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ABSTRACT

We have have analyzed the 29 GeV multiplicity data for e+ -

hadrons using the

latter interpolates

tions as the ratio

zero to infinity.

partially coherent laser distribution (PCLD).

e+

The

between the negative binomial and Poisson distribu-

S/N of coherent/incoherent ❑ultiplicity varies from

The negative binomial gives an excellent fit for

rather large values of the cell parameter k. Equally good fits (for

full and partial rapidity range, and for the forwarc!/backward 2 jet

correlation) are obtained for the mostly coherent (almost Poissonian)

PCLD with small values of k (equal to the number of jets). Th: reasons

for the existence of this tradeoff are explained in detail. The exis-

tence of the resulting ambiguity is traced to the insensitivity of the

probability distribution to phase information in the hadronic density

matrix, We recomnend the study of higher order correlations (intensity

intcrferometry) among like sign-particles to resolve this question.



I. INTRODUCTION

Recently new data on multiparticle production in 29 GeV e+-e-

collisions at the SLAC HRS have been presented] by Derrick et al. In——

addition to providing information on the two-jet and single-jet events,

these authors preseni data for restricted rapidity windows and the

forward-backward (F/B) correlation with respect to the two-jet axis. In

regions of overlap this experiment basically ccnfirms earlier results

from the JADE?, PLUT03 and TASS04 experiments: the multiplicity distri-

butions are narrow (compared with those in hadron-hadron collisions) and

obey approximate Koba-Nielson-Olesen (KNO) scaling (i.e. ;Pn is energy

independent when plotted as a function of the scaled variable n/n.) In

addition the F/B correlation is essentially zero, in contrast to the

observed strong correlation observed in ISR (pp) and CERN collider (pi)

experiments .

In ref. 1 Derrick et al have shown that the charged multiplicity— —.

distribution Pn can be well described by the negative binomial distribu-

tion (N is the average multiplicity]

~NB= (n+k- l)! (N/k)n—.. .
n n! (k-l)!

(l+ N/k)n+k
(1.1)

where k is typically rather large, ran8ing from 57.2 (lyl<2.5) down

4.85 for lyl<O.1. Since (1.1) approaches a Poisson distribution

k+o, onr can wonde: (as many have done~ whether a simple Poi~son

for e+-e-
6,7

appropriate annihilations . In fact some time a8.)

arKllcd’ that the almost-l~oiss{)[~iar] shapes observed should be describrd

by a k-cell ~)urtially-~so}lere[]t ls~er distribution



~:c = (N/k)n k-l[-kS/N)
lSA) Ln —

(l+N/kln+k ‘xp(l+N/k
]+N/k “

.
(1.2)

This formula gives Lhc photocount distribution8 for a radiation field

ensemble of k equal strength emitters with a signal intensity S and

(Gaussian) noise intensity N: the average multiplicity is <n> = N+S.

(For early applications to particle physics see ref. 9.) As S + O (1.2)

goes aver to the negative binomial (1.1) and for N + O it gives the

Poisson

n -S
Pn ❑ C-+ . (1.3)

In our earlier paper’ we argued that k should be literally identified

with the number of jets (e.g. about two) and that the narrow distribu-

tion therefore implied a small N/S. (Indeed a few percent noise makes a

large visual impact on the shape of the wings of the distribution).

10-12
As for hadronic data, it has been emphasized that if the more

general distribution (1.2) is allowed, it is very difficult to uniquely

determine k and N/S from multiplicity fits. In fact one can trade off a

large k in favor of a large coherence parameter S. A substantial region

of paramrter spare gives equally good X2 fits. As an example, onp can

dispense with f.he large va]ups of k found by the UA5 group in thrir

ncgalivr binomial fits non-single diffractive data a~ lowrr energi~s
10,12

Thv purpnse of thr prpsrnt pap~r is tn analyze the ncw hiRh

pr[’cision r+-r- HRS Aatn’ in thr context of (1.2) to determinr whrlhcr

onr can in fnrt dist-inguinh it !’rom Lhr nr~ntfve binomial (1.1). For
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this purpose we have paid special attention to the F/B correlation which

14can be much more sensitive to the S/N ratio than the KNO plot. A con-

15densed version of this work has been presented elsewhere .

