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FOREWORD

The work reported here was performed at the Oak Ridge National Labo-
ratory (ORNL) and at System Development Corporation (formerly Mechanics
Research, Inc.) under Union Carbide Corporation, Nuclear Division, Sub-
contract No. 7012 with consulting assistance from Profs. G. H. Powell and
D. P. Mondkar at the University of California, Berkeley. This work is
in support of the ORNL Design Criteria for Piping and Nozzles Program
heing conducted for the U.S. Nuclear Regulatory Commission (USNRC), Office
of Nuclear Regulatory Research. E. K. Lynn of the Metallurgy and Materials
Branch, Division of Reactor Safety Research, USNil, is the cognizant RSR
engineer, and S. E. Moore of ORNL, Division of Engineeriug Technology
(formerly Reactor Division) is the program manager.

The objectives of the ORNL program are to conduct integrated experi-
mental and analytical stress analysis studies of piping system components
and pressure vessel nozzles in order to confirm and/or improve the ade-
quacy of structural design criteria and analytical methods used to assure
the safe design of nuclear power plants. Activities under the program
are coordinated with other safety-related piping and pressure vessel
research thr- ugh the Design Division, Pressure Vessel Research Committee
(PVRC) of the Welding Research Council, and through the ASME Boiler and
Pressure Vessel Code Committees. Results from the ORNL program are used
by appropriate codes and standards groups in drafting new or improved
design rules and criteria.

The following reports have been issued under U.S. Nuclear Regulatory
Commission sponsorship:

J. W. Bryson, J. P. Callahan, and R. C. Gwaltney, Stregs Analyscs of
Flat Plates with Attached Nozzles, Vol. 1. Comparison of Stresses
in a One-Noazle-to-Flat-Plate Configuration and in a Two-Fozzla Con-
figuration with Theoretical Pred-ctions, ORNL-5044, Vol, 1 (July
1975).

R. L. Battigte, W. H, Peters, W, F. Ranson, and W. F. Swinson, Stress
Analysis of Flat Plates with Attached Nozales, Vol. 2. Experimental

Stress Aralyses of a Flat Plate with One Nozzle Attached, ORNL-5044,

Vol. 2 (July 1975).



vi

E. C. Rodabaugh and S. E. Moore, Stress Indices for ANSI Standard
B16.11 Socket-Welding Fittings, ORNL/TM-4929 (August 1975).

R. C. Gwaltney, J. W. Bryson, and S. E. Bolt, Theoretical and Experi-
mental Stress Analyses of ORNL Thin-Shell Cylinder-to-Cyiinder Model
2, ORNL-5021 (October 1975).

S. E. Moore, "Contributions of the ORNL Piping Program to Nuclear
Piping Design Codes and Standards,"” Proceedings of the Technology
Information Meeting on Methods for Analyzing Piping Integrity,
Nov. 11-12, 1975, ERDA 76-50; also in J. Press. Vessel Technoi.,
Trang., ASME 99, 224-30 (February 1977).

W. L. Greenstreet, "Summary and Accomplishments of the ORNL Program
for Nuclear Piping Design Criteria,” Proceedings of the Tecknology
Information Meeting on Methods for Analyzing Piping Integrity,

Nov. 11-12, 1975, FRDA 76-50.

J. W. Bryson and W. F. Swinson, Stress Analyses of Flat Plates with
Attached Nozzles, Vol. 3. Experimental Stress Analyses of a Flat
Plate with Two Closely Spaced Rozzles of Equal Diameter Attached,
ORNL-5044, Vol. 3 (December 1975).

Z. C. Rodabaugh, F. M. O'RHara, Jr., and S. E. Moore, FLANGE: A
Computer Program for the Analysis of Flanged Joints with Ring-Type
Gaskets, ORNL-5035 (January 1976).

R. E. Textor, User's Guide for SHFA: Steady-State Heat Flow Analysis
of Tee Joints by the Finite Element Method, UCCND/CSD/INF-60, Oak
Ridge Gaseous Diffusion Plant (January 1976).

E. C. Rodabaugh and S. E. Moore, Flanged Joints with Contact Outside
the Bolt Circle — ASME Part B Design Rules, ORNL/Sub/2913-1,
Battelle-Columbus Laboratories (May 1976).

E. C. Rodabaugh, Appropriate Nominal Stregses for Use with ASME Code
Pressure-Loading Stress Indices for Hozzles, ORNL/Sub/2913-2,
Battelle-Columbus Laboratories (June 1976). :

S. E. Moore and J. W. Bryson, Progress Feport for the Design Cri-
teria for Piping and Nozzles Program for the Two Quarterly Periods
July 1 to Sept. 30 and Oct. 1 to Dec. 31, 1975, NRNL/NUREG/TM-18
(June 1976).

R. L. Maxwell and R. W. Holland, Experimental Stress Analysis of the
Attachment Region of a Hemispherical Shell with a Radially Attached
Noazle, Zero Penetration, ORNL/Sub/2203-4, Uriversity of Tennessee
(July 1976).

J. P. Callahan and J. W. Bryson, Stress Analyses of Perforated Flat
Plates Under In-Plane Loadings, ORNL/NUREG-2 (August 1976).
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STRESS ANALYSIS OF CYLINDRICAL PRESSURE VESSELS WITH
CLOSELY SPACED NOZZLES BY THE FINITE-ELEMENT METHOD

Volume 1. Stress Analysis of Vessels with
Two Closely Spaced Nozzles Under Internal Pressure

F. K. W, Tso R. A. Veed
Systea Development Corporation

J. W. Bryson S. E. Moore
Oak Ridge National Laboratory

ABSTRACT

A finite-element computer program, MULT-NOZZLE, was
developed for the stress analysis of cylindrical pressure
vesgels with two or three closely spaced reinforced nozzles.
MULT-NOZZLE comnsists of two modules which may be operated
independently. The first module, FEMG, automatically prepares
a finite-element mesh including the nodal point coordinates,
finite-element connectivities, mesh options, and boundary
value specifications for input to the finite-element solu-
tion module SAP3M. SAP3M, which is a modified and improved
version of the SA%3 computer program, computes the nodal
point displacements and stress temsor components, and prints
and/or stores the results for later postprocessing. The
accuracy of the SAP3M module is demonstrated by comparison
studies of two classical theory-of-elasticity problems: a
simply supported beam and a thick-walled ring under internal
pressure loading.

A complete discussion of MULT-NOZZLE is presented in
four volumes. The present volume develops the finite-
element idealization for pressure vessels with two identical
radially attached closely spaced nozzles for internal pres-
sure loading. The nozzles may be unreinforced or fully
reinforced acccrding to the rules of the ASME Boiler and
Pressure Vessel Code and may be located in either a longi-
tudinal or a transverse plane of the vessel. Validation of
the program for analyzing this type of structure is demon-
strated by the analysis of three two-nozzle pressure vessel
models and comparison of results with experimental data. In
general, quite satisfactory results were obtained.

Volumes 2, 3, and 4 (to be published later) discuss the
analysis of two-nozzle vessels with external 1lnadings on the
nozzles, three-nozzle vessels with internal pressure loading,
and input instructions and operating procedures for the
programs,

Keywords: stress analysis, pressure vessels, pressure vessel
nozzles, ASME BPVC, design criteria, design rules,
ORNL Piping and Nozzles Program, nozzle analysis
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1. INTRODUCTION

Essentially all curreant generation nuclear power plant pressure
vessels have working fluid pemetrations in the cylindrical portiom of the
vessel which must be designed according to the rules of the ASME Boiler
and Pressure Vessel Code, Section III, Div. 1, for Nuclear Power Planc
Components.*' According to these rules, the pressure vessel penetrations
(i.e., "nozzles") must satisfy a set of clearly defined structural safety
criteria. The Code design criteria include minimuam reinforcement re-
quirements, maximum stress requirements, and instructioans for calculating
stresses under the various loading conditions expected during the life of
the vessel.

The Code rules have evolved over a number of years and are adequate
for most design situations. However, questions have recently been raised
on two specific issues. These concern maximum calculated stresses for
nozzles that are reinforced according to the Code rules given in NB-3330
and for nozzles spaced "close” together. As pointed out by Mershon and
Rodabaugh? in a preliminary evaluation of the Code rules, insufficient
information, either analytical or experimental, " ° currently available to
properly support a "rule” governing how close two or more nozzles may be
placed without exceeding established safe maximum stress limits. Indeed,
the present rule, which distinguishes between "isolated"” and "closely
spaced” nozzles, is rather poorly supported by scund technical informa-
tion. There is evidence that, under some design conditions, nozzles may
be safely placed closer than presently permitted while for other con-
ditions the opposite may be true.

The studies discussed here, as well as in subsequeat volumes of this

report,® °

were undertaken to develop and validate a finite element
computer program capable of analyzing cylindrical pressure vessels with
two or three closely spaced nozzles for internal pressure and/or externally
applied pipe reaction or support-type loadings. The present volume is

concerned with the stress analysis of vessels with two identical radially

AFor brevity, "Code" will refer to Seccion III, Div. 1, of the ASME
Boiler and Pressure Vessel Code (Ref. 1). Specific portions of the Code
are referred to by the appropriate code designation (e.g., NB-3300).



attached nozzles for internal pressure loading. The nozzles may be un-
reinforced, may have fi:let radius reinforcement, or may be fully rein-
forced with one of the stardard ASME coufigurations illustrated in Fig.
NB~3338.2-2 and shown here as Fig. 1l.1.

Volume 2 of this report is also concerned with the stress analysis of
cylindrical pressure vessels with two identical nozzles but with force and
moment loadings applied through the nozzles. Volume 3 will conmsider three
nozzles and internal pressure. Volume 4 will contain a complete set of
user instructions for operating the computer program MULT-NOZZLE. We plan
to use this computer pr:zvam to develop sufficient stress analvsis infor-

mation to properly assess the current Code design qualification rules and
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Fig. 1.1. Nozzle configurations for various ASME standard reinforce-
ment designs,



to support proposed modifications to the rules in answer to the questions
posed earlier.

The computer program MULT-NOZZLE is capable of analyzing cylindrical
pressure vessels with a single nozzle or with two or three nozzles spaced
arbitrarily close together, subject to the restrictions discussed in the
next chapter for two nozzles and in volume 3 for three nozzles. The
program is capable of automatically generating a suitable finite-element
model composed entirely of hexahe:rali elements. lsoparametric solid
brick-type elements, which may have froe 8 to 21 nodes each, are used
throughout. The program computes stresses, straiﬁs, ard nodal point
displacements that may be saved along with the mesh geometry for later
postprocessing (i.e., the preparation of grid plots, selected output
formatting, etc.).

MULT-NOZZLE consists of two major parts or modules that may be
operated independently. The first, FEMG (Finite-Element Mesh Generator),
automatically prepares a finite-element mesh including the nodal point
coordinates, finite-element connectivities, mesh options, and boundary
value specifications for input to the finite-zlement solution module.
FEMG, discussed in the next chapter, uses many of the features of an
existing program (HSST-NODES) developed earlier by Krishnamurthy® to
generate finite-element models for thick-walled nozzle-vessel structures.
All the input data required by FEMG can be specified on fewer than 15 data

cards,

Stresses and nodal point displacements are calculated using a modi-
fied and improved version of the SAP3 finite-element program, originally
developed by Wilson’ at the University of California. SAP3M computes
nodal point displacements and the stress tensor components at specified
data puints for the entire finite-element model. The stress components,
in the global Cartesian coordinate system, are calculated initially at the
second-order Gaussian integration points and then extrapolated to the node
points (or any other set of specified points in the element) using a
bilinear local smoothing scheme proposed by Finton and Campbell.® At
present, SAP3d contains only the variable 8- to 21-node solid isopara-

9910

metric hexahedral finite element. This element enables modeling the

structure with a high element density in regions of high stress gradients



and a lower element density in regions of more uniform stresses. SAP3M
also contains an improved and more efficient matrix equation solutiun
routine developed by Mondkar and Powell.''’'?

Application of MULT-NOZZLE is demonstrated in this report by analyz-
ing five models: two classical problems — a simply supported beam in
plane strain bending and a thick-walled ring loaded with internal pres-
sure — and three two-nozzle cylindrical pressure vessel configurations for
internal pressure loading. Validation or the program accuracy is demon-

strated by comparison of the calculated results with theoretical solu-

13916 135516

tions and with experimental data.

The basic assumptions and mathematical formulations used for the
automatic finite-element mesh generation are discussed briefly in the next
chapter. Chapter 3 coatains a discussion of the finite-element theory and
soluticn algorithms employed in MULT-NOZZLE. Studies of the two classical
problems for validating the SAP3M finite element-module are presented in
Chap. 4. Chapter 5 oresents the analysis of a relatively thick-walled
pressure vessel with two closely spaced nozzles located in a longitudinal
plane and includes comparisons with experimental results. Chapter 6 gives
similar results for a Chin-walled two-nozzle pressure vessel.

