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Abstract

Fixed point methods from nonlinear analysis are used to establish
conditions under which the uniform complete controllability of linear
time-varying systems is preserved under non-linear perturbaticns in che
state dynamics and the zero-input uniform complete observability of
linear time-varying systems is preserved under non-linear perturbation
in the state dynamics and output read out map. Algorithms for computing
the specific input to steer the perturbed systems from a given initial
state to a given final state are also presented.

As an application, a very specific emergency control of an inter-
connected power system is formulated as a steering problem and it is

shown that this emergency control is indeed possible in finite time.
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Section I. Introduction

Controllability and observability are key issues in system theory.
To be specific, consider a class of physical dynamical syétems which are
adequately modelled by ordinary differential equations with inputs u

and a static read-out map h: more precisely,

[
I

f(x,u,t) (1.1)

PanN
-

= h(x,t) .2)

<
|

n, n

with x €ER*, u€ER %, yeER °

, t € R_ and f, h c® functions; f
satisfies Lipschitz and growth conditions so that solutions exist, are
unique and can bg extended to all of Eﬂ: In optimal control, it is well
known (see for e.g. [291) that controllability has fundamental inter-
connections with the existence of optimal controls and their feedback
synthesis. In process control, controllability and observability are
crucial in the study of stabilizability of plants. On a more abstract
level, it has been shown by Willems [23, 24] that if a dynamical system
is completely controllable and observablg in a suitably defined
sense, input-output properties (notably, finite gain stability and
dissipativeness) are reflected into properties of the state space
description of the system (as global asymptotic stability in the sense

of Lyapunov and the existence of a storage function, respectively). 1In
the theory of diffusionsarising from dynamical systems the quesfion of the
existence of a probability density for the diffusion, posed by Ito, have
been answered by Elliott [9] in terms of controllability of the under-
‘lying dynamical system. Finally in what is perhaps the best known
application of the concepts of complete controllability and observability

we have Kalman's results (see for e.g. [4]) on the minimal realization

.,




6f linear dynamical systems. The reader will notice that we have been
loose with our use of controllability and observability for a variety

of related but not identical notions. Precise definitions of these for
_our purposes are relegated to Sections III and VIII. Also, for the
purposes of this paper the state space, input space and output space are
all vector spaces.

In view of their obvious importance there is a rather large
literature on the.controllability and observability of non-linear systems.
We will not be exhaustive in briefly reviewing it, but will point out
what we feel to be three approaches to this issue in the literature:

(i) the differential geometric approach developed by Brockett [5],
Hermann [12], Krener [14], Lobry [16], Sussmann and Jurdjevic {22]. The
most comprehensive survey appears in a recept paper of Hermann and
Krener [13].

(ii) the nonlinear analysis approach to null controllability (i.e.
contréllability to the origin) using classical Lyapunov theory and the
more recently introduced theory of come valued Lyapunov function. This
approach has been developed émong others by Chukwu [6] and Sinha [20].

(iii) the globai analysis approach to the zero—%nput observability
of Morse-Smale dynamical systems, due toAeyels [1]; see also Aeyels and
Elliott [2]. Some othef work which does not fit under any of these
headings are the paper on global (complete) observability of non-linear
systems by Yamamoto and Sugiura [25] and the paper on global (complete)
controllébility of non-linear systems by Lukes [16].

The results as they stand in the differential geometric approach
have reached final form for c” systems with control u appearing-linearly
(i.e., with f(x,u,t) = fl(x) + fz(x)u for suitably chosen f1 ‘R > RD

nxn

ande:IRn-*IR

i ©
l, C functions). Implicit in the results is the
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assumption of high -differentiability. The results are of necessity local

in nature and the causality of physical dynamical systemsis lost in the

"

formulation of the results. Further, the results are of an "existence

nature so that they do not explicity give controls for steering the
system between prescribed states.

In the null controllability results using Lyapunov and cone valued
taypunov techniques,conditions are imposed on the non linearities of the
state dynamics so as to make the domain of null controllability the
en;ire state space. The results are rather restrictive in that they
discuss only cdntrollability to the origin.

In the global analysis [1,2] approach we have a sufficient condition
for the global (complete) observability of Morse-Smale systems to be the:
rank condition of Kalman for complete observability of linear sytems
applied to the linearized dynamics and linearized output map at each of
the (finitely many) fixed points and orbits of the flow. The tools used
are the proﬁerties of Morse-Smale systems and a Banach space implicit
function theorem. In the paper of Yamamoto and Sugiura the contraction
mapping theorem (see for e.g. Marsden [17]) is used to obtain some results
for the observability of non linear systems witb "small" nonlinearities.
In the paper of Lukes, controllability of an autonomous dynamical systemr
is treated as a boundary value problem and sufficient conditions for the
controllability of certain perturbed, linear time-invariant systems is
derived using compactness arguments (Arzela-Ascoli theorem) in a Banach
space. In fact, Theorem V.l of the present paper has also been proven

- by Lukes. The present proof is of course new.

We now discuss the philosophy of our approach: In the present paper,

we take the engineers view of complete controllability: E} T € IR+ such




that given any to’ initial time, and any two states Xo’ the initial

state and x,, the final state, there exists a control that will steer

l’

the system from X at to to x, at to + T. The same view is held of

1

zero-input obsgervability: 3 T € R, such that given any to and the

+
output of the system with zero-input on [to, t, + T] we can determine
(uniquely) the state of the system at time to. In keeping with our

view point we give, wherever we prove complete controllability, a

procedure for obtaining explicitly a control law to perform any required
steering and wherever we prove complete observability, a procedure for
obtaining explicitly the initial state of the system. Since our results
are global (complete) controllability and observability results for
nonlinear systems which are in some sense close to being linear, we

choose to think of our results as being robustness ‘results for the uniform
controllability and observability of linear time-varying systems (precise
definitiors are given in Sections III and VIII) in the presence of nonlinear
perturbations of various typeé.

The major mathematical tool for the paper is a solvability theorem
for 6perator-equations with a duasibounded nonlinearity, due to Granas
[11], which is remiﬁiscent of the small gain theorem (see for e.g.

Desoer and Vidyasagar t7}). The heart of the theroem lies in the Rothe
(or equivalently the Schauder) fixed point theorems, which are essentially
topoligical tools in nonlinear analysis.

We illustrate the use of our results in the derivation of control
laws, during a very specific emergency,‘for intérconnected power systems,
by posing the emergency control problem as a steering problem. That this
formulation is indeed the right one for emergency control has been suggested
by a recent research report [10]. We mention that another application
may be in economics for establishing.the existence of homeostatic

trajectories for certain adapting economic systems which satisfy differ-

ential equations rather than inclusions, as is suggested in a paper
—-5-




of Aubin and Day [3].
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Section II. Notation

The dynamical systems that we study are differential dymamical

systems (DDS) with finite dimensional vector spaces as input, output and

n, n ‘
state space, respectively R 1, R © and R" with the representation

e
it

f(x,u,t) ' (IT.1)

= h(x,t) ©(11.2)

«
|




n

where t € R f is a c° function from R™ x R * x ]R+ + R™ which .

+)
is globally Lipschitz continuous in its first argument (to guarantee

uniqueness of solution to (2.1) when the initial condition is given)
o n %
and h is a C function from IR = X ]R+ -~ 1R ~. Finite Dimensional

Linear Dynamical Systems (FDLS) with a bounded realization are

differential dynamical systems of the form (II.3),.(II.4)

x = A(t)x + B(t)u (II1.3)
y = C(t)x (1I1.4)
with la¢H)l, B¢ HH, lc(-)! bounded on R,. (I1.5)

Section III. Characterization of controllability for finite dimensional

linear systems.

The definitions and propositions of this section are well known,
though not standardized. We restate them here to establish the
terminology and notation. The definitions aredrawn from Silverman ([19]

and the proofs may be found in standard books (see for e.g. [4]).

Definition ITI.1. (Uniform complete controllability (UCC))

- A differential dynamical system represented by (II.1l), (II.2) is

said to be uniformly completely controllable if 3’1‘ > 0 such that

n,
E e n r3 1 . -
Vto ]R+ and on,x R, 3 an input u € L2‘ ([to,to+'1‘]) which drives

1

the system from x(t,)) = x, to x(-t-:o—+T5' = % o

1

For FDLS with bounded realization a simple characterization of UCC

accrues from the fact that equation (II.3) can be solved explicitly
n,
, i .
x, and 1pput u € L2 ([to,to+T]) to yield

on [to,to-l-T‘] given x(to)

equation (III.1).




t
x(t) = @(t,to)xo + J d(t,t) B(t) u(r)dr (1I11.1)

t
o]

S +
’{t [to’to T]

e A
where @(t,to) € R™™ denotes the fundamental solution of the
homogeneous matrix equation

X(t) = A(t) X(t), X(t ) =1
0 (11.2)

with X(t) € R .