11. ANALYSIS OF THE MULTIPLICITY DISTRIBUTIONS

In this section we consider the nature of inclusion (whole event,

averaged) , two-jet and single-jet events. We shall emphasize the

16
normalized cumulznt moments, defined by

<(n-<n>)2>
y2 =

2
E D2/<n>2

<n>

<(n-<n>)3>
y3 =

<n> 3
(2.1)

<(n-<fl>)4>3<(n-Cn>)2> 2
~4=_ 4 .–——

<n> <n> 4

As is well known, in the case of the negative binomial distribution the

expressions (2.1) have the explicit form:

(2.2)

Y3
NB= 1 3..— —, +L

<n> 2+ <n>k k2

Y4
NH=] 7+ :2 +6,—.— ——.. —-_—

<n> 3+ <n>zk <n>k2 2

t!t(”. Thrsr results are a special case of the corresponding moments of’

thr pilrti~lly coherent di:;trihution’.
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Y~
PC- I + a(l+b)

<n> k

(2.3)

14
pc= 1 + 7a(l+b) + 12a2(l+2b) + 6a3(l+3b)

<n> 3 <n>2k <n>k 2 ~3

where S is the coherent component of <n>. The fraction of Gaussian

noise strength

In the scaling

the form

is a, and b

limit, the

is the fraction of coherent signal strength.

negative binomial (1.1) leads to a <n>P of
n

~k-l

lJJNB(z) = ~~! Zk-le-kz.

while the partially coherent

k-1

@’c(Z) = k% [(?’l+l)z]~

)

distribution

(2.4)

leads to the scaling form

exp(-zk ’12 (2.5)+ ;) lk-~(#@+l)z)

where the parameter H ~ N/S = a/b. We shall also use the variable

m= (N/S)* t~ measure the strength of the noise/signal amplitude.

Notice that in the limit of large k, Eq. (1) is

Eq. (2.5) is almost a singular delta function 6(z).

(2.3) ar~ better behaved. The distribution can be

for a ~mall k, as long as N/S is small.

almost Poisson, and

The moment formulas

almost Poisson eve;]

ll~ing the moment formulas it is to understand our claim that it is

difficult to distinguish between distributions (1.1) and (1.2). SUPPOLIO
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we choose a value of k (called keff for effective) in the negative

binomial distribution which gives exactly the same second moment y2 as
NB

for the partially coherent distribution (2.2):

y~(keff) =~c(k,a,b) ,

which from (2.2)-(2.3) leads to

k
k~

eff a(l+b) “

(2.6)

(2.7)

It now occurs automatically, f~om the structure of (2.2)-(2.3) that y3pc

is very close in value to y3 ‘B(keff ) in the domain of small noise (b<<l)

Y3‘c(k) = y3 ‘B(k,ff) - <~ y3NB(keff) .
k

eff

(2.8)

All the higher moments are well approximated to leading order in I/keff

between the two distributions (except that the higher order moments

become progressively more important: This reflects the fact that the

difference is more sensitive to the behavior of <n>Pn in the wings of

the distribution). A very detailed ::xamination of the fits to high

precision data is needed to distinguish between the two representations.

In references 10, 11, 15, and 16, we have used the exact formulas

1-2 ar,d standard chi-squared criteria to assess the quality of data

fits.

Figs. 1-4 illustrate the application of formulas (1.1)-(1.2) to the

inclusive two-jet and single jet data. In these figures we use the

notations $[1 = $<n>P , and m = II = (N/S)* for the noise/signal an&ljtudy
n

ratio.
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III. MULTIPLICITY DISTRIBUTIONS FOR LII’iITED RAPIDITY WINIWWS

Derrick et al have shownl that the ❑ultiplicity distributions fou——

limited rapidity windows are well fit by a negative binomial whose k

value decreases with decreasing acceptance in Ay. Although the qualita-

tive trend of this effect is easy to anticipate
17

, there exists no

quantitative or fundamental understanding of this result. Using the

same phenomenological spirit as in ref. 1 we have instead varied the

noise/signal amplitude ❑ = (N/S)* with k fixed at 2

data, as a function of Iylmax s yc. Fig. 5 shows that

can be equally well accouated for by the negative

for the two-jet

the two-jet data

binomial with a

certain k = k(yc), or by a variable noise parameter ❑(ye), (k fixed at

2). The X2 per degree of freedom in the two cases is scarcely distin-

~uishable (290/114 vs. 313/114).