The ana'ysis of a two-norzle vessel configuration with the nozzles
located in a circumferential plane is presented in Chap. 7. The results
predicted in this volume of the report are summarized and discussed in
Chap. 8. Throughout the verification sections of the report, results of
the stress calculations are presented graphically. Numerical values shown

in these graphs are presented in tabular form in the appendix.



2. FINITE-ELEMENT MESH GENERATION

Generation of the finite-element model for analyzing a three-dimen-
sional double-nozzle junction in a cylindrical pressure vessel would be
difficult and time consuming if performed manually and would be virtually
impossible for conducting parameter studies. Therefore, an automated mesh

" generator and input data preparation module, FEMG (Finite-Element-Model
Generation), was developed. The basic assumptions, terminology, and
mathematical formulas for constructing the finite-element model for two-
nozzle cylindrical pressure vessel analyses are discussed in this chapter.
The finite-element model for a single-nczzle vessel is a special case of
the two-nozzle model and consequently will not be discussed separately.

The model for three-nozzle problems is discussed in volume 3 (Ref. 4).

2.1 Basic Considerations

The basic assumptions for automated construction of finite-element

models for two-nozzle pressure vessels are as follows:

1. The two nozzles are geometrically identical.

2. The nozzle configurations are either unreinforced or fully
reinforced, as illustrated in Figs. NB-3338.2-2 (a) through (d)
of Section III of the ASME Boiler and Pressure Vesgel Code’
(shown earlier in Fig. 1.1).

3. The nozzles are radially attached to the cylindrical vessel and
are positioned either on a longitudinal plane or on 3 transverse
(circumferential, plane.

4. The models may or may not have inner and/or outer surface transi-
tions (r; and r, of Fig. 1.1) between the vessel and nozzle.

5. The transitions are circular arcs; i.e., r; and r, are constants
and counect tangentially with the cylindrical vessel and a
cylindrical nozzle.

6. For pad reinforcement, Fig. 1.1(c), r, = 0.0.

The two-nozzle configuration has two planes of gsymmetry, one through
the centerlines of the two nozzles and one midway between the two nozzles

as shown in Fig. 2.1. The symmetric-quadrant model for the nozzle-cylinder
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junction in which tke rozzles are longitudinally aligned is shown in Fig.
2.2. A similar one-quarter model is used in the analyses of the circum-
ferential configuration as shown in Fig. 2.3. [he one-quarter model is
then idealized by dividing it into a three-dimensional array of elements,
calculating coordinate values for each of the nodes in that array, and

defining the connectivity of the elements.
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Fig. 2.2. Symmetric quadrant for the longitudinal two-nozzle con-
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2.2 Terminology of Mesh Generation

The :~nsuing discussion jnvolves frequent reference to the geometry
and topology of the junction. To maintain a concise and consistent
terminology, the following special definitions and conventions will be
used.

For the longitudinal model shown in Fig. 2.2, the z-axis of the ref-
erence global Cartesian coordinate system is along the centerline of the
nozzle. The x-axis is along the centerline of the vessel, and the y-axis
is perpendicular to the intersection of the two centerlines. Angles
around the z-axis are defined by the variable 6, with ¢ = 0 and 180° lying
in the x-z (longitudinal) plane. The outboard side of the nozzle is in
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the longitudinal plane at 8 = 0° and the inboard side is at 6 = 180°,
between the two nozzles.

Radial planes, identified by the angle 6, are perperdicular to the
x-y plane and include the nozzle centerline. The radial plane at 9 = 90°
is called the transverse plane.

Several different surfaces are identified with respect to the model.
These include the inner surface, intermediate surfaces, outer surface, and
various cross sections. The line formed by the intersection between a
radial plane and a model surface is called a meridional trace, or simply a
trace. The line ABCD in Fig. 2.2 is a typical meridional trace marke:i
into divisions by nodes. The cross section formed by a radial plame and
the inner and outer model surfaces is called a weridional section. The
regions between the model surfaces are called layers.

Each model surface is identified by four geometrically distinct
zones: (1) the nozzle, which may be further divided into as many as three
regions depending on the reinforcement details shown earlier in Fig. 1.1;
(2) the circular transition zone, which may be absent if the nozzle is not
reinforced or if pad reinforcement is used; (3) the vessel pad; and (4)
the cylindrical vessel. At present, the wall thicknesses of the model in
the pad and vessel zones must be equal. These two zones are distinguished
only bv the coordinate system used to lay out the finite-element mesh.

The boundary between the nozzle and transition zones, shown as the
line B°B”~ in Fig. 2.2, is the nozzle tangency curve. The vessel tangency
curve is the boundary between the transition zone and the vessel pad
(C°C”” in Fig. 2.2). These two tangency curves form the natural topologi-
cal boundaries between the three zones of the nozzle intersection region.
A cylindrical (r,6,z) coordinate system referenced to the nozzle is used
in this region to define the finite-element mesh layout. The finite-
element mesh layout for the vessel zone is referenced to the r,¢,r coordi-
nates of the vessel, where ¢ is the angle from the x-z plane as shown in
Fig. 2.2.

A similar conceptualizition and terminology is used for the circum-
ferentially spaced nozzle model illustrated in Fig. 2.3, except that the
centerline of the nozzle (z° axis) is displaced from the global z axis by

the angle ELL in the y-z plane.
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2.3 Finite-Element Idealization

¢
The mathematical basis for the finite-elemint mesh, developed auto-

matically by FEMG for two closely spaced nozzle problems, is discussed in
this section. A suitable mesh is characterized as consisting entirely of
solid hexahedral isoparametric elements with 8 to 16 node points on their
surface edges. In the nozzle, transition, and vessel pad zones, avery
node point will lie on one of the model surfaces formed by dividing the
wall thickness into layers and on one of the meridional traces formed by
the intersection of a radial plane with the model surfaces. In the vessel
region, the nodes lie on one of the model surfaces and on trace line
extensions either along the vessel or around the circumference of the

vessel.

FEMG considers each surface independently and determines coordinate
locations for a preliminary fine-mesh layout for the entire model. Under
cption control, FEMG then systematically selects or skips nodes for assign-
ment to the elements and constructs the final variable density finite

element model, complete with element connectivities.

2.3.1 Equations for a meridional trace

Consider a typical meridicnal trace defined by a radial plane inter-
section with one of the model surfaces as shown in Figs. 2.4 and 2.5. Let
(r,6,2) or (r’,6,z°) be the set of cylindrical coordinates for the nozzle
with its origin at the intersection of the vessel and nozzle axes. In the
following, no distinction will be made between (r,0,z) and (r-,06,z°)
except where it is necessary to discuss the two types of models separately.

The equation for the meridional trace in the vessel pad region (the
line CD in Fig. 2.6) may be written as

r: 22

—+ 2=

2 " 42 ’ (2.1)
a

where a is the semimajor axis of the ellipse and b is the semiminor axis.

For both the longitudinal and circumferential nozzle models, the valies of
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a and b are

a=2R /sin 9 ,
P
(2.2)

b=r ,
p

where Rp is the radius to the vessel surface under consideration.
Substituting Eq. (2.2) into Eq. (2.1), the equation for the ellipti-

<al curve becomes
risin?e + z2 = R; . (2.3)

To locate the vessel tangency puint C, consider the equality

sin B = (Rn + Rt - C)IRt ’ (2.4)

where Rn is the radius to the nozzle surface under consideration, Rt is

the radius of the transition, and PC is the radial distance from the

nozzle axis to the point C.

Furthermore, using Eq. (2.3), the expression for the slope of the

trace at C may be written as

r. sin20
dz - ¢ ) (2.5)

(R; - rZ sin20)1/2

tan B = —

P’PC

Also,

rc sin2v
gsin B = . (2.6)

2 _ pn2 2 2 1/2
[Rp r. (sin<® cos<8)]

When the values of sin B given by Eqs. (2.4) and (2.6) are set equal, the

equation for the unknown, is

Pprs
4 3 2 - "
A r, + B r, +C r; +D re +E=0, (2.7)
where

A = —sin? 6 cos? 9 .

B=-2R_+R),
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= 2 2 2 L)

c A(Rh + Rt) + Rb Rt sin® 0 ,
= 2

D= ZRP R +R),

E =

2 2
Rb (Rn + Rt) .

Equation (2.7) may be conveniently solved for r. to the desired
precision by numerical techniques. Here, the Newton-Raphson iteration
method was used.

The z-coordinate of the vessel tangency point C for any meridionai
trace 6 is obtained from

= (R2 — p2 29y1/2

zc (Rb re. sin<@) . (2.8)

Equations (2.7) and (2.8) give the coordinates of the vessel tangency
point C for any meridfonal trace. For the nozzle tangency point (point B
of Fig. 2.6) we have

ry = Rn 3 (2.9)

and using Eq. {2.4) to define the angle 3,

2. =

B zc + Rt cos 8

(2.10)

2, + [2R, (r,~R) - (r, —Rn)2]1/2 )

With the value of PC determined from Eq. (2.7), the coordinate locations

for the tangency points B and C are defined by Eqs. (2.8) to (2.10).

2.3.2 Determination of nodal coordinates

Assume that the nozzle, transition, and vessel-pad portions of the
trace are divided into L, M, and N parts, respectively, by node points.
There will then be L + M + ¥ + 1 nodes on the trace, {.e., one more than
the total number of divisions.

For an unreinforced nozzle divided into [ parts, like the one de-

picted earlier in Fig. 1.1(d) and in Fig. 2.6, the coordinates for the
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node at the end of the ith division are

R,
? (2.11)

z=2z, - (z, -2,
where z, and zp are the axial coordinates for the points 4 and B shown in
Fig. 2.6 and ¢| is a node point crowding iidex for the nozzle.

1f the nczzle is reinforced, like those shown earlier in Figs.
1.1{a)y, ¢&), and (o) and in Tig. 2.7, the nczzlc will be further divided
into two parts by L, divisions above the reinforcement ani L, divisions in
the reinforcement above the circular transition. Note that tuhe number of
trace divisions on tke nozzle will vary from surface to surface for rein-

forced nozzles. This is illustrated in Fig. 2.7 on a five-layer example.
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Since the maximum value of z for each layer is input to FEMG indepen-
dently, it is possible to define a straight taper as in Figs. 1.1(a) and
1.1(c) or a curved taper as in Fig. 1.1{(5). If a curved taper 1is being
modeled, the trace is approximated by a series of straight chord segments.

For each surface the cooidinates for nodes above the taper are

r=PR

n ]
(2.12)
(4]
2 =3, -'(§A —'ZT)(lllLl) 1 H 81 =1to Ly,

where 2p is the axial coordinate to the top of the taper. Between the top
of the taper and the top of the circular transition, the node coordinates

are
r= Rn .
(2.13)
z =3 —-(zt -zB)(lzle) H 22 =1 ¢to Ly,

where z, < 2, is measured to the top of the taper region for the Zth

t T
surface, as shown in Fig. 2.7. H; is the radius to the Zth surface.
For the nozzle-vessel transition region, the coordinates for the node
at the end of the mth division are
r= Rn + Rt [1 — cos(m/M)a] ,
(2.14)

2 = zg —-Rt sin (m/M)a ,

where Rt is the transition radius and the angle a, subtended by the arc
BGC in Fig. 2.6, is defined bLy

a = sin”} [(z —-zc)/Rt] . (2.15)

The nodal coordinates in the vessel pad zone at the end of the nth

division are
r =g cos Yy,
(2.16)
z2=gginy,

where 8 is the polar distance to the node and can be evaluated from Egs.
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2.1), (2.2), and (2.16) as

s = Rb/(sinzy + cos’y sinze)l/2 . (2.17)
The angle y, measured from the equatorial plane, has the value

Y=, (o= (1- 1= @M%, (2.18)

where ¢, is the nodal point crowding index for the vessel.

The values of Yo and Y, are given by the expressions

Yo = tan ! (zclrc) .
-1 (2.19)
Y, = tan (zD/rD) .

where Ty and 2z, are the radial and axial coordinates, respectively, of the
point D on the trace where it intersects the lower boundary of the vessel-
pad zone.

In order to compute values for Ty and 2, a distinction must be made

D
between the longitudinal and the circumferential two-nozzle configurations.

Referring to Figs. 2.2 and 2.4 for the longitudinal configuration, the
coordinate values will be given by the following. If D lies on the line
SU in the first quadrant,

= 2 211/2
rD [(Rb sin ¢)< + PL ] R
(2.20)

zD = Rb cos ¢ ,

L PL is the length of the
vessel pad on the outboard side along the line 6 = 0°, as shown in Fig.

where ¢ = sin-llPL tan e/Rb] and 0 < 6 < 6

2,4(a). 1f D lies on the line UW in the first and second quadrants, i.e,,

<8 <86

OL < L then

L

r. =R gin ¢,./sin 8 ,
bp L (2.21)

zD = Rb cos ¢L ,

where ¢L is the circumferential cutoff angle for the vessel pad., If D
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lies on the line WT in the second quadrant,

= 2 211/
rp = (R, sin )2 + P 21102,
(2.22)

2, = Rb cos ¢ ,

- -1 — . °
where ¢ = gin [(ELL/Hb) tan (6 — 90°)] and eLL < 8 < 180°. PLL is the
length of the vessel pad on the inboard side, i.e., half the distance

between the two nozzles along the line © = 180°, as shown in Fig. 2.4 (a).

