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FOREWORD 

The work reported here was performed at the Oak Ridge National Labo­
ratory (ORNL) and at System Development Corporation (formerly Mechanics 
Research, Inc.) under Union Carbide Corporation, Nuclear Division, Sub­
contract No. 7012 with consulting assistance from Profs. G. H. Powell and 
D. P. Mondkar at the University of California, Berkeley. This work is 
in support of the ORNL Design Criteria for Piping and Nozzles Program 
being conducted for the U.S. Nuclear Regulatory Commission (USNRC), Office 
of Nuclear Regulatory Research. E. R. Lynn of the Metallurgy and Materials 
Branch, Division of Reactor Safety Research, USNt.C, is the cognizant RSR 
engineer, and S. E. Moore of ORNL, Division of Engineering Technology 
(formerly Reactor Division) is the program manager. 

The objectives of the ORNL program are to conduct integrated experi­
mental and analytical stress analysis studies of piping system components 
and pressure vessel nozzles in order to confirm and/or improve the ade­
quacy of structural design criteria and analytical methods used to assure 
the safe design of nuclear power plants. Activities under the program 
are coordinated with other safety-related piping and pressure vessel 
research thr' ugh the Design Division, Pressure Vessel Research Committee 
(PVRC) of the Welding Research Council, and through the ASME Boiler and 
Pressure Vessel Code Committees. Results from the ORNL program are used 
by appropriate codes and standards groups in drafting new or improved 
design rules and criteria. 

The following reports have been Issued under U.S. Nuclear Regulatory 
Commission sponsorship: 

J. W. Bryson, J . P. Callahan, and R. C. Cwaltney, Stress Analyses of 
Flat Plates with Attached Nozzles, Vol. 1. Comparison of Stresses 
in a One-Nozzle-to-Flat-Plate Configuration and in a Two-Nozzle Con­
figuration with Theoretical Predictions, ORNL-5044, Vol. 1 (July 
1975). 

R. L. Bat t is te , W. H. Peters, W. F. Ranson, and W. F. Swlnson, Stress 
Analysis of Flat Plates with Attached Nozzles, Vol. 2. Experimental 
Stress Analyses of a Flat Plate with One Nozzle Attached, ORNL-5044, 
Vol. 2 (July 1975). 
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E. C. Rodabaugh and S. E. Moore, Stress Indices for ANSI Standard 
B16.ll Socket-Welding Fittings, ORNL/TM-4929 (August 1975). 

R. C. Gvaltney, J . W. Bryson, and S. E. Bolt , Theoretical and Experi­
mental Stress Analyses of ORNL Thin-Shell Cylinder-to-Cylinder Model 
2, ORHL-5021 (October 19*75). 

S. E. Moore, "Contributions of the ORNL Piping Program to Nuclear 
Piping Design Codes and Standards," Proceedings of the Technology 
Information Meeting on Methods for Analyzing Piping Integrity, 
Nov. 11-12, 1975, ERDA 76-50; also in J. Press. Vessel Technoi., 
Trans. ASHE 99, 224-30 (February 1977). 

W. L. Greenstreet, "Summary and Accomplishments of the ORNL Program 
for Nuclear Piping Design Criteria ," Proceedings of the Technology 
Information Meeting on Methods for Analyzing Piping Integrity, 
Nov. 11-12, 197 S, ERDA 76-50. 

J. U. Bryson and W. F. Swinson, Stress Analyses of Flat Plates with 
Attached Nozzles, Vol. 3. Experimental Stress Analyses of a Flat 
Plate with Two Closely Spaced Nozzles of Eaual Diameter Attached, 
ORNL-5044, Vol. 3 (December 1975). 

1. C. Rodabaugh, F. M. O'Hara, J r . , and S. E. Moore, FLANGE: A 
Computer Program for the Analysis of Flanged Joints with Ring-Type 
Gaskets, 0RNL-5035 (January 1976). 

R. E. Textor, User's Guide for SHFA: Steady-State Heat Flow Analysis 
of Tee Joints by the Finite Element Method, UCCND/CSD/INF-60, Oak 
Ridge Gaseous Diffusion Plant (January 1976). 

E. C. Rodabaugh and S. E. Moore, Flanged Joints with Contact Outside 
the Bolt Circle - ASME Part B Design Rules, ORNL/Sub/2913-1, 
Battelle-Columbus Laboratories (May 1976). 

E. C. Rodabaugh, Appropriate Nominal Stresses for Use with ASME Code 
Pressure-Loading Stress Indices for Nozzles, 0RNL/Sub/2913-2, 
Battelle-Columbus Laboratories (June 1976). 

S. E. Moore and J. W. Bryson, Progress Report for the Design Cri­
teria for Piping and Nozzles Program for the Two Quarterly Periods 
July 1 to Sept. 30 and Oct. 1 to Dec. 31, 19?5, ORNL/NUREG/TM-18 
(June 1976). 

R. L. Maxwell and R. W. Holland, Experimental Stress Analysis of the 
Attachment Region of a Hemispherical Shell with a Radially Attached 
Nozzle, Zero Penetration, ORNL/Sub/2203-4, University of Tennessee 
(July 1976). 

J . P. Callahan and J. W. Bryson, Stress Analyses of Perforated Flat 
Plates Under In-Plane Loadings, ORNL/NUREG-2 (August 1976). 
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STRESS ANALYSIS OF CYLINDRICAL PRESSURE VESSELS WITH 
CLOSELY SPACED NOZZLES BY THE FINITE-ELEMENT METHOD 

Volume 1. Stress Analysis of Vessels with 
Two Closely Spaced Nozzles Under Internal Pressure 

F. K. W. Tso R. A. Weed 
System Development Corporation 

J. H. Bryson S. E. Moore 
Oak Ridge National Laboratory 

ABSTRACT 

A finite-eleaent computer program, MULT-NOZZLE, was 
developed for the stress analysis of cylindrical pressure 
vessels with two or three closely spaced reinforced nozzles. 
MULT-NOZZLE consists of two modules which may be operated 
independently. The first module, FENG, automatically prepares 
a finite-element mesh including the nodal point coordinates, 
finite-element connectivities, mesh options, and boundary 
value specifications for input to the finite-element solu­
tion module SAP3K. SAP3M, which is a modified and improved 
version of the SA?3 computer program, computes the nodal 
point displacements and stress tensor components, and prints 
and/or stores the results for later postprocessing. The 
accuracy of the SAP3M module is demonstrated by comparison 
studies of two classical theory-of-elasticity problems: a 
simply supported beam and a thick-walled ring under internal 
pressure loading. 

A complete discussion of MULT-NOZZLE is presented in 
four volumes. The present volume develops the finite-
element idealization for pressure vessels with two identical 
radially attached closely spaced nozzles for internal pres­
sure loading. The nozzles may be unreinforced or fully 
reinforced according to the rules of the ASME Boiler and 
Pressure Vessel Code and may be located in either a longi­
tudinal or a transverse plane of the vessel. Validation of 
the program for analyzing this type of structure is demon­
strated by the analysis of three two-nozzle pressure vessel 
models and comparison of results with experimental data. In 
general, quite satisfactory results were obtained. 

Volumes 2, 3, and 4 (to be published later) discuss the 
analysis of two-nozzle vessels with external loadings on the 
nozzles, three-nozzle vessels with internal pressure loading, 
and input instructions and operating procedures for the 
programs. 

Keywords; stress analysis, pressure vessels, pressure vessel 
nozzles, ASME BPVC, design criteria, design rules, 
ORNL Piping and Nozzles Program, nozzle analysis 
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i. INTRODUCTION 

Essentially all current generation nuclear power plant pressure 
vessels have working fluid penetrations in the cylindrical portion of the 
vessel which must be designed according to the rules of the ASHE Boiler 
and Pressure Vessel Code, Section III, Div. 1, for Nuclear Power Plant 
Components.*1 According to these rules, the pressure vessel penetrations 
(i.e., "nozzles") must satisfy a set of clearly defined structural safety 
criteria. The Code design criteria include ainiaua reinforcement re­
quirements, maximum stress requirements, and instructions for calculating 
stresses under the various loading conditions expected during the life of 
the vessel. 

The Code rules have evolved over a number of years and are adequate 
for most design situations. However, questions have recently been raised 
on two specific issues. These concern maximum calculated stresses for 
nozzles that are reinforced according to the Code rules given in NB-3330 
and for nozzles spaced "close" together. As pointed out by Mershon and 
Rodabaugh3 in a preliminary evaluation of the Code rules, insufficient 
information, either analytical or experimental, '• currently available to 
properly support a "rule" governing how close two or more nozzles may be 
placed without exceeding established safe maximum stress limits. Indeed, 
the present rule, which distinguishes between "isolated" and "closely 
spaced" nozzles, is rather poorly supported by sound technical informa­
tion. There is evidence that, under some design conditions, nozzles may 
be safely placed closer than presently permitted while for other con­
ditions the opposite may be true. 

The studies discussed here, as well as in subsequent volumes of this 
report,9 * were undertaken to develop and validate a finite element 
computer program capable of analyzing cylindrical pressure vessels with 
two or three closely spaced nozzles for internal pressure and/or externally 
applied pipe reaction or support-type loadings. The present volume is 
concerned with the stress analysis of vessels with two identical radially 

*For brevity, "Code" will refer to Section III, Div. 1, of the ASME 
Boiler and Pressure Vessel Code (Ref. 1). Specific portions of the Code 
are referred to by the appropriate code designation (e.g., NB-3300). 
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attached nozzles for internal pressure loading. The nozzles nay be tin-
reinforced, aay have fillet radius reinforcement, or nay be fully rein­
forced with one of the standard ASME configurations illustrated in Fig. 
NB-3338.2-2 and shown here as Fig. 1.1. 

Voluae 2 of this report is also concerned with the stress analysis of 
cylindrical pressure vessels with two identical nozzles but with force and 
aoaent loadings applied through the nozzles. Voluae 3 will consider three 
nozzles and internal pressure. Voluae 4 will contain a coaplete set of 
user instructions for operating the coaputer prograa MULT-NOZZLE. W> plan 
to use this coaputer prosraa to develop sufficient stress analysis intor-
mation to properly assess the current Code design qualification rules and 

,J-i-"1 
ORNl OWG 76 6693R 
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Fig. 1 .1 . Nozzle configurations for various ASME standard reinforce­
ment designs. 
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to support proposed Modifications to the rules in answer to the questions 
posed earlier. 

The coaputer prograa MULT-NOZZLE is capable of analyzing cylindrical 
pressure vessels with a single nozzle or with two or three nozzles spaced 
arbitrarily close together, subject to the restrictions discussed in the 
next chapter for two nozzles and in volume 3 for three nozzles. The 
prograa is capable of automatically generating a suitable finite-element 
model composed entirely of hexahe^rai elements, isoparametric solid 
brick-type elements, which may have fro* 8 to 21 nodes each, are used 
throughout. The prograa computes stresses, strains, ard nodal point 
displacements that aay be saved along with the mesh geometry for later 
postprocessing (i.e., the preparation of grid plots, selected output 
formatting, etc.). 

MULT-NOZZLE consists of two major parts or modules that may be 
operated independently. The first, FEMG (Finite-Element Mesh Generator), 
automatically prepares a finite-element mesh including the nodal point 
coordinates, finite-element connectivities, mesh options, and boundary 
value specifications for input to the finite-slement solution module. 
FEMG, discussed in the next chapter, uses many of the features of an 
existing program (HSST-NODES) developed earlier by Krishnamurthy' to 
generate finite-element models for thick-walled nozzle-vessel structures. 
All the input data required by FEMG can be specified on fewer than 15 data 
cards. 

Stresses and nodal point displacements are calculated using a modi­
fied and improved version of the SAP3 finite-element program, originally 
developed by Wilson7 at the University of California. SAP3M computes 
nodal point displacements and the stress tensor components at specified 
data points for the entire finite-element model. The stress components, 
in the global Cartesian coordinate system, are calculated initially at the 
second-order Gaussian integration points and then extrapolated to the node 
points (or any other set of specified points in the element) using a 
bilinear local smoothing scheme proposed by Hinton anu Campbell.* At 
present, SAP3M contains only the variable 8- to 21-node solid isopara­
metric hexahedral finite element." 1 0 This element enables modeling the 
structure with a high element density in regions of high stress gradients 
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and a lower element density in regions of more uniform stresses. SAP3M 
also contains an improved and more efficient matrix equation solution 
routine developed by Mondkar and Powell. 1 1' 1 2 

Application of MULT-NOZZLE is demonstrated in this report by analyz­
ing five models: two classical problems — a simply supported beam in 
plane strain bending and a thick-walled ring loaded with internal pres­
sure — and three two-nozzle cylindrical pressure vessel configurations for 
internal pleasure loading. Validation ot the program accuracy is demon­
strated by comparison of the calculated results with theoretical solu­
tions 1" 1* and with experimental data. 1" 1' 

The basic assumptions and mathematical formulations used for the 
automatic finite-element mesh generation are discussed briefly in the next 
chapter. Chapter 3 contains a discussion of the finite-element theory and 
solution algorithms employed in MULT-NOZZLE. Studies of the two classical 
problems for validating the SAP3M finite element-module are presented in 
Chap. 4. Chapter 5 oresents the analysis of a relatively thick-walled 
pressure vessel with two closely spaced nozzles located in a longitudinal 
plane and includes comparisons with experimental results. Chapter 6 gives 
similar results for a chin-walled two-nozzle pressure vessel. 

The analysis of a two-no?.zle vessel configuration with the nozzles 
located in a circumferential plane is presented in Chap. 7. The results 
predicted in this volume of the report are summarized and discussed in 
Chap. 8. Throughout the verification sections of the report, results of 
the stress calculations are presented graphically. Numerical values shown 
in these graphs are presented in tabular form in the appendix. 
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2. FINITE-ELEMENT MESH GENERATION 

Generation of the finite-element model for analyzing a three-dimen­
sional double-nozzle junction in a cylindrical pressure vessel would be 
difficult and time consuming if performed manually and would be virtually 
impossible for conducting parameter studies. Therefore, an automated aesh 
' generator and input data preparation module, FENG (Finite-Element-Model 
Generation), was developed. The basic assumptions, terminology, and 
mathematical formulas for constructing the finite-element model for two-
noz.rle cylindrical pressure vessel analyses are discussed in this chapter. 
The finite-element model for a single-nozzle vessel is a special case of 
the two-nozzle model and consequently will not be discussed separately. 
The model for three-nozzle problems is discussed in volume 3 (Ref. 4). 