In our alternative interpretation

increases for small yc is naturally

the fact that the entropy (noise)

associated with the decrease in

information about the ❑easurement which

Fig. 6 we have ❑ade another comparison of

partially coherent fits to the limited

occurs as yc decreases.

the best negative binomial

rapidity interval data.

In

and

The

soiid curves of Fig. 6 giving the function An ~ ($(pc) - V(NB))/V(NB)

are compared with the data of ref. 1. Although An(z) is a very small

number, it armears that with the stated errors t.hp mmrtially coherent
., ..!

distributii I LO be preferred.

Iv. THE FORWARD-BACKWARDCORRELATION

Consider the

It is known that

of hadrons in the

subset of all two-jet events (presumably quark jets).

there is essentially no correlation between the number

“fontard” jet and that in the “bachard” jet.



9

Writing the joint probability P(%, nB) in the fo~

P(~, nB) = Pn p(~ln~)
s

(4.1)

where n
s=%+nB

is the total population and P(~ln~) the conditional

probability, to be measured by examining the subset with fixed ns. The

7,14,18
simplest assumption for the conditional probability is binomial

ns!
% %

p(~lns) = ~!nB! p q

with p+q = 1. In the present reaction symmetry further requires

= q = #:

n!

(#)ns .p(~lns) ‘~!(ns:~)!

(4.2)

The analogous analysis of the charged neutral correlation requires the

more general Eq. (4.2).

(In contrast to the UA5

parameter in a binomial

This result is fairly well confirmed in ref. 1

13
result for p~, that ns/2 is the total number

distribution) . Note that if the decomposition

(4.1) is to be applied to a component jet (in general, a moving source)

then we can have p+q. The distribution for the total event is then

composite (see Eq. 4.10 below).

In ref. 14 we developed techniques for deriving joint distributions

from assumptions (4.1)-(4.2) for all Pn belonging to the class of
s

Poisson transforms. As a particular case, the negative binomial gives

(r+,+ k)
<nB(riF)> = <n> <n> +2k—

(4.4)
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forp=q=#. The slope param~ter b usually presented by experimen-

talists is the best linear fit parametrized as

<nB(~)~ = a + b% . (4.5)

In the case of the negative binomial distribution linearity is exact and

JiB <n>
= <n> + zk “

(4.6)

For the partially coherent distribution (1.2) one gets instead

M ~k+ 1
<nB(~)> =

2(l+;/2k)[Lk (-x) + —%
l+N/2k ~

(-x)] /L;l(-x)

kl
x -—

= n I+M/k “
(4.7)

Here $ is the associated Laguerre polynomial (positive definite for

negative argument. ) In general the function

line. However, for large k or small noise N (or—

❑ate form

In these limits the slope parameter is

#c = #<n>/keff

where k~ff is given in (2.7). For small noise,

2 is nearly Poisson. As N + O the slope goes

the exact cnlculation14,

Although (4,3) is reasonably well

sideration af the underlying dynamics

(4.7) is not a straight

!4), we find the approxi-

(4.8)

(4.9)

k = kS/N >> 1 and Eq,
eff

to

confirmed

leads to

zero, as it ❑ust from

experimentally, con-

the realization that
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W-& nB) should be considered as the result of a sumnation over the

contributions of
sources 14,19-21

individual . The sources can be

discrete or represented by a continuum, with suitable weights in either

case. Here we shall restrict our attention to the simple case of two

(equal weight) jets. Each source is represented as (4.1) but with p#q

in (4.2) to represent the effect of source motion. The quantities p, q

are clearly theoretical constructs since the experimentalist cannot tell

from which source, a backwards particle came, for example. (We also

note that this classical composition of probabilities could be suspect,

a point worthy of investigation.)