To obtain the desired characterization define, for fixed t:o € ]R+, the

n.
linear map;CR (called the reachability map) from Lzl([to,to+T]) to

R’ by

€, *T ,
iRu= J <I>(t°+T,T) B(1) u(t)drt (111.3)
t

o

Then at t = to + T, equation (ITI.1l) may be rewritten as:
x(E +T) = ¢(t +T,t )x +£Ru (III.4)

x a
The adjoint map of iR’ denoted ;.fR, then is the linear map from R~ to
n,

i .
L2 ([to,t°+'1‘]) defined by

% * %
in =B () @ (£ +T,)x (11I.5)

Since the realization (II.3) is bounded Gay by K)we have from the

Bellman Gronwall lemma that

HA

lo(t,t)! = exp K(t-1) vt,T € R (I1I.6)
Also,

B¢yl S x ¥t E€R, | (I11.7)

Using (III.6), (III.7) it is easy to check that ;/R and 4 are

continuous linear maps.




Theorem III.1. (Characterization of Uniform Complete controllability

for FDLS)
The FDLS with bounded realization represented by (II.3) and (II.4)
is uniformliy completely controllable « Vto € 1R+, the reachébility map
‘fk : in([to,to+T]) + R™ defined in (III.}) is onto ¥ Vto € ]R+ the composition

of the reachability map and its adjoint naniely’fRo&f R.'n >RY is a bijection.
o

Comment

The second characterization of uniform complete controllability
is particularly handy since it is in terms of the rank of a linear map
iRi; :R® > R®. The properties of this linear map will be of use in

the sequel and hence we define its representation explicitly.

Definition III.2. (Reachability grammian)

Given t_o € R + the matrix representation of the continuous linear
‘map i& :R™ > R™ is the reachability grannnian, denoted WR[to,t°+T]
€ g nxn
t°+T

Wlt e+ 1] = f #(t_+T,7) B(1) B* (1) <I>*(to+T,1:)d1' (III.8)

t

o o

Thus, the FDLS with bounded realization given by equations (II..3),
(1I.4) is uniformly completely controllable iff WR[to,to+T] is non -
singular Vto € IR+. Notice, however, that the FDLS can be uniformly
completely controllable with the smallest eigenvalue of WR[-t:o,to+T]
tending to 0 as to > w;

In addition to pfovidi.ng a test for uniform complete controllability
the reachability grammian provides information about the minimum size

of the L, norm (energy) of the input required to make the transfer

2

from xo € R® to x

n .
1 € R in [to-,t°+T] as stated below.

-9




Proposition III.Ll. (LeastL2 norm of control)

If the FDLS with bounded realization given by e&uations (11.3),
(I1.4) is uniéormly completely controllable; then, the least L, norm
of the control required to transfer the system from xg at to to % at
to+T is given by

) 1/2
{(x1—<1>(t0+~+:,co)xo>*(wR[to,to+T}) 1(xl-cp(to+fr,t0)xo>] (II1.9)

n

Comﬁent. From Proposition (III.1) it follows that the least L2 norm
control required to reach X, e R® at t  + T from the origin at t,
is given by

% -1 1/2

[xl(wRLto,to + T1) xl]
Uniform complete controllability does not guarantee that this quantity
is bounded 2 € R® and ?to € R, as was noted after definition (II.2).

To guarantee this we define a slightly stroager form of controllability.

Definition (II1I1.3). (Strong Uniform Compleﬁe Controllability)

A FDLS with bounded realization represented by (II.3) and (1I1.4)

is strongly, uniformly completely controllable if 31?> 0, AS > 0 such

that Vto € ]R+

> .2
WR[to,to + T] = ASI . (I11.10)

=4

Comments

(i) The boundedness of the realization guarantees that 3 AL € ﬂi+ such

that Vto € IR+

fiv

I

2
A
L™ €lo,1]

sup - NR[to,to + 1] ' {I1I.11)

-10-



(ii) It is obvious that it is more costly to reach certain directions
than others (the cost is the minimal L2 norm of the input required to
reach a unit norm vector in a certain direction starting from the
origin). Motivated by the condition gumber of numerical analysis (see
fur example, Ortega [28]) we define the reachability condition over T

seconds of a strongly uniformly controllable FDLS.

Definition II1I.4. (Reachability condition number)

Consider a strongly uniformly controllable FDLS with bounded

realization, let XL > 0 and XS > 0 be defined by

~ 1/2

X, = sup sup A W [t ,t +TD (111.12)

L t ER, t€[0,T] max R ¢ "o
o] +

and

s, 1/2

AS = 1gf _ Amin(WR{to,to + T]) (I11.13)
to n&+

then the reachability condition number over T seconds Xg is defined by

3

= <= (I1T.14)
R .

>

xR

The burden of this paper consists in demonstrating the robustness

of strong uniform complete controllability of an FDLS in the face of

nonlinear perturbations in the dynamics both bounded and unbounded. Our
methods seem to indicate that FDLS with smaller reachability condition
number are more robust than others with larger reachability condition

number.

Section IV. Solvability of an operator equation with a quasibounded

nonlinearity in normed spaces

The main mathematical tcol used in the investigation of the

robustness of controllability is a solvability theorem for an operator

-11~




equation in normed spaces with a quasibounded nonlinearity proved in its
present form by Granas [11]; see also Mawhin [18]. The heart of the
theorem lies in fixed point methods in nonlinear analysis:specifically,
tlie Rothe fixed poin£ theorem which we state in the Appendix. For

details, the reader is referred to the excellent monograph of Smart [21].

Definition IV.1l. [Quasibounded maps ]

Given X and %Banachspaces with respective norms ] and | and

F a map from 2 to g, F is said to be quasibounded if the number

|F(x) gy A
p(F) := inf |sx|1p T;‘—y (1Iv.1)

0z p<e XZ;D X

is finite and this number is called the quasinorm of F. 1
Comm_ents

(i) A continuous linear map is quasibounded and its quasinorm
corresponds to the usual induced norm.

(ii) If for instance for some €15C91Cq €ER

[F(x) | +c (1v.2)

%-é °1|xvl»x 2

¥x € {x: |x]

v

c3}

(that is, (IV.2) holds for all x GXoutside a ball of radius c3) then
F is quasibounded and its quasinorm is less than or equal to cq- In
particular, if cil = 0 then the quasinorm of F is zero

(iii) If F is a compact map on’,( then F is quasibounded

t

(Recall that a continuous map F :r—> 'g is said to be compact if the

* |F(x)| z cllxl t+ ¢, for some c,,c, €ER.

2

closure of the image of any bounded set is compact).

-12-




Theorem IV.l. (Solvability Theofem)

If F: X-’T is a continuous, quasibounded, compact map on the Banach

space ) and if

p(F) <1

"then the equation

X+ F(x) =y (Iv.3)

has at least one solution for every y € J.

Proof. Let Yo be an arbitrary point in ¥. We shall prove that 3 e

such that Xy + F(xo) = Yy Let F :,‘Y*X be a compact map defined by
F(x) =y - F() for x €
Now p(F) < 1 implies that

JTTLLF}EX <§ <1 for Ix[ > rl

where ¢ and r, are some constants. Choose € > 0 such that ¢ + & < 1
and define r := max(rl,fyolfe); Now §_ = {x €X:|x| = r} is the

(topological) boundary of the ball B_ = {x €X: |x| = r} and for x € 5.

we have
Feol < 1%l L E@|
x| i [x]
hence :
Fo| < o e
- =g + § (by the definition of r)

By the definition of ¢ we have
[Fy| < |x] - ¥x € S,- ' (IV.4)

-13-




From (IV.4),§(SI) c Br' Since F is a compact map we have by the Rothe
fixed point theorem (sée Appendix) that F has at least one fixed point

x € B_. Hence,
o T

F(xo) = yo - F(xo) = X
completing the proof. ' o
Comment.

Theorem IV.1l bears a resemblance to the well known small-gain
theorem in the analysis of feedback systems (see for e.g. [7]), if
the operator F were thought of as representing the plant in a unity
feedback gain control system. At the cost of a topological restriction
(continuous, compact) on the plant operator F (there are no topological
‘restrictions in the small gain theorem) Theorem (IV.1l) yields the
existence of a qunded solution to the feedback equation (IV.3) for

every. y € X provided the "§§ymptoticggain” (quasinorm) of F is less

than 1.