2.1 Basic Considerations 

The basic assumptions for automated construction of finite-element 
models for two-nozzle pressure vessels are as follows: 

1. The two nozzles are geometrically identical. 
2. The nozzle configurations are either unreinforced or fully 

reinforced, as illustrated in Figs. NB-3338.2-2 (a) through (d) 
of Section III of the ASME Boiler and Pressure Vessel Code1 

(shown earlier in Fig. 1.1). 
3. The nozzles are radially attached to the cylindrical vessel and 

are positioned either on a longitudinal plane or on a transverse 
(circumferential) plane. 

4. The models may or may not have inner and/or outer surface transi­
tions (z>i and V2 of Fig. 1.1) between the vessel and nozzle. 

5. The transitions are circular arcs; i.e., r\ and Vi are constants 
and connect tangentially with the cylindrical vessel and a 
cylindrical nozzle. 

6. For pad reinforcement, Fig. 1.1(c), r 2 = 0.0. 

The two-nozzle configuration has two planes of symmetry, one through 
the centerlines of the two nozzles and one midway between the two nozzles 
as shown in Fig. 2.1. The symmetric-quadrant model for the nozzle-cylinder 
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Fig. 2.1. Two-nozzle configuration layout. 
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junction in which the nozzles are longitudinally aligned is shown in Fig. 
2.2. A. similar one-quarter model is used in the analyses of the circum­
ferential configuration as shown in Fig. 2.3. Ftie one-quarter model is 
then idealized by dividing it into a three-dimensional array of elements, 
calculating coordinate values for each of the nodes in that array, and 
defining the connectivity of the elements. 

0«NL-DWG 77 - 2MV» 

Fig. 2.2. Symmetric quadrant for the longitudinal two-nozzle con­
figuration. 
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ORNL-OWS 77-12936 

Fig. 2.3. Symmetric quadrant for the circumferential two-nozzle con­
figuration. 

2.2 Terminology of Mesh Generation 

The ' nsuing discussion involves frequent reference to the geometry 
and topology of the junction. To maintain a concise and consistent 
terminology, the following special definitions and conventions will be 
used. 

For the longitudinal model shown in Fig. 2.2, the z-axis of the ref­
erence global Cartesian coordinate system is along the centerline of the 
nozzle. The x-axis is along the centerline of the vessel« and the y-axis 
is perpendicular to the intersection of the two centerlines. Angles 
around the z-axis are defined by the variable 6, with 6 • 0 and 180° lying 
in the x-z (longitudinal) plane. The outboard side of the nozzle is in 
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the longitudinal plane at 9 = 0° and the inboard side is at 6 * 180°, 
between the two nozzles. 

Radial planes, identified by the angle 8, are perpendicular to the 
x-y plane and include the nozzle centerline. The radial plane at 9 « 90* 
is called the transverse plane. 

Several different surfaces are identified with respect to the aodel. 
These include the inner surface, interaediate surfaces, outer surface, and 
various cross sections. The line foraed by the intersection between a 
radial plane and a aodel surface is called a aeridional trace, or siaply a 
trace. The line ABCD in Fig. 2.2 is a typical aeridional trace market: 
into divisions by nodes. The cross section foraed by a radial plane and 
the inner and outer aodel surfaces is called a aeridional section. The 
regions between the aodel surfaces are called layers. 

Each aodel surface is identified by four geoaetrically distinct 
zones: (1) the nozzle, which aay be further divided into as many as three 
regions depending on the reinforcement details shown earlier in Fig. 1.1; 
(2) the circular transition zone, which aay be absent if the nozzle is not 
reinforced or if pad reinforcement is used; (3) the vessel pad; and (4) 
the cylindrical vessel. At present, the wall thicknesses of the aodel in 
the pad and vessel zones must be equal. These two zones are distinguished 
only bv the coordinate system used to lay out the finite-element mesh. 

The boundary between the nozzle and transition zones, shown as the 
line B'B" in Fig. 2.2, is the nozzle tangency curve. The vessel tangency 
curve is the boundary between the transition zone and the vessel pad 
(C'C" in Fig. 2.2). These two tangency curves form the natural topologi­
cal boundaries between the three zones of the nozzle intersection region. 
A cylindrical (r,8,z) coordinate system referenced to the nozzle is used 
in this region to define the finite-element mesh layout. The finite-
element mesh layout for the vessel zone is referenced to the r,$,x coordi­
nates of the vessel, where $ is the angle from the x-z plane as shown in 
Fig. 2.2. 

A similar conceptualization and terminology is used for the circum-
ferentially spaced nozzle model illustrated in Fig. 2.3, except that the 
centerline of the nozzle (z* axis) is displaced from the global z axis by 
Che angle ZTT in the y-z plane. 
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2.3 Finite-Element Idealization 
i 

The mathematical basis for the finite-element mesh, developed auto­
matically by FEMC for two closely spaced nozzle problems, is discussed in 
this section. A suitable mesh is characterized as consisting entirely of 
solid hexahedral isoparametric elements with 8 to 16 node points on their 
surface edges. In the nozzle, transition, and vessel pad zones, every 
node point will lie on one of the model surfaces formed by dividing the 
wall thickness into layers and on one of the meridional traces formed by 
the intersection of a radial plane with the model surfaces. In the vessel 
region, the nodes lie on one of the model surfaces and on trace line 
extensions either along the vessel or around the circumference of the 
vessel. 

FEHG considers each surface independently and determines coordinate 
locations for a preliminary fine-mesh layout for the entire model. Under 
option control, FENG then systematically selects or skips nodes for assign­
ment to the elements and constructs the final variable density finite 
element model, complete with element connectivities. 

2.3.1 Equations for a meridional trace 

Consider a typical meridional trace defined by a radial plane inter­
section with one of the model surfaces as shown in Figs. 2.4 and 2.5. Let 
(r,6,2) or (r',6,z') be the set of cylindrical coordinates for the nozzle 
with its origin at the intersection of the vessel and nozzle axes. In the 
following, no distinction will be made between (r,6,2) and (r',8,z') 
except where it is necessary to discuss the two types of model? separately. 

The equation for the meridional trace in the vessel pad region (the 
line CD in Fig. 2.6) may be written as 

r2 z2 

— + — ~l . (2.D 
a2 b2 

where a is the setnimajor axis of the ellipse and b is the semiminor axis. 
For both the longitudinal and circumferential nozzle models, the val-ies of 
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a and b are 

a = R /sin 9 , 
(2.2) 

b = R , 
p 

where /? is the radius to the vessel surface under consideration. 
P 

Substituting Eq. (2.2) into Eq. (2.1), the equation for the ellipti­
cal curve becomes 

r 2sin 26 + 2 2 = R2 . (2.3) 
P 

To locate the vessel taugency point C, consider the equality 

sin B = (/? + R - !•)//?, , (2.4) 
n t L t, 

where R is the radius to the nozzle surface under consideration, R. is 
n z 

the radius of the transition, and i* is the radial distance from the 
nozzle axis to the point C. 

Furthermore, using Eq. (2.3), the expression for the slope of the 
trace at C may be written as 

t a n e = ~ 3F 
r„ sin26 

(2.5) 
r*rn (/?2 - r 2 s i n 2 0 ) l / 2 

C p C 
Also, 

r_ sin2a 
sin B . (2.6) 

[R2 - r 2 (sin26 cos 26)) 1/ 2 

When the values of sin B given by Eqs. (2.4) and (2.6) are set equal, the 
equation for the unknown, r_, is 

vtrJ + BrJ + CrJ + D r ^ + ff-O , (2.7) 

where 

A • -sin2 6 cos 2 9 , 

B - - M « + RJ , n t 
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C « A(R + R.)1 + R 2 - Rj sin1* 0 , n t p t 

D = -2i? * « + ffj , p n 
E = * 2tt + R.)2 . p n t 

Equation (2.7) may be conveniently solved for r„ to the desired 
precision by numerical techniques. Here, the Newton-Raphson iteration 
method was used. 

The z-coordinate of the vessel tangency point C for any meridional 
trace 6 is obtained from 

zc~ iRp~pc s i n 2 e > l / 2 • <2-8> 

Equations (2.7) and (2.8) give the coordinates of the vessel tangency 
point C for any meridional trace. For the nozzle tangency point (point B 
of Fig. 2.6) we have 

*a - *n ' ( 2- 9 ) 

and using Eq. (2 .4) to define the angle 6, 

ZBS SC + Rt C O S B 

(2.10) 

= 2 <7 + ^t ( r C - V - ( r C - V 2 j l / 2 • 

With the value of i» determined from Eq. (2.7), the coordinate locations 
for the tangency points B and C are defined by Eqs. (2.8) to (2.10). 

2.3.2 Determination of nodal coordinates 
Assume that the nozzle, transition, and vessel-pad portions of the 

trace are divided into L , H, and N parts, respectively, by node points. 
There will then beL+M + N + 1 nodes on the trace, i.e., one more than 
the total number of divisions. 

For an unreinforced nozzle divided into L parts, like the one de­
picted earlier in Fig. 1.1(d) and in Fig. 2.6, the coordinates for the 
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node at the end of the ith division are 

r = R 

2 - zA ~ izA - z3){ULfX 

(2.11) 

where z, and zn are the axial coordinates for the points A and B shown in 
A a 

Fig. 2.6 and c\ is a node point crowding i.idex for the nozzle. 
If the nozzle is reinforced, like those shown earlier in Figs. 

1.1(a), (£), and {s) and in Fig. 2.7, the nozzle will be further divided 
into two parts by L\ divisions above the reinforcenent an-i [>2 divisions in 
the reinforcement above the circular transition. Note that the number of 
trace divisions on the nozzle will vary from surface to surface for rein­
forced nozzles. This is illustrated in Fig. 2.7 on a five-layer example. 

ORNL-OWG 77-13219 

L, DIVISIONS 

, Z . -TOPOFTA^ER 
I ' REGION TORiTH 

SURFACE 

DIVISIONS IN THE >TH SURFACE 

rZ . =TOP OF TRANSITION 
' REGION FOR *TH SURFACE 

1 

Fig. 2.7. Node identification for reinforcement nozzles. 
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Since the maximum value of z for each layer is input to FEMG indepen­
dently, it is possible to define a straight taper as in Figs. 1.1(a) and 
1.1(c) or a curved taper as in Fig. l.l(J). If a curved taper is being 
modeled, the trace is approximated by a series of straight chord segments. 
For each surface the coordinates for nodes above the taper are 

n ' 
(2.12) 

_ (* — •» wt./r..\cl . •. - i z ' za - <z* - **M*i/£i) C l ; ii » i to i, , 

where 2_ is the axial coordinate to the top of the taper. Between the top 
of the taper and the top of the circular transition, the node coordinates 
are 

r - R , 
71 (2.13) 

z = zt - (zt - zB)(l2/L2) ; la • 1 to I2 , 

where z. < z_ is measured to the top of the taper region for the ith 
surface, as shown in Fig. 2.7. R is the radius to the ith surface. 

For the nozzle-vessel transition region, the coordinates for the node 
at the end of the mth division are 

r » R + R. [1 - cos(m/Af)a] , 
n * (2.14) 

z " 2„ — R. sin (jn/M)a , 

where R. is the transition radius and the angle a, subtended by the arc 
BGC in Fig. 2.6, is defined by 

a - sin"1 l(zB - « C)/R t] • (2.15) 

The nodal coordinates in the vessel pad zone at the end of the nth 
division are 

r » 8 cos y , 
(2.16) 

z - 8 sin Y t 

where 8 is the polar distance to the node and can be evaluated from Eqs. 
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(2.1), (2.2), and (2.16) as 
s - R /(sin2y + COS'Y s i n 2 9 ) l / 2 . (2.17) 

The angle y , measured from the equatorial plane, has the value 

Y = yc - (YC - yD) a - [1 - (n/N)f2} , (2.18) 

where e 2 is the nodal point crowding index for the vessel. 
The values of y„ and y - are given by the expressions 
y Q = tan l Û /r̂ .) > 

yD = tan-1 (zjrj , 
(2.19) 

where i* and zn are the radial and axial coordinates, respectively, of the 
point D on the trace where it intersects the lower boundary of the vessel-
pad zone. 

In order to compute values for rv and z_, a distinction must be made 
between the longitudinal and the circumferential two-nozzle configurations. 
Referring to Figs. 2.2 and 2.4 for the longitudinal configuration, the 
coordinate values will be given by the following. If D lies on the line 
SU in the first quadrant, 

rD = [(/? sin * ) 2 + P ^ 2 ] 1 ' 2 , 
(2.20) 

zD * R cos • , 

where * » sin" [P. tan 9/f? ] and 0 < 9 < 9 . P is the length of the 
L/ P — — Ll LI 

vessel pad on the outboard side along the line 6 = 0 ° , as shown in Fig. 
2.4(a). If D lies on the line UW in the first and second quadrants, i.e., 
9, < 6 < 9.., then 

r n » R sin •./sin 9 , 
D P L (2.21) 

ZD " Rp COS h • 
where $. is the circumferential cutoff angle for the vessel pad. If D 
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lies on the line VT in the second quadrant, 

*D " Rp C O S • • 
(2.22) 

where + - sin"1 KP^/R ) tan (8 - 90*) J and 8 ^ < 8 < 180°. ?LL is the 
length of the vessel pad on the inboard side, i.e., half the distance 
between the two nozzles along the line 8 * 180*, as shown in Fig. 2.4 (a). 

For the circumferential two-nozzle configuration, the vessel-pad 
region is located in the second and third quadrants, i.e., 90* < 6 < 270*, 
where 8 is measured around the axis of the nozzle in the counterclockwise 
direction as shown in Figs. 2.3 and 2.5. Note that the (r',8,z') coordi­
nate systea for the nozzle is a simple rotation of the z' axis about the 
vessel centerline (x axis) so that the x and x' (8 * 0*) axes coincide. 
If the point D lies on the line SU in the second quadrant as shown in Fig. 
2.5(a), then for each surface, 

r'D - R sin ^/sin 8 , 

'h-'p—h' (2'23) 

90* < 8 < tan"1 (P,//? sin 8 r) + 90° , 
— — i) p Jj 

where $_ is the right-hand cutoff angle and P, is the length of the pad 
along the vessel; R is the radius of the surface, as before. 

If D lies on the line UV, then 

r'D* [(I? sin • ) 2 + P I
2 J 1 / 2 , 

z'D - Rp cos + , 
(2.24) 

where * - sin" 1 [(PjV* ) tan (180° - 8 ) ] , and tan"1 PJW Bin * L ) + 
90° < 8 < 180*. 