In our previous
14work on the F/B correlation we studied the

sensitivity to the emission probabilities pj, q. of the individual
J

clusters j with respect to the chosen axis. (A condens=d discussion was

given in Eqs. (29) ff of ref. 14. Thus instead of (4.1) we should write

k
P(nF,nB) = n pj(~j,nBj )6(z~j-~)5(hBj-nB) -

j=l
(4.10)

The individual P. of (4.10) are now assumed to obey (4.1) with p.,q.
J .lJ

chosen by ❑odels, theories or instinct. > 0 clesrly means that
‘j - ‘j

source j is emitting predominantly to the right (hence presumably moving

to the right). For pj = q. = ~, all j, Eq. (4.10) reduces again to
J

(4.1).

Figs. 7-12 present 2 cell (k = 2) results calculated using the

methods of ref. 14. The top half of each curve shows <nB>F as a function

of n
F

for pR = 0.5, 0.80 and 0.95 (implying the symmetrical choices

P~ = 0.5, 0.20 and 0.05). The lower curves give the ratio of Ps(nF)
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(i.e. n~ fixed) compared with the simplest case of (4.3). This ratio is

unity for p = ~ but can and does deviate for the other choices.

The above deviation can be analytically calculated for the

important case of the Poisson distribution. Cousider the individual

Pj’s of (4.10) with binomial distribution in (~, nB), Poisson distri-

bution in N~ = ~+nB, and with arbitrary p., i.e.,
J

%
-n n

‘B
sj (P. ) j(q. ) jsj ~

pj(np ,nB ) = e
sj

jj
~~! nB, !J .

(4.11)

J J

Equation (4.10) can be evaluated explicitly by using the relatloaship

n (;j)nJ p.nJ/nj! ❑ Z(;j pj)n/n! ,

j
J

where

n= In, .

j“

Defining

<q>= (z j q.)/xis ,
jJ

j

we get

-<n > n ‘F< >nB

P(nF,nB) = e 6 <n ‘,
s ~>

s nF! nBl “

(4. 12)

(40 13)

(4.13)

(4.14)

Nctice tt:a~ (4.14) is of exactly the same form as the individual P, of
J

(4.11); it is therefore form invariant under LhF convolutional pr~~eflllr(’
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of (4.10). This is a reflection of the underlying assumption of indepen-

dence in both the Poisson and the binomLal distribution. Applying Eq.

(4.14) to the extreme case of symmetrical jets, we get <p>=<q>, and the

forward/backward correlation b = O. When n ~j distributions are highly

coherent, we also expect the compound distribution of (4.10) to be

uearly binomial in (nF. nB) with b nearly zero.

Fig. 7 gives numerical results for the partially coherent distribu-

tion with k = 2, <n> = 10.86 and m = (N/S) % = 0.13. The resulting slope

forp=~(b = 0.041) is small, but differs from the observed value

(0.001) by an amount greater than the quoted error. Biasing the jet

decay by choosing p = 0.80 or 0.95 produces an acceptable slope value,

At first sight the lower curve might seem incompatible with our state-

ment that (4.3) is approximately verified. Visual inspection of the

datd shows that the modification is entirely acceptable.

In Figs. 11-12 we compare 2 jet, full rapidity range data with Z/B

correlation predictions for the negative binomial and for the purtially

coherent distribution. The parameters are determined by fits to the KNO

data plot. For a given parameter p the negative binomial slope is about

50% greater th~n that for the partially coherent distribution. However,

in each case J plausible value of p (p>.8) can be found for which the

●xperimental slope of b ~ 0.006 can be matched.

v. CONCLUSIONS API) DISCUSSIONS

W~ havr shown the impo~sjhility of distinguishing between tile

negntive binomial and the partially rohercnt distributions by means of a

phenomcnologi cal fit to multlpllrity distribution for varying rapidity

in~rrval~ a~ well iIs for the forward-harkward correlation. IInlepd lhu
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deviation of the HRS data from Poisson is negligibly small, in fact a

smaller deviation than for JADE and TASSO data in the same energy

4
range . It seems likely that systematic errors are responsible for the

(small) differences among ~hese experiments.

