR n 

(at t
0

) to any final state ~ E lR n (at t
0 

+T). The proof of the 

existence of accumulation points in the algorithm involves the use of 

the Arzela Ascoli theorem. 

V.l Proof of Theorem (,\7.1) 

Fix t
0 

E lR +; x
0 

E lR n the initial state;· define x1 (t), x2 (t) 

to be the state of the FDLS and the perturbed FDLS respectively at 

time t E [t , t +T]. Then, we have 
0 0 

and 
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Subtracting equation (V.4) from (V.3) and defining ~ := x2 - x1 we have 

~x = A(t)~x + h(x2(t),u(t),t), ~x(t0 ) =en (V.S) 

To obtain a bound on l~x(t +T)I define the continuous linear map 
0 

/..from 1n
2
([t ,t +T]) to lR.n by 

0 0 

i.(v) = Jt
t

0 
+T 

0 

~(t +T,T) V(T)dT 
0 

(V. 6) 

with <P(t +T, •) as defin~d in equation (III.2) (continuity of L follows 
0 

from the boundedness of the realization and equation (III. 6)). Then, 

IAx(t +T) I ~ ILl. llv(·)ll 
0 l. 

where I· I stands for the Euclidean norm in lR n 

and 

II ·II stands for the usual 1.
2 

norm on [ t , t , T] 
0 0 

I li stands for the operator no~ induced on a linear map from 

1 n ([ t , t +T]) to JR .n by the above norms, 
2 0 0 . 

with v(t):= h(x
2
(t),u(t),t). 

From (V.2) we have · ¥t E [t ,t ,+T] 
0 0 

lv(t) I 
< = K 

0 

so that 

and 

. llv( •) II 

I ~(t +T) I = Iii iK Tl/2 
0 0 

n. 
l. ¥u E 1

2 
([t ,t +T]) 

0 0 

.. Now, think of ~x(t +T) as the value of a (continuous) map 
0 

(V.7) 

ni 
N :1

2 
([t ,t +T]) to lRn (the subscript x emphasizing that the map 

X 0 0 0 
0 
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N depends on x ) with 
0 

~x(t +T) := N (u) 
0 X 

0 

t +T 

=I 
0 

~(x0+T,T) h(x2 (T),u(T),T)dT 
t 

0 

(V. 8) 

where x
2
(·) satisfies (V.4). Then, observe that Nx is a quasibounded 

0 

nonlinear map (actually bounded) with quasinorm 0 (independent of x ). 
0 

Also, with the definition of iR from Section III 

and 

x2(t
0
+T) = iR(u) + Nx (u) + ~(t0+T,t0 )x0 

0 

(V. 9) 

Uniform complete controll~bility of the FDLS guarantees that~R is 

onto. To show the uniform complete controllability of the perturbed 

system we will show that ~ +Nx ) is onto for each x
0 

E 1R n. Infact 
0 

we will show that the image under iR+ N · of a finite dimensional subspace 
. X 

n. o 
of t

2
1 ([t ,t +TJ) is JRn using Theorem (IV.l). 

0 0 

Define fn := t; (1R n), an n dimensional (by uniform complete 
n. 

controllability) subspace of t 2 
1 

( [t
0

, t
0 
+T]). Clearly 4, is a bijection 

· 1 n 
of 7fl.onto R n and we can define the inverse of ,iR on In; t; : JR -+ -m. 

II ..P-1 < --1 
a continuous linear map with · "'R II = As -where A is as defined in 

s 

Definition III.4 (equation (III.l3)). .rl· Now consider the map (I+~ Nx ) 

Clearly t;1
Nx 

0 

is continuou& 

0 • 

is a compact map (JW is finite dimensional 

with quasinorm 0. Hence, by Theorem (IV~ l) -· 

is onto Ill and further 4 + Nx is onto JR n. 
0 

Since x 
0 

.and t
0 

E lR+ are arbitrary we have proved that the perturbed DDS of 

(V.l), (V.2) is uniformly completely controllable over T seconds. 

Q.E.D. 
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Comments: (i) Strictly speaking strong uniform complete controllability 

of the FDLS is not required for the proof of the Theorem V.l - uniform 

complete controllability suffices. 

(ii) Since we have shown that the subspace ~A of controls is sufficient 

to steer the system from any x at t to any x
1 

to t +T it should be 
0 0 0 

possible to give the specific input required to make the required 

transfer. This question is taken up next. 

v.z. Algorithm for the computation of an input to transfer the perturbed 

system from x E :m. n at t to x
1 

E JR. n at t + T - o o--

Step 0. Set k = 0,~0 (t) = x ,u0 (t) = 8 ¥t E [t ,t +T] 
o n1 o o 

Step 1. Define 

xk+l(t) = ~(t,t )x + Jt ~(t,T) B(T) uk(T)dT 
0 0 t 

0 

St.ep 2. Set k = k+l; go to Step 1 

Proposition V.l. (Convergence of Algorithm) 

(i) There exists at least one accumulation point (in the L ~ 

k co 
sense) of the sequence of (X ( •)) k=l say X

00 
( •) with corresponding 

(V.lO) 

(V .11) 

input u (·) defined on [t ,t ,T] satisfying x (t ) = x and x (t +T) = x1 . co 00 00 0 0 coo 
' k co 

(ii) For any accumulation point (in the L
00 

sense) of (~ (·))k=l 

say i:ao(·), 3 a ·control uco(·) such that Xa,(to) =' xo and xco(to+T) = xl. 

-1~.:-



Proof. From equation (V.ll) and the fact that 

< n. 
(i) jh(x,u,t) J = K 1/x E JR. n, u E JR. l. 

t E JR.+ t 
0 

* * * * k 
(ii) t_ = B (·) q, (t +T, ·) with B (·) and cp (t +T, ·) bounded on 

R 0 0 

[t ,t +T] (since the FDLS has a bounded realization) we may conclude 
0 0 

. k 00 

that the (u )k=l are uniformly bounded on [t
0
,t

0
+T] , i. e. for some~ 

independent of k 

Vt E [t ,t +T] 
0 0 

We use this bound in equation (V.lO) to conclude that the sequence of 
. k 00 

continuous functions(x (·))k=l is uniformly bounded on [t ,t +1]: 
0 0 

i.e. k I < jx(t) =K2 
Vt E [ t , t +T] , 

0 0 

k ClO 

for some K2 independent of k and that the sequence (x (·))i=l is 

eguicontinuous by the following series of inequalities with 

t,s E [t ,t +T]: 
0 0 

(i) 

+if: IP(t,T) B(T) uk(T)d't- I: ~(s,'t) B('t) uk('t)d'tj 

0 0 

J
t k k·· +I Ht,T) h(x (1'),u ('r),'t)dT 
t 

0 

J
t k Js k 

(ii) I t IP(t,T) B(1') u (-r)d-r - t ~P(s,t') B{'t)u (-r)d-rl 

0 0 

;; 1( ~(t,-r) B(-r)uk('t)d-rj +~I: [I-IP{t,s)H(s,t')B(t')uk(T)d'tl 

0 

-19-
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(iii) !<Ht,t ) - <P(s,t ) 1. lx I ; K6 ji-<P(t,s) I. 
0 0 ~ 0 l. 