If D l i e s on the line VW, then 

T'D- KB s i n 0 2 + P L

2 l l / 2 , 

*s - R

P

 cos * • (2.25) 
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where £ - s i n [(P r / /? ) tan (6 - 180")] and 180° < e < tan [R s i n 
L p - p 

£.-/?.. J + 180*, where Crr is the angle between the z and z* axes, or one-
half the angle between the centerlines of the two nozzles. 

If D lies on the line W , then 

(2.26) 
r'D - R sin C^/cos (270* - 6) , 

*h ' Rp C O S «IX • 
where tan - 1 [R sin C r r/P r] + 180° < 6 < 270°. 

2.3.3 Global coordinate system transformation 

After the nodal coordinates are properly generated in either of the 
cylindrical coordinate systems, a coordinate transformation is performed 
to express all the nodal locations in the global Cartesian coordinate 
system. For the longitudinal nozzle configuration, this is done by 
setting 

x = r cos 9 , 

y = r sin G , (2.27) 

2 » Z . 

For the circumferential nozzle configuration, the equations used are 

x * r' cos 6 , 

y = r' sin e sin (90° - C^.) + z' cos (90° - KL[) , (2.28) 

z = z' sin (90° - 5 L f) - r* sin 6 cos (90° - KLL) • 

2.3.4 Nodal locations on the vessel 

When the diameter of the vessel is very large relative to the di­
ameter of the nozzle, the elements remote from the nozzle attachment may 
be considered too coarse to be practical. In such cases, the above pro­
cedure is used to develop the mesh in the nozzle, transition, and vessel-
pad zones, but a special rectangular mesh pattern is developed for the 
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regaining cylindrical part of the vessel. The nodes for this region are 
generated directly in the global Cartesian coordinate systea. 

Consider the cylindrical vessel region to be divided into NN parts in 
the longitudinal and circumferential directions of the vessel as shown in 
Fig. 2.8. If (x, y, 2) denotes the last nodal station on any Meridional 

ORNL-OWC 77-2626R2 

OlVlSlONS 

Fig. 2.8. Vessel rectangular mesh zone. 
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trace from the previous calculation, e.g., at point Dy then for the node 
at the end of the "with" division on the cylindrical vessel region, the 
coordinates are derived as follows. For the longitudinal nozzle configu­
ration, let x be the largest x and let z . be the smallest z for all. 

' max ° min 
the meridional traces in the previous computation. Then for the shaded 
region above z . in Fig. 2.8, mxn 

^ c o l - ^ t o l - ^ ^ - ^ 2 ' 
y = y , (2.29) 
z = z , 

where P . is the total vessel length and c^ is the nodal point crowding 
index for the vessel. 

For the region in the unshaded portion below z f the coordinates 
are as follows. 

For x < x : - max 
x = x , 
y = R sin * , (2.30) 

2 = R C O S <J» , 
p 

where <J> = * . — ($ ^ — •rXl — nn/NN)°2 and 4 is the total cutoff 
angle for the vessel; A is the cutoff angle for the vessel pad as before. 

For x > x r max 
X " P t o l ~ ( P t o l " * ) ( 1 " i m l m ^ 2 » 

(2.31) 
y - /? s in • , 

z ' R cos $ , 
P 

*'*tol-(*tol-*L

)a-nn,m)°2 ' 

Different equations oust be used for the circumferential nozzle 
configuration. For tlvi region above z . (point U on Fig. 2.3), 
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"u-ra^-sjr1. x « -P _ + tol 

y • y » (2.32) 

2 • 2 . 

For the region below z . and |x| < |x| , 
•in ' i - i '«ax* 

r = x , 
y » 7?p sin * , (2.33) 

2 « /? COS * , 

where * - * t o l - (^^ - ^ H l - nn/NNf2. 

For the region below z . and Ixl > |x| , ° min ' ' ' 'max' 

x = - P t o l + ( P t o l - | x | ) ( l - rtnimf* , 

y = R s in 4* , 

2 = fl COS 4> , 

* " * t o i - ( * t o i - ' i ; ) ( 1 - n n / M ) C ' ' 2 • 

2.4 FEMG Features 

Since the stresses in and near the region of the nozzle attachment 
are highly localized and may vary nonlinearly through the wall thickness, 
a fine mesh with a greater concentration of elements should be used there, 
whereas a coarser mesh will be satisfactory in the more remote regions 
where the stresses vary less rapidly. To accommodate this type of mesh 
layout, a general three-dimensional isoparametric solid element which may 
have from 8 to 21 nodes is used. This range of nodes allows for omitting 
or including selected midside nodes along the boundary between regions of 
high and lower element density without the need to use wedge elements, as 
illustrated in Figs. 2.9 and 2.10. The variable-node element has 3 degrees 

(2.34) 
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element densities. 
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of translational freedom, per node and thus has from 24 to 63 degrees of 
freedom per element. 

A previous investigation by Clough*7 showed that tht isoparametric 
hexahedral family of elements is distinctly superior to tetrahedral ele­
ments for solving three-dimensional problems. The disadvantages are that 
(1) the element is inherently more complex, (2) the midside nodes both 
increase the bandwidth of the stiffness matrix and tax the storage capac­
ity and speed of even the largest computers, and (3) autonatic mesh genera­
tion is more difficult because of the possible variations in nodal con­
nectivities for each element. 

To develop a finite-element mesh for analyzing pressure-vessel nozzle 
models, FEHG first determines coordinate locations for a preliminary 
"fine-mesh" layout for the entire model. The node coordinate data cal­
culated at this stage are stored in three-dimensional arrays where the 
dimensional subscripts correspond to surface number, meridional section, 
and trace division. In this preliminary fine mesh, the number of nodes 
must be the same for each surface (inside, intermediate, and outside), 
except for those surfaces originating in the nozzle taper which will have 
fewer nodes. The number of trace divisions, and consequently the number 
of nodes along a trace, however, may differ with the angular division 6 as 
illustrated in Fig. 2.10. In this illustration each of the nodes 1, 2, 
..., 7 along the trace at 6 = 0 will be located first, followed by those 
numbered 1, 2, ..., 7 on the next trace until all the points on the sur­
face have been located. FEMG will then locate node points for the next 
surface, etc. When all the nodes in the preliminary fine mesh have been 
located, their coordinates may be printed if desired before the elements 
are generated. 

At present, FEMG contains five element-indicator options. The first 
uses all the nodes to develop a nesh consisting entirely of 8-node ele­
ments. The second uses all the nodes but develops a mesh which may con­
sist of elements with 8 to 16 nodes. For this type of mesh, illustrated 
in Fig. 2.10, element midside nodes are not assigned in the 6 direction to 
form the 16-node elements. To form elements with less than 16 nodes, some 
or all of the midside nodes along the trace lines are not assigned. 



27 

A third option will produce a mesh consisting of elements with 20 or 
fewer nodes using all the nodal locations determined in the preliminary 
fine mesh operation. 

The fourth and fifth element indicator options do not use all the 
nodal locations determined in the first, pass, but selectively skip nodes 
in the thickness direction to form a mesh like the one illustrated in Fig. 
2.9. The fourth option will give a mesh consisting of 8- to 16-node 
elements, whereas the fifth option will also include 20-node elements. 

Whenever a node point is skipped, it is eliminated from the fine-mesh 
array described above. After the skipping process has been completed, 
nodes are numbered sequentially starting at the top of the nozzle's inside 
surface at the minimum value of 6. The numbering is then arranged in the 
order of (1) increasing angle 8, from 0 to 180° for the longitudinal 
nozzle configuration or from 90 to 270* for the circumferential nozzle 
configuration; (2) for each surface, from the inner surface to the outer 
surface; and (3) along each trace beginning at the top of the nozzle (or 
at the top of the respective surface when it originates in the nozzle 
taper). This numbering .scheme minimizes the bandwidth of the stiffness 
matrix and thus reduces the cost of the computations. Element numbers are 
assigned iu the same manner as the node numbers, beginning at 6 = 0 on the 
inside layer at the top of the nozzle and proceeding around, outward, and 
down the model. 

If automated element connectivity generation is desired, several 
additional restrictions must be satisfied, first, 20 node elements may 
not be used because of the difficulty in developing an algorithm to account 
for all possible variations in the connectivities. This eliminates using 
the third and fifth element-indicator options discussed above for auto­
matic connectivity generation, although for those cases the connectivities 
may be input manually. 

Second, for an unreinforced nozzle the total number of divisions 
along each trace in a given meridional section must be equal. For a 
reinforced nozzle the portion of each trace above and below the taper must 
have the same number of divisions as every other trace on that section. 

Third, if the number of trace divisions are not the same for every 
angular division 6, then the number of nodes may not differ by more than 1 
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for adjacent meridional sections. This is illustrated in Fig. 2.10, for 
exaaple, where the Meridional section at 9 * 90" has 7 nodes, the one at 
6 * 108* has 6 nodes, etc., until the one at 8 • 180* has 2 nodes. In 
general, if the meridional trace i has n. nodes and the aeridional trace j 
has n. nodes, then the following relation mist be satisfied: 

•$ 
n. « n. ± (J - i ) , (2.35) 

where the positive sign is used for an increasing number of nodes, and the 
negative sign is used for a decreasing nuaber. This restriction iaplies 
that the nuaber of eleaents along adjacent strips will either be the same 
or will differ by one. The nuaber of surface nodes per eleaent will 
depend on the eleaent-indicator option used. 



29 

3. THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS 

The MULT-NOZZLE progrr? Module SAP3M is a modified and improved 
version of the SAP3 finite-eleaent program originally developed by Wilson7 

at the University of California. The major modifications to SAP3 include 
(1) replacement of the original library of elements with the variable 8-
to 21-node solid isoparametric hexahedral element,10 (2) incorporation of 
an improved matrix-equation solving routine 1 3 to increase the program 
efficiency, and (3) the addition of a local-smoothing extrapolation algo­
rithm* to improve the stress calculation accuracy at the element surface 
points and to reduce the program sensitivity to Poisson's ratio. Each of 
these items is discussed more fully below. 

3.1 Isoparametric Finite-Element Mapping 

Formulation of the equations for an isoparametric finite element is 
greatly simplified by describing the behavior of the element in a local 
(or natural) coordinate system in which the element is a perfect cube, as 
shown in Fig. 3.1(fc). For a 21-node element, the mapping of the element 
coordinates from this natural coordinate system to the global Cartesian 
coordinate system [see Fig. 3.1(a)] of the original structure is accom­
plished with the following relations: 

Z2 V*'8'* Xm • 
m«l 

m-1 

*„(r,8.t) ym , (3.1) 

"„<?>•>» zm 

where (x, y , z) are the global system coordinates, (x . y . z ) for m » 
1, 2, ..., 21 are the global coordinates of the node points m, and 
N(r,s,t) for m - 1, 2, ...,21 are the mapping functions (also called 
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Fig. 3.1. Coordinate systems for (a) parent and (b) mapped elements. 

shape functions) expressed in the local (r,s,t) coordinate system. Using 
the node numbering sequence indicated in Fig. 3.1, the shape functions are 
as follows: 

*1 -hi - ±0. 9 + hl7 + ft12) -•3^21 . 

N2 * hi - yCiiO + &18 + h3) -• ^ l . 

»3 - f c 3 - 7(^11 + h 1 9 + &10> -¥» 
**> - h h - f<fcl2 + &20 + *!!> " 8 * 2 1 

H - h 5 - 7(^13 + *17 + ^16) - * » 

H ~h6- j dm + &18 + hl3) - J * . . 
N7 • h7 — | d i 5 + **19 + km) - g ^ 2 1 

"8 * he - | ^ 1 6 + &20 + &is> - g * 2 1 

N m ' \ - K » j for m ' • 9, 10, • w m f * 

*2\ ' &21 » 
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where 

h - H(r,rJfKs,sJH(t,tJ ; 
. T m m. m 

m = 1, 2, ..., 21 , (3.3) 

and (r , s , t ) are the local coordinates for the node points. If a 
m n m 

particular node point « is skipped (see Section 2.4), h^ ^ 0. The func­
tions H(r,r ), H(s,s ). an-i H(ttt ) in Eq. (3.3) are defined by the general 
expression 

ff(B,6i) 
y (1 + 6B-), for 6- » ±1 

|l - B 2 , for B- = 0 
(3.4) 

where 

B * r,e,t i m m* m (3.5) 

3.2 Displacement Function 

The assumed displacement distribution for the 21 node isoparamertic 
hexahedral finite element is 

u 

V = 

u 

0 0 

0 0 

0 0 

iU'i , (3.6) 

where the shape functions U (m - 1, 2, ..., 21) are row vectors given by 
Eqs. (3.2) to (3.5). The nodal displacement vector {(/} is defined by 

T {£/} = (U), u7, ..., U2i, yl» y2f •••» f,21t "l» ^2» •••• ^2!l » (3-7) 

where the u's, i''s, and '<->'s are the global coordinate system displacements 
of the 2i node points. 
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3.3 Stress-Strain Relations 

The constitutive equations used in SAP3M are the usual orthotropic 
linear elastic relations given by the general expression 

io) = [C] {e} , (3.8) 

where the stress and strain vectors {a} and {e} are defined in rectangular 
Cartesian coordinates by 

{a} =[o , c ,o , T , T , T ] 1 xx* yy' zzy yz* xz' xy' 

and 

* e* * tc .̂̂ * e„„» e„,» Y„„t Y^» Y„J xx yy zz yz xz xy 

(3.9) 

(3.10) 

The coefficient matrix [C] contains the elastic moduli and Poisson's 
ratios. Sufficient generality is permitted to accommodate any material 
with simple symmetry; thus 

IC] 

cn c 1 2 c 1 3 o o o 
c22 c23 0 0 0 

C33 0 0 0 
C^k 0 0 

symmetric C55 0 
C66 

(3.11) 

In terms of the elastic moduli B., Poisson's ratios v.., and shear 
moduli C. . for orthotopic materials behavior, the C.. coefficients take 
the forms 

Cx, « (1 - v 2 3 v 3 2) £t/V , 

C22 « (1 - v 3 1 v i 2 ) E2/V , 

C 3 3 - (1 - v ] 2 v 2 1 ) E3/V , 

C\2 " < v21 + v 2 3 v 3 l ) E \ l V • 

C 2 3 - ( v 3 2 + v J 2 v 3 2 ) B2/V , (3.12) 

^13 " < v 13 + v 2 3 v 12> EllV ' 

C\i, - C 2 3 , 

CSS " G13 » 

^66 " "12 » 
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where 

V = 1 - v 1 2 v 2 l - V23V32 - v 3 1 v 1 3 - 2vi 2 V23V 3 1 . (3.13) 

The following reciprocity relat ionships hold because of symmetry: 

El _ vj2_ 
7 2 ~ v 2 1 * 

jT- = — " , (3.14) 
^3 v 32 

El = ^11 
Ex v 1 3 * 

For isotropic materials behavior, 

E. = E , 

v . . - v , (3.15) 

G.. - C - E/2( l + v) , 

with 

C . - E(\ - v ) / ( l - 2v) ( l + v) {U - 11, 22, 33) , 

C.. » EvKl - 2v) ( l + v) ( £ , j - 1, 2, 3) , (3.16) 

C . - G « £72(1 + v) (ii = 44, 55, 66) . 
11 

3.4 Strain-Displacement and Stress-Displacement Relations 

The general expression governing the geometry of deformation has the 
form 

{e} - [L] {u} + {e0> , (3.17) 

where {u} is the displacement vector {u, v, w) and [L] is a linear dif­
ferential operator. The term {en} in Eq. (3.17) represents any type of 
initial strain. Usually this term accounts for thermal expansions. The 



34 

operator [L] has the form 

[L] 

3 
3x 0 0 

0 a 0 

0 0 3 
32 

0 3 
3a" 

3 

3 
32 0 3 

3x 

a 
ty 

3 
3X 

0 

(3.18) 

Substituting Eq. (3.6) into Eq. (3.17) gives 

{e} - [L] 

N m 

LO 

N 
m 

m 

W + {e0} , (3.19) 

or 

{e} - [B)iV} + {£<,) , (3.20) 

vhere 

/? m 
[B] - [II 

L 
N 
m 

0 

0 (3.21) 
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or 
3,7 

m 
3x 

3iV 
m 

»y 

IB] 
3iV 

m 
3z 

3.Y 
m 

32 

3ff 
n 

»J/ 

(3.22) 

3ff 
m 

3z 

3ff 
m 

3x 

3AL 
m 

ty 
3ff 

m 
3x 

The derivatives in the matrix [B] are evaluated as follows: 

3x 
3r 

3x 
3s 

3x 
.3t 

la. 
3r 

3JL 
3s 

3j£ 
3t 

l£ 
3r 

33 
"37 

l£ 
3 t _ 

3x 

3ff 
2. 