the

What is clearly ❑issing is a persuasive dynamical

❑ysteriously successful statistical fomulas Eq. 1

Ref. 7 we suggested on the ‘ “ “ “- a--

radiation from a classical

that the hadronization might

lations show the importance

Daals or sn snalogy Lo qrw

current source produces a

underpinning to

and Eq. 2. In

(i.e., that the

coherent state)

be highly coherent too. Indeed, QCD calcu-

of coherence at the qusrk-gluon level. In

21 22
particular Catani, Ciafaloni, and ?larchesini hsve ●xhibited a very

suggestive form for the S-matrix in which the typical exponentiation

characteristic of coherent states is seen. Unfortunately,

presently knows how LO bridge the gap to real hadrons, or can

coherence in the quark-gluon sector to that in the hadronic

matrix.

no one

connect

density

For clarity we review briefly some well-known results relating

coherent states to the (classically) forced harmonic oscillate<’.

These states arise naturally
24

in the QED infrared problsm in which the

emitting charge current suffers negligible recoil fluctuations in the

●mission of long wavelength photons. In this ~ase ●ach momentum state

th
of the radiation couples linearly to the p Fourier component of th~

current. The pth oscillator has the forced oscillator Hsmiltonian

w(a+a+$) - xo(a+a+)F(t), when x~ ❑ easures the zero point fluc~uat~on,

To solve thr scat~ering problem pos~d by this Hnmiltonian we inLro-

~ucP23,25
the coh~rent state la>
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(5.1)

These states are eigenstates of the destruction operator: ala> = ala>

for any complex a (hence not orthogonal though (over) complete). Hence,

n = <ula+ala> ❑ Ial 2

<alx(t)la> = xo(a e-l”’t +@e iwt
) (5.2)

❑ ax +
o

<n> ctls(@-wt)

where x(t) is the (Heisenberg) displacement operator and @ is the phasr

of a = <n> + exp(i$). The counting distribution of 5.1 is Poisson:

P = l<~la>12= <n>nc ‘n>/n! .
n

Thr conn~t-~ion of the states la> with classical-like motion has been

much studird26, H~re wr note that these are the states created by the

artion of a linrarly coupled classical driving l{~rce, To express thi~

most succinctly note that (5.1) can he written aa

](7> = D(u)lo” (5,4)

ln,l)((Y)l= (Y I)((#) ,



16

As shown in Ref. 23, the in and out operators are connected by

a ❑ a + if
out in o

= S+ainS

(5.6)
a~nF(~)+ain ~(~)

s = D(ifo) = expi[ 1
(2fl p W)*

where F(w) =~dtei’’’t F(t). Hence the S matrix creates coherent states

when a force F(t) acts on the ground state.

Note that the observation of a Poisson distribution gives no infor-

mation on the phases in the above ●xample. Although (5.1) leads to

Poisson, the inverse deduction cannot be made. Put in another way the

(pure) density matrix

P= Ia>w: (5.7)

corresponding to classical-like coherent motion hae rich phase informa-

tion in the off diagontil elements not visible in the diagonal element

Pn ❑ <nlpln> (see Eq, (s,3), lt is exactly this off-diagonal structure

responsible for the occurrence of coherent ❑otion, Eq. (5.2).

corresponding to a Gausgian mixture,

(5.8)

leads to thr lloRr-Einr4t(’lfl dir4trlhulinno (For k equal otren8th osrAl-
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p=sd2a

leads to (5.2)

exp(- la- 1312/NIcf><al
AN

for k =

general formula (5.2).)