Section V. Robustness of strong uniform complete controllability under

bounded perturbations in the dynamics

In this section we consider the uniform, complete controllébility
of the F.D.L.S. of (II.3), (II.4) whose dynamics are perturbed by a

n,
bounded C° function h: R®" x R *

x R_ > R" which is in addition
globally Lipschitz continuous in its first argument (to assure uniqueness

of solution of the resulting differential equation, given the initial

condition) to give the state evolution equation of (V.1l)
x(t) = A(t)x + B(t)u + h(x,u,t). : (V.1)
with

—14-




sup Ih(x,u,t)] = K, < ' (V.2)

n,
*RT,uER T, tER

Such a perturbation might arise from the study of a DDS of the form
(TI.1) which is in addition "almost linear" in the sense of (V.1l), (V.2)
above. TYet another application of the study of such perturbation is
illustrated in Section X for emergency control of an interconnected
power system. In Section (V.l) we prove the main result of this

section which is the following theorem.

Theorem V.l. (Robustness of uniform completé controllability under
bounded perturbations in the dynamics)
Given that the FDLS with bounded realization of equations (11.3),
(I1.4) is strongly uniformly completely controllable over T seconds,
the pérturbed. system represented by equations (V.1l), (V.2) is uniformly

completely contro‘llable over T seconds. a

In Section (V.2) we give an algorithm for the computation of an
input u to take the perturbed system from any initial state X, € rR"
(at to) to any final state X € RrR" (at t°+T). The proof of the
existence of accumulation points in the algorithm involves the use of

the Arzela Ascoli theorem.

V.1 Proof of Theorem v.1l)
. e rD s . ,
Fix € € IR+, X R the initial state; define xl(t), xz(t)
to be the state of the FDLS and the perturbed FDLS respec’t;ively at

time t € [to,to+T]. Then, we have

il(.c) = At) % () + B(t) u(t), xl(tc')) = x : (V.3)

and

1]

%,(t) = A(t) x,(£) + B(t) u(t) + hix,y(8),ult)st), x,(t) = x  (V.4)

~15-




Subtracting equation (V.4) from (V.3) and defining Ax := Xy = X we have

Ax = A(t)Ax + h(xz(t),u(t),t), Ax(to) = Gn (V.5)

To obtain a bound on |Ax(to+T)| define the continuous linear map

ZL from Ly([£,,t +T]) to R™ by
to+T
L(v) = J <I>(t°+T,'r) v(t)drt (v.6)

t
o

with @(to+T,-) as defined in equation (III.2) (continuity of Z follows

from the boundedness of the realization and equation (III.6)). Then,
< .
= fv ()l
|Ax(to+T)| I,,tli v(*)

" where °| stands for the Euclidean norm in RrR® |

l- stands for the usual I_.,2 norm on [to,to,T]

and . .
l |i stands for the operator norm induced on a linear map from

Lg ([to’to +T]) to rR" by the above norms,

with  v(t):= h(x, (t),u(t),t).

From (V.2) we have ¥t € {to,to,+T]

<
Iv(t)l = Ko
so that
vyl S g T2,
o
and
|ax(t +1)| = |£| K 2 g e Lni([t t +T]) (v.7)
) io 2 o’ o
nNoﬁ, think of Ax(to+T) as the value of a (continuous) map
n
Nx :in([to,to+T]) to R® (the subscript X, emphasizing that the map
o

~16-




N depends on xo) with

‘t +T
o

Ax(t°+T) 1= Nx (w) = J @(xo-i-T,T) h(xz(r),u(r),‘c)dr (v.8)

o t
(o)

where xz(-) satisfies (V.4). Then, observe that Nx is a quasibounded
(6]
anonlinear map (actually bounded) with quasinorm 0 (independent of xo).

Also, with the definition of iR from Section III

%, (t°+T) = éf,éu)+ (P(t°+T,t°)xo .9)
and
x, (t +T) = iR(u) + NXO(u) + (e +T,t )x_

Uniform complete controllabiliﬁy of the FDLS guarantees that iR is
onto. To show the uniform complete controllability of the perturbed

system we will show that GﬁR+Nx ) is onto for each X € R™. 1Infact
o
we will show that the image under £R+ Nx' of a finite dimensional subspace
n, [] :
of Lzl([to,to+'1'}) is R™ using Theorem (IV.1).

%
Define M:= ELFR(]Rn),an n dimensional (by uniform complete
n,
controllability) subspace of Lzl([to,to+'1‘]). Clearly LR is a bijection

of Monto R" and we can define the inverse of'.fR on M; ,,i;l :RY > M

1 where X is as defined in

s
Definition III.4 (equation (III.13)). Now consider the map (I+‘§1Nx )

& ~ea
a continuous linear map with -llf_Rlll = A

~

s M M. Clearly i;{le is a compact map (W{ is finite dimensional
o

and Nx is continuous with quasinorm 0. Hence, by Theorem (Iv.1) =
Q

- : ' . .
. _ . .
I +,fR;‘Nx° is onto /and further o‘fR + Nxd is onto R. Since x € R

.and to € 1R+ are arbitrary we have proved that the perturbed DDS of .

(V.1), (V.2) is uniformly completely controllable over T seconds.
Q.E.D.

-l7-




Comments: (i) Strictly speaking strong uniform complete controllability
of the FDLS is not reéuired for the proof of the Theorem‘ﬁ.l - uniform
complete controllability suffices.

(11) Since we have shown that the subspace 7} of gontroiédis sufficient
to steer the system from any X at to to any X t;;to+T it should be
possible to give the specific input required to make the required

transfer. This question is taken up next.

V.2. Algorithm for the computaéion of an input to transfer the perturbed

system fromx € R at t_ to x ERatt +7T
0 (o] - 10}

= o o ° =
Step 0. Set k = 0,x (t) X ,u (t) eni ¥t &€ {to,to+T}
Step 1. Define

t
ey = d(t,t )x_ + j 8(t,t) B(1) u (r)dT
. t
O
[ st neot
X (t,T) h(x (T)au (T)st)d? (v*lo)

t
[o]
-1
ey - 4@%{) [x, = 8(t_+T,t )x_

t +T
o

- f 3(e +T,1) h(x(0),u (1), D)ar] (v.11)
t

o

Step 2. Set k = k+l; go to Step 1

Proposition V.1l. (Convergence of Algorithm)

(1) There exists at least ome accumulation point (in the L »
sense) of the sequence of (xk(-))z=l say x_(+) with corresponding
input u&(-)~defingd on {to,to,T] satisfying xm(to) =X and xm(to+T) = x
(ii) For any accumulation point (in the L_ sense) of'(xk(-)):=l

say im(-), 3 a control ﬁm(-) such that'im(to) ='xo and i@(to+T) = %

"-1§?A

1




Proof. From equation (V.1ll) and the fact that
n

(1) |h(x,u,t)] = K ¥ €RD, u€R ', tER,

* % % % F 3
(ii) ;(R =B () ¢ (r_0+:r.',-) with B (-) and ¢ (to+T,~) bounded on

[to,to+T] (since the FDLS has a bounded realization) we may conclude

o

: k
that the (u )k=l

are uniformly bounded on [to,t0+T] , 1. e, for some K1

independent of k

RIOIE K, ¥t € [t_,c +T]

We use this bound in equation (V.10) to conclude that the sequence of

continuous functions(xk(-))z=l is uniformly bounded on [to,to+l]:
f.e.  |x5(e)] £k, ¥t € [t_,t +T]
T 2 o’ o ?

for some KZ independent of k and that the sequence (xk(')):=1 is

equicontinuous by the following series of inequalities with

t,s € [to,to+T]:

R PRI I S IPS LICR B ETCR RN PN
t K s k
+ lJ o(t,T) B(t) u (v)dt - J ®(s,t) B(t) u (r)drt]
t . t
(o] [o]

R, }
+ {j e(t,T) h(xk(T),uk(T),T)dT

t
o

. |
- j 8(s, 1) h(x5(1), u (1), 1)dr]

t
0

t S

(ii)A l[ o(s,1) B(t)lxk(r)dr[

o(t,1) B(T)\Jk(T)dT - I
t

t0 o]

A

t k s K
[J 8(t,t) B(t)u (r)dt| + ff' [I-¢(t,s)]1¢(s,T)B(t)u (t)dt]

s t
o

A

R ' Ka]t—s} + Ks]I—@(t,s)]i for some K&,K5 independent of k.
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(i11) Je(e,e ) - @(s,to}[i |x_| = K |-e(t,9) ],

(iv) By steps similar to (ii) above

s

t )
l[ 8(t,7) h(xS(r), u(r),0dr - [ 8(s,7) h(x(r), u*(r),1)dr]

t t

o e}

S &, |t-s| + Kg|T-0(t,s) |, for some K., K

8 independent of k.

