

Received by OSTI

CONF-8606196--1

AUG 19 1986

CONF-8

DE86 014548

ENERGY LEVELS AND LIFETIMES OF $2p^5 3s 3d$ QUARTETS IN Na I

CHARLOTTE FROESE FISCHER
ARGONNE NATIONAL LABORATORY
ARGONNE, IL 60439

MASTER

AND
VANDERBILT UNIVERSITY
NASHVILLE, TN 37325

THE $2p^5 3s 3d$ 4L LEVELS IN Na I CAN DECAY IN THREE
WAYS:

- I) E1 TRANSITIONS TO $2p^5 3s 3p$ LEVELS (4L ALLOWED)
- II) E1 TRANSITIONS TO $2p^6$ 2L (SPIN-FORBIDDEN)
- III) AUTOIONIZATION TO $2p^6$ 2L (SPIN-FORBIDDEN)

MULTI-CONFIGURATION HARTREE-FOCK CALCULATIONS WITH
BREIT-PAULI CORRECTIONS WERE PERFORMED FOR EACH MODE OF
DECAY WITH SPECIAL EMPHASIS GIVEN TO THE $2p^5 3s 3p$ 4L -
 $2p^5 3s 3d$ 4L TRANSITIONS. SIMILAR CALCULATIONS HAD BEEN
PERFORMED BY HOLMGREN ET AL. (1985) USING COWAN'S CODE,
RCN/RCG.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fw
The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

ACCURATE SPIN-ORBIT MIXING IS CRUCIAL IN THIS PROBLEM. THUS ANY RADIAL BASIS MUST WELL REPRESENT BOTH DOUBLETS AND QUARTETS. AS A FIRST STEP WE EXPLORED THE TERM DEPENDENCE OF THE ORBITALS. FIG. 1 SHOWS THE VARIATION IN THE 3D ORBITALS FOR THE THREE COUPLINGS

$(^3P) 4L$, $(^3P) 2L$, AND $(^1P) 2L$

THE ORBITALS WERE RELATIVELY INSENSITIVE TO THE FINAL L-VALUE. WITH TERM DEPENDENCE TAKEN INTO ACCOUNT, TERM MIXING WAS SOMEWHAT REDUCED (SEE TABLE 1). AT THE SAME TIME, THE FINE-STRUCTURE SPLITTING AGREED WELL WITH EXPERIMENT. (SEE TABLE 2).

A REDUCTION IN DOUBLET-QUARTET MIXING SHOULD RESULT IN A REDUCTION OF THE AUTOIONIZATION RATE FOR THE DOUBLETS. THIS WAS FOUND NOT TO BE THE CASE. COMPARISON WITH RESULTS OF THE COWAN CODE FOR $2P^53S3P$ (HARRIS ET AL. 1984) SHOWED THAT ORTHOGONALITY OF ORBITALS AND HOW NON-ORTHOGONALITY WAS TREATED, GREATLY INFLUENCED THE COMPUTED AUTOIONIZATION RATE. TABLE 3 COMPARES VALUES OBTAINED IN DIFFERENT WAYS.

FINALLY, IN TABLE 4, WE COMPARE LIFETIMES DERIVED FROM THE TWO APPROACHES TO VALUES DETERMINED FROM EXPERIMENT. THE $4P_{5/2}$ LEVEL IS METASTABLE AGAINST AUTOIONIZATION. THOUGH THE PRESENT LIFETIME IS IN BETTER AGREEMENT WITH EXPERIMENT, IT IS STILL ALMOST A FACTOR TWO LONGER. THE $(3P)3D\ 4F_{9/2}$ LEVEL IS ALSO METASTABLE AND THE PRESENT LIFETIME IS IN MUCH BETTER (THOUGH NOT GREAT) AGREEMENT WITH EXPERIMENT. THE $(3P)3D\ 4P_{1/2}$ LEVEL IS AN EXAMPLE WHERE A LARGER AUTOIONIZATION RATE HAS RESULTED IN BETTER AGREEMENT WITH EXPERIMENT.