(iv) By steps similar to (ii) above 

J
t k k Js k k I l(t,T) h(x (t), u (t),t)dt- t(s,t) h(x (t), u (t),t}drl 
t t 

0 0 

Combining (i)-(iv) we have 

showing uniform equicontinuiJ;y By the Arzela Ascoli theorem, there exists 

k 
k. 

l. QC) 

a subsequence of (x (·)), say (x (·))i=l converging uniformly on 

[ t , t +T]. 
0 0 

k QO 

By an argument similar to the previous one the (u (·))k=l 

are uniformly equicontinuous and bounded; so that there exis.ts a further 
k. 

subsequence of (u 1 (•))~=l converging uniformly on [t
0
,t

0
+T]. Let the 

limits of these sequences be x (·) and u (·) respectively from the 
QC) QO 

continuity of h(x,u,t) we obtain 

X (t) 
"" 

and 

u (.) 
"" 

= t(t, t )x +r t{t,T) B(T) u (t)dT 
0 0 "" t 

0 

+ I: l(t,T) h(X (T), u (T) ,t)dT 
. "" QC) 

0 

t +T 
-1 

Jto =<~fa> [xl- <P(t +T, t) h(X
00

(T), u..,(T),T)dT 
0 

0 

- <P( t +T, t ) X ] 
0 0 0 

Using (V.l3) in (V.l2) we obtain x (t +T) = x1 and it is clear that 
. "" 0 

(V.l2) 

(V.l3) 

u()Q(·) is the required control to transfer the system from x
0 

to x1 on 

[t ,t +T]. This proves part (i) of the Proposition.Part (ii) is 
0 0 

procedural and is left to the reader. 

-.20-
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Comment. 

(i) Notice that the sequence of ( uk( · ))~=l E frl, a closed n -
n. 

dimensional subspace of L2
1 [t

0
,t

0
+T],so that U

00
(·) E 11(, as claimed in 

the Proof of Theorem (V.l). 

Section VI. Robustness of strong uniform complete controllability under 

quasibounded perturbations in the control channel and state 

dynamics 

In this section we state conditions under which a strongly Uniformly 

completely controllable (over T seconds) FDLS remains uniformly 

completely controllable under unbounded but quasibounded perturbations 

separately in (i) the control channel and (ii) the state dynamics. 

More explicitly, the FDLS (II.3.5) is said to have a quasibounded 

perturbation in its control channel if 

x(t) = A(t)x + B(t)u + f(u,t) (VI.l) 

n. 
where ·f is a C0 function from lR 1 

x lR + + lR n and ·far some constants 

y(f), t3(f) E lR, 

lf(u,t)l ~ y(f) lui+ S(f). 
n. 

:Vu E lR 1 

By comment (iii) after Definition (IV.l) it follows that (VI.2) is 

(VI. 2) 

equivalent to the quasiboundedness (uniformly in t) of f. Further, 

it is easy to verify that inf{y(f) : 3 S(f) such that (VI.2) holds} is 

the quasinorm (uniformly in. t) of f. Thus y(f) can be chosen arbitrarily 

close to the quasinorm (uniformly in t) of f. The FDLS (II.3-S) is 

said to have a quasibounded perturbation in its state dynamics if 

x(t) = A(t)x + ~(x,t) + B(t)u (VI. 3) 

- 21 -



where 1jJ is a C
0 

function 1R n x JR.+ + JR. n which is globally Lipschitz 

continuous in its first argument (to guarantee uniqueness of solution 

of VI. 3), and 3Y (1j1) < oo and !3 (1jJ) < oo such that 

IH~.t)l < y(ljJ) lxl +B(~i) 

As before y(ljJ) may be chosen arbitrarily close to the quasinorm 

(uniformly in t) of 1jJ. 

VI.l. Robustness of uniform complete controllability under quasibounded 

perturbations in the control channel 

We start with an FDLS with a bounded realization which is strongly 

uniformly completely controllable over T seconds. Then, define 

y(B) := sup 
tElR+ 

IB(t)l. < 00 

~ 

Recalling t-he definition of the map -J:.., 

I. v = f
t

0
+T 

~(t +T,T) v(T)dT 
t 0 

0 

we define the intrinsic grammian of the system. 

Definition VI.l. (Intrinsic grammian) 

(VI.S) 

(VI.6) 

The intrinsic grammian of the FDLS of (II.3), (II.4) with bounded 

realization is the matrix representation of the continuous linear map 

i { : lR n + 1R n given by 

W[t ,t +TJ 
0 0 

t +T 

= I 0 

t 
0 

... 
4>(t +T,T) ~"(t +T,T)dT 

0 0 
(VI. 7) 

From this definition follows the idea of an intrinsic drift factor of an 

FDLS over T seconds. 
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.. 

Definition V.2 •. (Intrinsic drift factor) 

The intrinsic drift factor v of an FDLS with bounded realization 

over T sees is defined to be 

v := sup sup 
t

0
Em.+ -rE[O, T] 

(A. (W[t ,t +-r))l/Z 
max o o 

(VI.8) 

Comment. (i) 
( 2KT 11/2 

< e -1 From inequality (III.6) it follows that ~ = l 
· 2K J · 

and thus is finite for a bounded realization. Using these notions, we 

have 

Theorem VI.l. (Controllability of the system perturbed in the input 

channel) 

If the FDLS with bounded realiz~tion represented by (II.3) is 

strongly uniformly controllable (over T seconds) then the perturbed DDS 

represented by equations (VI.l), (VI.2) is uniformly completely controllable 

(over T seconds) if 

A 
y(f) 

. s 
<-

·ll 
(VI. 9) 

-where A is as defined in Definition (III.4) and 1.1 is as defined above. 
s 

-Comments.· (i) As may be easily checked by the reader,v. and >..
1 

of 

Definition (III.4) are related by the inequality 

y(B)l.l 
> -= A. s 

so that (VI. 9) implies. that 

where xR is the reachabiiity condition number. 