Combining {(i)-(iv) we have

‘xk-i'l (t "Xk+l

xTH(s) | 2 (R4 [ems] + (RgHReHRg) (| T-0 (e, 8) )

showing uniform equicontinuity By the Arzela Ascoli theorem, there exists
k.
a subsequence of (xk(~)), say (x l(-)):;l converging uniformly on

[to,;°+T}. By an argument similar to the previous one the (uk(')):=1

are uniformly equicontinuous and bounded; so that there exists a further
k,

subsequence of (u l(~)):=l converging uniformly on [to,t0+T]. Let the

limits of these sequenceé be xm(-} and “m(') respectively from the

continuity of h(x,u,t) we obtain

t
x,(t) = o(t,t )x +J ¢(t,t) B(t)u (r)dr
tO
t
+ f @(:,r) h(xw(t), u@(r),r}dr (v.12)
to
and
-1 €T
u (+) = :Qcafkii) (%, - J $(t _+T,1) h(x, (1), y,(1),T)dr
t
Q
- ¢(t _+T,t )x ] ‘ (V.13)

Using (V.13) in (V.12) we obtain xw(t°+T) =%, and it is clear that

“m(°) is the required control to transfer the system from xo to X, on.

{to,to+T]. This proves part (i) of the Proposition.Part (ii) is

»précedural and is left to the reader. a
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Comment.
. . k o )
(i) Notice that the sequence of (y (-))k___l € M,a closed n —
n

dimensional subspace of Lzl[to,to+T],so that u_(.) € 7, as claimed in

the Proof of Theorem (V.1l).

Section VI. Robustness of strong uniform complete controllability under

quasibounded perturbations in the control channel and state

dynamics

In this section we state conditions under which a strongly uniformly
completely controllable (over T seconds) FDLS remains uniformly
completely controllable under unbounded but quasibounded perturbations
separately in (i) the control channel and (ii) the state dymamics.

More explicitly, the FDLS (II.3.5) is said to have a quasibounded

perturbation in its control channel if

x(t) = A(t)x + B(t)u + £(u,t) (V1.1)

n,
where f is a Cc° function from R 1

xR~ R" and for some constants
v(£f), B(f) €ER,
. .

|£Ga,0)] = ¢ Ju| +8(H) ¥ ER T, ¥ ER, (VI.2)
By comment (iii) after Definition (IV.1l) it follows that (VI.2) is
equivalent to the quasiboundedness (uniformly in t) of f. Further,
it is easy to verify that inf{Y(f) :3 B(f) such that (VI.2) holds} is
the quasinorm (uniformly in t) of f.l Thus yY(f) can be chosen arbitrarily

close to the quasinorm (uniformly in t) of f. The FDLS (II.3-5) is

said to have a quasibounded perturbation in its state dynamics if

x(t) = A.(t)x + ’w(x,t) + B(t)u (V1.3)
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.. o , n . . . ;
where { is a C function R~ X ]R+ > R™ which is globally Lipschitz
continuous in its first argument (to guarantee uniqueness of solution

of VI.3), and E}Y(w) < o and B(y) < = such that
vee)| S v x| +8G ¥ ERT, wER, (VI.4)

As before y(¥) may be chosen arbitrarily close to the quasinorm

(uniformly in t) of V.

VI.1l. Robustness of uniform complete controllability under quasibounded

perturbations in the control channel

We start with an FDLS with a bounded realization which is strongly
uniformly completely controllable over T seconds. Then, define

Y(B) := sup IB(t)li < (VI.5)

t€]R+

Recalling the definition of the map {,
to+T

Lv = J - $(e T, 7) v(r)dr ¥ € erl([to,to"'T]): (VI.6)
: ,

[o]

we define the intrinsic grammian of the system.

Definition VI.1l. (Intrinsic grammian)

The intrinsic grammian of the FDLS of (II.3), (II.4) with bounded

realization is the matrix representation of the continuous linear map

Z i*:]Rn-* r" given by

to+T
Wit ,t +T] = J o(t +T,1) & (t +T,T)dT (VI.7)
o o t o) o
(o]

From .this definition follows the idea of an intrinsic drift factor of an

N

FDLS over T seconds.
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Definition v.2,. (Intrinsic drift factor)

The intrinsic drift factor y of an FDLS with bounded realization

over T secs is defined to be

o= 1/2
T sup sup (Amax(W[to,to+‘r))

t ER  1€[0, 1]

Comment. (i) From inequality (III.6) it follows that u 2

and thus is finite for a bounded realization. Using these notions, we

have

Theorem VI.1. (Controllability of the system perturbed in the input

channel)

If the FDLS with bounded realization represented by (II.3) is

1/2

(VI.8)
}a

.

strongly uniformly controllable (over T seconds) then the perturbed DDS

represented by equations (VI.1l), (VI.2) is uniformly completely controllable

(over T seconds) if

. i s
f & —
v(£) <~

(V1.9)

where is is as defined in Definition (III.4) and u is as defined above.

Comments.” (i) As may be easily checked by the reader, p and iL of

Definition (III1.4) are related by the inequality

5> -
Y(B)u = AS

so that (VI.9) implies that

where XR is the reachability condition number.

- 23 -
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(VI.10)

(Vi.11)




(ii) Comment (i) shows that if uniform complete controllability is
preserved then the ratio of the gain of f to the gain of B is small

compared to the inverse of the reachability comndition number.

Proof of theorem: Fix X € an, the initial state and to € ]R+- Let
xl(t) and xz(t) be the state of the FDLS and the perturbed system at

n,
t € [to,to+T] in respomse to an input u(:) € Lzl([to,to+T]). Then, we

have

X = A(t)x1 + B(t)u, xl(to) =X (Vi.12)
and

x, = A(t)x2 + B(t)u + £(u,t), xz(to) =% (V1.13)
Defining Ax := X, = x1 we have

Ax = A(t)Ax + f(u,t), bx(e ) = 0 (VI.14)

By the same estimates as in Section V, and with the same notation

lax(e +1) [ S (L [, fv()l

with v(t):= f(u(t),t).

Now, from (VI.2)

vl = yee) lu()l + gee).

and
FAES J
sovthat

[ax(c +4T)| 2w v(6) hu()l +us(e) ¥e € R, (VI.15)

we write
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x) (£ #T) = iR(u)+ St +T e )%,
and
X, (t +T) = (i’R+N) (W) + o(t +T,t )%
where N(u) := Ax(to+T) is a quasibounded, continuous map (independent

<
of xo) with quasinorm = py(f). As before, to use Theorem IV.l we

restrict the domain of "{R to M :=¢f;(]Rn) and define ;f;{l as before.

Then f;lN N+ 7’}’[ is a continuous quasibounded map (between finite

dimensional Banach spaces and hence compact) with quasinorm = uy(f)Lﬁilli
1 <L

i by
s

uniform complete controllability over T seconds is guaranteed if

Further, ht; By the same arguments as in Theorem (V.1l)

A
s

Q.E.D.

VI.2. Robustness of uniform complete controllability udder quasibounded

perturbations in state dynamics

Theorem VI.2. (Controllability of the system perturbed in state dynamics)
If the FDLS with bounded realization represented by (II.3) is

strongly uniformly completely controllable over T seands then the

perturbed system represented by equations (VI.3), (VI.4) is uniformly

completely controllable over T seconds if

1 e
vy (V) <373 (VI.16)

ZXRuT

Furtﬁermore if the zero solution of the FDLS with no input is
uniformly -exponentially stable, with

;C T

'|<I>(t+"-r,t)!i Ske A

€
N ve,t € R . (VI.17)

then the perturbed system is uniformly completely controllable over

T seconds if
- 25 -




(VI.18)

If in addition the FDLS is time invariant and expomentially stable,

then the perturbed system is uniformly completely controllable, if

1
Y () 77 < 73 (VI.19)
* .
| A (AFA%) | 2xgT
where Amin(A+A*) is the smallest eigenvalde of A+Ax € R ™! n

Comment. Equation (V.19) supports the inituitive notion that in some
sense. uniform complete controllability should be preserved if the gain
of ¢ is small compared to the 'gain of A." The theorem shows that ''gain

of A" should be replaced by the "gain of the symmetric part of A."