For the circumferential two-nozzle configuration, the vessel-pad
region is located in the second and third quadrants, i.e., 90° < 6 < 270°,
vhere # is measured around the axis of the nozzle in the counterclockwise
direction as shown in Figs. 2.3 and 2.5. Note that the (r°,0,2”) coordi-
nate gystem for the nozzle is a simple rotation of the 2° axis about the
vessel centerline (x axis) so that the x and x° (6 = 0°) exes coincide.

If the point D lies on the line SU in the second quadrant as shown in Fig.

2.5(a), then for each surface,
rﬁ = Rb sin QL/sin e,
z5 = Bb cos ’L . - (2.23)
90° < © < tan | (P,/R, sin 0,) + %0° ,

where ’L is the right-hand cutoff angle and Ph is the length of the pad

along the vessel; Rb is the radius of the surface, as before.
If D lies on the line UV, then

r; [(Rpsin¢) +PL]/ ,

(2.24)

R ’
2 D cos ¢

=Y

where ¢ = sin“1 [(PLlﬁb) tan (180° - 8)}, and tan”! PL/(Rb sin QL) +
90° < 6 < 180°,
If D 1lies on the line VW, then

tA

it |
"

. 2 211/2
[(Rb sin £)* + PL )| .
(2.25)

ﬂb cos £ ,
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where £ = sin | [(P,/R,) tan (o —180%)] and 180° < ¢ < tan ' [R  sin
ELLIPL] + 180°, where ELL is the angle between the z and z° axes, or one-
half the angle between the centerlines of the two nvzzles.

If D 1lies on the line WNT, then

rB = Rb sin {LL/cos (270° — 9) ,

(2.26)
zD = Rb cos gLL »

-1 ° 2 °
where tan [Rb sin ELL/PL] + 180° < 8 < 270°.

2.3.3 Global coordinate system transformation

After the nodal coordinates are properly generated in either of the
cylindrical coordinate systems, a coordinate transformation is performed
to express all the nodal locations in the global Cartesian coordinate

system. For the longitudinal nozzle configuration, this is done by
setting

x =rcosb,
y =rsinf | (2.27)
z2=22.

For the circumferential nozzle configuration, the equations used are

x =r° cos 8 ,

w
1]

r° sin 6 sin (90° — aLL) + 2z° cos (90° — ELL) . (2.28)

]
'}

z” sin (90° — £LL)-— r” sin @ cos (90° — ELL) .

2.3.4 Nodal locations on the vessel

When the diameter of the vessel is very large relative to the di-
ameter of the nozzle, the elements remote from tne nozzle attachment may
be considered too coarse to be practical. In such cases, the above pro-
cedure is used to develop the mesh in the nozzle, transition, and vessel-

pad zones, but a special rectangular mesh pattern is developed for the
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remaining cylindrical part of the vessel. The nodes Ior this region are
generated directly in the global Cartesian coordinate system.

Consider the cylindrical vessel region to be divided into AN parts in
the longitudinal and circumferential directions of the vessel as shown in
Fig. 2.8. 1If (z, ;; Z) denotes the last nodal station on any meridional
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Fig. 2.8. Vessel rectangular mesh zone.
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trace from the previous calculation, e.g., at point D, then for the node
at the end of the "nnth" division on the cylindrical vessel region, the
coordinates are derived as follows. For the longitudiral nozzle configu-

ration, let ;;ax be the largest x and let E; a be the smallest z for all.

i
the meridional traces in the previous computation. Then for the shaded

region above 2 in 10 Fig. 2.8,

= - - _ myea
r= P:ol (Ptol x) ( NN) *

y=y, (2.29)
z2=32,
where Ptol is the total vessel length and ¢; is the nodal point crowding

index for the vessel.

For the region in the unshaded portion below 5; , the coordinates

in
are as follows.

Forzx < x :
- “max

X

]
L]

y Rp sin ¥ , (2.30)

2 =R cos »
p o8V

where ¢ = ¢ —'OL)(l‘— r»‘l/liﬂ\l)c2 and Otol is the total cutoff

ol ~ ®eo1
angle for the vessel; ¢L is the cutoff angle for the vessel pad as before.

Forx > x H
max

= - -z - €2
x Pt°1 (Ptol x)(1 — nm/NN)" <,
y= Rp sin ¥ ,

(2.31)
2=R cos ¢y ,
p

- - - a2
V=4 (Otol ¢L)(1 nn/NN) "< .

Different equations must be used for the circumferential nozzle

configvration. For th: region above ;;in (point U on Fig. 2.3),
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4

= — |2 _mi\er
r=P o1t P |’|)(1 HN) ,

y=y 2.32)

]
z2=z.

F -
or the region below 2 in

end |z| < |2] .

x,

xr

y Rb siny , (2.33)

2 = Rb cos ¥ ,
= —_ — _ 2
where ¢ .01 (’tol OL)(I nn/NN) <.

For the region below ;;1n and |z| > Izlmax'

x =P + (P

o1+ Crgy ~ [EDQ = m/mnc2

t

y=R siny,
p (2.34)

z2=R cos R
p | 4

<
V2o~ Oy -0 A —nn/fN°2

2.4 FEMG Features

Since the stresses in and near the region of the nozzle attachment
are highly localized and may vary nonlinearly through the wall thickness,
a fine mesh with a greater concentration of elements should be used there,
whereas a coarser mesh will be satisfactory in the more remote regions
where the stresses vary less rapidly. To accommodate this type of mesh
layout, a general three-dimensional isoparametric solid element which may
have from 8 to 21 nodes is used. This range of nodes allows for omitting
or including selected midside nodes along the boundary between regions of
high and lower element density without the need to use wedge elements, as
i1lustrated in Figs. 2.9 and 2.10. The variable-node element has 3 degrees
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of translational freedom per node and thus has from 24 to 63 degrees of
freedom per element.

A previous investigation by Clough'’ showed that the isoparametric
hexahedral family of elements is distinctly superior to tetrahedral ele-
ments for solving three-dimensional problems. The disadvantages are that
(1) the element is inherently more complex, (2) the midside nodes both

increase the bandwidth of the stiffness matrix and tax the storage capac-
ity and speed of even the largest computers, and (3) automatic mesh genera-
tion is more difficult because of the possible variations in nodal con-
nectivities for each element.

To develop a finite-element mesh for amalyzing pressure-vessel nozzle
models, FEMG first determines coordinate locations for a preliminary
"fine-mesh" layout for the entire model. The node coordinate data cal-
culated at this stage are stored in three-dimensional arrays where the
dimensional subscripts correspond to surface number, meridional sectior,
and trace division. In this preliminary fine mesh, the number of nodes
must be the same for each surface (inside, intermediate, and outside),
except for those surfaces originating in the nozzle taper which will have
fewer nodes. The number of trace divisions, and consequently the number
of nodes along a trace, however, may differ with the angular division 8 as
illustrated in Fig. 2.10. 1In this illustration each of the nodes 1, 2,
..., 7 along the trace at 6 = 0 will be located first, followed by those
numbered 1, 2, ..., 7 on the next trace until all the points on the sur-
face have been located. FEMG will then locate node points for the next
surface, etc. When all the nodes in the preliminary fine mesh have been
located, their coordinates may be printed if desired before the elements
are generated.

At present, FEMG contains five element-indicator options. The first
uses all the nodes to develop a mesh consisting entirely cf 8-node ele-
ments. The second uses all the nodes but develops a mesh which may con-
sigst of elements with 8 to 16 nodes. For this type of mesh, illustrated
in Fig. 2.10, element midside nodes are not assigned in the 8 direction to
form the 16-node elements. To form elements with less than 16 nodes, some

or all of the midside nodes along the trace lines are not assigned.
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A third option will produce a mesh consisting of ¢lements with 20 or
fewer nodes using all the nodal locations determined in the preliminary
fine mesh operation.

The fourth and fifth element indicator options do not use all the
nodal locations determined in the first pass, but selectively skip nodes
in the thickness direction to form a mesh like the one illustrated in Fig.
2.9. The fourth option will give a mesh consisting uf 8- to 16-node
eleaents, whereas the fifth option will also include 20-node elements.

Whenever a node point is skippad, it is eliminated from the fine-mesh
array described above. After the siipping process has been completed,
nodes are numbered sequentially starting at the top of the nozzle's inside
surface at the minimum vaiue of 6. The numbering is then arranged in the
order of (1) increasing angle 6, from 0 to 180° for the longitudinal
nozzle configuration or from 90 to 270° for the circumferential nozzle
configuration; (2) for each surface, from the inner surface to the outer
surface; and (3) along each trace beginning at the top of the nozzle (or
at the top of the respective surface when it originates in the nozzle
taper). This numbering zcheme minimizes the bandwidth of the stiffness
matrix and thus reduces the cost of the computations. Element rumbers are
assigned iii the same manner as the node numbers, beginning at 6 = 0 on the
inside layer at the top of the nozzle and proceeding around, outward, and
down the model.

If automated element connectivity generation is deszired, several
addi{tional restrictions must be satisfied. first, 20 node elements may
not be used because of the difficulty in developing an algorithm to account
for all possible variations in the connectivities. This eliminates using
the third and fifth element-indicator options discussed above for auto-
matic connectivity generation, although for those cases the connectivities
may be input manually.

Second, for an unreinforced nozzle the total number of divisions
along each trace in a given meridional section must be equal. For a
reinforced nozzle the portion of each trace above and below the taper must
have the same number of divisions as every other trace on that section.

Third, if the number of trace divisions are not the same fnr every

angular division 6, then the number of nodes may not differ by more than 1
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for adjacent meridional sections. This is illustrated in Fig. 2.10, for
example, where the meridional section at 6 = 90° has 7 nodes, the one at
6 = 108° has 6 nodes, etc., until the one at 8 = 180° has 2 nodes. In
general, if the meridional trace i has n, nodes and the meridional trace J
has nJ. nodes, then the following relation must be satisfied:

n.

J*nit(j—i) » (2.35)

where the positive sign is used for an increasing number of nodes, and the
negative sign is used for a decreasing number. This restriction implies
that the number of elements along adjacent strips will either be the same
or will differ by one. The number of surface nodes per element will
depend on the element-indicator option used.
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3. THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS

The MULT-NOZZLE progr:ca module SAP3M is a modified and improved
version of the SAP3 finite-element program originally developed by Wilson’
at the University of California. The major modifications to SAP3 include
(1) replacement of the original library of elements with the variable 8-
to 21-node solid isoparametric hexahedral element,'® (2) incorporatiom of
an improved matrix-equation solving routine'? to increase the program
efficiency, and (3) the addition of a local-smoothing extrapolation algo-
rithm® to improve the stress calculation accuracy at the element surface
points and to reduce the program sensitivity to Poisson'’s ratio. Each of

these items is discussed more fully below.

3.1 Isoparametric Finite-Element Mapping

Formulation of the equations for an isoparametric {inite element is
greatly simplified by describing the behavior of the element in a local
(or natural) coordinate system in which the element is a perfect cube, as
shown in Fig. 3.1(b). For a 21-node element, the mapping of the element
coordinates from this natural coordinate system to the global Cartesian
coordinate system [see Fig. 3.1(a)] of the original structure is accom-

plished with the following relations:

= 2 Nm(r,s,t) z

m=]

y= 2 0 (ret) y (3.1)
m=

2= Nm(r,s,t) 2.
mm=

where (x, y, 3) are the global system coordinates, (z%f Y zm) form =
1, 2, ..., 21 are the global coordinates of the node points m, and
M"(P,S,t) form=1, 2, ..., 21 are the mapping functions (also called
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Fig. 3.1. Coordinate systems for (a) parent and (b) mapped elements.

shape functions) expressed in the local (r,s,t) coordinate system. Using
the node numbering sequence indicated in Fig. 3.1, the shape functions are

as follows:

Ny =h “‘%(hs + 7 + hyy) _'%hZI ,

N2 = hy —'%fhlo + hyg + hg) "%hZI ,

N3 = h3"'%(hll + hi19 + h10) _'%hZI ,

Ny = hy —-%(hlz + h2g + k1) -%hzl ’

Ns = hs "%(hla + hy7 + Rig) _%hZI , (3.2)
Ng = hg —%(hu. + hig + h13) “%‘hZI ,

N7 = hy -'%(hls + hyg + hyy) '%‘hZI ,

Ng = hg -'%(hls + hz0 + h15) "%hZI .