- 23 -
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(ii) Comment (i) shows that if uniform complete controllability is 

preserved then the ratio of the gain of f to the gain of B is small 

compared to the inverse of the reachability condition number. 

Proof of theorem: Fix x
0 

E lR n, the initial state and t
0 

E JR._. Let 

x
1 

(t) and x
2

(t) be the state of the FDLS and the perturbed system at 
n. 

t E [t ,t +T] in response to an input u(·) E L2 ~([t ,t +T]). Then,'we 
0 0 0 0 

have 

and 

X 
0 

Defining ~x := x
2 - x

1 
we have 

. 
~x = A(t)~x + f(u,t), ~x(t ) = e 

o n 

X 
0 

By the same estimates as in Section V, and with the same notation 

l~x(t +T) I ~ l.i 1. llv(-)11 
0 ~ 

with v(t):= f(u(t),t). 

Now, from (Vi.2) 

llv(.)ll ·~ y(f) llu(·)ll + S(f). 

and 

li li < ~ 

so that 

l~x·(t +T)I < ~ y(f) llu(.)ll + ~S(f) 
0 

Vt E lR 
0 + 

: · ':. we write 

- 24 -
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i.R(u)+ H t +T , t ) x 
0 0 0 

and 

where N(u) := ~x(t0+T) is a quasibounded, continuous map (independent 

< 
of x) with quasinorm = ~y(f). As .before, to use Theorem IV.! we 

0 

restrict the domain of iR to 7Y1 :=<.(JR. n) and define t;1 as before. 

Then t;1 N :111-+ 1J1 is a continuous quasibounded map (between finite 

dimensional Banach spaces and hence compact) with quasinorm ~ ~y(f) ~1 1i 

1
...,-1 I < 1 Further, "'--R . = -::- • 

~ A 
By the same arguments as in Theorem (V.l) 

s 
uniform complete controllability over T seconds is guaranteed if 

~y(f) -<· 1 

A s 
Q.E.D. 

VI.2. Robustness of uniform complete controllability under quasibounded 

perturbations in state dynamics 

Theorem VI.2. (Controllability of the system perturbed in state dynamics) 

If the FDLS with bounded realization represented by (II.3) is 

strongly uniformly completely controllable over T seconds then the 

perturbed system represented by equations (VI.3), {VI.4) is uniformly 

completely controllable over T seconds if 

- -_ -(vt .16·) 

Furthermore if the zero solution of the FDLS with no input is 

uniformly exponentially stable, with 

lilt, T E JR. + 

then the perturbed system is uniformly completely controllable over 

T seconds if 

- 25 -
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(VI.l8) 

If in addition the FDLS is time invariant .and exponentially stable, 

then the perturbed system is uniformly completely controllable, if 

y(l/J) < _ _;:1~-

IA . (A+A*)il/2 2 Tl/2 
IIU.n XR 

(VI .19) 

where A . (A+A*) is the smallest eigenvalue of A+A* E R nxn c 
IIU.n 

Comment. Equation (V.l9) supports the inituitive notion that in some 

sense uniform complete controllability should be preserved if the gain 

of 1jJ is small compared to the "gain of A." The theorem shows that "gain 

of A" should be replaced by the "gain of the symmetric part of A." 

Proof of theorem. n Fix t
0 

E R+ and x
0 

E R , the initial state. Let 

x1 (t), x2 (t), ~x(t) be defined as in the proof of Theorem (VI.l) with 

and 

= X 
0 

By the same arguments as in Theorem (VI.l) 

and 

It is also relatively s~mple to realize that 

- 26 -
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sup I x1 (t) I 
t.E[t ,t +T] 

0 0 

< >.LIIu( ·)II + sup 
tE[t , t +T] 

0 0 

IHt,t )x l 
0 0 

(VI. 25) 

Using the estimates from.(VI.25), (VI.24) in (VI.23) and noting that 

(VI.l6) ~ ~y($)T112 < 1/2 we obtain 

where c1 (x
0

) E lR + does not depend on II u ( ·)II but does depend on 

As before, we may write 

X • 
0 

(VI. 26) 

where N (u) := 8x(t +T) is a quasibounded continuous map with quasinorm 
X 0 

0 

~ 2~y(ip) T112 ~L from (VI.26) and uniform complete controllability over 

T seconds is guaranteed for the perturbed system by Theorem IV.l if 

1/2 - ,.p-11 
2~y($)T AL~R i < 1 

or if 

(VI.l6) 

(VI.l7) and (VI.l8) are procedural and are left to the reader. Q.E.D. 

Clearly the results of Theorems (VI.l) and (VI. 2) can be combined 

to state a condition for the uniform, complete controllability of a 

system perturbed both in state dynamics and control channel as 

:it= A(t)x + 1/J(x,t} + B(t)u + f(u,t) (VI.27) 

where$ and f satisfy the conditions listed previously. Then, we have 
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Theorem VI.3. (Controllability of the system perturbed in the input 

channel and state dynamics) 

If the FDLS with bounded realization represented by (II.3) is 

strongly uniformly controllable over T seconds then the perturbed DDS 

represented by (VI.27) is uniformly completely controllable over T 

seconds if 

Comment. (VI.28) in particular implies that 

Proof: Is routine ·and omitted for brevity. 

VI.3. Algorithm for the computation of an input to transfer the 

perturbed system from x
0 

E lR n at t
0 

to x
1 

E lR n at t
0 

_±_T. 

Under the conditions of Theorems (VI.l), (VI.2), and (VI.3) 

(VI. 28) 

(VI. 29) 

ll 

algorithms yielding at their accumulation points inputs belonging to 
n. 

the subspace ~of L2~([t ,t +T]) for making the requisite transfer may 
0 0 

be obtained. To keep the section simple we prove the existence of 

li~t points of the algorithm model for the case of the input perturbed 

system satisfying the conditions of Theorem (VI.l). The same algorithm 

model may however be used for the other two cases as well. 

Algorithm Model 

Step 0. 

Step L Define 

0 
xo ,u (t) = 

·- 28 -
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0
,t

0
+T] 

~ 
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. k 
~(t,T) B(T) u (T)dT. 

0 

(VI. 30) 

f
t

0
+T 

~(t +T,T) f(uk(T),T)dT) 
0 

t 
0 

Step 2. Set k = k+l; go to Step.l. 