Proof of theorem. Fix t, € ]R+ and X € ]Rn, the initial state. Let

xl(t), xz(t), Ax(t) be defined as in the proof of Theorem (VI.1l) with

kl = A(t)x1 + B(t)u, xl(to) =% (VI.20)
kz = A(t)x2 + w(xz,t) + B(t)u, xz(to) = X (v1.21)

and ‘ '
Ax = A(t)dx + V(x,y,t), bx(t ) =8 (VI1.22)

By the same arguments as in Theorem (VI.l)

<

sup - [ax(m] = wr@) lx, ()1 +us@) (VI.23)
Te[to,t°+T] .
and
“xz(')“ s Tl/z[ sup (|x1(t)|+|Ax(t)|)] (VI.24)
tE[to,to+'r]

It is also relatively simple to realize that
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sup %, ()] = iLnu(.)II + sup loCe,e )% | (VI.25)
tE(to,to+T} tE[to,to-l»‘r] '

Using the estimates from. (VI.25), (VI.24) in (VI.23) and noting that

1/2

(VI.1b) = uy({¥)T < 1/2 we obtain

sup ax(e) | £ 20y )12 5 Bu(l + ¢ (x) (VI.26)
o
te[to,to+T]

where cl(xo) € ﬂi+ does not depend on lu(+)!l but does depend on X,

As before, we may write

%, (£ +T) = ang + N (u) +0(E T, e )% .

o

where Nx (u) := ﬁx(to+T) is a quasibounded continuous map with quasinorm
o

2 ZuY(w)Tlfz AL from (VI.26) and uniform complete controllability over

T seconds is guaranteed for the perturbed system by Theorem IV.1 if
1/2 ¢ 1 ;
2uy (W) T :\L{;ﬁ’; | <1

or if

Y@ < —=

173 (VI.16)
ZXRuT

(VI.17) and (VI.18) are procedural and are left to the reader. Q.E.D.

Clearly the results of Theorems (VI.l) and (VI.2) can be combined
to state a condition for the uniform, complete controllability of a

system perturbed both in state dynamics and control channel as
X = A(t)x + V(x,t) + B(t)u * f(u,t) S (VI.27)

where ¥ and f satisfy the conditions listed previously. Then, we have
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Theorem VI.3. (Controllability of the system perturbed in the input

channel and state dynamics)
If the FDLS with bounded realization represented by (II.3) is
strongly uniformly éontrollable over T seconds then the perturbed DDS
represented by (VI.27) is uniformly completely controllable over T

seconds 1if

DY 4 gy pyurt i + LB ) <y (VI.28)
A A
s [
Comment. (V1.28) in particular implies that
YE L ooyt 21 + X8y gy V1.2
Proof: Is routine ‘and omitted for brevity. B

VI.3. Algorithm for the computation of an input to transfer the

perturbed system from X € R™ at t,.to x, € ]Rn_ at to + T,

Under the conditions of Theorems (VI.l), (VI.2), and (VI.3)
algorithms yielding at their accumulation points inputs belonging to
the subspace M of in([to,to+T]) for making the requisite transfer may
be obtained. To keep the section simple we prove the existence of
limit points of the algorithm model for the case of the input perturbed
system satisf?ing the conditions of Theorem (VI.1). The same algorithm

model may however be used for the other two cases as well.

Algorithm Model

Step 0. Set k = 03 x°(t) = xo,uo(t) =6 ,Ft € {to,to+T]
i
Step 1. Define
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t

*H(e) = o, )x, + J o(t,T) B(1) u(r)dr.
£,
t L |
+ [ o(t,1) £(u (1),T)dT (v1i.30)
t
° £ +T
RARTO I alca SRRl CIEICRT NP J o(e_+T,7) £(u(1),1)d1]
t
[o]

.Steg_Z. Set k = k+1; go to Step.l.

Proposition vI.1l. (Convergence of Algorithm)

(1) There exists at least one accumulation point (in the L sense)
of the sequence of (xk(-)):=l say x_(-) with corresponding input u_(-) defined

on [to,to+T] satlsfy}ng xw(to) =X and xm(t0+T) =% for the control uw(-).

=]

(ii) For any accumulation point (in an L _ semse) of (xk(-))k=l say

iw(-) H_a control &w(-) such that iw(to) = X and ;m(to+T) Xy for

the control um(-).
Proof. The proof proceeds through a sequence of claims.

Claim 1. The sequence (uk(-)):=l is bounded in L2 norm by

(|x1|+|¢(to+T,to)xol)(is-uv(f))'l <= (by (VI.10)).

Proof. The (easy) proof is by inductionm, -
Claim 2. The. sequence (uk(-)):=1 is bounded in L 4 norm, ;
Proof. sup |uk(t)| = i;l y(B) sup |¢(to+T,r)[i ﬂuk(-)ﬂ

. l
tE[to,to+'1‘] TE[to,t_ofT] : :

because uk(-) = i*R(]Rn)

Since .the sequence of norms (“uk(.)ll)z=l is bounded by: Claim 1, the

sequence (uk(.)):=1 is bounded in L_ norm. "

- 29 -




i

Claim 3. The sequence (xk(-)):___l is bounded in L_ norm and is uniformly

equicontinuous.

Proof. Follows from the arguments of Proposition (V.1) and Claims 1 and 2.

'R

Now, the proof of the proposition follows exactly the same lines as

that of Proposition (V.1). m

Section VII. Robustness of Strong Uniform Complete Controllability under

Unbounded Lipschitz Continuous Perturbations

In this section we examine the uniform complete controllability over

- T seconds of an FDLS perturbed as in equation (VII.1l)

x = A(t)x + B(t)u + ehix,u,t) (vii.n)

n

with e €R and h: R® x R * x IR+ > R" is a Lipschitz continuous

-

function satisfying
h(en,en yt) = 8 ¥t E}R_}' (VII.2)
i
n oy
and for some ¢ €ER,, ¥xER , Yu,v E R and ¥t € R ,,
o + +

lh(x,u,t) - h{y,v,t) s c |u-v| + ¢c |x~y (VII.3)
o o

Given that the FDLS is strongly uniformly controllable (in the DDS of
(VII.1) with € = 0) we will prove the existence of an interval I centered
at 0 so that the system of (VII.1l) is controllable for all ¢ € I. It
is-of coufse clear that FDLS can actually lose the property of complete

' contrbllability from € large as is evidenced by the scalar system

x=u+ av’uz-i-xz x,u €ER ‘ o (V11.4)
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losing completé controllability for |e 21 (indeed, in that case

¥(x,u)x = 0).
In Section (VII.1l) we .estimate the interval I on which the
perturbed system remains uniformly completely controllable and in
Section (VII.2).we give an algorithm which converges to a (unique) element

n. ,
u of MNC Lzl([to,to+T]) required to transfer the system from X, to X,.

VII.1l. Estimate of the interval I on which the perturbed system is

uniformly completélxﬁcontrollable {(over T seconds)

Theorem VII.1l. (Controllability of the perturbed system)

If the FDLS with bounded realization represented by (II.3) is strongly
uniformly completely controllable over T seconds then the perturbed
system represented by (VII.1), (VII.2), (VII.3) is uniformly completely

. o
controllable on [to,t°+T] ¥ e<] € € [ where

1 1/2 -1
= = xge2euT Ty (BIA AL sup sup |<I>(tO+T,t°+ T)|i (VII.5)

€ =
o t, H{+ t€[0,T]

Proof. Fix t, € ]R+; X € R™. Define xl(t), xz(t), Ax (t) as before with

X = A(t)x1 + B(t)u, Xl(td) =X (VIii.6) -

*2 = A(t)x2 + B(t)u + Eh(xz,u,t), xz(to) = X (VI1.7)
and

ax = A(t)dx + eh(xz,u,t), Ax(to) = Sn (VIi1.8)

Using (VII.3) and the techniques of the previous section we obtain

sup |Ax(t)| s uT ec, sup {|Ax(t)|+|xl(t)| (V11.9)
tE[to,to+T] o tG[to,to+T]

+ lu(e) |}




Note that [h(xz,u,t)l = Ih(xz,u,t) - h(xl,u,t)[ + ]h(xl,u,t)l
so that from (VII.2) and (VII.3)| h(xz,u,t)[ s Colx(t)] + co[xl(t)l

+ ¢ |u(t)|. Using the estimate

sup ()] = X Tu(a) | (VII.10)
te[to,t0+'l‘]

and the fact that e < g® ec Tl/ﬁ < 1/2 we obtain from (VII.9) that

sup | ax(t) | = ZecouTl/z{cl(xo) + iL“u(-)“
t€{t ,t +T]
o’ o .
+ sup lu(t) |} (VII.11)
t&[t st +T]

where cl(xo) is some constant depending on X but not on u.