No=h ~1hz form=9, 10, ..., 20,

Ny1 = hyy
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where
h, = H(r,r YH(s,s JH(t,t)) ; m=1,2, ..., 21, (3.3)
and (rm. S_» tm) are the local coordinates for the node points. iIf a

particular node point m is skipped (see Section 2.4), h_ = 0. The func-

tions H(r,rﬁ), H(s,sr). an] H(t,tp) in Eq. (3.3) are defiaed by the general

expression
1
5‘(1 + BB.), for B. = +1

1 1
H(B,Bi) = ’ (3.4)

1—-82, for 8. = 0

where

8 =r,g,t ; Bi = m,sm,tm . {3.5)

3.2 Displacement Function

The assumed displacement distribution for the 21 node isnparamertic

hexahedral finite element is

u M . 0 0
v =10 Hﬁ 0 (v, (3.6)
w 0 0 b

Lend

where the shape functions ”m (m=1, 2, ..., 21) are row vectors given by

Eqs. (3.2) to (3.5). The nodal displacement vector {U} is defined by
T
{(UY = [uy, Usy vouy ULy Uiy U2y eevy U1y Wly W2y «--s W21) , (3.7)

where the u's, v's, and w's are the global coordinate system displacements

of the 2i node points.
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3.3 Stress-Strain Relations

The constitutive equations used in SAP3M are the usual orthotropic

linear elastic relations given by the general expression
{o} = [C] (€}, (3.8)

where the stress and strain vectors {c} and {€} are defined in rectangular

Cartesian coordinates by

T _
{o} = [o_, cyy’ 0,z Iyz, LI Txy] (3.9)
and
{e}T = [e € € Y Y_] (3.10)
xx® Tyy® zz® 'yz® 'x3’ 'zy )

The coefficient matrix [C] contains the elastic moduli and Poisson's
ratios. Sufficient generality is permitted to accommodate any material

with simple symmetry; thus

ci1 €12 ;3 0 0 0
Cazg €23 0 0 O
(c) = C33 o o . (3.11)
Cyy O 0
cymmetric Css O
i Cos |

In terms of the ~lastic moduli Ei, Poisson's ratios vij’ and shear
moduli Gij for orthoiropic materiais behavior, the cij coefficients take
the forus

Ci1: = (1 ~vz3 v32) £1/V,

C22 = (1 =~ v3; vy) Eo/V,

C3z = (1 —vyp v21) E3/V,

Ci12 = (v21 + va3 v31) E4/V,

C23 = (v3z + vy v3p) EQ/V, (3.12)

C13 = (vi3 + v23 v12) E3/V,

Cuy = G23

Css = G13
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where
V.= 1-— viavz) = v23v32 — v31V13 — 2V)2V23V3) - (3.13)

The following reciprocity relationships hold because of symmetry:

£l _ w2

T2 v’

E2 _ v23

E2 _v23 3.14
E3 v3p ( )
E£3 _ v31

Ey v;3°~

For isotropic malerials behavior,

E,=E,
Vii =V (3.15)
Gij =G =E/2(1 + V) ,

with

Cii =E(1 —v)/(1 — 2v)(1 + v) (<1 = 11, 22, 33) ,
Cij = Ev/(1 - 2v)(1 + v) (Z, =1, 2, 3), (3.16)

Cii =G = Ef2(1 + V) (i1 = 44, 55, 66) .

3.4 Strain-Displacement and Stress-Displacement Relations

The general expression governing the geometry of deformation has the

form
{e} = [L] (u} + {gg} , (3.17)

vhere {u} is the displacement vector {u, v, w} and [L] is a linear dif-
ferential operator. The term {eg} in Eq. (3.17) represents any type of

initial strain, Usually this term accounts for thermal expansions. The
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operator [L] has the form

a_
ax
0

o
(=]

(L] = . (3.18)

{e} = [L]]O N 0 [{U} + {gp}, (3.19)

or

{e} = [BI{U} + {gp}, (3.20)

where

N 0 0
m

(B] = (L} }O N 0 , (3.21)

0 0 N
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or
3;‘1”' T
- 0
aqn
0 a—y—' 0
3Nm
0 0 37
[B] = . (3.22)
oN oN
6 w.m m
iz Yy
oN oN
_m 0 _n
9z ax
3 3x
| ¥ J

The derivatives in the matrix [B] are evaluated as follows:

() T a2 (Pm) (k)
or or ar ar ax 3T
oN W N
Myl 22 __"1‘, _n
nf |z ow =]k Wy
\ 3t Lat ot 3t J \ot / \ 3z )

where [J] is the Jacobian. The inverse relation gives the appropriate
chain-rule differentiation needed in Eq., (3.22):

(aN (WY
T ar
W aN
m -1 m
{Ey_}.m h?’ , (3.24)
\ 3z / ray
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The stress-displacement relation is obtained by substituting Eq. (3.20)
into Eq. (3.8):

fo) = {C)IBY{U} + [Clep) . (3.25)

3.5 Element Stiffness

The element siiffness, which defines the relation between nodal
displacements and corresponding nodal forces for a given finite element,
is obtained by applying the work-energy principle,

(R} = f [B]T [C1(B) dv {U} + f [B]T[C]{co} dv , (3.26)

vol vol

I’l
where /[8]‘ [Cl{eq)} dv is the initial nodal load-vector and {R} is a nodal
force vector. The element stiffness matrix is defined by

k) = f 5 1c1181 @ . (3.27)

vol

Since the strain matrix is expressed in natural coordinates, a

change in variables is needed; thus
dv = dr dy dz = |J| dr ds dt , (3.28)

where |J| is the determinant of the Jacobian defined in Eq. (3.23). The

element stiffness matrix then takes the form
(k) -fl fl fl 817 (C1 181 |d] dr ds dt . (3.29)
-1 J-1/-1

For hexahedral finite elements, the integrals in Eq. (3.29) are too
complex to evaluate in closed form, and Gaussian quadrative numerical
integration is normally used. Equation (3.29) may be expressed approxi-
mately in numerical form as

ni n nk
> r |
(k] Zi = g.:l 8,88, {[8] (C][B]}ijk ""i,jk R (3.30)

i
weighting coefficients in r,s,z at the Gaussian integration points.

where n_, nj, o are the integration orders and Bi' 8j’ Bk are independent
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3.6 Equilibrium Equations

By s:mming the element stiffnesses from Eq. (3.30) for each node
point in the finite-element model and accounting for the interface com-
patibility between elements (i.e., connectivities), one obtains a set of
algebraic equilibrium equations in terms of unknown nodal point displace-

ments for the entire computational model. Thus
(F} = 1&NUY , (3.31)

where {F} is the total nodal force vector, [¥] is the structural stiffness
matrix, and {U} is the complete set of nodal displacements.

For three-dimensional finite-element structural analyses, Eq. (3.31)
consists of several thousand linear simultaneous equations which must be
solved for the unknown displacements (U}. Normally the major fraction of
computer time required for the analysis is consumed in the solution to
these equations. Any improvement in the numerical algorithms required to
solve these equations will thus significantly reduce the total cost of the
analy.is. Recently, an improved matrix equation solution algorithm, which
is particularly well suited to the SAP series of finite-element programs,
was developed by Mandkar and Powell'? at the University of California.
Their algorithm is based on a modified Crout reduction scheme'’ and com-
pacted column vector storage, and eliminates almost all unnecessary
arithmetic operations. The matrix equation solution routine currently in

SAP3M was written and installed under Professor Powell's direction.

3.7 Stress-Smoothing Technique

Since stresses are proportional tc the derivatives of displacements,
the calculated stress values will be less accurate than the displacements
determined from the solution of Eq. (3.31). Recently, several investi-
gators®’’® 22 have attempted to improve the stress calculation accuracy
for isoparametric finite-element models by calculating stresses at optimal
locations in the elements and then extrapolating to obtain stresses at the
desired node positions. Generally, the optimal locations are the Gaussian
integration points®® on the interior of the element. Eight such points,
identified as S;, S, ..., Sg, are shown in Fig. 3.2 for second-order
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Fig. 3.2. Stresses at 2x2x2 Gauss integration points.

(2x2x2) Gaussian integration. 1In 1974, Hinton and Campbell® proposed a
local smoothing technique using a bilinear cubic relation to extrapolate
the 2x2x2 Guassian point stresses to the element surfaces (or to any
arbitrary point within the element). An algorithm based on their tech-
nique was developed and installed in SAP3M. The following bilinear cubic



[
V4]

equation is used for extrapolation:

+

DY P . o 5o
ci(rb’sp’tp) 8 [\1 + rb)(l + sp)(l tp) S1¢

+ (1-r)AQ +s)Q +t°) SHrg
( P)( Sp)( 7’ 1

p? 2
+ (1-r)Q1 -5 +t7) S4;

( rp)( Sp)( p) 37
+ QA+ 1‘5)(1 - s}’))(l + t;) Sy{ (3.32)

+ 1+ rz‘)) a1+ 35) a1 - t;) S5y
+ Q-2+ 8L - t) Seg
+ (1 - r;;) (1- sI;)(l - tp;) S7¢
+ QL+ =) -t Sai] .

where ai(rp, sp, tp) is a given stress compcnent (7 = 1, 2, ..., 6) at the
desired arbitrary point (rp, sp, tp) and S1;, S27{s ..., Sgi are the

corresponding stress components at the 2x2x2 Gaussian integration points.

»

The parameters r;, sF”, tp are defined by

“ 8, ) =/ : :
(rp. sp. tp) 3 (rb.sp,tp) (3.33)
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4. SAP3M VALIDATION

As stated earlier, the MULT-NOZZLE computer program consists of two
major modules that may be operated more or less independently. FEMG
automatically prepares the finite-element mesh, including nodal point
coordinates, finite-element connectivities, mesh options, and boundary
value specifications (subject to the restrictions discussed in Chapter 2)
for input to the finite-element solution module SAP3M. SAP3M computes the
nodal point digplacements and stress tensor components at specified data
points for the entire finite—element model and prints and/or stores the
results for later postprocessing.

Two types of loading conditions, element-load and sStructural-load
cases, can be specified for SAP3M. Acceptable element-load cases include
thermal expansion, gravity, and surface pressure, where the pressure may
be constant, hydrostatic, or arbitrarily distributed depending on the
input parameter specified. Structural-load cases include applied nodal
forces. Element-load case multipliers are used to provide linear com-
binations of element-load types; and : tructural-load case multipliers
provide a way of combining element-load with structural-load cases.

SAP3M outputs tabulations of both the input and solution data. The
input data tables include all the information n;cessary to define the
problem. Specifically, these are the geometric and modeling data such as
node coordinates, element connectivities, constraints, material properties,
and load information. Information affecting the solution procedure such
as integration orders and stress recovery points is also included in the
printouc. The solution data consists of equilibrim equation numbers,
nodal displacements, and stress tables. The stress tables show the six
stress components in global coordinates and the three principal stresses
at up to eight different points for each element. The output data may
also be written onto a .:rmanent storage device for future postprocessing.

The programs will be available in CDC 64C0/6600/7600 and IBM 360/370
versions through the Argonne Code Center. The IBM version uses double-
precision arithmetic and provides for plotting the finite-element meshes.

Because of the computer time involved in a normal run, it is strongly



suggested that the finite-element mesh developed by FEMG be plotted anc
thoroughly examined before executing the SAP3M analysis.

To demonstrate the basic accuracy of the SAP3M module, two classical
problems for which theoretical solutions exist were solved: a simply
supported beam with a uniformly distributed load'® and a thick-walled ring
under internal pressure (Lamé’s proble-‘“). Stresses were computed using
different values for Poisson’'s ratio v and both a 2x«2x2 and a 3x3x3
Gaussian integration scheme to investigate their influence on the accuracy
of the numerical algorithm. Theoretically, Poisson's ratio should not
affect the stresses for these two problems but may be important for the
nozzle problem. As discussed wmore fully below, the numerical results for
both classical problems gave excellent agreement with the theoretical
solutions. Variations in Poisson's ratio from v = 0 to v = 0.485 had a
negligible influence on the calculated stresses (less than 1/22). The

different integration schemes gave results which differed by about 1Z.

4.1 Studies of the Simply Supported Beam

The simply supported beam model used in the analysis is shown in Fig.
4.1. Because of symmetry, a finite-element model was constructed for only
half the beam, using five 12-node solid elements and 44 nodal points. All
the nodal displacements were restrained in the z direction (plane strain),
and roller support boundary conditions for the simple supports and sym-
metric constraints were specified. Two values of Poisson's ratin, v =
0.0 and v = 0.485, for photoelastic epoxy were considered.