Proposition VI.l. (Convergence of Algorithm) 

(i) There exists at least one accumulation point (in the Loosens~ 

k 00 

of the sequence of (x (·))k=l say X
00

(·) with corresponding input U
00

(·) defined 

on [t ,t +T] satisfying x00(t) = x and x (t +T) = x1 for the control u (·). 
00 ' 0 0 ooo 00 

(ii) For any accumulation point (in an L"" sense) of (xk( ·) )~=l say 

xoo(·) 3 a control ~00(·) such that X (t) =X and~ (t +T) = xl for ooo 0 ooo 
-

the control u (·). 
00 

Proof. The proof proceeds through a _sequence of claims. 

k 00 

Claim 1. The sequence (u ( ·) )k=l is bounded in 1 2 norm by 

<lx1 1+1~(t +T,t )x I)(~ -~y(f))-l < oo (by (VI.lO)). 
0 0 0 . s 

Proof. The (easy) proof is by induction, .c 

Claim 2. 
k 00 

The. sequence (u ( ·) )k=l is bounded in L"" norm, 

sup luk(t) I ~ ~-l y(B) sup l¢(t +T,T) 1. lluk(·)ll 
tE[t ,t +T] s ,E[t ,t +T] 

0 ~ 
0 0 0 0 

Proof. 

k ..1* n 
because u (·) E ~R(JR ) 

Since .the sequence of norms (lluk(.)ll)~=l is bounded by, Claim 1, the 

k 00 

sequence (u (·))k=l is bounded in 1
00 

norm. c 

- 29 -
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Claim 3. 
k co 

The sequence (x (·))k=l is bounded in L 
co 

norm and is uniformly 

equicontinuous. 

Proof. Follows from the arguments of Proposition (V.l) and Claims l and 2. 
~:~· 

Now, the proof of the proposition follows exactly the same lines as 

that of Proposition (V.l). t:l 

Section VII. Robustness of Strong Uniform Complete Controllability under 

Unbounded Lipschitz Continuous Perturbations 

In this section we examine the uniform complete controllability over 

T seconds of an FDLS perturbed as in equation (VII.l) 

x = A(t)x + B(t)u + eh(x,u,t) (VII.l) 

n. 
with e E :m. and h : 1R n x :m. ~ x :m. -+ :m. n is a Lipschitz continuous 

+ 
function satisfying 

h(e ,e ,t) = a 
n n. n 

Vt E JR. . + (VII. 2) 
~ 

n. 
and for some c

0 
E :m. +' Vx E :m. n~ Vu, v E :m. ~ and Vt E 1R +' 

]h(x,u,t)- h(y,v,t)j ~ c Ju-vJ + c Jx-yJ 
0 0 

(VII. 3) 

Given that the FDLS is strongly uniformly controllable (in the DDS of 

(VII.l) with e: = 0) we will prove the existence of an interval I centered 

at 0 so that the system of (VII.l) is controllable for all e E I. It 

is of course clear that FDLS can actually lose the property of complete 

controllability from e: large as is evidenced by the scalar system 

. It 2 2 .x=u+e:u+x x,u E JR (VII.4) 
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losing complete controllability for 1~::1 ~ 1 (indeed, in that case 

V(x,u)x ~ O). . , 

In Section (VII.l) we .estimate the interval I .on which the 

perturbed system remains uniformly completely controllable and in 

Section (VII.2) we give an algorithm which converges to a (unique) element 
ni . 

u of Jnc 1 2 ([t ,t +T]) required to transfer the system from x to x
1

. 
0 0 0 

VII.l. Estimate of the interval I on which the perturbed system is 

uniformly completely controllable (over T seconds) 

Theorem VII.l. (Controllability of the perturbed system) 

If the FDLS with bounded realization represented by (II.3) is strongly 

uniformly completely controllable over T seconds then the perturbed 

system represented by (VII.l), (VII.2), (VII.J) is uniformly completely 

controllable on [t ,t +T] V ~::E] -E: E: [ where o o o' o 

and 

1 1/2 - --1 --- = XR·2c ~T (l+y(B)A AL E: . 0 s 
0 

xl = A(t)x
1 

+ B(t)u, xl(to) 

sup 
t ElR. 

0 + 

= X 
0 

sup I <P ( t +T, t + T) I 
cE[O,T] 0 0 i 

x2 A(t)x
2 

+ B(t)u + th(x
2
,u,t), x2(to) = X 

0 

.1x = A(t).1x + e:h(x2,u,t), .1x(t ) = 8 
0 n 

Using (VII.3) and the techniques of the previous section we obtain 

sup 
tE[t ,t +T] 

0 0 

l6x(t) I < T
l/2 

~ E:C 
. 0 

sup {l6x(t) l+lx1 (t)l 
tE[ t , t +T] 

0 0 

+ lu(t)l} 
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Note that !h(x2,u,t)l ~ !h(x2,u,t)- h(x1 ,u,t)l + lh<x1 ,u,t)l 

so that from (VII.2) and (VII.3) I h(x2,u,t) I ~ C
0

lx(t) I + c
0

!x1 (t) I 
+ c lu(t)j. Using the estimate 

. 0 

sup ll(i(t)l ~ ~L llu(.)ll 
tE[t ,t +T] 

0 0 

(VII.lO) 

and the fact that e: < e: '* e:c Tl/P < 1/2 we obtain from (VII. 9) that 
0 0 

< 1/2 -sup 1-llx(t) I = 2e:c
0

11T {c
1 

(x
0

) + >.
1

11u( ·)II 
tE[t ,t +T] 

0 0 

+ sup lu(t) I} 
tE[t ,t +T] 

0 0 

where c1 (x
0

) is some constant depending on x
0 

but not on u. 

Also, as before, we define 

N u := .llx(t +T) 
X 0 

0 

we prove that N is quasi bounded 
X 

0 

On 71{, sup lu(t)l 
< = y(B) 

tE[t ,t +T] 
0 0 

on /11. 

- -1 
A. s 

sup 
t E JR 

0 + 

sup 
-rE[O, TJ 

(VII .11) 

I ~ ( t +T. t· +r) I . 
0 0 ]. 

!!u( ·)II 

(VII.l2) 
Hence N is a quasibounded, continuous map on In with quasinorm less 

X 
0 

than or equal to 

2£CoiJTl/2Tl/2{ ~Ll/2 + Y.(B)ig-1~ t~::.+ 
sup ~~(t +T,k +TI .} 

Te:[o,T] 0 0 1 

Clearly, theorem (V.l) guarantees uniform complete controllability of the 

perturbed system if equation (Vll.5) is satisfied. 

Q.E.D. 
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Connnent. 

In the instance that 

for some CA, KA positive constants (i.e. the zero solution of the zero 

input FDLS is uniformly exponentially stable), equation (VII.S) may be 

restated as 

e: 
0 

1 =-
y(B)CA 

{1 + --} 
~L~s 

(VII.l3) 

VII. 2 •. · Algorithm for the computation of an input to transfer the perturbed 

system from x
0 

E 1R n at t
0 

to x
1 

E 1R n at t
0 

_±__I 

o o E Step 0. Set k = 0, x (t) = x
0

,u (t) =en. Vt [t
0
,t

0
+T]. 