Also, as before, we define

N u = Ax(t +T)
X o

we prove that N_ 1is quasibounded on .

o
<
on M, sup lu(e)| = v(® N -1 sup sup |o(t +T,¢ +0) 1.
t€le,t +T] s t &R, T€[0,T] ° et
fla(-) 1
(V11.12)
Hence Nx is a quasibounded, continuous map on. 7/ with quasinorm less
o
than or equal to . }
1f2rl72 - 1/2 1 sup sup ]@(to+T,ko+T[i}

+ Y(B)Rg- i t R, tefo,T]

i

28c°pT { RL

Clearly, theorem (V.1) guarantees uniform complete controllability of the

perturbed system if equation (V11.5) is satisfied.

Q.E.D.
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Comment .

In the instance that

» -K, (e-1)
62| S Cpexp B

for some C KA positive constants (i.e. the zero solution of the zero

A’

input FDLS is uniformly exponentially stable), equation (VII.5) may be

restated as

K v(B)C

0 = 1 - = {1+ —j—17i3 } (VII.13)
X VZc ¢C XA
‘ o A Ls

VII.2. Algorithm for the computation of an input to transfer the perturbed

system from X er® at t to x € R" at t,+ T

1
o o
—] —3 - e
Step 0. Set k =0, x (t) X,,u (t) Gni ¥t [to,to+T].

. sk+l . o
Step 1. Define x (-)‘to be the state trajectory on [to,to+T] satisfying

the differential equation

1 k+l k

k+1 ' .
x + B(t) + eh(x ,u ,t),xk+1(to) =%

= A(_f)xk+

t

i.e., xk+1(t) =‘¢(t,to)xo + J @(t,to),B(T) uk(T)dT
.

[o}

t . .
+ EI o(t,T) h(xk+l(f), uk(r),r)d T

t .
o (VII.14)

Also, define
+1 -1 '
o (*) = X;G{R ) Tlxy - cb(to+T,to)xo

‘t +T
o

-+'eJ‘ o(t_+T,7) nH )l ,0an] (VII.15)
t
o -

Step 2. Set k = k+l; go to Step 1.
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Comments. (i) The algorithm proposed above has interesting heuristics’

-- that of iterated "missed distance correction.'

(ii) The reader will note that this algorithm isdifferent from

those proposed in Sections V and VI, as a comparison of equation (VII.14)

with equation (V.10) and equation (VII.1l5) with equation (V.1ll) will show

(xk

(V.10) and (V.11)).

Proposition VII.1l. (Convergence of Algorithm)

+l(~) is used in equation (VII.1l4) and (VII.1l5) and xk(-) in equations

If the conditions of Theorem VII.1l are satisfied then the algorithm

n

given above converges to a unique uw(-) € L21 ([to,to+T])which transfers

the system from x, at to to x, at to+T.

1

Proof. Define Axk i= xk+l - xk and Auk 1= uk+1 - uk. Then, from (VII.1l4)

we have

sup e ()] S A law ()]
t€[to,to+’r] " L k-l

1/2

+ec T { sup IAxk(t)l

tE[to,to+T]

+ sup | du, () |1
tG[to,to+T] -1

and from (VII.1l5) we have

Nag, (DI = fL- ec Tllzu[ sup © (ox (£) | + |Aw . (£) |y
& Ag ° t€[t°,to+'r]( B k-1

i 1l .
Using the fact that (VII.15) =>ecoIl/2p <% in (V;I.l6) we have

sup |ax, (t) | 2 2% la MOLE: sup |au, - (t)]
t€[t _,t +T] x L%l - e[t ,t +T] k-1
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Using (VII.18) in (VII.17) and inequality (VII.12) for sup ]Auk_l(t)l
t€[t _,t +T]
Q [a}
v(B) sup e (t +T,7)|
I S 2€CQT1/2“ R Te[to’to+T} ° !
i A . T — s ;{ + . .
o e - (A, - RIS OY
S S
i.e. ﬂAuk(~)" S Qﬁﬁuk”l(-)"

where by equation (VII.17) p < 1. Hence, by the contraction mapping
n, ‘
e ,t +T],1lim “Auk(-)g = 0 and the algorithm
2 o’ o Ko
converges to a unique limit point say u_(-) € M in the L2 sense. From

theorem applied to L

equation (VIII.16) and (VIII.15) and the continuity of h it is clear
that the control uw(-) is the control that drives the system from Xo at
to to x

1 at to+T. It is not difficult to show that the convergence is

also in the L_ sense since for all elements u € /s

y(B) sup |ece +T,7)|. lu()ll
[o] 1
< TE{to,to+T]
sup Iu(t)l = - - (VII.12)
ﬂE[to,to+T] A

s o
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Section VIII. Characterisation of zero-input observability for FDLS

Definition VII.1 (Zero-input uniform complete observability)

A differential dynamical system represented by equations (II-1),

(I1+2) is zero-input uniformly completely observable if 3 T > 0 such that

a) Vto € IR+ the zero-input response of the DDS with initial state
’
: n
= [o] .
x(to) xl say yl belong to L2 ([to, to +T]}), and b) this response yl
is not identical to Yo» the zero-input response with any other initial

state x(to) =X, # X,

To obtain a characterization of zero-input uniform complete observability

for the FDLS with bounded realization represented by (II.3), (II.4) we define

for given t, S 1R+ s Xo to be the linear map (called the observability map)

n
from R" to Lzo([to,to+T]) defined by
Lx=cl)e yt )% : (VIII.1)

The adjoint of xo denoted by io is the linear map from L2°([to,to+'r])

to R defined by
t +T
* o .
x u = J Q*(T,tc}:*(r)y(r)dr) (VIII.2)
-0 £ ‘ _
o

As before, the boundedness of the realization guarantees that jo and
"
io are both continuous linear maps.

Theorem VIII.1l (Characterization of Zero Input Uniform Complete Observability

for FDLS).
The FDLS with bounded realization described by equations (II.3) and
(I1.4) is zero-input uniformly completely observable ¢ Vto € ]R+ the
n
. . ol ) . . e c
observability map io : RT > L2 ([to,t°+T]) is injective Vto 1R+

the composition of the adjoint of the observability map and the obsetrvability

*
map £ X : R® > R® is a bijection. =
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Definition VIII.2 [Observability grammian].

Given to € IR+ the matrix representation of the linear map

*
‘foio: R® » R" is the observability egrammian, denoted Wo[to,to+T]

given by
t +T
. f O
W [t ,t +T] = Jst Q*(T,to):*(T)C(‘r)@(T,to)dr (VIIIL.3)
(o]

The FDLS with bounded realization is zero—input uniformly completely
observable over T seconds if f Wo[to,to+T] is nonsingular Vto €ER.,
However, its smallest eigenvalue may tend to O as to -+ o, As before, we
define_ a slightly stronger form of observability.

Definition VIII.3 (Zero-input strong uniform complete observability).

A FDLS with bounded realization represented by (II.3) -and (II.4)
is zero~input strongly uniformly completely observable if 3 T, Vg >0
such that ¥t € R

o I

W, [r,t +#T] > v I (VIII.4)

Let Gs be the largest Vg satisfying (VIII.4). ©
Comment: As before, the boundedness of the realization guarantees that

€ €
3 23 R, such that Vto R,

voI > sup Wo [to,t°+'r] | (VIII.S)

2
L~ 0,1

The next proposition shows how to identify the initial state of an
FDLS at time to given the undriven output of the uniformly
completely observable FDLS on [to,t°+’1‘].