These techniques

(5.9)

1. (Again k equally weighted modes leads to the

are explained in detail in Ref. 16. Here we

simply stress that whilt is Ileeded to discriminate between physical— .

models having the same (to within experimental error] countinR distribu-

tion P_ = <nlpln>1Sinformation on the off-diagonal el~ments of the

density ❑atrix.
27

As is well known in quantum optics , the requisite

phase information is contained in intensity correlation functions; the

first example being the Hanbury-Brown Twiss effect (corresponding to a

Gaussian field ensemble for starlight). As has been noticed, the Bose-

Einstein correlation is an analogue to this effect, except that mixed

28
coherence is possible. Indeed E’owler and Weiner have proposed trans-

planting formulas like (5.8)-(5.9) into rapidity space, in which case

the (Q2 = 0) intercept of the ratio R of like sign particles to all

directly measures N/S. Pure Gaussian noise correspc~nds to R = 2 and

pure coherence to R = 1. Experimental uncertainties abound but it

appears that R is larger for hadron-hadron data than for e+ - c-,

ir)dicatin~ 8reater coherence in the latter. We terminate the discussion

of this point because further work I.Sneeded ta clean up this idea.

Malazn and Webber
29

have ccmputed quark and gluon jet multiplicity

moments in order a~. It is 11.(cresting to compare their results to

thosr from tnc statistical formula (1,2), evpil L40ugh the latter was of

rmcessity fit to hadronir data. A convenient measure of the moment

prediction is given by the quantity
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(5.10)

where i denotes quark or qluon, and the [~ are the normalized L
th

order

factorial moments

<n(n-]), ,.(n-L+l)>
[; . i

<n>L
i

(5.11)

In Ref. 7 the &L were given for the partially coherent distribution

(1.2):

[L = E Lk-l
kL L

(-kS/N)aL . (5.12)

In the limt S + O, a + 1 one easily finds

‘L
= I/k (5.13)

for the negative binomial, in agreement with Ref. 28.

Malaza and Webber 29 find on evaluating the left hand side of (5.10)

from their QCD Calculat.lo!l eff~ctive val~]es of k (i.e., in 5,13) between

6 and 12. As we have

negative binomial fits

If we use (1,2)

seen such values do not give sufficiently narrow

to the data.

and its consequence (5.12), the evaluation of

(5.10) leads to a modification of (5.13). For simplicity consider the?

limit of dominant coherence, defined by

X T kS/N >> 1 .

Using the asymptot ic rxpnnsion

(5.14)
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we find for (5.10), independent of L (as indicated by the theoretical

calculation) :

‘L
- 2N/kS = 2a/k = 2/keff (5.16)

where !: is the
eff

“effective” k already defined in (Eq. (2,7). As

before the actual k in (1.2) can be small whil~ keff is large due to

dominance of coherence.

A numerical illustration is provided by our m = 0.06, k = 2 fit to

the total inclusive data.
2

a=m = 3.6 X ]()-3. To compare with the

experimental dispersion we take L = 1 and rewrite

K1 = ~2/$ - 1 = <n(n-l)>/<n> 2 -1

= D2/<n>2 - ]/<n> , (5.17)

Derrjck et al. givel R~xpt” = 3.9 x & (which corresponds to their—

large negative binomial
%;

= ~,g x 10-3, Using k = 2 and our fit

2
a =m = 3,6 X 10-3

-3
we get 3,6 x 10 for the evaluation of Kl, almost

too gclod to be true, Ignoring the lack of justification for the compar-

ison uf (1 2) with QCD predictions we see that the seeming discrepancy

between (5.13) and the HRS data are completely removed if coherence

dominates.

A few remarks on I(NO scaling

present work, Although currently

scaling, no theory we know of can

can be made in the context of the

available data are compatible with

make a derisive statement on this

topic-. For (1.1) KN() scaling obtains for fixed k, and observed

deviations in hadron-liadron collisiol~ can he pararneterized by a energy-

dependellt k, In Rrf. 7 we noted that the existence of scaling at
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different energy requires a careful tuning of the noise parameter, not

predicted by our theory. Chou and Yang remark that if the e+ - e-

multiplicity distributions are indeed Poisson then no KNO scaling is to

6,30
be expected .
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Figure Captions

Fig. 1. The inclusive whole event KNO data on = uPn (vertical lines)

are compared with the partially coherent distribution Eq.