Step 1. 

i.e.' 

~ 

·k+l Define x (·) to be the state trajectory on [t ,t +T] 
0 0 

the differential equation 

·k+l . k+l k+l k k.+l 
x = A(t)x + B(t) + e:h(x ,u ,t),x (t) 

0 

xk+l(t) =· Ht, t )x + It cp(t, t
0

) B(-r) uk(-r)d-r 
0 0 t 

0 

satisfying 

X 
0 

. k+l . . k. 
~(t,T) h(X (-r), U (T),-r)d T 

(VII.l4) 

k+l k 
~ ( t +T, T) ·h (x ( T) , U ( T) , T) dT) 

0 

(VII .15) 

Step 2. Set k = k+l; go to Step 1. 
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Comments. (i) The algorithm proposed above has interesting heuristics" 

that of iterated "missed distance correction." 

(ii) The reader will note that this algorithmisdifferent from 

those proposed in Sections V and VI, as a comparison of equation (VII.l4) 

with equation (V.lO) and equation (VII.lS) with equation (V.ll) will show 

(xk+l(·) is used in equation (VII.l4) and (VII.lS) and xk(·) in equations 

(V .10) and (V .11)}. 

Proposition VII.l. (Convergence of Algorithm) 

If the conditions of Theorem VII.l are satisfied then the algorithm 
n. 

given above converges to a unique u (.) E 12 ~ ([t ,t +T])which transfers 
~ 0 0 

Proof. Define 6~ 
k+l k k+l k 

:= x - x and 6~ := u - u . Then, from (VII.l4) 

we have 

sup l6~(t) I < >.1 116~-l (•)II 
tE[t ,t +T] 

0 0 

and from (VII.lS) we have 

116~.(-)11 
1 =--

A 
s 

+ EC T
1

/ 2 [ sup l6xk(t) I 
0 tE[t ,t +T] 

0 0 

+ sup 16~-l (t) I 1 
tE[t ,t +T] 

0 0 

1/2 1 
Using the fact that· (VII.lS) => EC

0
T JJ < 2 in (VII.l6) we have 

(VII.l6) 

(VII.l7) 

sup l6~(t)l ~ 2~1 116~_1 (.)11 + sup l6~_1 (t)l (VII.l8) 
tE[ t , t +T] . tE[ t , t +T] 

0 0 0 0 
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Using (VII.l8) in (VII.l7) and inequality (VII.l2) for sup l8uk_1 (t)l 
tE[ t , t +T] 

0 0 . 

y(B) sup l4>(t
0
+T,-r)i

1 -rE[ t , t +T] 
[XL + _. __ ..:;.o___;;o;..__).. ___ --------) llt~~-1 (.)II 

s 

where by equation (VII.l7) p < 1. Hence, by the contraction mapping 
n. 

theorem applied to L
2

l. ( [ t , t +T], lim llt~u.. (·)II = 0 and the algorithm 
0 0 k~ !.<. 

converges to a unique limit point say u"" ( ·) E 1Jt. in the L 2 sense. From 

equation (VIII.l6) and (VIII.l5) and the continuity of h it is clear 

that the control u (·) is the control that drives the system from x at 
"" . 0 

t
0 

to x
1 

at t
0

+T. It is not difficult to show that the convergence is 

also in the L sense since for all elements u E 71L 
a> 

y(B) 

sup I u(t) I ;; 
tE[t ,t +T] 

0 0 

sup I 4> ( t +T , T) I . II u ( • ) II 
0 l. 

-rE{t ,t +T] 
0 0 

·- 35 -
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Section VIII. Characterisation of zero-input observability for FDLS 

Definition VII.l (Zero-input uniform complete observability) 

A differential dynamical system represented by equations (II·l), 

(II·2) is zero-input uniformly completely observable if~ T > 0 such that 

a) Vt E 1R the zero-input response of the DDS with initial state 
0 +, 

n 
x(t

0
) = x

1 
say y

1 
belong to L2 ° ([t

0
, t

0 
+T]), and b) this response y

1 
is not identical to y2 , the zero-input response with any other initial 

state x(t
0

) = x2 ~ x
1

. 

To obtain a characterization of zero-input uniform complete observability 

for the FDLS with bounded realization represented by (II.3), (II .. 4) we define 

for given t
0 

E 1R+, ~0 to 
n 

be the linear map (called the observability map) 

from 1Rn. to L2°([t
0
,t

0
+T]) defined by 

(VIII .1) 

n 
The adjoint of £.

0 
denoted by .;{: i.s the linear map from L

2 
° ( [ t 

0
, t 

0 
+T]) 

to JRn defined by 

= (o+T 
t 

0 

(VIII. 2) 

As before, the boundedness of the realization guarantees that -J. and 
0 

~*·are both continuous linear maps. 
0 

Theorem VIII.! (Characterization of Zero Input Uniform Complete Observability 

for FDLS). 

The FDLS with bounded realization described by equations (II.3) and 

(II. 4) is. zero-input uniformly completely observable ~ Vt E JR+ the 
. 0 

n 
observability map f. : 1Rn + L

2
° ( [ t , t +T]) is injective ~ Vt E JR+ 

0 0 0 0 

the composition of the adjoint of the observability map and the obse:tvability 

map J.*;! : JRn + ·JRn is a bijection. l:l 
0 0 
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Definition V111.2 [Observability grammian]. 

Given t
0 

E 1R+ the matrix representation of the linear map 

;f.* f.. : 1Rn -+- lR.n is the observability grammian, denoted W [ t , t +T] 
0 0 0 0 o. 

given by 

t +T r o 
W [t ,t +T] = j• ~*(•,t ):*(T)C(•H(•,t )d• 

0 0 0 0 0 
t 

0 

(VIII.3) 

The FDLS with bounded realization is zero-input uniformly completely 

observable over T seconds iff W [t ,t +T] is nonsingular Vt E JR.. 
0 0 0 0 

However, its smallest eigenvalue may tend to 0 as t -+- ~. As before, we 
0 

define a slightly stronger form of observability. 

Definition V111.3 (Zero-input strong uniform complete observability). 