3 f f m 

fW 
m 

3x 

[J}< 
W. 

m 
3y 

3ff 
m 

(3.23) 

\ 3 z 

where [J] is the Jacobian. The inverse relation gives the appropriate 
chain-rule differentiation needed in Eq. (3.22): 

3x 

771 

V3a / 

U] -1 

# (77 * 
3r 

3iV 
m 

38 

3fl 
m_ 

(3.24) 
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The stress-displacement relation is obtained by substituting Eq. (3.20) 
into Eq. (3.8): 

[o] - IC][B]{U} + [C]{t0} . (3.25) 

3.5 Element Stiffness 

The element stiffness, which defines the relation between nodal 
displacements and corresponding nodal forces for a given finite element, 
is obtained by applying the work-energy principle, 

{/?} = J [B]T [C][B] do {{/} + J [B]T[C]{cQ} do , (3.26) 
vol vol 

{BY[C]{CQ} do is the initial nodal load-vector and {/?} is a nodal 
force vector. The element stiffness matrix is defined by 

[k] - J [B)T[C)[B] do . (3.27) 
vol 

Since the strain matrix is expressed in natural coordinates, a 
change in variables is needed; thus 

do = dx dy dz - \j\ dr ds dt , (3.28) 
where \j\ is the determinant of the Jacobian defined in Eq. (3.23). The 
element stiffness matrix then takes the form 

[k] - f1 f1 f1 IB)T[C)[B)\J\ dr ds dt . (3.29) 

For hexahedral finite elements, the integrals in Eq. (3.29) are too 
complex to evaluate in closed form, and Gaussian quadrative numerical 
integration is normally used. Equation (3.29) may be expressed approxi­
mately in numerical form as 

ni nj nk 
[k] - £ E E 8.8.8. {[B]T[C][B]}... \J\... , (3.30) 

i-1 j-1 *-l v 3 K %QK X 3 K 

where n., n., n, are the integration orders and 8., 8., 8. are independent 
1- «7 K 1* Q K 

weighting coefficients in r,8,t at the Gaussian integration points. 
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3.6 Equilibrium Equations 

By sunning the element stiffnesses from Eq. (3.30) for each node 
point in the finite-element model and accounting for the interface com­
patibility between elements (i.e., connectivities), one obtains a set of 
algebraic equilibrium equations in terms of unknown nodal point displace­
ments for the entire computational model. Thus 

(F) = [Z](U} , (3.3D 

where {F} is the total nodal force vector, [K] is the structural stiffness 
matrix, and {U} is the complete set of nodal displacements. 

For three-dimensional finite-element structural analyses, Eq. (3.31) 
consists of several thousand linear simultaneous equations which must be 
solved for the unknown displacements {if}. Normally the major fraction of 
computer time required for the analysis is consumed in the solution to 
these equations. Any improvement in the numerical algorithms required to 
solve these equations will thus significantly reduce the total cost of the 
analysis. Recently, an improved matrix equation solution algorithm, which 
is particularly well suited to the SAP series of finite-element programs, 
was developed by Mandkar and Powell 1 3 at the University of California. 
Their algorithm is based on a modified Crout reduction scheme11 and com­
pacted column vector storage, and eliminates almost all unnecessary 
arithmetic operations. The matrix equation solution routine currently in 
SAP3M was written and installed under Professor Powell's direction. 

3.7 Stress-Smoothing Technique 

Since stresses are proportional tc the derivatives of displacements, 
the calculated stress values will be less accurate than the displacements 
determined from the solution of Eq. (3.31). Recently, several investi­
gators"'1" a* have attempted to improve the stress calculation accuracy 
for isoparametric finite-element models by calculating stresses at optimal 
locations in the elements and then extrapolating to obtain stresses at the 
desired node positions. Generally, the optimal locations are the Gaussian 
integration points 2 4 on the interior of the element. Eight such points, 
identified as 5 l t Si, ..., Sg, are shown in Fig. 3.2 for second-order 
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Fig. 3.2. Stresses at 2x2x2 Gauss integration points. 

(2x2x2) Gaussian integration. In 1974, Hinton and Campbell' proposed a 
local smoothing technique using a bilinear cubic relation to extrapolate 
the 2x2x2 Guassian point stresses to the element surfaces (or to any 
arbitrary point within the element). An algorithm based on their tech­
nique was developed and Installed in SAP3M. The following bilinear cubic 
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equation is used for extrapolat 
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1-8Pa~tP s*i] 

(3.32) 

where o.(r , s , t ) is a given stress component (i = 1, 2, ..., 6) at the 
desired arbitrary point (r . s , t ) and Sj£, 5,

2^, ..., 5si are the 
corresponding stress components at the 2*2*2 Gaussian integration points. 
The parameters r'. s'. t' are defined by 

P P P y 

(rp ep tp = /3 («• .a ,t > . (3.33) 
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4. SAP3N VALIDATION 

As stated earlier, the MULT-NOZZLE computer program consists of two 
major modules that may be operated more or less independently. FENG 
automatically prepares the finite-element mesh, including nodal point 
coordinates, finite-element connectivities, mesh options, and boundary 
value specifications (subject to the restrictions discussed in Chapter 2) 
for input to the finite-element solution module SAP3M. SAP3M computes the 
nodal point displacements and stress tensor components at specified data 
points for the entire finite-element model and prints and/or stores the 
results for later postprocessing. 

Two types of loading conditions, element-load and structural-load 
cases, can be specified for SAP3M. Acceptable element-load cases include 
thermal expansion, gravity, and surface pressure, where the pressure may 
be constant, hydrostatic, or arbitrarily distributed depending on the 
input parameter specified. Structural-load cases include applied nodal 
forces. Element-load case multipliers are used to provide linear com­
binations of element-load types; and rtructural-load case multipliers 
provide a way of combining element-load with structural-load cases. 

SAP3M outputs tabulations of both the input and solution data. The 
input data tables include all the information necessary to define the 
problem. Specifically, these are the geometric and modeling data such as 
node coordinates, element connectivities, constraints, material properties, 
and load information. Information affecting the solution procedure such 
as integration orders and stress recovery points is also included in the 
printouc. The solution data consists of equilibrium equation numbers, 
nodal displacements, and stress tables. The stress tables show the six 
stress components in global coordinates and the three principal stresses 
at up to eight different points for each element. The output data may 
also be written onto a irraanent storage device for future postprocessing. 

The programs will be available in CDC 64C0/6600/7600 and IBM 360/370 
versions through the Argonne Code Center. The IBM version uses double-
precision arithmetic and provides for plotting the finite-element meshes. 
Because of the computer time involved in a normal run, it is strongly 
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suggested that the finite-element mesh developed by FQtG be plotted am' 
thoroughly examinee* before executing the SAP3M analysis. 

To demonstrate the basic accuracy of the SAP3M module, two classical 
problems for which theoretical solutions exist were solved: a simply 
supported beam with a uniformly distributed load 1 9 and a thick-walled ring 
under internal pressure (Lamp's problem1'"). Stresses were computed using 
different values for Poisson's ratio v and both a 2*2*2 and a 3*3*3 
Gaussian integration scheme to investigate their influence on the accuracy 
of the numerical algorithm. Theoretically, Poisson's ratio should not 
affect the stresses for these two problems but may be important for the 
nozzle problem. As discussed more fully below, the numerical results for 
both classical problems gave excellent agreement with the theoretical 
solutions. Variations in Poisson's ratio from v = 0 to v = 0.485 had a 
negligible influence on the calculated stresses (less than 1/2%). The 
different integration schemes gave results which differed by about 1Z. 

4.1 Studies of the Simply Supported Beam 

The simply supported beam model used in the analysis is shown in Fig. 
4.1. Because of symmetry, a finite-element model was constructed for only 
half the beam, using five 12-node solid elements and 44 nodal points. All 
the nodal displacements were restrained in the z direction (plane strain), 
and roller support boundary conditions for the simple supports and sym­
metric constraints were specified. Two values of Poisson's ratio, v = 
0.0 and v = 0.485, for photoelastic epoxy were considered. 

The following material properties were considered (p is the material 
density): 

Material I Material II 

v = 0.0 v - 0.485 
E = 12 * 10 6 psi E - 12 * io 6 psi 
G * 6 x 10 6 psi G - 4.04 x 10 6 psi 
a * 10"6 °F - 1 

a - io" 6 «F _ 1 

p = 0 or 24,000 lb/in.3 p - 0 or 24,000 lb/in. 
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Fig. 4.1. Beam model: (a) simply supported beam J" plane strain 
bending; (i>) finite-element model. Dimensions are in ii^nes. 
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• The beam was analyzed for a uniformly distributed load of 12,000 
lb/in. and for a uniform temperature increase of 100°F. For the uniformly 
distributed load, three load cases which should give identical results 
were calculated: load case 1, for which the loau was idealized as a set 
of uniform nodal forces on the top surface of the beam; load case 2, where 
the loading was a gravity (body) force in the negative y direction equal 
to the weight of the beam (24,000 lb/in. 3); and load case 3, where the 
load was specified as a constant pressure equal to 12,000 psi on the top 
surface. Load case 4 was for the thermal loading. Load case 1 was set up 
as a structural-load case with nodal forces; load cases 2, 3, and 4 were 
assigned as element-load cases A, B, and C, respectively. For Material I 
with v = 0.0, only the 2*2*2 Gauss integration rule was used in evaluating 
the stiffness matrix, but for Material II (v = 0.^85), both the 2x2x2 
and 3'3x3 Gauss rules were used. 

In all, nine separate cases for the uniformly distributed load and 
two cases for uniform temperature expansion were analyzed. The maximum 
stresses for each case and the corresponding theoretical values are given 
in Table 4.1. All the computed results are in excellent agreement with 

Table 4.1. Stresses for the beaa Model 

Maxima i stresses (ksi) 

Method 3 v , Distance (in.) from left support 
case rule _ 

1 2 1 4 5 

Theoretical 1-3 
1 
I 

Finite 2 
element 2 

3 
3 

Theoretical 
or f inite 4 
element 

Load case 1 was set up with uniform nodal forces on the top surface of 
the beaa, 120,000 lb to ta l ; load case 2 was set up using a gravity force equal to 
the weight of the beta, 24,000 l b / i n . ' ; load case 3 was set up with a constant 
pressure equal to 12,000 psi on the top surface; and load case 4 was a uniform 
teaperature Increase of 100'F. 

0, 0.485 1296.0 2J04.0 3T-24.0 3456.0 3600.0 
0, 0.485 2-2«2 1296.0 2304.0 3024.0 3456.0 3600.0 
0.485 3-3-3 1281.3 2292.5 3015.8 3451.1 3598.4 
0 , 0.485 2-2-2 1320.0 2328.0 3048.0 3480.0 36. .0 
0.485 3«1«3 1305.3 2316.5 3039.8 3475.1 3622.4 
0, 0.485 2«2'2 1320.0 2328.0 3048.0 3480.0 3624.0 
0.485 3«3*J 1305.3 2316.5 3039.8 3475.1 3622.4 

i stresses (ksi) 

0, 0.485 2*2»2 - 1 . 2 

0, 0.485 30»3 -1 .2 
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the theoretical predictions, with a maximum error of about 1.9t for load 
cases 2 and 3 using the 2*2x2 integration rule. In general, the 3*3*3 
reduced integration rule seemed to give slightly •ore accurate results, 
although the most accurate results (zero error) were calculated for load 
case 1 using the 2*2x2 integration. The effect of Poisson's ratio was not 
detectable for this problem. 

4.2 Studies of the Lane Thick-Walled Ring 

A ring structure with v * 0.3 and v = 0.485 loaded with a unit 
internal pressure was also analyzed, and the relative effects of the 
"reduced integration" (2x2x2 Gauss order) and the "exact integration" 
(3x3*3 Gauss order) techniques were investigated. This model was also 
used to investigate the effects of distorted elements. Since the ring has 
two planes of symmetry and is loaded axisyametrically, only one quarter of 
the structure was modeled. The finite-element model consists of six 16-
node isoparametric solid elements with a total of 66 nodal points, as 
shown in Fig. 4.2. Symmetric boundary conditions were assumed for the 
vertical and horizontal planes. 

Material properties for the computational model were* as follows: 

Material I Material II 

v - 0.3 v = 0.485 
E - 7500 psi E « 7500 psi 
G - 2885 psi G « 2525 psi 

For this model, stresses were computed for both values of Poisson's 
ratio using both integration rules. Stresses were also computed for two 
cases in which elements 3 and 4 were distorted using v • 0.3 in one case 
and v * 0.485 in the other. Both cases were run using the 2*2*2 integra­
tion rule. 