THIS RESEARCH WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF BASIC ENERGY SCIENCES, DIVISION OF CHEMICAL SCIENCES, UNDER CONTRACTS DE-AS05-80ER10618 AND W-31-109-Eng-38.

REFERENCES

1. D. E. HOLMGREN, D. J. WALKER, D. A. KING, AND S. E. HARRIS, Phys. Rev. A 31, 677 (1985).
2. L. ENGSTRÖM, L. YOUNG, L. P. SOMERVILLE, AND H. G. BERRY, Phys. Rev. A 32, 1468 (1985).
3. S. E. HARRIS, D. J. WALKER, R. G. CARO, AND A. J. HENDELSONN, Optics Letters, 5, 168 (1984).

TABLE 1 COMPARISON OF WAVEFUNCTION EXPANSIONS FOR
 $(^3P)3D$ $4F_{5/2}$.

MCHF + BP

$$0.76 (^3P)3D 4F - 0.55 (^3P)3D 4P + 0.22 (^3P)3D 4D$$
$$- 0.18 (^1P)3D 2D$$

RCN/RCG

$$0.73 (^3P)3D 4F - 0.58 (^3P)3D 4P - 0.26 (^1P)3D 2D$$

TABLE 2 ENERGY LEVELS (IN CM⁻¹) FOR (3P)3P QUARTETS
RELATIVE TO ^{4S}_{3/2}

TERM	J	THEORY	OBS. ^A	DIFF
^{4D}	7/2	2726	2841	115
	5/2	3084	3187	103
	3/2	3434	3536	102
	1/2	3726	3830	104
^{4P}	5/2	4795	4768	-27
	3/2	5179	5152	-27
	1/2	5381		

^AHOLMGREN ET AL. (1985)

TABLE 3 EFFECT OF ORTHOGONALITY ASSUMPTIONS ON $2p^5 3s 3p$
 $4p_{1/2}$ AUTOIONIZATION RATE A, IN NA I, WHERE

$$A = 1.2988 \times 10^{17} \langle 2p^5 3s 3p | H-E | 2p^6 Ks \rangle^2$$

A

1. RCN/RCG

a) 1s, 2s, 2p DIFFERENT FOR THE
 TWO STATES

b) NO ORBITALS ORTHOGONAL

c) MATRIX ELEMENT EVALUATED

i) H-E REPLACED BY V

ii) KS ASSUMED ORTHOGONAL
 TO 3s

10.1×10^{10}

2. MCHF + BP

a) 1s, 2s, 2p THE SAME FOR BOTH
 STATES

b) 3s, KS BOTH ORTHOGONAL TO
 1s AND 2s

c) MATRIX ELEMENT EVALUATED

i) H-E, WITH OVERLAPS

$102. \times 10^{10}$

ii) KS ASSUMED ORTHOGONAL
 TO 3s

22.7×10^{10}

iii) KS REQUIRED TO BE ORTHOGONAL
 TO 3s

15.3×10^{10}

TABLE 4 LIFETIMES OF SOME $2p^53s$ NL QUARTETS

TERM	J	PRESENT	OTHER ^A	EXPERIMENT ^B
4s	$4P_{5/2}$	8.3	10.9	$4.4 \pm 0.4^*$
3D	$4P_{1/2}$	2.4	5.8	2.95 ± 0.2
	$4P_{3/2}$	4.6	2.8	4.10 ± 0.4
	$4P_{5/2}$	4.7	6.1	3.34 ± 0.2
	$4F_{9/2}$	5.1	6.1	$4.38 \pm 0.2^*$
	$4F_{7/2}$	1.4	2.9	0.94 ± 0.15
	$4F_{5/2}$	0.2	0.18	0.40 ± 0.20

* THESE LEVELS ARE METASTABLE AGAINST AUTOIONIZATION.

^AHOLMGREN ET AL. (1985).

^BENGSTRÖM ET AL. (1985).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.