The following material properties were considered (o is the material

density):
Material 1 Material 11
v = 0.0 v = 0.485
E =12 x 105 psi E =12 x 105 psi
G =6 x 105 psi G =64.06 x 10° psi
a =10"% o} a = 107% op7!
p =0 or 24,000 1b/4in.3 p = 0 or 24,000 1b/in.3
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Fig. 4.1, Beam model: (a) simply supported beam i~ plane strain
bending; (1) finite-element model. Dimensions are in iu.nes.
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The beam was analyzed for a uniformly distributed load of 12,000
1b/in. and for a uniform temperature increase of 100°F. For the uniformly
Jistributed load, three ioad cases which should give identical results
were calculated: 1load case 1, for which the loau was idealized as a set
of uniform nodal forces on the top surface of the beam; load case 2, where
the loading was a gravity (body) force in the negative y direction equal
to the weight of the beam (24,000 1b/in.3); and load case 3, where the
load was specified as a constant pressure equal to 12,000 psi on the top
surface. Load case 4 was for the thermal loading. Load case 1 was set up
as a structural-load case with nodal forces; load cases 2, 3, and 4 were
assigned as element-load cases A, B, and C, respectively. For Material 1
with v = 0.0, only the 2x2x2 Gauss integration rule was used in evaluating
the stiffnesc matrix, but for Macterial II (v = 0.485), both the 2x2x2
and 3x3x3 Gauss rules were used.

In all, nine separate cases for the uniformly distributed load and
two cases for uniform temperature expansion were analyzed. The maximum

stresses for each case and the corresponding theoretical values are given

in Table 4.1. All the computed results are in excellent agreement with

Table 4.1. Stresses for the beam model

Maximum 7_ stresses (ksi)

load Gauss

Me thod case’ v rule ' Distance (fl)-.f*r_on;-l_e::’-s_u-pgo-r_r-___-_.
1 2 3 4 9
Theoretical 1-3 0, 0.485 1296.0 2304.0 326.0 3456.0 1600.0
1 0, 0.485 2x2%2 1296.0 2304.0 1024.0 3656.0  3600.0
1 0.485 3=3=31  1281.) 2292.5 3015.8 3e51.1 3598.4
Finite T 0, 0.485 2+2=2  1320.0 2328.0 30LB.0 3LAD.D  IbL.D
element 2 0.485 3I»3=3  1305.3 2316.5 3039.8 3475.1 22,4
3 0, 0.485 222 1320.0 2328.0 30648.0 3480.0 38524.0
3 0.485 I«3x3  1I05.)  2316.5 3039.8 3679.1 31622.4
-12 stresses (ksi)
Theoretical 0, 0.485 2+2x2 ~1.2
or finite 4
element 0, 0,485 3=3x3 ~1.2

TLoad case 1 vas set up with uniform nodal forces on the top surface of
the beam, 120,000 1b total; load case 2 was set up using a gravity force equal to
the weight of the beam, 24,000 Ib/in.’; load case 3 was set up with a constant
pressure equal to 12,000 psi on the top surface; and load case 4 was a uniform
temperature increase of 100°F.
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the theoretical predictions, with a maximm error of about 1.92 for load
cases 2 and 3 using the 2x2x2 integration rule. In general, the 3x3x3
reduced integration rule seemed to give slightly more accurate results,
although the must accurate results (zero error) were calculated for load
case 1 using the 2x2x2 integration. The effect of Poisson's ratio was not

detectable for this problem.

4.2 Studies of the Lamé Thick-Walled Ring

A ring structure with v = 0.3 and v = 0.485 loaded with a unit
internal pressure was also analyzed, and the relative effects of the
"reduced integration” (2x2x2 Gauss order) and the "exact integration”
(3x3x3 Gauss order) techniques were investigated. This model was also
used to investigate the effects of distorted elements. Since the ring has
two planes of symmetry and is loaded axisymmetrically, only one quarter of
the structure was modeled. The finite-element model consists of six 16-
node isoparametric solid elements with a total of 66 nodal points, as
shown in Fig. 4.2. Symmetri. boundary conditions were assumed for the
vertical and horizontal planes.

Material properties for the computational model were as follows:

Material I Material II
v=20.3 v = 0,485

E = 7500 psi E = 7500 psi
G = 2885 psi G = 2525 psi

For this model, stresses were computed for both values of Poisson's
ratio using both integration rules. Stresses were also computed for two
cases in which elements 3 and 4 were distorted using v = 0.3 in one case
and v = 0.485 in the other. Both cases were run using the 2x2x2 integra-
tion rule.

The internal pressure was set up as load case A. The resulting cir-
cumferential stresses at the inner and outer surfaces are given in Table
4,2, For this model, the 2x2x2 integration rule gave the more accurate

results and gave exactly the same values for the two Poisson's ratios.
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Fig. 4.2. Finite-element model for ring (Lamé's problem). Dimen-
sions are in inches.

Table 4.2. Circumferential stresses for the ring model

Finite element Finite element Distorted element

2 »
Surface Theoretical® 222 Ix3x3 2%2x2

v=0.3 v=0,485 v=0.3 v=0.485 v=0.3 v=0.468

Inner 4.556 4.555 4.555 4.593 4.523 4.552 4,493

Outer 3.556 3.54 3.544 3.586 3.574 3.507 3.563

% rom the solution to Lamé's problem (Ref. 14),

c-—E—l_z_—_(l-...rL?)

O 2 —p2 r?

In the present case, rp = 5 in.; r; = 4 in.; and p = 1 psi.
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The 3x3x3 rule gave values which differed by about 1.5 (at the inner
surface) for the two materials. The maximum error for the distorted

element cases was about 1.4Z.

4.3 Discussion of Classical Problem Results

The finite;elenent results for both verification problems considered
in this chapter — the simply supported beam loaded with a umiformly dis-
tributed load and the thick-walled ring under internal pressure — gave
excellent agreement with theoretical solutions. Different values for
Poisson's ratio, from v = 0 to v = G.485 (nearly incompressible material),
apparently had very little influence on the calculated stresses. Theoreti-
cally, the stresses for these problems do not depend on v. The Gaussian
integration rule that was used to evaluate the stiffness matrix had some
influence on the calculated stresses, but neither the 2x2x2 nor the
3x3x3 approximation could be claimed to be more accurate. Although the
3x3x3 rule tended to give higher stresses and was more accurate for the
beam problem, the 2x2x2 rule gave more accurate results for the ring
problem. The effect of distorting two of the elements apparently had less
influence on the accuracy than the choice of integration rules, For all
three problems, however, the maximum errors were less than 2%.

Basically, the analyses discussed here tend to confirm the accuracy
of the finite-element method as expressed in the SAP3IM module. Several
variables, however, which may be important in the analysis of closely
spaced nozzles in pressure vessels were not investigated with the beam or
ring. Two of these are the number of elements and variable-element
density using the variable-node element. Rather than investigate the
effects of these variables with classical problems, more meaningful
results (for the problem at hand) can be obtained by analyzing real struc-
tures and comparing the results with experimental data. Problems of this
type are considered in Chapters 5 to 7,
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5. ANALYSIS OF PRESSURE VESSEL MODEL WC-12DD

This chapter describes the finite-element analysis of a thick-walled
cylindrical pressure vassel with two closely spaced thick-walled nozzles
located in a longitudinal plane, identifed as Westinghouse photoelastic
model WC-12DD and analyzed experimentally by Leven.'® A sketch of the
model, showing important geometric details, is shown in Fig. 5.1.

5.1 Finite-Element Model

There are two planes of symmetry in WC-12DD — the longitudinal x-z
plane that passes through the centerlines of both nozzles and a transverse
plane midway between the nozzles and normal to the centerline of the
vessel parallel to the y-z plane (Fig. 5.2). The x-y plane, which con-
tains the centerline of the vessel, may also be considered a symmetry
plane since it js far enough from the nozzles to behave like a longi-
tudinal plane in a long circular cylinder., It is thus possible to investi-
gate the elastic behavior of the entire structure by modeling only the
one-eighth section of the vegsel illustrated in Fig. 5.3 and constraining
all the nodal points iying in the three symmetry planes to remain in those
planes.

The finite-element model for WC-12DD generated by FEMG has 2351 nodes
and 715 elements. The elements are three-dimensional isoparametric bricks
with 8 to 16 nodes each. Figure 5.4 shows an isometric view of the model,
and Figs. 5.5 and 5.6 show side and top views of the mcdel, respectively.
At the ends of the nozzle and the run, the model has one element through
the wall thickness. As the transition region is approached, this represen-
tation 1s increased to four elements. The standard transition between the
regions of higher and lower element densities is illustrated in Figs. 5.7
and 5.8.

The nodal mesh was generated in two stages. The first stage was for
points on or near the nozzle, and the second was for points located on the
vessel away from the nozzle. The first portion uses the r,0,z coordinate
system of Fig. 5.2 for locating nodal points. The second portion lays out

a regular, rectangular gridwork on the surface of the vessel.
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Fig. 5.1. Sbape and dimensions for WC~12DD; dimensions are in

inches.
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Coordinate system used for WC-12DD and WC-100DD.
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Fig. 5.3. Sector of WC-12DD for finite-element model. Dimensions
are in inches.
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Fig. 5.5.

Side view of the finite-element model for WC-12DD,
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Fig. 5.6. Top view of the finite-element model for WC-12DD.
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Fig. 5.8. Numbering of elements for WC-12DD in the longitudinal
plane (0°).
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The node numbering begins at the top of the nozzle at 6 = 0° on the
insfde surface. Node identification numbers are then incremented for
increasing values of 06, increasing values of r, and decreasing values of
2, respectively. This radial numbering scheme is then extrapolated onto
the rectangular mesh of the vessel. Element identification numbers are
assigned in the same manner. Figures 5.7 and 5.8 illustrate the numbering
of nodes and elements, respectively, in part of a cross section of the
model. Figure 5.9 shows the local node point numbering scheme for the
different elements in the two portions of the mesh.

5.2 Stress Analysis

The vessel was analyzed for a uniform irnternal-pressure load of 0.151
psi, which is the load necessary to create a maximum principal stress of
1 psi in a long cylinder having the nominal dimensions of the vessel. The
effect of placing pressure caps on the ends of the vessel and nozzle was
simulated by applying staticallr equivalent sets of axial force loads on
the open ends of the model.

Isotropic material properties were originally selected to approximate
L

those of the photoelastic materials used by Leven.?
modulus (£) of 7500 psi and a Poisson's ratio (v) of 0.485. This value of

These are a Young's

Poisson's ratio is very large and corresponds to the behavior of a nearly
incompress_ble material, whereas most materials of practical engineering
value have a Poisson's ratio in the vicinity of 0.3, Furthermore, large
values of Poisson's ratio often lead to numerical problems in finite-
element anal&ses. Computationally, the global stiffness matrix becomes
progressively more fll-conditioned as v is increased until it becomes
singular at v = 0.5.?® Analyses were therefore made usirg both values of
Poigson's ratio, v = 0.3 and v = 0,485,

Both 2x2x2 and 3x3x3 integration rules were used. The reduced inte-
gration rule gave essentially the same results as the 3x3x3 integration

with slightly less computer time.
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Fig. 5.9. Nodal sequence for elements (longitudinal nozzle configu-
ration): (a) elements in vessel zone; (b) elements in nozzle zone.
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5.3 Results

Selected summaries from the finite-element calculations for WC-12DD
are showm in Fig. 5.10 for the 0° section, Fig. 5.1i for the 90° section,
and Fig. 5.12 for the 180° section between the two nozzles along with data
from Leven's photoelastic tests. Tabulations of the calculated stresses
correspending with the values plotted in the figures are given in the
appendix. Calculated stresses normal to the plane of the sections (on)
shown in the figures are given for three cases: for v = 0.3 using 3x3x3
intepration; for v = 0.485 using 2x2x2 integration; and for v = 0.485
using 3x3x3 integration.

Figures 5.10 through 5.12 show reasonably good agreement between all
three of the finite-element analyses and the photoelastic data. In each
case the general shape of the stress distributions and the locations of
the maximum stresses were well represented. Better agreement, however,
was obtained when v = 0.3 than when v = 0.485, both with respect tuv the
overall smoothness and the maximum values. A comparison between the
photoelastic and calculated maximum hoop stress at the inside cormer of
the nozzle (180° section) is shown in Table 5.1.

The two runs for v = 0.485 indicate that the results were not strongly

dependent on the integration order. In general, however, the plots show

Table 5.1. Comparison between experimental and
analytical saximum hoop stress index at
inside nczzle corner for WC-~12DD

Finite-element results

Photoelastic
data v=0,3 v = 0,485 v = 0,485
(2x2x2) (2x2x2) (3x3x3)
(on/S)a 2.96 2.96 2.34 2.38
Error (1)4 212 202

95 = nominal stress = p (D, + T)/2T, where D, and T are
the inside diameter and wall thickness of the vessel,
respectively.
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smoother distributions and somewhat better agreement with the experimental
data for the lower order integration. The exception is for the 90° sec-
tion, where the 3x3x3 integration gave better agr: ement than the 2x2x2
integration. For both integration orders, when v = 0.485, the stress
distributions along the outer surface at the nozzle taper appear to be
irregular. This may have been caused (or exaggerated) by the incompatible
displacement model introduced into the finite element model by reducing
the element density in this region.
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6. ANALYSIS OF PRESSURE VESSEL MODEL WC-100DD

This chapter describes the finite-element analysis of a thin-walled
cylindrical vessel with two closely spaced thin-walled nozzles located in
a longitudinal plane, identified as Westinghouse photoelastic model
WC-100DD and analyzed experimentally by Leven.!? A sketch of this model
is shown in Fig. 6.1.