The internal pressure was set up as load case A. The resulting cir­
cumferential stresses at the inner and outer surfaces are given in Table 
4.2. For this model, the 2x2x2 integration rule gave the more accurate 
results and gave exactly the same values for the two Poisson's ratios. 
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Fig. 4 .2 . Finite-element model for ring (Lame's problem). Dimen­
sions are in inches. 

Table 4 . 2 . Circumferential s t r e s s e s for the ring Model 

Surface Theoretical 
Finite element 

2x2x2 
Finite element 

?*3*3 
Distorted element 

2*2*2 Theoretical 
v » 0.3 v « 0.485 v « 0.3 v * 0.485 y - 0.3 v « 0.485 

Inner 

Outer 

4.556 

3.556 

4.555 4.555 

3.544 3.544 

4.593 4.523 

3.586 3.574 

4.552 4.493 

3.507 3.563 

From the so lu t ion to Lamp's problem (Ref. 14 ) , 

In the present case , r 2 » 5 i n . ; rj » 4 i n . ; and p " 1 p s i . 
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The 3x3*3 rule gave values which differed by about 1.5Z (at the inner 
surface) for the two materials. The maximum error for the distorted 
element cases was about 1.4Z. 

4.3 Discussion of Classical Problem Results 

The finite-element results for both verification problems considered 
in this chapter — the simply supported beam loaded with a uniformly dis­
tributed load and the thick-walled ring under internal pressure — gave 
excellent agreement with theoretical solutions. Different values for 
Poisson's ratio, from v = 0 to v = C.485 (nearly incompressible material), 
apparently had very little influence on the calculated stresses. Theoreti­
cally, the stresses for these problems do not depend on v. The Gaussian 
integration rule that was used to evaluate the stiffness matrix had some 
influence on the calculated stresses, but neither the 2*2*2 nor the 
3x3x3 approximation could be claimed to be more accurate. Although the 
3*3*3 rule tended to give higher stresses and was core accurate for the 
beam problem, the 2*2*2 rule gave more accurate results for the ring 
problem. The effect of distorting two of the elements apparently had less 
influence on the accuracy than the choice of integration rules. For all 
three problems, however, the maximum errors were less than 22. 

Basically, the analyses discussed here tend to confirm the accuracy 
of the finite-element method as expressed in the SAP3M module. Several 
variables, however, which may be important in the analysis of closely 
spaced nozzles in pressure vessels were not investigated with the beam or 
ring. Two of these are the number of elements and variable-element 
density using the variable-node element. Rather than investigate the 
effects of these variables with classical problems, more meaningful 
results (for the problem at hand) can be obtained by analyzing real struc­
tures and comparing the results with experimental data. Problems of this 
type are considered in Chapters 5 to 7. 
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' 5. ANALYSIS OF PRESSURE VESSEL MODEL WC-12DD 

This chapter describes the finite-element analysis of a thick-walled 
cylindrical pressure vessel with two closely spaced thick-walled nozzles 
located in a longitudinal plane, identifed as Westinghouse photoelastic 
model WC-12DO and analyzed experimentally by Leven. 1 5 A sketch of the 
model, showing important geometric details, is shown in Fig. 5.1. 

5.1 Finite-Element Model 

There are two planes of symmetry in WC-12DD — the longitudinal x-z 
plane that passes through the centerlines of both nozzles and a transverse 
plane midway between the nozzles and normal to the centerline of the 
vessel parallel to the y-z plane (Fig. 5.2). The x-y plane, which con­
tains the centerline of the vessel, may also be considered a symmetry 
plane since it is far enough from the nozzles to behave like a longi­
tudinal plane in a long circular cylinder. It is thus possible to investi­
gate the elastic behavior of the entire structure by modeling only the 
one-eighth section of the vessel illustrated in Fig. 5.3 and constraining 
all the nodal points lying in the three symmetry planes to remain in those 
planes. 

The finite-element model for WC-12DD generated by FEMG has 2351 nodes 
and 715 elements. The elements are three-dimensional isoparametric bricks 
with 8 to 16 nodes each. Figure 5.4 shows an isometric view of the model, 
and Figs. 5.5 and 5.6 show side and top views of the model, respectively. 
At the ends of the nozzle and the run, the model has one element through 
the wall thickness. As the transition region is approached, this represen­
tation is increased to four elements. The standard transition between the 
regions of higher and lower element densities Is illustrated in Figs. 5.7 
and 5.8. 

The nodal mesh was generated in two stages. The first stage was for 
points on or near the nozzle, and the second was for points located on the 
vessel away from the nozzle. The first portion uses the r,B,z coordinate 
system of Fig. 5.2 for locating nodal points. The second portion lays out 
a regular, rectangular gridwork on the surface of the vessel. 
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Fig. 5.1, Shape and dimensions for WC-12DD; dimensions are in 
inches. 
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Fig. 5.2. Coordinate system used for WC-12DD and WC-IOODD. 
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Fig. 5.3. Sector of WC-12DD for finite-element model. Dimensions 
are in inches. 
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Fig. 5.4. Isometric view of the finite-element model for WC-12DD. 
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Fig. 5,5. Side view of the finite-element model for WC-12DD. 
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Fig. 5 .6 . Top view of the finite-element model for WC-12DD. 
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Fig. 5.8. Nudbering of elements for WC-12DD in the longitudinal 
plane (0°). 
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The node numbering begins at the top of the nozzle at 9 = 0* on the 
inside surface. Node identification numbers are then incremented for 
increasing values of 8, increasing values of r, and decreasing values of 
a, respectively. This radial numbering scheme is then extrapolated onto 
the rectangular mesh of the vessel. Element identification numbers are 
assigned in the same manner. Figures 5.7 and 5.8 illustrate the numbering 
of nodes and elements, respectively, in part of a cross section of the 
model. Figure 5.9 shows the local node point numbering scheme for the 
different elements in the two portions of the mesh. 

5.2 Stress Analysis 

The vessel was analyzed for a uniform internal-pressure load of 0.151 
psi, which is the load necessary to create a maximum principal stress of 
1 psi in a long cylinder having the nominal dimensions of the vessel. The 
effect of placing pressure caps on the ends of the vessel and nozzle was 
simulated by applying statically equivalent sets of axial force loads on 
the open ends of the model. 

Isotropic material properties were originally selected to approximate 
those of the photoelastic materials used by Leven.3S These are a Young's 
modulus (£) of 7500 psi and a Poisson's ratio (v) of 0.485. This value of 
Poisson's ratio is very large and corresponds to the behavior of a nearly 
incompressible material, whereas most materials of practical engineering 
value have a Poisson's ratio in the vicinity of 0.3. Furthermore, large 
values of Poisson's ratio often lead to numerical problems in finite-
element analyses. Computationally, the global stiffness matrix becomes 
progressively more ill-conditioned as v is increased until it becomes 
singular at v * 0.5.2* Analyses were therefore made using both values of 
Poisson's ratio, v - 0.3 and v * 0.485. 

Both 2x2x2 and 3x3x3 integration rules were used. The reduced inte­
gration rule gave essentially the same results as the 3x3x3 integration 
with slightly less computer time. 
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Fig. 5.9. Nodal sequence for elements (longitudinal nozzle configu­
ration): (a) elements in vessel zone; (b) elementr in nozzle zone. 
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5.3 Results 

Selected sauries from the finite-element calculations for WC-12DD 
are shown in Fig. 5.10 for the 0* section, Fig. 5.11 for the 90° section, 
and Fig. 5.12 for the 180° section between the two nozzles along with data 
from Leven's photoelastic tests. Tabulations of the calculated stresses 
corresponding with the values plotted in the figures are given in the 
appendix. Calculated stresses normal to the plane of the sections (o ) 

n 
shown in the figures are given for three cases: for v * 0.3 using 3*3*3 
integration; for v » 0.485 using 2*2*2 integration; and for v = 0.485 
using 3*3x3 integration. 

Figures 5.10 through 5.12 show reasonably good agreement between all 
three of the finite-element analyses and the photoelastic data. In each 
case the general shape of the stress distributions and the locations of 
the maximum stresses were well represented. Better agreement, however, 
was obtained when v - 0.3 than when v * 0.485, both with respect to the 
overall smoothness and the maximum values. A comparison between the 
photoelastic and calculated maximum hoop stress at the inside corner of 
the nozzle (180° section) is shown in Table 5.1. 

The two runs for v - 0.485 indicate that the results were not strongly 
dependent on the integration order. In general, however, the plots show 

Table 5.1. Comparison between experimental and 
analytical maximum hoop stress index at 

inside nozzle corner for WC-12DD 

Photoelastic 
data 

Finite-element results 
Photoelastic 

data v - 0.3 v • 0.485 v « 0.485 
(2*2*2) (2x2x2) (3x3x3) 

Error 
2.96 2.96 2.34 2.38 

0% 21% 20Z 
aS - nominal stress - p (D. + T)/2T, where D. and T are 

the inside diameter and wall thickness of the vessel, 
respectively. 
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Fig. 5.10. Comparison of photoelastic and calculated normal stress 
distributions on WC-12DD for 0° section, internal pressure load » 0.151 
psi. 
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Fig. 5.11. Comparison of photoelastic and calculated normal stress 

distributions on WC-12DD for 90° section, internal pressure load - 0.151 
psi. 
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Fig. 5.12. Comparison of photoelastic and calculated normal stress 
distributions on WC-12DD for 180° section, internal pressure load - 0.151 
psi. 
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smoother distributions and somewhat better agreement with the experimental 
data for the lower order integration. The exception is for the 90" sec­
tion, where the 3x3*3 integration gave better agr> ement than the 2*2*2 
integration. For both integration orders, when v = 0.485, the stress 
distributions along the outer surface at the nozzle taper appear to be 
irregular. This may have been caused (or exaggerated) by the incompatible 
displacement model introduced into the finite element model by reducing 
the element density in this region. 
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6. ANALYSIS OF PRESSURE VESSEL MODEL WC-IOODD 

This chapter describes the finite-element analysis of a thin-walled 
cylindrical vessel with two closely spaced thin-walled nozzles located in 
a longitudinal plane, identified as Westinghouse photoelastic model 
WC-100DD and analyzed experimentally by Leven. 1 5 A sketch of this model 
is shown in Fig. 6.1. 

6.x Finite-Element Model 

The symmetry of WC-100DD is similar to that of WC-12D0 discussed in 
the previous chapter and therefore, again, it is only necessary to model 
the one-eighth section of the vessel shown in Fig. 6.2. The finite-
element model for UC-IOODD generated by FEMG had 1131 nodes and 290 three-
dimensional isoparametric 8- to 16-node elements. Figure 6.3 shows an 
isometric three-dimensional view of the model. Figures 6.4 and 6.5 are 
the side and top views of the model, respectively. Variable nodal den­
sities were used, with one element representing the wall thickness at the 
nozzle and vessel ends and two elements representing the wall thickness in 
the junction region as indicated in Figs. 6.6 and 6.7. 

The nodal mesh was generated in two stages, as was done for model 
UC-12DD. The same coordinate systems and similar schemes for numbering 
the nodes and elements were also used. Figures 6.6 and 6.7 illustrate the 

numbering of nodes and elements. Identification of the local nodal point 
numbering scheme for the elements in the two portions of the mesh is the 
same as for WC-12DD, shown earlier in Fig. 5.9. 

6.2 Stress Analysis 

The model was analyzed for an internal-pressure load of 0.0195 psi to 
normalize the maximum principal stress in the vessel to unity. The effect 
of placing pressure caps on the ends of the vessel and nozzle was simu­
lated by applying statically equivalent nodal forces on the open ends of 
the model. 
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Fig. 6 . 2 . Sector of WC-IOODD for finite-e]»ment model. 
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Fig. 6.3. Isometric view of the finite-element model for WC-100DD. 
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In order to study the sensitivity of the computer code to the mate­
rial compressibility, three values of Poisson's ratio were considered: 
0.3, 0.4, and 0.485. A Young's modulus of 7500 psi was used for all three 
calculations. The photoelastic test material was reported39 to have E -

7500 psi and w = 0.485. 

6.3 Results 

Five sets of computations were made for WC-100DD: for v - 0.3, 0.4, 
and 0.485 using the reduced (2x2x2) integration; and for v = 0.3 and 0.485 
using the 3x3x3 integration. Calculated values for the a stresses 
normal to the 0 and the 90° sections, and to the 180° section between the 
two nozzles are tabulated in the appendix. Selected summaries are shown 
in Table 6.1 and in Figs. 6.8, 6.9, and 6.10 along with data from Leven's 
photoelastic tests. 

In general, the finite-element results agree fairly well with the 
photoelastic data, as shown in Figs. 6.8 through 6.10. The two notable 
exceptions are for results obtained using v = 0.485. These are for the 
inside surface at 90° (Fig. 6.9), where the calculated stresses near the 

Table 6.1. Comparison between experimental and 
analytical maximum hoop stress index'7 at 

inside nozzle corner for WC-100DD 

Experimental Integration 
order 

Finite--element results 
results 

Integration 
order v = 0.3 v = 0.4 v * 0.485 

3.00 (2x2x2) 

(3x3x3) 

2.765 , 
(7.8%)° 

2.759 
(8.0%) 

2.673 
(10.9%) 

2.110 
(29.77.) 

2.119 
(29.4%) 

The hoop stress index » (a IS), where the nominal stress 
S - p(D. + T)/2T, and D. and T are the inside diameter and 
wall thickness of the vessel, respectively. 

Percentage error for the calculated values are given in 
parentheses. 
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inside corner show a ptculiar hump; and for the outside surface at 180° 
(Fig. 6.10), where the calculated mr.ximum at the symmetry plane is con­
siderably higher than the photoelastic data. 

For v = 0.3, the finite-element data and the photoelastic data match 
very well. For this case, the discrepancy in the calculated maximum 
stress index is approximately 8% (2.77 vs 3.0) and occurs at the inside 
corner of the nozzle in the region between the two nozzles (6 = 180°). 
Results for v = 0.4 also match well, where the calculated maximum stress 
index differed from the photoelastic data by approximately 11% '2.68 vs 
3.0). For v = 0.485, the difference was about 30% (2.12 vs 3.0). As 
before, and as shown in Table 6.1, the integration order made very little 
difference. 