A FDLS with bounded realization represented by (11.3) and (11.4) 

is zero-input strongly uniformly completely observable if~ T, v > 0 s 

such that Vt
0 

E JR.1 

W [t ,t +T] 
0 . 0 0 

2 -
> v I. - s 

Let v be the largest v satisfying (V111.4). a 
s s 

(VIII.4) 

Comment: As before, the boundedness of the realization guarantees that 

sup W [t ,t +•] 
tE[O,T] o o o 

(V1II.S) 

The next proposition shows how to identify the initial state of an 

FDLS at time t given the undriven output of the uniformly 
0 

completely observable FDLS on [t ,t +T]. 
0 0 

Proposition V1II.l (Formula for initial state) 

Given the zero-input response y on [t ,t +T] of a zero-input 
. 0 0 

uniformly completely observable FDLS with bounded realization, the 

· initial state x(t ) = x is given (uniquely) by 
0 0 

J* ~ -1 J* 
X = (.,c. DL) o1.. Y 

0 0 0 0 

- 37 -

(VIIL6) 
a 

------------------- -. 



Section IX Robustness of zero-input strong uniform complete observability 

under perturbations in the state dynamics and output channel 

In this section, we state conditions under which a zero-input strongly 

uniformly completely observable (over T seconds) FDLS remains uniformly 

complete~y observable under Lipschitz continuous perturbations in the 

state dynamics and continuous perturbations in the output channel. 

Specifically, we restrict attentio~.,to, zero-input observability· of the linear 

system perturbed in state dynamics represented by 

x = A(t)x + l/J (x,t) (IX.l) 

y = C(t)x . (IX. 2) 

where ljJ is a C0 function: lR.n x lR. -+ lR.n which is Lipschitz continuous 
+ 

in its first argument to guarantee uniqueness of solution of (IX.l) with 

w (e , t) = e 
· n n 

Vt E JR
1 

(IX. 3) 

and for some y( l/J) < CX) 

(IX. 4) 

The system perturbed in the output channel is represented by 

x = A(t)x (IX.S) 

y = C(t)x + f(x,t) (IX.6) 

where f is a C0 function: lR.n x lR + -+ lR.n with 

f(a ,t) = e 
n n 

·and 

Vt E lR+ 
0 

lf(x,t)j 

lxl 
=: y(f) < CX) 

- 38 -
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Further, let 

y(C) := sup 
tEJR 

+ 
lc<t)l. < CX> 

l. 

IX.l Robustness of observability 

(IX. 9) 

Theorem IX.l (Observability of the system perturbed in state dynamics) 

Given that the FDLS with bounded realization represented by 

(II.3), (II.4) is zero input strongly uniformly completely observable 

then the perturbed system represented by (IX.l), (IX.2) (for the 

instance that the input is zero) is uniformly completely observable 

over T seconds if 

where 

y(~) < 2~Ty(C)y(~) 

y(~) := sup sup 
t EJR -.E[O, T] 

0 + 

(IX.lO) 

I ~<t , t +r) I . 
0 0 l. 

(IX.ll) 

Proof. Let x
1
(t), x

2
(t) be the state of the FDLS and the perturbed system 

respectively, i.e. 

and 

With t.x := x
2 

- x
1

, we have 

· .6.~ = A(t)t.x + ~(x2 ,t), t.x(t ) = 9 · 
o n 

and 

sup 
tE[t ,t +T] 

0 0 

lt.x(t) I 

Vt E lR 
0 + 

Tl/2 
~ ~ y(~) [ sup 

tE[t ,t +T] 
0 0 

by the same arguments as before. 
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( 
0 

k+l 
~(·,T)~(X ,T)dT) 

Step 2 Set k = k + 1 and go to Step 1. 

Proposition IX.l (Convergence of Algorithm) 

(IX.24) 

Under the conditions of Theorem (IX.l) the algorithm given above 

converges to a (unique) limit which is the required initial state . 

. Proof: The proof follows the same lines as the proof of the contraction 

napping theorem and it is obvious that the limit of the sequence of 

[yk(. fl~=l namely~ co (. )=y(.). The details are omitted for brevity. a 

Comment (i) Similar algorithms can be obviously stated for systems 

satisfying Theorems (IX.2) and (IX.3). 

Section X An application-emergency control of an interconnected power 

system 

In this section we state a model for an interconnected power system 

and show how the results of Section V may be used to formulate control 

laws for steering the power system to an equilibrium point in the event 

of unanticipated line breakages. As we point out in Section X.l, the 

possibility of steering of the power system in the absence of constraints 

is easily established. In the event of constraints on the capacity of 

generation, frequency deviation of the generators, and the thermal 

(heating) limits of the lines the problem of steering the system is non-

trivial and this is discussed in Section X.2. 

X.l Model of interconnected power systems and its controllability 

The model we use for an interconnected power system is standard and 

may be found for instance in Elgerd (8].We restate the model and 

assumpt~ons explicitly to establish the notation. ·The power system is 

assumed to consist of a network of transmission lines interconnecting 

buses representing nodes of generation and supply. 
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(IX 10) · 1· · · 1 h .y (''')"Tl/Z --, 1/2 [s-ince • ~mp ~es ~n part~cu ar t at o/ ~ ~ ~ 

y (C)y(~)Tl/ 2 ~ ~L ~ vs] so that (IX.l5) yields 

sup l~x(t)l ~ 2J.l y(~)T1 / 2y(l)J)Ix I· 
tE [ t , t: +T ] 0 

0 0 

n 
If y

1 
(·) and y2 (·) E L2°([t

0
,t

0
+T]) are the outputs of the FDLS and the 

perturbed system respectively then 
' 

Now, 

llyl (. )-y2 (.)II ~ 2\l y(l)J)y(C)T y(<P) I xo I 

yl(•) = efo(xo) 

and we represent 

n . 

(IX.l6) 

. where N : JRn-+ 1
2
° ( [ t , t +T]) is a continuous map. From the fact that 

0 0 

l)J(9 ,t) = 9 Vt we have N(9 ) = 0 and from the fact that ljJ is Lipschitz 
n n n 

we have from an argument similar to that leading to (IX.l6) .that 

n 
Given that ·the map f. is injective from JRn to 1 2° ( [ t , t +T]) (and 

0 0 0 

* . 
in fact, a bijection from JR. to i_ (JR.n)) we demand that i.. + N be one 

0 0 

to one. By the contraction mapping theorem (see for example Marsden [17]), 

'i-. + N is one to one if 
0 

2\l y(l)J)y(C)T y(<P) --1 < 1 
Ys 

This completes the proof of the theorem. 

(IX.l7) 

Q.E.D. 

Theorem IX.2 (Observability of the system perturbed in the output channel) 

If the FDLS with bounded realization represented by (II.3), (II.4) 

is zero input strongly uniformly completely observable over T seconds, 

then the perturbed system represented by (IX.S), (IX. 6) ·(for the zero 

·input case) is uniformly completely observable over T seconds if 
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(IX.l8) 

Proof: is routine the left to the reader. 