Proposition VIII.1 (Formula for initial state)

Given the zero-input response y on [to,to+T] of a zero-input
uniformly completely observable FDLS with bounded realizatiom, the
“initial -state’x(to) =X is given (uniquely) by
* -1 p* _
x, = (A’o ECO) Ly | | :(xVIII..6)
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Section IX Robustness of zero-input strong uniform complete observability

under perturbations in the state dynamics and output channel

In this section, we state conditions under which a zero-input strongly
uniformly completely observable (over T seconds) FDLS remains uniformly
completeiy observable under Lipschitz continuous perturbations in thé
state dynamics and continuous perturbations in the output chénnel.
Specifically, we restrict attentiom.-to- zero-input 6bservability' of the linear

system perturbed in state dynamics represented by

X

A(t)x + ¥ (x,t) (IX.1)

c(t)x (IX.2)

y

where ¢ is a C° function: IRnx ]R+ > Rr® which is Lipschitz continuous

in its first argument to guarantee uniqueness of solution of (IX.l) with

w(.en,t) = en ¥t € R, : (IX.3)

and for some y(¥) < =

Iq;(xz,t)—lp(x,t)l < Y(w)[xz-xll ¥t € R, Vxl,x2 e r"

(IX.4)
The system perturbed in the output channel is represented by
x = A(t)x (1X.5)
y = C(t)x + £(x,t) . (IX.6)
v o . n n .
where £ is a2 C function: IR x ]R+ + IR~ with
£(8_»t) = 8_ ¥t € R - (IX.7)
o
" and :
|f(x,t)l .
sup  sup T =: Y(f) < = . (1X.8)
t€]R+ «€R"
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Further, let

y(C) :=sup |C(t)], <= (IX.9)
tEn&+ 1

IX.1 Robustness of observability

Theorem IX.l (Observability of the system perturbed in state dynamics)

Given that the FDLS with bounded realization represented by
(I1.3), (11.4) is zero input strongly uniformly completely observable
then the perturbed system representéd by (IX.1), (IX.2) (for the

~instance that the input is zero) is uniformly completely observable

over T seconds if

Vs
AR GO (110

where

v(9) := sup sup |¢(to,to+1-)|i (IX.11)
tOEIR+ €[0,T]

Proof. Let‘xl(t), xz(t) be the state of the FDLS and the perturbed system

respectively, i.e.

%, = A(t)xl, xl(to) =X (I1X.12)
and
X, = A(t)x2 +zp(x2,t), XZ(to) =X (IX.13)
Withax := X, = Xy, we have
Ax = A(t)Ax + ¢(x2’t)a Ax(to) = eﬁ (IX.14)
and
. T1/2
sup lax(e)| < v y(¥) [ sup |ax(e) [ +v(2) x|
t€[t ,t +T] t€[t ,t +T]
o’ o o’ o
Vto = ﬂ{+ (IX.15)

by the same arguments as btefore.
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.

o= (22T R e j 8,00 (1, 1) dr) (1X.24)
t
[}

Step 2 Set k =k + 1 and go to Step 1.

Proposition IX.1 (Convergence of Algorithm)

Under the conditions of Theorem (IX.l) the algorithm given above
converges to a (unique) limit which is the required initial stéte.
.gggggz' The proof follows the same lines as the proof of the contraction
napping theorem and it is obvious tha; the limit of the sequence of
{yk(.§?k=lnamely'yw(.)=y(.). The details are omitted for brevity. H
Comment (i) Similar algorithms can be obviously stated for systems

satisfying Theorems (IX.2) and (IX.3).

Section X An application—emergency control of an interconnected power

system

In this section we state a model for an interconnected power system
and show how the results of Section V may be used to formulate control
laws for steering the power system to an equilibrium point in the event
of unanticipated line breakages. As we poiﬁt out in Section X.1, thg
possibility of steering of the power system in the absence of constraints
is . easily established. In the event of constraints on the capacity of
generation, frequency deviation of the generators, and the thermal
(heating) limits of the lines the problem of steering the system is non-
trivial and this is discussed in Section X.2.

X.1l Model of intercomnected power systems and its controllability

The model we use for an interconnected power system is standard and
may be faund for instance in Elgerd [8].Wevrestate the model and
aésumptions explicitly to establish the notation. 'The power system is -
assumed to consist of a network of transmission lines interconnecting

buses representing nodes of generation and supply.
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1/2

(IX.10) implies in particular that y(Y)uT < 1/2 [since

1/2 \ N .
v (C)y ()T / » Vo > \)S] so that (IX.1l5) yields

sup lax(e) ] < 20 y@o)T

2Y(d))lxnl-
t€[t ,t +T]
[o] o]

n
If y, () and y,(+) € L2°([t°,to+T]) are the outputs of the FDLS and the

perturbed system respectively, then

by, (4)=y, ()1 < 2u y(Y(OT v(®) x| A (1X.16)
Now, yl‘(°) = fo(xo)
and we represent

Yo (+) = io(xo) + N(xo)

. _ n .
.where N: r" > L2°([to,to+T]) is a continuous map. From the fact that

lp(en,t) = Gn ¥t we have N(en) = 0 and from the fact that ¢ is Lipschitz

we have from an argument similar to that leading to (IX.16) - that

NG )-NG I < 2u y®)YET v(@) [x,-x;

' n
Given that the map ;f is injective from R® to L.°([t ,t +T]) (and
o 2 o’ o

N _
in fact, a bijection from R to ;{O(IRn)) we demand that ;ﬁo + N be one
to one. By the contraction mapping theorem (see for example Marsden [17]),

io + N is one to one if

20 YWYET v(® .5 <1 (IX.17)

This completes the proof of the theorem. Q.E.D.

Theorem IX.2 (Observability of the system perturbed in the output channel)
If the FDLS with bounded realization represented by (II.3), (IL.4)

is zero input strongly uniformly completely observable over T seconds,

then the perturbed system represented by (IX.5), (IX.6) (for the zero

‘input case) is uniformly complefely observable over T seconds if
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~

Vs
y(£f) < —— (IX.18)
Tl/zY(¢)

Proof: is routine the left to the reader.
The results of Theorems (IX.l), (IX.2) can be combined for systems
having nonlinear perturbations both in the state dynamics and output

channel, that is

X

A(t)x + ¥ (x,t) (IX.19)

y = C(t)x + f(x,t) (IX.20)

with ¢ and f satisfying (IX.3), (IX.4) and (IX.7), (IX.8) respectively.

Theorem IX.3 '(Observability for the system perturbed both in state

dynamics and output channel).

If the FDLS with bounded realization represented by equations
(11.3), (II.4) is zero-input'uﬁiformly completely observable over T seconds
then the perturbed system represented by (IX.19), (IX.20) (for zero input)
is zero-input uniformly completely observable over T seconds if

/ 1/2

Y(f)Tl 2Y(¢){1+2uy(w)T }+ 2y (0)TY (W) Y (@) < }S . (I%.21)

Proof: The proof is routine and omitted. H

IX.2 Algorithm for the identification of the initial state x of the

perturbed system given the zero input respomse on [t ,t +T].

Algorithm
n

c1 ©
Given output y € L, ([to’to+T])
A * -
Step 0 Set k = 1, xé= AR l,;f*y
oo )
Step.1 Define

k+1 X

§k+l A(t)kk+l +Ib(xk+l,t), < (to)

(IX.22)

[
b

k+1 1

y

cee)x<t (1X.23)
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Al. (Generators at each node). We assume that there is a generator
coupled to each Bus.

As a consequence, the state space of the interconnectéd power
system is a vector space. If there were load buses (i.e. without
generators) in the network then nonlinear algebraic comnstraints on the
angles of the generator buses would be present, and hence the state
space .of the interconnected power system with load buses may be a
manifold, under appropriate transversality conditionms.

A2. (Power delivered by the transmission line). If two buses i and j are

connected by a line of susceptance B (at the synchronous frequency of the

ij
§ystem) and conductance.cij, and if ei and Gj are the phase angles of the-
buses with respect to a synchronously rotating reference frame, then the
average power leaving bus i is given (approximately) by Bij sin(ei—ej)

+ Gij(l-cos(ei-ej))~(in per unit terms; assuming bus voltage magnitude

to be lper unit and the average power leaving bus j is given by

Bij sin(ej-éi) + Gij(lvcos(ei-ej)). Notice that the sum of these two

powers is always > 0 and represents the power lost (to heat) in the line.

A3. (Swing equations of the generators).