Although the finite-element results for WC-100DD (using v = 0.3) 
generally agree with the photoelastic data, the overall agreement is not 
quite as good as was obtained for WC-12DD. This is the result of using 
three-dimensional isoparametric finite elements to analyze thin-walled 
structures, as pointed out in Refs. 27 and 28, and indicates that D/T 

ratios nearing 100 represent the upper limit for reliable application of 
the present program. The relatively large discrepancies in the finite-
element results for v = 0.485 is undoubtedly due to the instability of the 
stiffness matrix as v approaches 0.5 as discussed earlier. The relatively 
good agreement obtained for v = 0.4 (see Table 6.1), however, indicates 
that the behavior of the physical structure is not strongly affected by 
Poisson's rr.tio and thus tends to confirm the acceptability of using a 
value of v =0.3 for analysis. 
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7. ANALYSIS OF PRESSURE VESSEL MODEL SH-23DD 

This chapter describes the finite-element stress analysis of a cylin­
drical pressure vessel model with two identical closely spaced nozzles 
located in a circumferential, or transverse, plane. The model is intended 
to approximate the 26.4° spacing inlet-outlet pair of nozzles, identified 
as nozzles 2A and 23, respectively, in the photoelastic vessel analyzed by 
Stone and Hochschild.1' Although nozzles 23 and 24 were not geometrically 
identical, as shown in Fig. 7.1, they were sufficiently alike that an 
analysis of an identical pair modeled after one or the other should com­
pare reasonably well with the experimental data. 

As shown in Table 7.1, the maximum experimental stresses reported by 
Stone and Hochschild for the two nozzles differed by about 10% in the 
longitudinal planes and by up to about 402 in the transverse plane. They 

Table 7.1. Maximum experimental stresses for 
Stone and Hochschild's nozzles 23 and 24 

Longitudinal plane Transverse plane 

26.4° nozzle Inside Outside Inside Outside 
pair surface surface surface surface 

a I? aJP a fP ojP a IP aJP a IP ajP n t n t n t n t 

Outlet 17.9 -1.0 9.6 6.2 4.4 -4.2 10.6 8.6 
(No. 23) 
Inlet 16.1 -1.0 9.0 5.4 2.8 -4.4 12.1 12.1 
(No. 24) 

a IP is the stress ratio normal to the plane of the photoelas­
tic slice; a IP is the stress ratio in the plane of the photoelastic 
slice. For the longitudinal plane, on corresponds to a circumferen­
tial stress in both the nozzle and cylindrical vessel and a corres­
ponds to an axial stress. For the transverse plane, a corresponds 
to a circumferential stress in the nozzle and an ax ial str ess in the 
vessel wlereas a. corresponds to an axial stress in the nozzle and a 
circumferential stress in the vessel. 
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est lata ted the experimental error to be about ±5% for che a+ stresses and 
about 0 to —152 for the o stresses. 

n 
Since the two nozzles are closely spaced in the transverse plane of 

the vessel, one might expect the interaction between them to affect the 
stresses in the transverse plane more than in the longitudinal plane. 
This appears to be the case since there is a greater difference between 
the stresses reported for the two nozzles in the transverse plane than in 
the longitudinal plane. Unfortunately, Stone and Hochschild did not test 
an isolated nozzle of either type, so it is not possible to determine 
whether the stresses are influenced more by the interaction between the 
nozzles or by the differences in their geometric detail. Never the'ess, 
the experimental values reported for both planes are sufficlentlv close to 
justify modeling the structure with two identical nozzles. 

In addition to maximum values for both nozzles, Stone and Hochschild 
gave experimental stress distribution curves for nozzle 23 in the longi­
tudinal plane (180°) of the vessel for both the inside and outside sur­
faces of the model. No other data were reported for the inlet nozzle, No. 
24. The finite-element model and analyses discussed below are for a 
nozzle-vessel structure with two identical nozzles like the outlet nozzle 
23 which we will designate as model SH-23DD. 

7.1 Finite-Element Model 

The finite-element model consisted of the one-eighth symmetry section 
shown in Figs. 7,2 to 7.4. The centerline of the nozzle is located 13.2° 
(half the nozzle spacing) from the global z coordinate direction, so that 
the model represents two identical nozzles spaced 26.4° apart in a trans­
verse plane of the vessel. The model had 1894 nodes and 578 solid iso­
parametric elements, each having from 8 to 16 nodes. All nodes in the 
symmetry planes were constrained to remain in those planes. One element 
through the wall thickness was used for most nf the vessel and the nozzle 
extension; four elements were used through the thickness in the inter­
section region. The same type of coordinate system and element and node 
numbering scheme was used for this model as for the previous models. 
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Fig-
SH-23DD. 

7 .4 . Top view, along the z' ax i s , of the finite-element model 

Figures 7.5 and 7,6 illustrate the numbering sequence for the nodes and 
elements respectively. The nodal sequences for the elements in the nozzle 
and vessel regions are illustrated in Fig. 7.7. 

7.2 Stress Analysis 

This model was analyzed using 1.0 psi internal pressure for easy 
comparison with the photoelastic data. As with the other models, the 
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Fig. 7 .5 . Numbering of nodes in the t ransverse plane (90°) for 
model SH-23HD. 
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Fig. 7 .6 . Numbering of elements in the transverse plane (90°) for 
model SH-23DD. 
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pressure caps on the ends of the run and nozzle were simulated by equiva­
lent force loads on the open ends of the model. Isotropic material prop­
erty values Tor Young's modulus and Poisson's ratio were sec equal to F = 
7500 and v = 0.3, respectively. The influence of different values for v 
was not investigated for this model because of experience with the pre­
vious models. Calculations for this model were made using the 2^2x2 
integration rules. 

7.3 Results 

Summary comparisons between the finite-element results and the photo-
elastic data reported by Stone and Hochschild for nozzle 23 are given in 
Table 7.2 and Fig. 7.8. Tabulated values from the finite-element analysis 
are given in the appendix. Maximum principal stresses for both the longi­
tudinal (180°) and transverse (90°) plane are listed in Table 7.2 with the 
differences at each point expressed as a percentage of the experimental 
values. Principal stress distributions for the inside and outside sur­
faces in the longitudinal plane are shown in Fig. 7.8. 

Table 7.2. Comparison between experimental and 
finite-elements results'3 for SH-23DD 

Longitudinal plane Transverse plane 
(180°) (90°) 

Inside Outside Inside Outside 
surface surface surface surface 

a / P a./P a IP a./P a/P aJP a/P aJP 
n t n t n t n t 

Photoelastic 17.9 -1.0 9.6 6.2 4.4 -4.2 10.6 8.6 
data 

Finite-element 16.5 -1.09 6.7 4.2 5.2 -4.8 8.7 6.9 
results 

Percentage 7.8 9.0 30.2 32.3 18.2 14.3 17.9 19.8 
difference 

For nomenclature refer to Table 7.1. 



85 

OftNL-OWG 7 7 - 1 2 9 3 2 

_ 8 

m 
UJ 

mm 

Fig. 7 .8 . Pr inc ipa l s t r e s s d i s t r i b u t i o n s for model SH-23DD a t 180 c 

sec t i on , i n t e r n a l pressure load = 1.0 p s i . 



86 

In general, the finite-element results agree very well with the 
experimental data, especially for the inside surface in the longitudinal 
plane. The maximum calculated principal stress value, which occurred on 
the inside surface at the nozzle come', differed from the experimental 
value by less than 82. Larger differences, however, occurred for other 
positions — from about 15 to 202 for the t-ansverse plane to about 302 for 
the outside surface in the longitudinal plane. 
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8. SUMMARY AND DISCUSSION 

This report describes the developmerr and validation of a three-
dimensional finite-element computer program, MULT-NOZZLE, for analyzing 
cylindrical pressure vessels with closely spaced nozzles under internal 
pressure and external force and moment loadings. This first volume docu­
ments the analysis of pressure vessels with two identical nozzles for 
internal pressure loading. Volumes 2 nnd 3 (to be published) discuss 
external force and moment loadings on the nozzles and the analysis of 
pressure vessels with three closely spaced nozzles, respectively. A 
user's manual will be published as Volume 4. 

MULT-NOZZLE consists of two subprograms which may be operated inde­
pendently: an automatic mesh generator, FEMC, adapted from an earlier 
cede written by Krishnamurthy;' and SAP3M, which is a modified and im­
proved version of the SAP3 finite-element code written earlier by Wilson.7 

Output from MULT-NOZZLE is both printed and stored on tape for post­
processing. 

The major improvements to SAP3 include the addition of a variable 8-
to 21-node isoparametric brick element, incorporation of a more efficient 
matrix equation solver, and implementation of an accurate local stress-
smoothing algorithm for calculating element surface stresses. The vari­
able-node element makes it possible to construct finite-element mesh 
layouts with variable densities co accommodate regions of higher and lower 
stress gradients using a minimum number of elements. The improved matrix 
equation solver, developed by Mondkar and Powell,12 significantly reduces 
the computational time and cost required to solve the large sets of equa­
tions resulting from the finite-element idealization of vessel-nozzle 
structures. The local stress-smoothing technique, proposed earlier by 
Hinton and Campbell," is an effective bilinear extrapolation procedure for 
improving the accuracy of the stresses calculated at the element surfaces 
and for decreasing the numerical sensitivity to Poisson's ratio. 

The development and validation of the computer program for internal 
pressure loading discussed in this volume includes analyses for two classi­
cal elasticity problems and for three two-noszle photoelastic pressure 
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vessel aodels. The relative Influence of Poisson's ratio, finite-element 
distortion, nuaerical integration order, and element density or mesh size 
on the solution accuracy were investigated. 

The two classical problems, a slapl/ supported beam in pL?Ae-strain 
bending and a Lam€ ring with internal pressure, were used primarily to 
validate the accuracy of the SAP3M module under the various options avail­
able for setting up the leading and boundary conditions. The effects of 
element distortion and different values for Poisson's ratio, which theo­
retically should not influence the solution, were also investigated and 
found to be negligible. Third-order (3x3x3) and reduced second-order 
(2x2x2) Gaussian quadrature numerical integration gave essentially the 
same results. All the finite-element results far these two problems 
agreed with the theoretical solutions to better than 2Z, with most of the 
results within IX. 

The three two-nozzle pressure vessel models included two with the 
nozzles located in a longitudinal plane (WC-12DD and UC-100DD) and one 
with the two nozzles located in a transverse (circumferential) plane 
designated here as SH-23BD. Nominal dimenslonless geometric parameters 
for the models are listed in Table 8.1. These models were studied to 
validate the entire MULT-NOZZLE program, including both the automated mesh 

Table 8.1. Geometric parameters for 
MULT-NOZZLE validation models 

Model D.ff d./tb d./D.C 

— _ !• Z- V %• 

WC-12DD 12.0 12.0 0.129 
WC-100DD 100.0 100.0 0.110 
SB-23DD 11.3 0.134 

Hlatio of inner vessel diameter to 
vessel thickness. 

Ratio of inner nozzle diameter to 
nozzle thickness 

Ratio of inner nozzle diameter to 
vessel diameter. 
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generation nodule FEMG and the finite-element nodule SAP3M. Published 
experimental photoelastic data were used for judging the acceptability of 
the finite-element results. 

In general, the finite-element results agreed very well with the 
experinental data, thu3 substantiating our claim for the validity of the 
computer program. The agreement between the experimental and analytical 
maximum values obtained using Poisson's ratio v =» 0.3 are excellent, as 
summarized in Table 8.2. The best results *rere obtained for the rela­
tively thick-walled model WC-12DD, for which MULT-tiOZZLE gave exactly the 
sane maximum value as the photoelastic data. Maximum calculated stress 
indices for the other two models, WC-100DD and SH-22DD, differed with the 
experimental values by about 8Z, which is well within the 10Z acceptance 
criterion. 

Table 8.2. Maximum stress index comparison between 
photoelastic and finite-element results 

Experinental Finite-element Percentage 
Model maximum maximum 

o IS n 
error a e 

WC-12DD 2.96 2.96 0Z 
WC-100DD 3.0 2.76 8.0% 
SH-23DD 2.91 2.68 7.8Z 

a, S * c - v{D, + T)/: IT. 
, nom v 
Determined using v » 0.3. 

a * (E — F)/E, where E is the experimental value and 
F is the finite-element value. 

Analytical results obtained using Poisson's ratio other than 0.3 dif­
fered from the experimental data progressively as v approached 0.5. These 
results are summarized in Table 8.3 along with the respective errors for 
the calculations. The discrepancies are consistent with previous experi­
ence2*' 2* 3 3 and reflect the difficulties encountered in using the classi­
cal finite-element, displacement formulation to analyze structures of 



90 

Table 8.3. Maximum stress index comparisons for 
different values of Poisson's ratio v 

Model 
Experimental 

maxlrum 
a /!? n 

Finite-eleaent results 
(2x2x2) integration Experimental 

maxlrum 
a /!? n v * 0.3 v « 0.4 v * 0.485 

WC-12DD 2.96 2.96, 
(0Z) & 

2.34 2.96, 
(0Z) & (21Z) 

HC-100DD 3.0 2.76 2.67 2.11 
(7.8Z) (10.9Z) (29.7Z) 

SH-23DD 2.91 2.63 
(8.0Z) 

h 
Percentage error for the calculated values are given 

in parentheses. 

nearly incompressible materials. This formulation, which is derived from 
the minimis* potential energy principle, is known to yield results which 
can be greatly in error as Poisson's ratio approaches 0.5; and in the 
limiting case, v • 0.5, the foramilation is no longer valid. How close one 
may approach v * 0.5 without encountering serious difficulty is apparently 
related to the size of the stiffness matrix (i.e., the number of elements 
in the analytical model) and the magnitude of the stress gradients. In 
the analyses for the classical beam and thick-walled ring problems, 
neither condition was severe and good results were obtained over a wide 
range of v. In the analyses for the pressure vessel models, however, both 
the stress gradients at the intersection of the nozzle and vessel and the 
number of finite elements required to mcdel the structure are relatively 
large and therefore the analysis is more sensitive to Poisson's ratio. Me 

were able to decrease this sensitivity by adding the Gauss point stress 
extrapolation procedure discussed in Section 3.7; nevertheless, some 
prudence should be exercised in using values for Poisson's ratio much 
larger than 0.3. Fortunately, Bass it al. a* have shown that using a value 
of Poisson's ratio equal to 0.3 with Gauss point stress extrapolation for 
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analyzing nozzles in cylindrical pressure vessels gives equally good 
results for both steel and photoeiastic models. Further improvements 
would require reformulating the finite-element description as discussed by 
Malkus3* and others3 ° " a * 3 3 and the attendant reprogramming effort. 