The results of Theorems (IX.l), (IX.2) can be combined for systems 

having nonlinear perturbations both in the state dynamics and output 

channel, that is 

x = A(t)x + lji(x,t) (IX.l9) 

y = C(t)x + f(x,t) (IX.20) 

with tjJ and f satisfying (IX.3), (IX.4) and (IX.7), (IX.8) respectively. 

Theorem IX.3 (Observability for the system perturbed both in state 

dynamics and output channel). 

If the FDLS with bounded realization represented by equations 

(II.3), (II.4) is zero-input·uniformly completely observable overT seconds 

then the perturbed system represented by (IX.l9), .<IX.20) (tor zero input) 

is zero-input uniformly completely observable over T seconds if 

y(f)Tl/Zy(<I>) {1+2lly(lji)Tl/Z} + 2Y (.C)TY (!/')ll Y (<I>) < Y 
s 

Proof: The proof is routine and omitted. o 

(IX.21) 

IX.2 Algorithm for the identification of the initial state x of the 
0 

uer.turbed system given the zero input response on [t ,t +T]. 
0 0 

Algorithm 

Given output 

Step 0 Set k = 1, 

Step 1 Define 

n 
y E L

2
°([t ,t +T]) 

0 0 

1 ~* .; -1 * 
xO = ( ~ o ~o) f oy 

·k+l . k+l k+l xk+l(t ) X = A(t)x +W.·(x ,t), 
0 

k+l C(t)xk+l y = 

·' 

- 42 -
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Al. (Generators at each node). We assume that there is a generator 

coupled to each bus. 

As a consequence, the state space of the interconnected power 

system is a vector space. If there were load buses (i.e. without 

generators) in the network then nonlinear algebraic constraints on the 

angles of the generator buses would be present, and hence the state 

space.of the interconnected power system with load buses may be a 

manifold, under appropriate transversality conditions. 

A2. (Power delivered by the transmission line). If two buses i and j are 

connected by a line of susceptance Bij (at the synchronous frequency of the 

system) and conductance Gij' and if 6i and 6j ar~ the phase angles of the· 

buses with respect to a synchronously rotating reference frame, then the 

average power leaving bus i is given (approximately} by B .. sin(6.-6.) 
~J ~ J 

+ G .. (l-cos(6i-6.)) ·(in per unit terms; assuming bus voltage magnitude 
~J J 

to be lper unit and the average power leaving bus j is given by 

B .. sin(6.-6.) + G .. (l ... cos(6.-6.)). Notice that the sum of these two 
~J J ~ ~J ~ J 

powers is always ~ 0 and represents the power lost (to heat) in the line. 

A3. (Swing equations of the generators). 

The classical swing equation model represents the dynamics of a 

synchronous generator. For our purposes, the transient reactance of 

the generator is neglected. Thus, for the ith generator we have 

where 

M.w. + D.w. = -~ [Bi. sin(ei-6.) + G.j(l-cos(6.-6.)] + P. 
~ .i. ~ ~ j :f.i J J ~ ~ J· ~ 

(X.l) 

(X.2) 

Mi,Di =moment of inertia, damping .constant with appropriate units 

wi =angular speed of-generator shaft 
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P. =net input power at bus i. (Mechanical power input minus 
~ 

electrical demand at bus i.) 

Note that I: [B .. sin(e.~e.)+G .. (l-cos(e.-6.))] is the output 
j ;l:i :!..] . ~ J ~.] ~ .1 

electrical power from bus i. 

Equations (X.l), (X.2) constitute a state space model (DDS) for the 

intercon.~ected power system. We wish to study the controllability of 

the DDS described by the 2n differential equations (X.l) and (X.2). 

Note that the model is time-invariant, hence complete controllability,if 

any,will be uniform. It is relatively simple to realize that the DDS 

described by the 2n differential equations (X.l) and (X.2) is completely 

controllable. In fact, given any trajectory in the state space 

(~.~) E JR
2n . on [O,T] with the added requirement that!= ~,there 

exists a vector of controls f on [O,T] so as to steer the system along 

that trajectory and this vector of controls is given explicitly by 

equation (X.l) upon substitution of the desired trajectory ( 6 ,w). 

However, in a physical power system there are constraints on the 

power generation capacity of each of the generators, so that controllability 

as we have established it so far for the interconnected power system is 

not very useful from a practical standpoint. Also, there are constraints 

on the initial and final values of the power generation P E lRn 

arising from the need to steer the power system to a specific equilibrium 

point. These constraints are described precisely in the next section 

and constrained steering (controllability) described therein. 

·x.2· Applications to the emergency control of power systems 

Without going into the details of the exact definitions of 

emergency control of power systems (for these the reader is referred to 

Fink and Carlsen [26], Blankenship and Fink [27]) we will try to state 

as clearly as possible the control policy for an interconnected power 

system in the event of line ·.breakages between buses. 
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In the event of line breakage the problem of emergency control 

involves steering the power system from the pre-disturbance equilibrium 

state vector (~ 1 ,o) E IR
2
n at time 0 to a post-disturbance equilibrium 

state vector (~ 2 ,0) E IR
2n at timeT with the constraint that the vector 

of power injections at time T be the same as that at time 0. 

More precisely: at the pre-disturbance equilibrium for a vector of 

constant power injections~= IRn, the state of the power system is the 

1 2n 
vector(~ ,0) E IR satisfying the equilibrium load flow equations 

P~ =I [B .. Sin (8~-·SJ~) + G~ 1. (l-Cos(8~-8j1)] i = , ••. ,n 
1. j f.i 1. J .... 

and 

w = 0 
i 

i=l, .•. ,n. 

(X. 3) 

(X.4) 

Of course, one of the 8~'s in equation (X.3) may (arbitrarily) be 
~ 

chosen to be zero. With this in mind, it is assumed that for fixed' r·1 , 

the constant solution (~ 1 ,o) of equations (X.l) and (X.2) is asymptotically 

stable in the sense of Lyapunov. If, after line breakage, there exists a 

new asymptotically stable solution 8
2 

of the load flow equations (with 

the B .. , G .. replaced by B ' .. ~ G ' .. ) , it is desirable (for reasons of optimal 
l.J 1.] 1.] 1.] 

1 load dispatching power supply commitments) to steer the system from (8 ,0) 

to (8
2 ,o) through the p~ s. 1 The constraints are that p.(O) = p. and 

1. 1. 