(1.2) for the parameter choice k = 2, m = (N/S)* = 0.0245
-,

(upper curve). The X2/DF is 11.1/14 in this case. In the

lower curve the deviation of the data from Poisson is measured. .

by A = (On-41n(P))/$n(P) in the vertical lines. The deviationn
of the negative binomial (dashed line) is indicated for the

case k = 200.

Fig. 2. The inclusive single-jet KNO data @n = %n (vertical lines)

are compared with the partially coherent distribution Eq.

(1.2) for the parameter choice k = 1, ❑ = (N/S)* = 0.014

(upper curve). The X2/DF is 11.4/18 in this case. In the

lower curve the deviation of the data from Poisson is ❑easured

by An = ($ - $n(p))/$n(p) in the vertical lines. The devia-n
tion of the negative binomial (dashed line) is indicated for

k = 100.

Fig. 3. The two-jet ICNO data ~ = ;P n (vertical lines] are compared
n

with the partially coherent distribution (1.2) for the param-

eter choices k = 1, ❑ = 0.0245 (upper curve) the Xz/DF is

7.6/14. In the lower curve the deviation of the data from

Poisson is ❑easured by An = ($n - @n(P))/On(P) in the vertical

lines. The deviation of the negative binomial (dashed line)

is indicated for the case k = 200.

Fig, 4. The single jet data (taken from the two jet sample) KNO

function *n = ;Pn (vertical lines) are compared with the

partially coherent distribution Eq. (1.2) for the parameter

choices k = 1, ❑ = 0.014 (upper curve). The X2/DF iS 25.5/18.

In the lower curve the deviation of the data from Poisson is

measured by An ❑ (Vn - On(P))/$n(P) in the vertical lines.

The deviation of the negative binomial (dashed line) is

indicated for k = 100.



Fig. 5.

Fig. 6.

Fig. 7.

- Fig. 8.

Fig. 9.

The best-fit parameters to the limited-rapidity multiplicity

distributions -yc<o<yc are shown for the partially coherent

formula (1.2) (i.e., the left hand ordinate gives m = (N/S)*

as a function of y=) and for the negative binomial formula

(1.1) (i.e., the right hand ordinate gives

function of ye).

~ (and <n>) as a

The (very small) discrepancy between the partially coherent

and (1) the negative binomial fit , and (2) the data are shown

here, by the solid curve. The data points show the typical

fractioilal discrepancies of the data from the negative

binomial, i.e., A~w = V:p/V~ - 1.

The upper curve shows the theoretical prediction for <n >F

as a function of ~~ for <n> = 10.86, k = 2 and m = (N/S) =

0.13 in the partially coherent distribution. The three curves

are for an intrinsic probability of p = 0.5, CJ.8 and 0.95 per

cell for emission along the direction of motion. The slope

parameter b is indicated in ●ach case. In the lower curve the

ratio of P9(~) to P~(~, Binomial) is shown for the same

choices of p, with ns fixed at 11.

The upper curve shows the the.)retical prediction for the

negative binomial distribution for <n> = 10.86 k = 58 and

m = (N/S)~ = m. The three curves correspond to an intrinsic

probability of p = 0,5, 0.8 and 0.95 per cell for emis~ion

alonR the direction of ❑otion. The slope parameters b are

roughly twice as big as for the pc distribution of Fig. 7 with

parameters chosen to fit the total ❑ultiplicity distribution,

These curves differ from those of Fig. 7 only in the choice of

parameters <n> = 4.27, k = 2, ❑ = 0.32 (upper) and n6 = 5

(lower).
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Fig. 10. These curves differ from those of Fig. 8 only in the choice of

parameters <n> = 4.27, k = 9 (upper) and n = 5 (lower).
s

Fig. 11. The full rapidity interval 2 jet data are compared with

negative binomial assumptions in the appropriate (large) k

values . For these parameters determined by the fit to the KNO

plot, one needs a forward hatron emission probability p > 0.8

to approach the experimental value of b = 0.006.

Fig. 12. As in Fig. 11 except that k is fixed at two and the noise/

signal amplitude is m = 0.06 as in Fig, 1.