Detailed comparisons between the calculated and experimental stress 
distributions for the inside and outside surfaces in the longitudinal and 
transverse planes of the models showed that the finite-element results 
were generally in good agreement, although there were some areas for which 
the agreement was only fair. For the thinner-walled model WC-100DD, the 
results for the membrane region also appear to support Irons and Hellen's2' 
contention that solid isoparametric elements may not be fully reliable for 
analyzing very thin shell structures. Tt thus appears that vessels with 
dia%eter-to-thickness ratios of about 100 represent a prudent upper limit 
for use of the finite-element formulation currently in MULT-NOZZLE. 

The numerical integration order apparently had very little influence 
on the solution accuracy. For reasons of economy, we recommend using 
reduced 2*2*2 Gaussian quadrature in future studies. 

The variable node isoparametric element installed in SAP3M appeared 
to perforin satisfactorily, although some of the "raggedness" in the stress 
plots may have been caused by dropping nodes to accommodate the change in 
element density. Nevertheless, the advantage in being able to increase 
the element density in the high stress gradient region of the nozzle 
intersection appears to outweigh the disadvantages. 

Iii summary, the results of the studies presented in this volume 
confirm the validity of the MULT-NOZZLE computer program for analyzing 
cylindrical pressure vessels with two closely spaced nozzles under in­
ternal pressure loading. Volumes 2 and 3 will discuss the use of the 
program for considering external loads applied to the nozzles and for 
three nozzle clusters, respectively. Complete user's instructions will be 
presented in Volume 4. 
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Appendix 

MULT-NOZZLE STRESS ANALYSIS DATA FOR THE WC-12DD, 
HC-IOODD, AND SH-23DD MODELS 

Tables A.l to A. 14 present stress distributions calculated for the 
three Models with MULT-NOZZLE for differing values of Poisson's ratio and 
orders >f Gauss integration. These tables can be used in conjunction 
with the eleaent-nuaber drawings to quantify the values shown in the 
stress-distribution figures of the text. 
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Element 
No. 

Table A.l. Hoop stress on WC-12DD on inside surface 
at 0* section and stress location 12 
(internal pressure load - 0.151 psi) 

Stress (psi) 

0.3 v « 0.485 

3 x 3 x 3 Gauss rule 2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauss rule 

1 0.9519 0.9353 0.9522 
13 0.9233 0.9386 0.9392 
25 0.6991 0.7429 0.6264 
49 0.5948 0.6503 0.6257 
73 0.5025 0.5690 0.5728 
109 0.4609 0.5059 0.6395 
145 0.4810 0.5215 0.5242 
193 0.5558 0.5762 0.5747 
241 0.8627 0.8303 0.8568 
289 1.5849 1.440- 1.4196 
337 2.4164 1.9762 1.9499 
385 2.8134 2.2661 2.2845 
433 2.4491 2.0830 2.0884 
481 1.8267 1.7328 1.7497 
529 1.4642 1.3839 1.4182 
577 1.2911 1.2146 1.3088 
621 1.1828 1.0421 1.1872 
639 1.1324 1.1156 1.1112 
646 1.0656 1.0835 1.0788 
656 0.9607 0.8519 0.8425 
668 0.9073 0.8519 0.8404 
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Eleaent 
No. 

Table A.2 . Hoop s t r e s s on UC-12DD on outs ide surface 
at 0* sec t ion and s t r e s s locat ion 16 
( internal pressure load » 0.151 psi) 

Stress (ps i ) 

v = 0 . 3 v = 0.485 

3 x 3 x 3 Gauss rule 2 x 2 x 2 Gauss rule 3 * 3 * 3 Gauss rule 

1 0.8251 0.8462 0.&344 

13 0.8625 0.9740 0.3560 

37 0.7044 0.6782 0.8291 

61 0.4028 0.1699 0.2239 

97 0.2147 -0.1759 -0 .1598 

133 0.1126 -0.1099 -0 .1155 

181 0.0265 -0.2441 -0 .2612 

229 -0 .0076 -0.1309 -0 .1446 

277 0.0011 0.0070 -0 .0012 

325 0.0424 0.0582 0.0380 

373 0.1392 0.1109 0.1173 

421 0.3257 0.3169 0.3437 

469 0.5801 0.6860 0.6828 

517 0.7720 0.9639 0.9208 

565 0.8214 0.9957 0.9819 

610 0.7886 0.6733 0.7417 

630 0.7737 0.54^7 0.6908 

639 0.7756 0.7191 0.6798 

646 0.7674 0.6270 0.6333 

656 0.7800 0.7566 0.7620 

668 0.7427 0.7592 0.7665 
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Table A. 3 . Hoop s t r e s s on WC-12DD on ins ide surface 
a t 180 s s ec t ion and s t r e s s loca t ion 10 

( internal pressure load = 0.151 ps i ) 

Stress (pe l ) 
Element „ v - 0 .3 v - 0.485 

No. 
3 x 3 x 3 Gauss rule 2 x 7 x 2 Gauss rule 3 x 3 x 3 Gauss rule 

12 0.9519 0.9351 0.9522 

24 0.9229 0.9388 0.9388 

36 0.6960 0.7412 0.6252 

60 0.5901 0.6490 0.6244 

84 0.4960 0.5680 0.5718 

120 0.4526 0.5060 0.5143 

156 0.4708 0.5229 0.5251 

204 0.5436 0.5794 0.5774 

252 0.8474 0.8424 0.8682 
300 1.5830 1.4656 1.4380 

348 2.4909 2.0468 2.0070 

396 2.9582 2.3408 2.3757 

444 2.60*2 2.2363 2.2080 

492 2.1003 1.9677 1.9831 

540 1.7436 1.7012 1.6926 

587 1.3331 0.2101 0.3685 
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Table A.4. Hoop stress on WC-12DD on outside surface 
at 180* section and stress location 14 

(internal pressure load « 0.151 psi) 

Stress (psi) 

Eleaent „ v » 0.3 v - 0.485 
No. 

3 x 3 x 3 Gauss rule 2 * 2 * 2 Gauss rule 3 x 3 x 3 Gauss rule 

12 0.8251 0.8462 0.8345 
24 0.8626 0.8741 0.856O 
48 0.7047 0.6810 0.8314 
72 0.4029 0.1698 0.2290 
108 0.2146 -0.1768 -0.1604 
144 0.1125 -0.1115 -0.1168 
192 0.0268 -0.2467 -0.2636 
240 -0.0058 -0.1313 -0.1454 
288 0.0050 0.0121 0.0064 
336 0.0492 0.0704 0.0496 
384 0.1459 0.1361 0.1467 
432 0.3162 0.3421 0.3550 
480 0.5561 0.6701 0.6769 
528 0.7911 1.0692 1.0372 
576 0.9272 1.2921 1.1754 
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Table A.5. Stresses on inside surface of WC-12DD at 90" section 
(internal pressure load = 0.151 psi) 

Stress (psi) 

Element Stress 
So. location 

18 10 
19 12 
30 10 
31 12 
54 10 
55 12 
78 10 
79 12 
114 10 
115 12 
150 10 
151 12 
198 10 
199 12 
246 iO 
247 12 
294 10 
295 12 
342 10 
343 12 
390 10 
391 12 
438 10 
439 12 
486 10 
487 12 
534 10 
535 12 
582 10 
583 12 
626 10 
627 12 
644 10 
645 12 
651 10 
652 12 

Stress paralli 
Ave raj? e value 

0 .3 v * 0.485 

3 « 3 > < 3 Gauss rule 2 * 2 * 2 Gauss rule 3 * 3 * 3 Gauss rule 
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Table A.6. S t - e s s e s on o j t s i d e surface of WC-12DD at 90° s e c t i o n 
internal pr.ssure load = 0.151 ps i ) 

Element 
No. 

S tres s (ps i ) 

c . u - 0 . 3 v » 0 .485 
Stress 

3 * 3 * 3 Gauss rule 2 * 2 * 2 Gauss rule 3 * 3 < 3 Gauss rule 

18 
19 

i4 
16 

u.8034 
0.8033 

42 
43 

14 
16 

0.6564 
0.6558 

66 
67 

14 
16 

0.4282 
0.4273 

102 
103 

14 
16 

0.2954 
0.2941 

138 
139 

14 
16 

0.2428 
0.2415 

186 
187 

'4 
16 

0.2165 
0.2150 

234 
235 

14 
16 

0.2302 
0.2289 

282 
2b3 

14 
16 

0.2540 
0.2536 

330 
331 

14 
16 

0.3418 
0.3434 

378 
379 

14 
16 

0.4859 
0.4969 

426 
427 

14 
16 

0.6232 
0.6164 

474 
475 

14 
16 

0.7370 
0.7245 

522 
523 

14 
16 

0.7510 
0.7351 

370 
371 

14 
16 

0.6657 
0.6477 

615 
616 

14 
16 

0.5105 
0.4644 

635 
636 

14 
16 

0.3258 
0.5367 

644 
645 

14 
16 

0.5321 
0.5227 

651 
652 

14 
16 

0.4841 
0.5020 

' s t r e s s 

Averaj? 

p a r a l l e l s 

t» va lue . 

the d x i -

0.8034 

0.6562 

0.4278 

0.2948 

0.2422 

0.2158 

0.2296 

0.2538 

T.3426 

0.4914 

0.6199 

0.7308 

0.7431 

0.6S67 

0.4875 

0.5313 

0.5275 

0.4931 

0.8019 
0.8007 

0.3546 
0.3518 

0.1625 
0.1393 

-0 .0505 
-0 .0533 

0.0262 
0.0246 

0.0294 
0.0311 

0.0639 
0.0695 

0.1806 
0.1958 

0.2365 
0.2654 

0.4070 
0.4284 

0.5692 
0.5668 

0.7108 
0.6879 

0.6817 
0.6394 

0.4437 
0.4131 

-0 .0490 
- 0 . 1 / 4 1 

0.1113 
0.3294 

0.4145 
0.3952 

0.7177 
0.4510 

0.8013 

0.3533 

0.1610 

-0 .0519 

0.0255 

0.O303 

0.0667 

0.1882 

0.2510 

0.4177 

0.3681 

0.6994 

C.6606 

0.4285 

-0 .1116 

0.2204 

0.4049 

0.5842 

0.7771 
0.7760 

0.4722 
0.4690 

0.2054 
0.2021 

-0 .0381 
- 0 0413 

0.0216 
0.0195 

0.0177 
0.0184 

0.0527 
0.0574 

0.1579 
0.1715 

0.2539 
0.2804 

0.4656 
0.4866 

0.566f, 
0 .573 . 

0.6463 
0.6408 

0.6598 
0.6330 

0.5477 
0.4979 

0.4213 
0.3635 

0.4040 
0.4999 

0.3936 
0.4118 

0.7766 
0.3722 

0.7766 

0.4707 

0.2038 

- 0 . 0 3 9 8 

0.0206 

0.0181 

0.0551 

0.1648 

0.2672 

0.4762 

0.5700 

0.6436 

0.6465 

0.5229 

0.3925 

0.4520 

0.4027 

0.5745 



Table A.7. Hoop atreaa on WC-100DD on Inalde surface at 0' aectlon, streaa location 12 
(Internal pressure load - 0.0195 pal) 

2 » 2 » 2 Gauas rule 3 x 3 * 3 Gauaa rule 2 » 

1 0.846S 0.8S01 
11 0.7089 0.6777 
21 0.1171 0.1584 
31 0.0367 0.0681 
51 0.1279 0.1496 
71 0.3982 0.4146 
91 0.8355 0.8462 
111 1.4081 1.4091 
131 2.0621 2.0462 
151 2.4192 2.4007 
171 1.9957 1.9833 
191 1.5249 1.5275 
211 1.3471 1.3563 
229 1.2245 1.2566 
236 1.1306 1.1372 

Stresa (psl) 

v - 0.4 v - 0.485 

2 « 2 Causa rule 2 * 2 * 2 Gauas rule 3 * 3 * 3 Gauss rule 

0.8620 0.7557 0.6412 
0.6491 0,1966 0.3791 
0.1419 0.4026 0.3039 
0.0834 0.3098 0.3556 
0.1752 0.2716 0.3181 
0.4650 0.5456 0.5563 
0.9130 0.8629 0.8882 
1.4628 1.3092 1.3162 
2.0335 1.6540 1.5836 
2.3486 1.8966 1.8629 
1.9799 1,7852 1.7457 
1.5269 1.3637 1.4089 
1.3807 1.3292 1.3619 
1.2460 1.1834 1.1576 
1.1468 1.1047 1.1112 



Table A.8. Hoop stress on WC-100DD on outside surface at 0* section, stress location 16 
(Internal pressure load - 0.019S psl) 

2 x 2 x 2 Gauss rule 3 x 3 x 3 Gauds rule 2 

1 0.9037 0.9406 
11 0.8567 0.7900 
21 0.1193 0.1319 
41 -0 .1145 -0 .1137 
61 -0 .1372 -0 .1396 
81 -0 .1089 -0 .1149 

101 -0 .0126 - 0 . 0 ) 7 6 
121 0.2030 0.1965 
141 0.5450 0.5526 
x*l 0.9505 0.9410 
181 1.2388 1.2254 
201 1.2003 1.1931 
220 1.0694 1.0588 
229 1.0139 1.0185 
236 0.9792 0.9793 

Stress (pal) 

v • 0.4 v • u.«ri5 

2 x 2 Gauss rule 2 * 2 x 2 Gauss rule 1 * 3 x 3 Gauss rule 

0.9193 1.2145 1.3253 
0.9338 1.3701 1.2092 

0.1068 -0 .0378 -0 .0696 
-0 .2240 -0.7065 -O.8027 
-0 .2133 -0 .5010 -0 .5244 

-0 .1639 -0 .2192 -0 .2212 
-0 .0794 -0 .0891 -O.0936 

0.1231 0,r"<ib 0.1084 
0.4696 0.4463 o.sns 
0.9343 1.0648 1.0448 
1.2798 1.6085 1.5682 
1.2216 1.5033 1.4500 
1.0627 1.1397 1.0970 
1.0196 1.1041 1.1202 
0.9887 1.0775 1.0807 



Tabic A.9. Hoop atreaa on WC-100DD on Inalde aurface at 180* aectlon, atreaa location 10 
(Internal praaaure load - 0,0195 pal) 

2 x 2 x 2 Gauaa rule 3 « 3 * 3 Gau.ia rule 2 

10 0.8392 0.8414 
20 0.6828 0.6458 
30 0.0637 0.1016 
40 0.0070 0.0196 
60 0.1080 0.1243 
80 0.4166 0.4275 
100 0.9022 0.9068 
120 1.5291 1.5261 
140 2.3089 2.2929 
160 2.7654 2.7589 
180 2.5169 2.4983 
200 2.1359 2.1189 