P.(t) = p~ V t > T 
1. 1. = for i=l, ..• , n (so as to keep the power system in the 

2 equilibrium stable state (8 ,0) Vt ~ T) and P.(·) is smooth function of time 
1. 

r 
(C for some r). To account for the new constraint we introduce a new 

set of variables yEIRn with 

p. = v. 
1. 1. 

i=l, ... ,n (X.S) 

so as to make each P. a state. We augment the DDS of (X.l), (X.2) (with .B •• 
1. 1.] ' 

G .. replaced by B!.,Gi'.) with the equations (X.S). The sate space is 
1.] 1.] J 

now of dimension 3n. To check the completely controllability of the DDS 

described by equaitons (X.l), (X.2) and (X.S) through the y,we notice 

that the "nonlinear part" of equations (X.2), namely 
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~B .. sin(e.-e.) + G .. (l-cos(e.-e.)) is bounded by I: C!B .. I+2G .. ) 
j7i ~J ~ J ~J ~ J j :fi ~J ~J 

so that the DDS of equations (X.l), (X.2) and (X.5) is completely 

controllable if the linear system described by the equations 

. 
Miwi + D.w

1 
= P. (X.6) 

~ :L 

. 
e. = w. (X. 7) 
~ ~ 

. 
P. = v. i = 1, ... , n (X.8) 
~ ~ 

is completely controllable. It is easy to check that this corresponds 

to n decoupled FDLS each in controllable canonical form and hence 

controllable VT > 0. Hence the DDS of equations (X.l), (X.2) and (X.5) 

is uniformly completely controllable VT > 0 and there exists a v E C 
c:o 

..p* n oo 
(for time-invariant systems the functions in ~R(lR ) are also C ) so 

as to drive the DDS from 

the power system operators viewpoint the resulting trajectory of P(t) 

- . 
is the required control. 

Often, however, the problem of steering the system from (~1 ,o,~1) 

to (~ 2 ,o,~1 ) has added constraints: the thermal capacities of the lines, 

the maximum possible frequency deviation of the generators (w.) before 
~ 

frequency protective devices trip, the maximum generating capacity of 

the generators, etc. All of these introduce affine constraints on the 

region of 1R
3
n in.' whiCh th~ "{e,w,·I:'): tra-jecury can lie •. For instance if 

C .. is the thermal (heating) limit of the line between buses i and j; 
~J 

!e.-e.!< sin-1(ci.-2Gi.l!Bi·j·)could be the constraint on the state space 
~. J = J J . . 

of e.'s. It is required that the control law v(•) keep the trajectory 
~ 

in the desirable region of the state space while making the transfer. 

It is clear that the desirable region of the state space is a collection 

(possibly more than one) of polytopes. 
1 1 . 2 1 

If (~ ,0,~ ) and (§ ,0,~ ) both 
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belong to the same polytope we contend that it is possible to steer the 

system from (~ 1 ,o,~1) to (~ 2 ,o,~1) with the trajectory staying inside 

the compact polytope. 

Proposition X.l (Emergency control of the power system) 

. 1 1 E 3n 2 1 E 3n Given two po~nts (8 ,O,P ) JR. and (8 ,O,P ) JR. belonging - - -
to the interior of a compact polytope f of JR. 3n as initial and final states 

of an interconnected power system satisfying (X.l), (X.2) and (X.S) 

(with Bij ,G ... replaced by B.'. ,G.'.) there exists a control law v (•) defined on 
~J ~J ~J 1 1 2 2 

[O,T] which steers the power system from (~ ,0,~ ) to (~ ,0,~ ) E interior 

rf keeping the trajectory inside ~. Vt E JR.+. 

Proof: Let~ be the straight line connecting (~ 2 ,o,~1 ) and (~ 2 ,o,~1). 

Since If is a convex polytope, belongs to the interoir of P Now with center 
1 1 . 

(~ ,0, P ) let 8
1 

be a ball (Euclidean norm) lying wholly in ijJ(such A ball exists 

since (81 ,0, ~l)is interior f. Let _J n as
1

= 

boundary of Bl'"' .Lets 2c flbe a- ball centered 

3 3· 3 
(8 ,w ·~·) where· as, denotes the 

( 3 3 3 . 
at 8 ,w ,~· .)~ntersecting d in 

(8 4 ,w4 ,~4 )and so on. Clearly from the compact~ess. off( it follows that there 

exists a finite sequence of balls in P say (1'3
1

, ••• ,8 N constructed as 

above with (~2 ,o, ~ 1) E ~N. We will choose a (finite) sequence of 

controls v\ ..• , vN defined on -[0, T
1
], [T

1
, T

1 
+T

2
], ••• so as to keep the 

trajectory in the balls Q3
1

, (1) 
2

, etc. and to steer the power system from 

(~l,O,~ 1) to ( 83 3 p 3) ( 83 3 p 3) ( 84 4 P 4), B . _ ,~ ,_ , _ ,~ ,_ to _ ,~ ,_ etc. ut, ~t 

is easily verified from the estimates in the proof of Theorem (V.l) 

(inequality (V.7) and equations (V.7)) that T
1

,T
2

, .•. can be chosen so 

as to make this possible. a 

Section XI Conclusions 

In this paper we have shown that the uniform complete controllability 

of linear time varying finite dimensional systems is robust against a 
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... ., 

wide range of addiitve nonlinear perturbations, both bounded and 

unbounded which are not "too large". A measure of the degree of 

robustness that we are able to establish by our methods seems to be 

the reachability condition number defined in Section III. This is 

in keeping with standard numerical analysis intuition. Uniform zero-input 

observability of linear time varying finite dimensional systems is also 

shown to be robust against nonlinear perturbations in the dynamics and 

output channel. The nonlinear perturbations are restricted in some 

ways: the perturbations in the dynamics keeps the origin to be a fixed 

point of the flow (of ·the undriven "state" equation) and the additive 

perturbation in the output channel is unbiased (i.e. the origin of the 

state space is mapped to the origin of.the output space)- but the 

necessity or this restriction is obvious. Finally, the techniques of our 

paper have been used to yield some preliminary results on the emergency 
~ 

control of power systems - which had been so far an analytically 

intractable problem. Further results in this direction are expected. 
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Appendix. Fixed Point Theorems 

A.l. · The Rothe Fixed Point Theorems 

Let F: K C X-+ X be a compact map defined on a closed ball K in a 

Banach space )C. If F(aK), the image of the boundary aK of K, lies in 

K there exists at least one fixed point of the. mapping F. 

The Rothe fixed point theorem can be proved using the Schauder 

fixed point theorem, namely. 

A.2. The Schauder Fixed Point Theorem 

Let F K C X.-+ Xbe a compact map defined on a closed, convex 

subset K of a Banach space X . If the image F(K) C K then F -has at least 

one fixed point. 
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