6.1 Finite-Element Model

The symmetry of WC-100DD is similar to that of WC-12DD discussed in
the previous chapter and therefore, again, it is only necessary to model
the one-eighth section of the vessel shown in Fig. 6.2. The finite-
element model for WC-100DD generated by FEMG had 1131 nodes and 290 three-
dimensional isoparametric 8- to l6-node elements. Figure 6.3 shows an
isometric three-dimensional view of the model. Figures 6.4 and 6.5 are
the side and top views of the model, respectively. Variable nodal den-
sities were used, with one element representing the wall thickness at the
nozzle and vessel ends and two elements representing the wall thickness in

the junction region as indicated in Figs. 6.6 and 6.7.

The nodal mesh was generated in two stages, as was done for model
WC-12DD. The same coordinate systems and similar schemes for numbering
the nodes and elements were also used. Figures 6.6 and 6.7 illustrate the
numbering of nodes and elements. Identification of the local nodal point

numbering scheme for the elements in the two portions of the mesh is the

same as for WC~12DD, shown earlier in Fig. 5.9.

6.2 Stress Analysis

The model was analyzed for an internal-pressure load of 0.0195 psi to
normalize the maximum principal stress in the vessel to unity. The effect
of placing pressure caps on the ends of the vessel and nozzle was simu-
lated by applying statically equivalent nodal forces on the open ends of
the model.
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Fig. 6.3. Isometric view of the finite-element model for WC-100DD.
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Fig. 6.5. Top view of the finite-element model for WC-100DD.
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In order to study the sensitivity of the computer code to the mate-
rial compressibility, three values of Poisson's ratio were considered:
0.3, 0.4, and 0.485. A Young's modulus of 7500 psi was used for all three
calculations. The photoelastic test material was reported®® to have E =
7500 psi and v = 0.485.

6.3 Results

Five sets of computations were made for WC-100DD: for v = 0.3, 0.4,
and 0.485 using the reduced (2x2x2) integration; and for v = 0.3 and 0.485
using the 3x3x3 integration. Calculated values for the o, stresses
normal to the 0 and the 90° sections, and to the 180° section between the
two nozzles are tabulated in the appendix. Selected summaries are shown
in Table 6.1 and in Figs. 6.8, 6.9, and 6.10 along with data from Leven's
photoelastic tests.

In general, the finite-element results agree fairly well with the
photoelastic data, as shown in Figs. 6.8 through 6.10. The two notable
exceptions are for results obtained using v = 0.485. These are for the

inside surface at 90° (Fig. 6.9), where the calculated stresses near the

Table 6.1. Comparison between experimental and
analytical maximum hoop stress index? at
inside nozzle corner for WC-100DD

Finite-element results

Experimental Integration
results order v =20.3 v=20,4 v = 0,485
3.00 (2x2x2) 2.765 b 2.673 2.110
(7.8%) (10.9%) (29.77%)
(3x3x3) 2,759 2.119
(8.0%) (29.47%)

%The hoop stress index = (cn/S), where the nominal stress
S =p(D,+ T)/2T, and D. and T are the inside diameter and
wall thickness of the vessel, respectively.

bPercentage error for the calculated values are given in
parentheses,
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inside corner show a peculiar hump; and for the outside surface at 180°
(Fig. 6.10), where the calculated m-ximum at the symmetry plane is con-
siderably higher than the photoelastic data.

For v = 0.3, the finite-element data and the photoelastic data match

very well. For this case, the discrepancy in the calculated maximum

stress index is approximately 8Z (2.77 vs 3.0) and occurs at the inside
corner of the nozzle ir the region between the two nozzles (6 = 180°).
Results for v = 0.4 also match well, where the calculated maximum stress
index differed from the photoelastic data by approximately 11Z 72.68 vs
3.0). For v = 0.485, the difference was about 30Z (2.12 vs 3.0). As
before, and as shown in Table 6.1, the integration order made very little
difference.

Although the finite-element results for WC-100DD (using v = 0.3)
generally agree with the photoelastic data, the overall agreement is not
quite 4s good as was obtained for WC-12DD. This is the result of using
three-dimensional isoparametric finite elements to analyze thin-walled
structures, as pointed out in Refs. 27 and 28, and indicates that 2/T
ratios nearing 100 represent the upper limit for reliable application of
the present program. The relatively large discrepancies in the finite-
element results for v = 0.485 is undoubtedly due to the instability of the
stiffness matrix as v approaches 0.5 as discussed earlier. The relatively
good agreement obtained for v = 0.4 (see Table £.1), however, indicates
that the behavior of the physical structure is not strongly affected by
Poisson's rotio and thus tends to confirm the acceptability of using a

value of v = 0.3 for analysis.
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7. ANALYSIS OF PRESSURE VESSEL MODEL SH-23DD

This chapter describes the finite-element stress analysis of a cylin-
drical pressure vesgsel model with two identical closely spaced nozzles
located in a circumferential, or transverse, plane. The model is intended
to approximate the 26.4° spacing inlet-outlet pair of nozzles, ii-ntified
as nozzles 24 and 23, respectively, in the photoelastic vessel analyzed by
Stone and Hochschild.'® Although nozzles 23 and 24 were not geomerrically
identical, as shown in Fig. 7.1, they were sufficierntly alike that an
analysis of an identical pair modeled after one or the other should com-
pare reasonably well with the experimental data.

As shown in Table 7.1, the maximum experimental stresses reported by

Stone and Hochschild for the two nozzles differed by about 10Z in the

longitudinal planes and by up to about 407 in the transverse plane. They

Table 7.1. Maximum experimental stressesa for
Stone and Hochschild's nozzles 23 and 24

Longitudinal plane Transverse plane
26.4° nozzle Inside Outside Inside Outside

pair surface surface surface surface

o /P o, /P o/P o, /P o /P g,/P o /P o,/P

7 t v t n t n t
Qutlet 17.9 ~1.0 9.6 6.2 4.4 —4.2 10.6 8.6
(No. 23)
Inlet 16,1 -1.0 9.0 5.4 2.8 4.4 1z.1 12.1
(No. 24)

ao /P is the stress ratio normal to the plane nf the photoelas-

tic slqce; o,/P is the stress ratio in the plane of the photoelastic
slice. For Ehe longitudinal plane, 0, corresponds tn» a circumferen-
tial stress in both the nozzle and cylindrical vessel and o, corres-
ponds to an axial stress. For the transverse plane, S, corresponds
to a circumferential stress in the nozzle and an axial stress in the
vessel wlhereas o, corresponds to an axial stress in the nozzle and a
circumferzn%ial stress in the vessel.
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estimated the experimental error to be about *5X% for che J, stresses and
about 0 to —15% for the 0, stresses.

Since the two nozzles are closely spaced in the transverse plane of
the vessel, one might expect the interaction between them to affect the
stresses in the trangverse plane more than in the longitudinal plane.

This appears to be the case since there is a greater difference between
the stresses reported for the two nozzles in the transverse plane than in
the longftudinal plane. Unfortunately, Stone and Hochschild did not test
an isolated nozzle of either type, so it is not possible to determine
whether the stresses are influenced more by the interaction between the
nozzles or by the differences in their geometric detail. Neverthe ess,
the experimental values reported for both planes are sufficientlv close to
justify modeling the structure with two identical nozzles.

In addition to maximum values for both nozzles, Stone and Hochschild
gave experimental stress distribution curves for nozzle 23 in the longi-
tudinal plane (180°) of the vessel for both the inside and outside sur-
faces of the model. No other data were reported for the inlet nozzle, No.
24, The finite-element model and analyses discussed below are for a
nozzle-vessel structure with twe identical nozzles like the outlet nozzle

23 which we will designate as model SH-23DD.

7.1 Finite-Element Model

The finite-element model consisted of the one-eighth symmetry section
shown in Figs. 7.2 to 7.4, The ceaterline of the nozzle is located 13.2°
(half the nozzle spacing) frem the global 7 coordinate direction, so that
the model represents two identical nozzles spaced 26.4° apart in a trans-
verse plane of the vessel. The model had 1894 nodes and 578 solid iso-
parametric elements, each having frem 8 to 16 nodes. All nodes in the
symmetry planes were constrained to remain in those planes. One element
through the wall thickness was used for most ~f the vessel and the nozzle
extension; four elements were used through the thickness in the inter-
section region. The same type of coordinate system and element and node

numbering scheme was used for this model as for the previous models.
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rig. 7.4. Top view, along the 2z~ axis, of the finite-element model
SH-23DD.

Figures 7.5 and 7.6 illustrate the numbering sequence for the nodes and

elements respectively. The nodal sequences for the elements in the nozzle
and vessel regions are illustrated in Fig. 7.7,

7.2 Stress Analysis

This model was analyzed using 1.0 psi internal pressure for easy

comparison with the photoelastic data. As with the other models, the
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Fig. 7.7. Nodal sequence for elements (model SH-23DD): (a) ele-
ments in vessel zone; (b) elements in nozzle zone.
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pressure caps on the ends of the run and nozzle were simalated by equiva-
lent force loads on the open ends of the model. Isotropic material prop-
erty values ior Young's modulus and Poisson's ratio were set equal to F =
7500 and v = 0.3, respectively. The influence of different values for v
was not investigated for this model because of experience with the pre-
vious models. Calculations for this model were made using the 2x2x2

integration rules.

7.3 Results

Summary compavrisons between the finite-element results and the photo-
elastic data reported by Stone and Hochschild for nozzle 23 are given in
Table 7.2 and Fig. 7.8. Tabulated values from the finite-element analysis
are given in the appendix. Maximum principal stresses for both the longi-
tudinal (180°) and transverse (90°) plane are listed in Table 7.2 with the
differences at each point expressed as a percentage of the experimental
values. Principal stress distributions for the inside and outside sur-

faces in the longitudinal plane are shown in Fig. 7.8.

Table 7.2. Comparison between experimental and
finite-elements results for SH-23DD

Longitudinal plane Tcansverse plane
(180°) (90°)

Inside Outside Inside Outside

surface surface surface sur face

cn/P ot/P on/P ot/P on/P ot/P on/P ct/P

Photoelastic 17.9 -1.0 9.6 6.2 4.4 4.2 10.6 8.6
data

Finite-element 16.5 ~1.09 6.7 4.2 5.2 4.8 8.7 6.9
results

Percentage 7.8 9.0 30.2  32.3 18.2 14.3 17.9 19.8
difference

aFor nomenclature refer to Table 7.1.
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In general, the finite-element results agree very well with the
experimental data, especiz2lly for the inside surface in the longitudinal
plane. The maximum calculated principal stress value, which occurred on
the inside surface at the nozzle corne-, differed from the experimental
value by less than 82. Larger differences, however, occurred for other
posi.ions — from about 15 to 20Z for the transverse plane to about 307 for

the outside surface in the longitudinal plare.



8. SUMMARY AND DISCUSSIOX

This report describes the developmer® and validation of a three-
dimensional finite-element computer program, MULT-NOZZLE, for analyzing
cylindrical pressure vessels with closely spaced nozzles under internal
pressure and external force and moment loadings. This first volume docu-
ments the analysis of pressure vessels with two idertical nozzles for
internal pressure loading. Volumes 2 nd 3 (to be published) discuss
external force and moment loadings on the nozzles and the analysis of
pressure vessels with three closely spaced nozzles, respectively. A
user's manual will be published as Volume 4.

MULT-NOZZLE consists of two subprograms which may be operated inde-
pendently: an automatic mesh generator, FEMG, adapited from an earlier
ccde written by Krishnamurthy;® and SAP3M, which is a modified and im-
proved version of the SAP3 finite-element code written earlier bty Wilson.’
Qutput from MULT-NOZZLE is both printed and stored on tape for post-
processing.

The major improvements to SAP3 include the addition of a variahle 8-
to 21-node isoparametric brick element, incorporatior of a more efficient
matrix equation solver, and implementation of an accurate local stress-
smoothing algorithm for calculating element surface stresses. The vari-
able-node element makes it possible to construct finite-element mesh
layouts with variable densities to accommodate regions of higher and lower
stress gradients using a minimum number of elemcnts. The improved matrix
equation solver, developed by Mondkar and Powell,'? significantly reduces
the computational time and cost required to solve the large sets of equa-
tions resulting from the finite-element idealization of vessel-nozzle
structures. The local stress-smoothing technique, proposed earlier by
Hinton and Campbell,® is an effective bilinear extrapolation procedure for
improving the accuracy of the stresses calculated at the element surfaces
and for decreasing the numerical sensitivity to Poisson's ratio.