Streaa (pal) 

v - 0.4 v • 0.485 

x 2 x 2 Gauaa rule 2 * 2 * 2 Gauaa rule 3 x 3 x 3 Gauaa rule 

0.8553 0.7478 0.6296 
0.6193 0.1435 0.3152 
0.0921 0.3889 0.2715 
0.0455 0.3217 0.3691 
0.1642 0.3034 0.3550 
0.4952 0.6112 0.6249 
0.9902 0.9527 0.9764 
1.5780 1.3951 1.3842 
2.2569 1.7309 1.6590 
2.6729 2.1006 2.1189 
2.4525 2.0312 1.9616 
2.0499 1.2904 1.2188 



Table A.10. Hoop stress on WC-100DD on outside surface at 180* section, strean location 14 
(Internal pressure load - 0.0195 psl) 

Clement 

2 x 2 x 2 Gauss rule 3 * 3 * 3 Gauss rule 2 * 

10 0.8933 0.9356 
20 0.8433 0.7720 
30 0.0789 0.0907 
50 -0.1469 -0.1461 
70 -0.1499 -0.1509 
90 -0.0984 -0.1018 
110 0.0372 0.0362 
130 0.3243 0.3255 
150 0.7540 0.7751 
170 1.2507 1.2496 
190 1.7081 1.7097 
210 2.0486 2.0531 

Stress (pal) 

v - 0.4 v - 0.485 

2 « 2 Gauss rule 2 * 2 * 2 Gauss rule 3 * 3 * 3 Gauss rule 

0.9254 1.2269 1.3411 
0.9293 1.4193 1.2754 
0.0706 -0.0468 -C.0723 

-0.2573 -0.7209 O.8140 
-0.2309 -0.5321 -0.5549 
-0.1583 -0.2196 -0.2166 
-0.0314 -0.0418 -0.0332 
0.2477 0.2156 0.2529 
0.6959 0.6719 0.7739 
1.2621 1.3238 1.2819 
1.8024 2.1265 2.1571 
2.3174 3.4395 3.3098 



Tabic A.11. Str«ss«* on WC-100DD on Intlde surface ul 90* section (Internal prutNun- toad • 0.019!. \>s<) 

clamant Stteat 
No. location 

Si re** (|>i'l) 

• O.J . - 0 , 4 , - ..'.:i5 

2 » 2 « 2 Cauat ru l e 3 « 3 - J Gauns rulo . ' • . ' • .' O.iuss ruli- .' • 2 > .' C.IUNH rule ) • 1 • J (..tuns ru l e 

5 12 1.0320 . . , . , . I .021J , , . „ , . 1 .11)8 , . . . . I .»4h8 , . .... 1.4429 . 
6 10 1.0321 l - 0 3 - 1 1.0198 l ' ° * ° * I . 1 1 2 * U U U I . S W I ' ' ' '*" U W l , < - * ' 

1 5 •-' 0 - d 4 7 7 na-,9 0'<» 0 7 0 ,, m v 0.85?j 1.0821 I. 117, . 
16 10 0.8441 ° - 8 o » 0.8024 °' H 0"" D.H51" "',,,•' 1.0991 1 , U , U " I.Hi: 1 J ' " 
25 12 C.4021 A n l l 0.4)38 „ , „ „ 0.4486 0.8)40 ' 0.1,81) 

'"•'•' 0.1114 ' "' O.I..9', »6 10 0.3999 "•-"*« I).43)9 >'•-•>" O.4420 "• ;"'" J 0.1114 '>•*"* O.I.49', "•"',,, 

35 12 0.288J ,. g 0.2978 U.JJ99 
36 10 O.2909 "••» , s 0.1015 "•-^ 7 o. ))7. 

1 .0321 

0 .8459 

0 . , 0 1 1 

0 , . 2 8 9 3 

0 . . 1 7 9 3 

0 , , 1 3 5 1 

0 , , 1 6 0 4 

0 . , 2 3 7 b 

0 , 3 3 4 7 

0 , 4t>83 

0 . , 4 8 0 8 

0 . 4 5 J 5 

0 . S.'-'S 

0 . 4 9 7 3 

">5 1 2 0 . 1 7 8 0 , , , „ , 0 .1755 , , , , , 0 . 2060 
5o 10 0 .1805 ° a m 0 , 1 7 9 0 ° ' l 7 M 0 . 20 ) . . 

75 12 0 . 1 3 3 6 0 .1302 0 . 1 5 1 , 
76 10 0 , 1 3 6 6 u - l i 3 1 0 ,13*1 n"li-< 0 , 1 , 4 2 

95 12 0 .1004 0 , 1 5 7 ) 0 ,1558 
96 10 0 .1608 l-••«"'•• 0 .1588 , n B l 0.156') 

1, , 0 2 0 6 

0 , , 8 0 4 / 

0 , , 4 3 ) 9 

0 , 2 9 9 7 

0 , , 1 7 7 ) 

o. 1 ) 2 2 

0 , 1581 

0 , 2 3 0 ) 

o, 122 5 

0 , < 6 3 5 

o. 4 9 1 5 

0 , . 5 9 5 

0 . 5 1 5 9 

u. 4 9 i i 

C 2 0 4 8 „; — ; .-.2.-.2S 0 ; ; ( i ; 7 0 . 2 1 0 1 

I I . I 147 0 ,0 ' IN . , 
0 .15 18 . , . . ' . , 0,11)'') . . , , , . . ",i).,.M 

II, In 10 
" . 1 1 1 . , «l , i , . ' ! 

l l » 10 0.2323 °--i',>

 0 . . ' 260 ° - - ' 3 0 J „ , |828 ° , 1 H H J " " " ' ' " l ' " " "" ' ' " " 

1)5 12 0 .3394 , , , . , , 0 . 3 2 6 3 ,. . , , . 0 , 2 ) 1 1 , , „ w > . , . , „ , . , . . . 
136 10 0 . 3 2 9 9 ° - 3 J 4 7 0 .3187 ° ' ' " 5 0 .2104 " • - - ° S •' - • " • • " " ' ' " • , l 1 ' 

1*> 12 0 . 4 7 1 3 „ , a l O.4650 , . . , . o, ),',(, O.I021 , , , . o , 17,8 
156 10 0 .4652 0 - b ! i i 0 . 5619 " - 6 J S . , . l , J J " 

o , l " t " 

o. i;o"-

o, J05J 

175 12 0.4809 , , , . . . 0.4911 0.4210 0.17.1 0 . 4 ' . , , 
176 10 0 . 4 8 0 5 " • * 8 0 8 0 . 4 9 1 7 °<H*ii 0 . 3 2 9 5 0 , i ' ° 0 , l „ ' 9 | " • • • ' • ' a . . . 0 0 

195 12 0 . 4 3 8 0 ,. . . . . 0 ,4421 „ . . „ . 0 , 4 0 ) 5 n , l i i » ,, . . . . 0 ,1258 
196 10 0 . 4 7 2 9 ° - - " 5 0 . 4769 l > " " 5 0 . 4 ) 9 0 " — • , 0 .0786 " " l " ' 0 . 0 5 7 8 

2*5 12 O.J218 n . . . . 0 .5151 „ . . . „ 0 . 5 1 8 , „ , „ . . 0 .4064 , , , „ 0 , , H » 
216 10 0 .5017 ° - J - * 0 .5166 ° - > 1 S » 0 .4724 " • * ' m 0.1-.08 " • " " • 0 .121' , 
233 12 0 , 4 9 7 9 , . , . , , 0 .5014 . . . . . 0 ,4982 , . . . . 0 , , J 0 6 , , , , , 0 . 4 ) 8 6 
2 )4 10 0 .4967 ° ' * 9 7 3 0 .4894 u ' * » " 0 .4727 " - 6 1 1 0 . 2 7 9 ) " • '' " ' 0 ,1111 

241 12 0 . 5 1 7 9 „ . , , „ 0 .5192 „ . , , , 0 .5228 , . . , „ , 0 .5924 , , . . . , 0.1,197 , . . , « , . 
242 10 0 . 5 0 6 0 " ' M ' ° 0 . 5 0 5 3 n , M " 0 .4985 ° ' S , ° 7 n , 4 M - " • s - 1 " 0 . . 7 7 5 " • ' • ^ ' , 

o , , ! •>64 

0, . 1 8 8 ) 

... 2 2 0 8 

0 , , 1 . 9 9 

0 , , I?" , . 

0 , 4 2 1 ) 

0 . 4 9 5 5 

0 , 4 6 1 1 

1 . 5 )tl > 1, , 5 )8d 

1 
1, 

. 0 8 2 1 
,0 ' (91 1 , 09UI. 

0 
0 

. 8 ) 4 0 

. 1 1 14 
0 . 1 2 2 8 

II, 
0 

, 6 0 0 7 
. 5 5 4 7 

o , 5 7 7 7 

,1' »; 2 H 
!*'127 " • 

,::.:•< 

n 
0 

. 1 ) 4 7 

. 0 8 17 
0 , U)>< 1 

o , , 0 . 2 0 
. 0 9 2 ) 

o, , o,;:.: 

0 , , 19 .0 
. ) , , 2 ) 7 2 

0 , 
1 ) , 

, ; i . o ' . o . -j.
 

«), , 10 21 
I I , -", 4 , ! 2 8 
I I , 

11, , 17'.1 
0 , 1291 

I I , 

0 , 
15*6 

0 7 8 6 o . 21<W 

0 . - .064 .'7 Hi 
0 . 1 '.08 1 • 

.'7 Hi 

0 , 
0 , 

, , 7 0 6 
2 7 9 ) 

u. 17 i o 

0 . 5 9 2 4 
0 , 5 . 1 2 0 , .',««<( 0 , 5 . 1 2 

»'' , , '.82 ;• 
0 , , 5 1 5 6 

0 , 2 5 2 >l 
0 , , U . 7 7 

o , , 0 ' I H . , 
o , , o 2 > iJ 

". ,07 lo 
i i , , 1 )2'« 

• < i . , :n> 
o , :n'> i 

o 
00 

Strata parallel* tha axta of tha veaael. 
Average valut. 



109 

-* — 

a ! 
" ( 
— t 

I 
*» 3 - 7 — -C 

* - * O -T ^ * * 

' -. 

!•• 

» -C .^ - • 3* — 
- 1 art , T ^T — = 

- o « O ^ ^ ^ * ^ ^ * = i^- - T r . — 
i - t C • > * C * * • « . - * T X r» T 3 * * -C - i 
• —• — a* o » * ^ x - « » c -* » - " — -t 

O C = C O • — —— —— c c — c c c 

51 
*•*- o * c 

c 9 = ~ o c 

£ — 

o — »•** -> * • — © -
•*» - * ~T tA r - S 3 * | 

• / * 3» - i t ™ - T art < r < 
x •*> — O ao **• »** < 
* * <C •*•» - n . « * r . 

, » O ^ 

s 

3 

ON <J O -T - 1 . r t -» "-
• «- ^ rsi o » ./% • * * 0 0 <~«« * * l - • ^ ^ -i r-. O «*# « •«. o ^ 00 r^ 0?» ^ ^ t 
r*. r * - > ~ j « C V - <« •*> m <̂ * -̂  o o • •# r * *f\ 0D ( ^ - 4 «n - 0 ^ «** r» 
m oo r * »»« ** *̂ o o o o -* — * * r^ -* (-> 1 0 * \ *~ r* 0 0 00 ^» r » « -o ^» .** ^ \ ^ i 

c o = o o o O O 

% 
*> r- j . A OO « »̂  «̂  o r » ** p . •̂  ao M 
o . / I . r t w* >̂ Oh 9> V 

-» a- . A •A • o OP -̂  o " l *» •o » J ^ r^ > <o p» - • o o -* -* r-> 1 / * r*. ae *̂ « ^ • ^ *̂  J 
M 

o 3 o o o o C e o O o c 3 o O J 
M 

O O . 0 r»» -* .̂ 9 * . O — *\ eo o i - - 0 0 «» -n 0 0 ( 4 irv ^ r>« 0^ r» J> x *r* a ^ ^ 9 o 
••« <f » O c- o <JN — -e o -< • OS C> •o -* OD * > rf^ - ^ i r t » f -* r\ /-» r^ 0 * ^ o> «•» 
•» n Ofc 9 4 } ( ^ e <o JO 0 0 - • o OS 0 0 < » - 1 —« r*l r^ .A -+ rf% O - I >a -^ r4 r* * to oo r * r - r » * « O o o o 0 0 00 00 i ~ <o « t/y *n rf* IT. 

s o o o o o o e> o o o o o a o o o o o o o c o c o o o O O C O s 
1 

J - t >£ -T X -t j > . i * - f X - t « r * - t •O -4 ^ <r * -T « . f . 0 J « 4 < ^ 
I 
I 

> 
• 
01 

<• 
.̂  « . ^ >£ •A X *\ « •/> <£ i / ^ ^ tft ^ trs *c tf iO ^ ^ -% ^ i - 1 * J f - » « f » « o o p»» ^« • 4 <« « -e ao oD o o r* I»J —» #n • • • » ," < 

•a 



110 

Table A. 13. Maxiim and minimal in-plane principal 
stresses at 180* section on the inside surface of 

SH-23DD (internal pressure load « 1.0 psi, 
v - 0.3, 2x2x2 Gauss rule) 

Eleaent Stress aax Bin 
No. location (psi) (psi) 

6 10 6.0305 2.4833 
18 10 6.7422 3.0821 
42 10 7.6039 3.8054 
78 10 8.1459 3.9699 
114 10 8.6538 3.7802 
162 10 9.2734 3.3868 
210 10 11.4077 0.8748 
258 10 14.6939 -0.4381 
306 10 16.5154 -0.4305 
354 10 12.7909 1.0477 
402 10 9.2781 2.1827 
450 10 7.9681 2.0782 
494 10 7.3831 2.2969 
512 10 7.154 2.7474 
519 10 6.3166 2.1642 
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Table A.14. Maximum and minimum in-plane principal 
stresses at 180° section on the outside surface of 

SH-23DD (internal pressure load - 1.0 psi, 
v » 0.3, 2^2x2 Gauss rule) 

Element Stress max min 
No. location (psi) (psi) 

6 14 4.3589 2.3642 
30 14 3.9761 1.7797 
90 14 4.2152 0.9612 
102 14 2.6472 -0.4544 
150 14 2.5C59 -0.5465 
198 14 2.7200 -0.1774 
246 14 3.2894 -0.0105 
294 14 4.5053 1.3972 
342 14 6.0364 3.3293 
390 14 6.65'" 4.1273 
438 14 6.1479 3.0974 
483 14 5.3592 1.9921 
503 14 4.7998 1.4887 
512 14 5.2204 2.3943 
519 14 5.4910 2.5993 