The classical swing equation model represents the dynamics of a
synchronous generator. For our purposés, the transient reactance of

the generator is neglected. Thus, for the ith generator we have

MW, + . = - . -9,) +6G, (1~ .~6.)] + P,
M. w, D.w E [BiJ S:Ln(ei eJ) G:L (1 cos(el 63})] Pl

ii ii iFi |
(X.1)
§o=w, 1=1,0..n (X.2)
where |
Mi’Di = moment of inertia, damping .constant with appropriate units
w, = angular speed of generator shaft
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Pi = net input power at bus i. (Mechanical power input minus

electrical démand at bus 1i.)
Note that Z [B.. sin(6.-8,)+G, . (1-cos(8.-8,))] is the output

31 1] 1] 11 ] :

electrical power from bus i.
Equétions (X.1), (X.2) constitute a state space model (DDS) for the
interconnected power system. We wish to study the controllability of
the DDS described by the 2n differential equations (X.l) and (X.2).
Note that the model is time-invariant, hence complete controllability,if
any,will be uniform. It is relatively simple to realize that the DDS
described by the 2n differential equations (X.1l) and (X.2) is completely
controllable. 1In fact, given any trajectory in the state space

Zn'.on [0,T] with the added requirement that §.= w,there

(6,w) € R
exists a vector of controls P on [0,T] so as to steer the system along
that trajectory and this vector of controls is given explicitly by
equation (X.l) upon substitution of the desired trajectory (6w).
However, in a physical power system there are constraints on the
power generation capacity of each of the generators, so that controllability
as we have established it so far for the intercdnﬁected power system is
not very useful from a practical standpoint. Also, there are constraints
on the initial and final values of the power generation P € R"
arising from the need to steer the power system to a specific equilibrium

point. These constraints are described precisely in the next section

and constrained steering (controllability) described therein.

"'X.2 Applications to_the emergency control of power systems

Without going into the details of the exact definitions of
emergency control of power systems (for these the reader is referred to
Fink and Carlsen [26], Blankenship and Fink [27]) we will try to state

as clearly as possible the control policy for an interconnected power

- system in the event of line breakages between buses.
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In the event of line breakdge the problem of emergency control
involves steering the power system from the pre-disturbance equilibrium
state vector (91,0) S IR2n at time O to a post-disturbance equilibrium
state vector (92,0) € IR2n at time T with the constraint that the vector
' of power injections at time T be the same as that at time O.

More precisely: at the pre-disturbance equilibrium for a vector of
constant power injections glE IRn, the state of the power system is the
vector(@l,o) € IR2n satisfying the equilibrium load flow equations

Pi =j§i[BijSiﬁ (6§~é§) + Gij (1—Cos(ei—6;)] i=,...,n

(X.3)

and

w. =0 i=1,...,n. (X.4)
1

1 . , , ,
Of course, one of the ei's in equation (X.3) may (arbitrarily) be !
chosen to be zero. With this in mind, it is assumed that for fixed El,
the constant solution (Ql,O) of equations (X.1l) and (X.2) is asymptotically \
stable in the sense of Lyapunov. If, after line breakage, there exists a
2
new asymptotically stable solution 6 of the load flow equations (with
the B, , G,, replaced by Bt,, G" . ), it is desirable (for reasons of optimal
1] 1j 1] 13
load dispatching power supply commitments) to steer the system from (el,O)

to (92,0) through the pi s. The constraints are that pi(O) = pi and

1
Pi(t) - Pi ve2 T for i=1l,..., n (so as to keep the power system in the

equilibrium stable state (92,0) ¥t > T) and Pi(-) is smooth function of time
(Civfor some r). To account for the new constraint we introduce a new
set of variables vER" with

§i =v, i=1,....n (X.5)
so as to make each Pi a state. We augment the DDS of (X.1l), (X.2) (with Bij,
Gij replaced by Bij’Gij) with the equations (X.5). The sate space is |
now of dimension 3n. To check the completely controllability of the DDS
described by equaitons (X.1l), (X.2) and (X.5) through the v we notice

that the "'"nonlinear part" of equations. (X.2), namely
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B \ _ + _ _ -
; 45 Sin(0,78,) + G, .(1-cos(8,-8,)) is bounded by Z: (IBij[+2Gij)
171 j#i
so that the DDS of equations (X.1l), (X.2) and (X.5) is completely

controllable if the linear system described by the equations

Miwi + Diwi = Pi ' (X.hR)
ei = w, &X.7
.i =V i=1,...,n (X.8)

is completely controllable. It is easy to check that this corresponds
to n decoupled FDLS each in controllable canonical form and hence
controllable ¥T> 0. Hence the DDS of equations (X.1l), (X.2) and (X.5)
is uniformly completely .controllable ¥T > 0 and there exists a v € Cm
(for time-invariant systems the functions in x;(IRn) are also Cm) SO
as to drive the DDS from (gl,O,gl) to (Qz,o,gl) in T secénds.' From
the power system operators viewpdint the resulting trajectory of P(t)
is the require& control.

Often, however, thé problem of steering the system from (Ql,O,gl)
to (Qz,O,gl) has added constraints: the thermal capacities of the lines,
the maximum possible frequency deviation of the generators (wi) before
frequency protective devices trip, the maximum generating capacity of
the generators, etc. All of these introduce affine constraints on the
region of IR3n in:which’ the :(8,w,P). trajectory can ligii'For instance if
Cij is the thermal (heating) limit of the line between buses i and j;
leifejl.; sin-%(cij-ZGij}ﬂﬁij)could be the conétraint on the state space
of ei's. It is required that the control law v(+) keep the trajectory
in the desirable regiomn of the state‘space while making the transfer.

It is clear that the desirable region of the state space is a collection

(possibly more than one) of polytopes. If (Ql,O,El) and (92,0,21) both
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belong to the same polytope we contend that it is possible to steer the

. 2]
system from (Ql,O,lfl) to (Q‘,O,ljl) with the trajectory staying inside
the compact polytope.

Proposition X.1 (Emergency control of the power system)
3n

and (9_2,0,131) € g0 belonging
3n

Given two points (Ql,O,Pl) ER

to the interior of a compact polytope fof R as initial and final states

of an interconnected power system satisfying (X.1l), (X.2) and (X.5)

(with B, 150 Ne Jreplaced by B'J ) there ex1sts a control 1aw v (*) defined on

[0,T] which steers the power system from (6 ,0, P ) to (6 ,0,P ) € interior

£ keeping the trajectory inside f ¥t € R, .

Proof: Leté be the straight line connecting (QZ,O,Ijl) and (QZ,O,EI).

Since [ is a convex polytope, belongs to the interoir of # Now with center

(e_.l,o,Pl) let@l be a ball (Euclidean norm) lying wholly in P(such A ball exists

. 3 3.3
since (el,o, pl)ls interior [°. TLet ,Xn 3B, = (67,07 ,P7) where 3B, denotes the

boundary of 8 . -Let § CPbe a-.ball centered at (63,w3,P3)1ntersect1ng J in

(o 4 4 4)and so on. Clearly from the compactness of V it follows that there

exists a finite sequence of balls in P say @ "’6N constructed as

1’
above with (QZ,O, ]31) € (BN. We will choose a (finite) sequence of

controls vl,...,vN defined on ~[0,T1], ['I' ,T +T2],... so as to keep the

trajectory in the balls (ﬁl @2, etc. and to steer the power system from

©ho,e b o (8%,63,2 ), (83,6°,p %) o (8h,u"2 ), ete. But, it

~

is easily verified from the estimates in the proof of Theorem (V.l)

(inequality (V.7) and equatioms (V.7)). that T can be chosen so

1Tprees

as to make this possible. H

Section XI Conclusions
In this paper we have shown that the uniform complete controllability

of linear time varying finite dimensional systems is robust against a
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wide range of addiitve nonlinear perturbations, both bounded and
unbounded which are not "too large". A measure of the degree of
robustness that we are able to establish by our methods seems to be

the reachability condition number defined in Section ITI. This is

in keeping with standard numerical analysié intuition. Uniform zero-input
observability of linear time varying finite dimensional systems is also
shown to be robust against nonlinear perturbations in the dynamics and
output channel. The nonlinear perturbations are restricted in some

ways: the perturbations in the dynamics keeps the origin to be a fixed
point of the flow (of ‘the undriven '"state" equation) and the additive -
perturbation in the output channel is unbiaséd (i.e. the origin of the
state space is mapped to the origin of the output space)- but the
necessity of this restriction is obvious. Finally, the techniques of our
paper have been used to yield some preliminary results on the emergency
control of power systems - which ﬁéd been so far an amalytically

intractable problem. Further results in this direction are expected.
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Appendix. Fixed Point Theorems

A.1l. - The Rothe Fixed Point Theorems
Let F: K C x-»x be a compact map defined on a closed ball K in a.
Banach spacej}f . If F(3K), the image of the boundary 9K of K, lies in

K there exists at least one fixed point of the mapping F.

The Rothe fixed point theorem can be proved using the Schauder

fixed point theorem, namely.

A.2. The Schauder Fixed Point Theorem

Let F : K CX‘-* Xbe a compact map defined on a closed, convex
subset K of a Banach space‘K'. If the image F(K) C K then F has at least

one fixed point.
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