The development and vzlidation of the computer program for internal
pressure loading discussed in this volume includes analyses for two classi-

cal elasticity problems and for three two-nozzle photoelastic pressure

—
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vessel models. The relative influence of Poigsson's ratio, finite-element
distortion, numerical integration order, and element density or mesh size
on the solution accuracy were investigated.

The two classical problems, a simpl; suppcrted beam in plane—strain
bending and a Lamé ring with internal pressure, were used primarily to
validate the accuracy of the SAPIM module under the various options avail-
able for setting up the lcading and boundary conditfons. The effects of
element distortion and different values for Poisson's ratio, which theo-
retically should not influence the solution, were also investigated and
found to be negligible. Third-order (3x3x3) and reduced second-order
(2x2x2) Gaussian quadrature mmerical integration gave essentially the
same results. All the finite-element results for these two problems
agreed with the theoretical =olutions to better than 22, with most of the
results within 1Z.

The three two-nozzlie pressure vessel models included two with the
nozzles located in a longitudinal plane {WC-12DD and WC-100DD) and one
with the two nozzles located in a transverse (circumferential) rlane
designated here as SH-23DD. Nominal dimensionless geometric parameters
for the models are listed in Table 8.1. These models were studied to
validate the entire MULT-NOZZLE program, including both the automated mesh

Table 8.1. Geometric parameters for
MULT-NOZZLE validation models

b e
Model Di/a‘“ d./t d, /o,
WC-12DD 12.0 12.0 0.129
WC-100DD 100.0 100.0 0.110
SH-23DD 11.3 0.134

allatzo of inner vessel diameter to
vessel thickness.

bRatio of inner nozzle diameter to

nozzle thickness

eRatio of ianer nozzle diameter to
vessel diameter.
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generation module FEMG and the finite-element module SAP3M. Published
exper _sental photoelastic data were used for judging the acceptability of
the finite-element results.

In general, the finife-element results agreed very well with the
experimental data, thus substantiating our claim for the validity of the
computer program. The agreement between the experimental and amalytical
maximum values obtained using Poisson's ra2tfo v = 0.3 are excellent, as
summarized in Table 8.2. The best results were obtained for the -ela-
tively thick-walled model WC-12DD, for which MULT-NOZZLE gave exactly the
same maximum value as the photoelastic data. Maximm calculated stress
indices for the other twr models, WC--100DD and SH-22DD, differed with the
experimental values by about 87, which is well within the 10Z acceptance

criterion.

Table 8.2. Maximm stress index comparison between
photoelastic and finite-element results

Experimental Finite-elenentb Percentage
Model maximum maximum errgr
o IS o /S €
n n
WC-12DD 2.96 2.96 0z
WC~-1000D 3.0 2,76 8.0%
SH-23DD 2.91 2,68 7.8%

a
S = S om ™ p(Di + TY/2T.
Determined using v = 0.3,

= (£ — F)/E, where F 1s the experimental value and
F 1is tﬁe finite-element value.

Analytical results obtained using Poisson's ratio other than 0.3 dif-
fered from the experimental data progrecsively as v approached 0.5. These
results are summarized in Table 8.3 along with the respective errors for
the calculatjons. The discrepancies are consistent with previous experi-

26929733

ence and reflect the difficulties encountered in using the classi-

cal finite-element. displacement formulation to analyze structures of
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Table 8.3. Maximum stress index comparisons ror
different values of Poisson's ratio v

Finite-element results

Model per ; tal (2x2x2) integration
“n/‘sa v=0.3 v=0.4 v =0.485
WC-12DD 2.96 2.96, 2.34
(02) (212)
WC-100DD 3.0 2.76 2.67 2.11
(7.82) (10.92) (29.72)
SH-23DD 2.91 2.63
(8.02)

a
S = Som - p(Di + /2T,

Percentage error for the calculated values are given
in parenthesges.

nearly incompressgsible materials. This formulation, which is derived from
the minimua potential energy principle, is known to yleld results which
can be greatly in error as Poisson's ratic approaches 0.5; and in the
limiting case, v = 0.5, the formulation 18 no longer valid. How close one
may approach v = 0.5 without encountering serious difficulty is apparently
related to the size of the stiffness matrix (i.e., the number ofi elements
in the analytical model) and the magnitude of the strees gradients. In
the analyses for the classical beam and thick-walled ring problems,
neither condition was severe and good rzsulcs were obtained over a wide
range of v. In the analyses for the pressure vessel modelg, however, both
the stress gradients at the intersection of the nozzle and vessel and the
number of finite elements required to mcdel the stricture are relatively
large and therefore the analysis 1s more sensitive to Poisson's ratio. Ve
were eble to decrease thig sensitivity by adding the Gauss point atress
extrapolation procedure discugsed in Section 3.7; nevertheless, some
prudence should be exercised in using values for Poisson’'s ratio much
larger than 0.3. Fortunately, Bass ~t al.?® have shown that using a value

of Poigson's ratio ejqual to 0.3 with Gauss point stress extrapolation for
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analyzing nozzles in cylindrical pressure vessels gives equally good
results for both steel and photoeiastic models. Further improvements
would require reformulating the finite-element description as discussed by
Malkus®' and others®>®’?2**® 3nd the attendant reprogramming effort.

Detailed comparisons between the calculated and experimental st:ess
distributions for the inside and outside surfaces in the longitudinal and
transverse planes of the models showed that the finite-element results
were generally in good agreement, altlough there were somc areas for which
the agreement was only fair. For the thinner-walled model WC-100DD, the
results for the membrane region also appear to support Irons and Hellen's®’
contention that solid isoparametric elements may not be fully reliable fur
analyzing very thir shell structures. It thus appears that vessels with
diameter-to-thickness ratios of about 100 represent a prudent upper limit
for use of the finite-element formulation currently in MULT-NOZZLE.

The numerical integration order apparently had very little influence
on the solution accuracy. For reasons of economy, we recommend using
reduced 2x2x2 Gaussian quadrature in future studies.

The variable node isoparametric element irstalled in SAP3M appeared
to perform satisfactorily, although some of the "raggedness” in the stress
plots may have been caused by dropping nodes to accommodate the change in
element density. Nevertheless, the advantage in being able to increase
the element density in the high stress gradient region of the nozzle
intersection appears to outwejgh the disadvantages.

in summary, the results of the studies pregerted in this volume
confirm the validity of the MULT-NOZZLE computer prcgram for analvzing
cylindrical pressure vessels with two closely spaced nozzles under in-
ternal pressure loading. Volumes 2 and 3 will discuss the use of the
program for considering external loads applied to the nozzles and for
three nozzle clusters, respectively. C{omplete user's instructions will be

presented in Volume 4.
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Appendix

MULT-NOZZLE STRESS ANALYSIS DATA FOR THE WC-12DD,
WC-100DD, AND SH-23DD MODELS

Tables A.1 to A.14 present stress distributions calculated for the
three models with MULT-NOZZLE for differing values of Poisson's ratio and
orders Of Gauss integration. These tables can be used in conjunction
with the element-number drawings to quantify the values shown in the

stress-distribution figures of the text,
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Table A.1. Hoop stress on WC-12DD on inside surface
at 0° section and stress location 12
(internal pressure load = 0.151 psi)

Stress (psi)

Element v=0.3 v = 0.485
3 x3 x 3 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule

1 0.9519 0.9353 0.9522
13 0.9233 0.9386 0.9392
25 0.6991 0.7429 0.6264
49 0.5948 0.6503 0.6257
73 0.5025 0.5690 0.5728
109 0.4609 0.5059 0.6395
145 0.4810 0.5215 0.5242
193 0.5558 0.5762 0.5747
241 0.8627 0.8303 0.8568
289 1.5849 1.440. 1.4196
337 2.4164 1.9762 1.9499
385 2.8134 2.2661 2.2845
433 2.4491 2,0830 2.0884
481 1.8267 1.7328 1.7497
529 1.4642 1.3839 1.4182
577 1.2911 1.2146 1.3088
621 1.1828 1.0421 1.1872
639 1.1324 1.13156 1.1112
646 1.0656 1.0835 1.0788
656 0.9607 0.8519 0.8425

668 0.9073 0.8519 0.8404
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Table A.2. Hoop stress on WC-12DD on cutside surface
at 0°® section and stress location 16
(internal pressure load = 0.151 psi)

Stress (psi)

Element

Yo. v=0.3 v = 0.485
3 x3 x 3 Gauss rule 2 x 2 x 2 Gauss rule 3 « 3 » 3 Gauss rule
1 0.8251 0.8462 0.8344
13 0.8625 0.8740 0.8560
37 0.7044 0.56782 0.82%1
61 0.4028 0.1699 0.2289
97 0.2147 —0.1759 —0.1598
133 G.1126 —0.1099 —0.1155
181 0.0265 —0.2441 ~3.2612
229 —0.0076 -0.1309 —0.1446
277 0.0011 0.0070 —0.0012
225 0.0424 0.0582 0.0380
373 0.1392 0.1109 N.1173
421 0.3257 0.3169 0.3437
469 0.5801 0.6860 0.6828
517 0.7720 0.9639 0.9208
565 0.8214 0.9957 0.9819
610 0.7886 0.6733 0.7417
630 0.7737 0.5477 0.6908
639 0.7756 0.7191 0.6798
646 0.7674 0.6270 0.6333
656 0.7800 0.7566 0.7620

668 0.7427 0.7592 0.7665
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Table A.3. Hoop stress on WC-12DD on inside surface
at 180° section and stress location 10
(internal pressure load = 0.151 psi)

Stress (psl)

Element v=0.3 v = 0.485
No.
3 x3 x 3Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule

12 0.9519 0.9351 0.9522
24 0.9229 0.9388 0.9388
36 0.6960 0.7412 0.6252
60 0.5901 0.6490 0.6244
84 0.4960 0.5680 0.5718
120 0.4526 0.5060 0.5143
156 0.4708 0.5229 0.5251
204 0.5436 0.579%4 0.5774
252 0.8474 0.8424 0.8682
300 1.5830 1.4656 1.4380
348 2.4909 2.0468 2.0070
396 2.9582 2.3408 2.3757
4bb 2.60L2 2.2363 2.2080
492 2.1003 1.9677 1.9831
540 1.7456 1.7012 1.6926

587 1.3332 0.2101 0.3685
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Table A.4. Hoop stress on WC-12DD on outside surface
at 180° section and stress location 14
(internal pressure load = 0,151 pst)

Stress (psi)

Element

No. v =023 v = 0.485
3x 3 x 3 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule
12 0.8251 0.8462 0.8345
24 0.8626 0.8741 0.8560
48 0.7647 0.6810 0.8314
72 0.4029 0.1698 0.2290
108 0.2146 -0.1768 —0.1604
144 0.1125 -0.1115 —0.1168
192 0.0268 -0.2467 —0.2636
240 -0.0058 -0.1313 —0.1454
288 0.0050 0.0121 0.0064
336 0.0492 0.0704 0.0496
384 0.1459 0.1361 0.1467
432 0.3162 0.3421 0.3550
480 0.5561 0.6701 0.6769
528 0.7911 1.0692 1.0372

576 0.9272 1.2921 1.1754
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Table A.5. Stresses on inside surface of WC-12DD at 90° section
(internal pressure load = 0.151 psi)

Stress (psi)

Element  Stress v =03 v = 0.485
Yo. location 3 x 3 x 3Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule
ox_: E;) G Ex °_ 5:
Sk Eme o NS L LS Lo
T P T
SR SEE ewn SR owe SR s
Sk TR e OB oom U2 o
s 1> olwer OV Qlios 0403 gliggs 0-4043
RO e OE2 awm OEE awm
E R R ¥
T SR
om D ame DR e 02 o
MR um OER oan N oo
s RS awn N eme LU e
SR A emo SED onn OE o
R R R ¢ S T
DN SR e ST e I o
mm SEE e SED own 32 oo
I S T S R
W B aws SR wun BY o
R P L

aStress parallels the axis of the vessel.

Average valuve.
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Table A.6. Stresses on outside surface of WC-12DD at 90° section
internal pr_-ssure load = 0.151 psi)

Stress (psi)

Element Stress v=0.3 v = 0.485
No- location 3 x3x 3 Gauss rule 2 x 2 + 2 Gauss rule 3 x 3 <« 3 Gauss rule
"J:: a::’} J: Sx \'.': a-:
5 16 ois0s3 0-89%  olgopy 0.8l gt 0.7766
S e oless 0-6%2  glglg 03B Sy 0.4707
o s oy 078 oY oeld 7R 0.20%
B Sm o 3T e SDN oms
DS oam SEY w39 oom
187 6 0 3150 0-2158 o o3ty 0-0303 o0 o.0181
o e o 0.229 o ey 0.0667 9:9527 0.0551
03 o 0,733 0-2538 0.195 O-1882 o3 0.1608
w1 o CM2 gOA o.ast0 G0 0.2672
B e e MO0 oan % aug
T
G eE e SN e 1S
523 16 0.5 0-7631 0 633  C-6606 0-6398  0.6465
1 1 Olearr O-6%7 QUG 0.7 0UT0 05229
212 :[(; 3:2222 0-4875 —4?:?{;2? ~0-1116 g:;ﬁ;g 0.3925
0¥ e g;gzg 0.5313 0 iee  0.2204 O 0.4520
645 ” 0.3227 0-5275 O 5ey  0.4049 e 0.4027
SN e S e DT o

‘Stress parallels the ax1s5 of the vessel.

}
)Average value.



Table A.7.

Hoop stress on WC~100DD on inside surface at 0° section, stress location 12
(internal pressure load = 0.0195 psi)

Stress (psi)

Element veo0.3 v = 0,4 v = 0,485
No.
2 x 2 x 2 GCauss rule 3 x 3 x 3 Gauss rule 2 % 2 x 2 Gaus® rule 2 x 2 ¥ 2 Gauss rule 3 x 3 x 3 Gauss rule
1 0.8465 0.8301 0.8620 0.755%7 0.6412
11 0.708% 0.6227 0,6491 0.1966 0.3791
21 0.1171 0.1584 0.1419 0.4026 0.3039
3 0.0367 0.0681 0.2834 0,13098 0.3556
51 0.1279 0.1496 0.1752 0.2716 0,318}
n 0.3982 0.4146 0.4650 0.5456 0.5563
91 0.8355 0.8462 0,9130 0.8629 0,8882
111 1.4081 1.4091 1,4628 1,3092 1.,3162
131 2.0621 2.0462 2,0335 1.6540 1,5836
151 2.64192 2,4007 2,3486 1,8966 1,8629
172 1.995? 1.9833 1.9799 1,7852 1,7457
191 1.5249 1.5275 1,5269 1.3637 1,4089
211 1.3475 1,3563 1.3807 1.3292 1.3619
229 1.2245 1,2566 1, 2440 1,1834 1.157¢
236 1.1306 1.1372 1,1468 1,1047 1.1112

201




Table A.8. Hoop streas on WC-100DD on outside surface at 0° section, stress location 16
(internal preasure load = 0,0195 psi)

Stress (psai)

Elenent veo0.3 v o= 0.4 o= v
2% 2x 2 Gauss rule 3 x 3 x 3 Gauds rule 2 ¥ 2 x 2 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule

1 0.9037 0.9406 0.9293 1.2145 1.3253
11 0.8567 0.7900 0.9338 1.3701 1.2092
21 0.1193 2.1319 0.1068 -0.0378 -0.0696
a1 -0.1145 -0.1137 —0.2240 ~0.7065 ~0.8027
61 -0.1372 ~0.1396 -0.21133 -0.5010 0. 5244
81 -0.1089 -0.1149 -0.1639 ~0.2192 —.2212
101 —0.0126 ~0.0176 —~0.0794 -0.0891 ~0.0936
121 0.2030 0.1965 0.1231 0.7°86 0.1084
141 0.5450 0.5526 0.4696 0.4463 0.5138
161 0.9505 0.9410 0.9343 1.0648 1,0648
181 1.2388 1.2256 1.2798 1.6085 1.5682
201 1.2003 1.1931 1.2216 1,5033 1,400
220 1.0694 1.0588 1.0627 1.1397 1.0970
229 1.0139 1.0185 1.0196 1.1041 1.1202
236 0.9792 0.9793 0.9887 1.0775 1.0807

SOt



Table A.9. Hoop stress on WC-100DD on inside surface at 180° section, stress location 10
(internal pressure load = 0.0195 psi)

Stress (psi)

Element v=0.3 v o= 0.4 v = 0,485
2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauas rule 2 » 2 x 2 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule
10 0.8392 0.8414 0.8553 0.7478 0.6296
20 0.6828 0.6458 0.619) 0.1435 0.3152
30 0.0637 0.1016 0.0921 0.3889 0.2715
40 0.0070 0.0196 0.0455 0.3217 0.3691
60 0.1080 0.1243 0.1642 0.3034 0,3550
80 0.4166 0.4275 0.4952 0.6112 0.6249
109 0.9022 6.9068 0.9902 0,9527 0.9764
120 1.5291 1.5261 1.5780 1,3951 1,3842
140 2.3089 2.2929 2,2569 1,7309 1.6590
160 2.7654 2.7589 2,.6729 2.1006 2.1189
180 2,5169 2.4983 2,4525 2.0312 1.9616
200 2.1359 2,1189 2,0499 1.2904 1,2188

301



Table A.10. Hoop stress on WC-100DD on outside surface at 180° section, streas location 14
(internal pressure load = 0,0195 psi)

Stress (pal)

Element v = 0.3 v e 0.4 v = 0,485

2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule 2 % 2 x 2 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule

10 0.8933 0.9356 0.9254 1,2269 1.3411
20 0.8433 0.772¢ u,9293 1.4193 1,2754
30 0.0789 0.0907 0.0706 -0.0468 ~C.0723
50 —0.1469 —0.1461 —0.2573 -0.7209 0.8140
70 —0.1499 —0.1509 —0,2309 -0,5321] —0.5549
90 —0.0984 -0.1018 -0.1583 ~0,2196 —.2166
110 0.0372 0.0362 0,034 —0,0418 -0.0332
130 0.3243 0.3255 0.2477 0.2156 0.2529
150 0.7540 0.7751 0.6959 0.6719 0.7739
170 1.2507 1.2496 1,2621 1.3238 1.2819
190 1.7081 1.7097 1,8024 2.1265 24,1571

210 2,0486 2.0531 2.3174 3.4395 3.3098

{01



Table A.ll.

Zlement  Stress <= 0.3
No. tocation 2 « 2 « 2 Gauss rtule 3« 3 3 Gauss rule
: - * -
3. 3 . N
- £ ————— £ Ky

5 12 1.0320 ) 10212

6 10 t.0321 1032 (.o59s L2008
15 12 0.8477 » 0,8070 .
16 10 0.844 0,8439 i, 8024 U, 0047
25 12 €.1021 0,438 .

Y 10 0.3999 U.-Oll 0,439 DRI
33 12 a, 2885 0,2978

36 10 v,2909 02898 0,015 Vee9?
33 {2 0.1730 0,175% ]
30 10 0.1808 V1793 o.179¢ 00477
75 : 0.1336 0.1302

154 " 0 13ee  0+1351 o ey a1
95 12 0, 1604 , 29,1573

9 10 0.1608 Ue100% n.158e 18
115 12 0. 2411 0, 2143
11 10 0.2323 0,237 0. 2260 0,230}
135 12 0. 339% D, 3263
e o b daye  0-337 ME I
155 12 0.4713 . 0.4650 ‘
156 10 0.4652 Cr9093 D.sply  Ureeds
175 12 0.4809 D491l )
178 20 v.a805 V:4308 v.anpy 0998
195 12 0.4380 , 04621 ‘
196 10 0.4729 0393 0,476 U393
%) 12 0.5218 . 0.5151 ‘
216 10 ¢.so17 059 n.spes Vs 3139
M 12 0.4979 ©, 5014 ,
234 w ROPYPS IR AL LS D.4894 V93D
241 12 0,5179 , 0,5192 s
242 10 0.5060 3127 o.5083 N

JSuou parallels the axis of the vessel,

Average value,

Stress (pni)

= 0,4

L1138
.12
0, 8%2)
0,859
0, a8k
0, 3420
G, 1399
0,337
1, 2060
1, 20384
9,130
O, LA

0,153
0, 1569
U, 1938
0,188
0,231
02104
0, 36
. a5l
D40
(IR AL 3]
1,3035
1,4 390
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[P
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-
.

[FRREN
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[ IS |
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0,248

0,153
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a9, 15499

0,375

VAl
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0,b1]

00,8107

2« 2 < 2 Gauss fule

O

[T
PR

LA
1, uv9]

U830
0.,4114%

0,1347
[T B %S

0,050
tLauly

A, 19 .0
a2
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Gaunn rule

1,7 380
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a,0000

1),..'1“!.

i, oMY

O,2ta/

W0,

4

Y

R 1)

LXA

2

0,541

oom A

$ o« ) v ) Gaunn rule

Stressen on WC-100DD on inside wurface at 90° sectlon (internal prevsure load « 0,019 pa')

[y aady
f.a109
1,117
Yolad!
0,681
0649,
[EY e
0,51 n
0,2he8
O, ie?7
O N,
U,

0,07 30
O, 130

KU B 51

U,

O, 8870,
U,y )
O, 8708

Gead ol

Dt

e beu

t, 3254
0578

AR T
0,321y
i}, )8b
0,171
0,097
0,427

I EEY)

Detih >

Gy eyl

tealog

0,06,

801

O, 1040

G, el

DR

oo

)0

PRRR AL

0, 3ran
Vv, Juso

B L]



109

ALl

(8700

SERLTQ

Tort

wlao*|

(LI A

tiento

JORC0

sfit'o

LA B

LA B ¢

enntn

'
ruretg

"fu'n

TREGCO
YeLento
wREL0
of1L'o
(7670
aliL’o
hrd
nREL*L
1960°1
YTt
feeett
LI IR

.
(AR !

NE(9° 0

guinto

LOr ]
COO8 1

cestto
clato

vettto-
=070

1070 o
6000
1904 0
LRG0
FCT90
stsyto

MRS SKRBG . s

[PUTORPURES R P P S

(

Fnce'y

wityw 'y

aLTRO

ST I

RO

vte0

7%8$°0

L B2 I

covsto

fottta

aennto

110'0

TR AT

niacta

1L
ylsty
XITHY
1NK9 D

0=%h'0
R0
(61
teeett
RO
LA |

LoRt* 1
0R00" 1

966$°0
[
usffto
LRIt
[
[7X Rt

0lol*o
sell’o

w00’ o

nOEgto
YRR ')

RGO
99.5'0

o
.

sEna WERE)

SRY'O o

(1% CH10°0 = PRy Aanmgaad THUIAIUE) UOTIDEN 06 1P IBJINB BPESINO Uo GQOOT-IN UO ®

A L}

AN A e e E b e e A b A e A - ————

et e e M e tim e b e et 4 m e P e

oo L
O0RS 0 ”m"“m
R($9'0 wwwu”m
LoUR o “M"“ ”M
e
e
65620 MMM““n
e
w0010 “”N“”M
T060° ¢ %Mnm”m
o
oo (G
i I
e
e
- 7

AtR: BRAP) § > 2 5 7

e e mmaiea i mae o -

sanyea IBwiraay

0= A

*1OKEAA 22 JO EIXR Y3 sya[yered -aounmm
woo D e wee 3
N N (-
wvo WEE geeo 2N
S TR B
weo D weeo 883 3 W
"It Mwumnm «Kieto MM“M”M ““ M““
o S wove HES N W
12660 MM“M”M 1gecco MHNM”M N” MM"
gora Q0 ceve Lo
e WES e g3
oo G0 o SC
eSS wwe WS 3 ¥
R AU RN B
woo O s S50
woe JASewe WD
.qu.-n £ - ,r...m ~.u..
aYh KBNPY ( » € » m BINI ¥ENED 7 » 7 > T yorauner o
ssaaas uswa 3

0= n

(yud) xxaary

g

RAS ALALLSS



110

Table A.13. Maximum and minisum in-plane principal
stresses at 180° section on the inside surface of
SH-23DD (internal pressure load = 1.0 psi,

v = 0,3, 2x2x2 Gauss rule)

Element Stress “max %ain
No. location (psi) (psi)
6 10 6.0305 2.4833
18 10 6.7422 3.0821
42 10 7.6039 3.8054
78 10 8.1459 3.9699
114 10 8.6538 3.7802
162 10 9.2734 3.3868
210 10 11.4077 0.8748
258 10 14.6939 —0.4381
306 10 16.5154 —0.4305
354 10 12,7909 1.0477
402 10 9.2781 2,1827
450 10 7.9681 2,0782
494 10 7.3831 2.2969
512 10 7.154 2,7474

519 10 6.3166 2.1642
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Table A.14, Maximum and minimum in-piane principal
stresses at 180° section on the outside surface of
SH-23DD (internal pressure load = 1.0 psi,

v = 0,3, 2x2x2 Gauss rule)

Element Stress “max ®min
No. location (psi) (psi)
6 14 4.3589 2,3642
30 14 3.9761 1.7797
90 14 4.2152 0.9612
102 14 2.6472 —0.4544
150 14 2,5C59 —0.5465
198 14 2.7200 —0.1774
246 14 3.2894 —0.0105
294 14 4.5053 1.3972
342 14 - 6.0364 3.3293
390 14 6,65"" 4.1273
438 14 6.1479 3.0974
483 14 5.3592 1.9921
503 14 4.7998 1.4887
512 14 5.2204 2.3943

519 14 5.4910 2.5993




