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ABSTRACT

We have have analyzed the 29 GeV multiplicity data for e+ -e -
hadrons using the partially coherent laser distribution (PCLD). The
latter interpolates between the negative binomial and Poisson distribu-
tions as the ratio S/N of coherent/incoherent multiplicity varies from
zero to infinity. The negative binomial gives an excellent fit for
rather large values of the cell parameter k. Equally good fits (for
full and partial rapidity range, and for the forward/backward 2 jet
correlation) are obtained for the mostly coherent (almost Poissonian)
PCLD with small values of k (equal to the number of jets). Th: reasons
for the existence of this tradeoff are explained in detail. The exis-
tence of the resulting ambiguity is traced to the insensitivity of the
probability distribution to phase information in the hadronic density

matrix. We recommend the study of higher order correlations (intensity

interferometry) among like sign-particles to resolve this question.



1. INTRODUCTION

Recently new data on multiparticle production in 29 GeV e+-e-
collisions at the SLAC HRS have been presentedl by Derrick et al. 1In
addition to providing information on the two-jet and single-jet events,
these authors present data for restricted rapidity windows and the
forward-backward (F/B) correlation with respect to the two-jet axis. In
regions of overlap this experiment basically ccnfirms earlier results
from the JADEQ, PLUTO3 and TASSOA experiments: the multiplicity distri-
butions are narrow (compared with those in hadron-hadron collisions) and
obey approximate Koba-Nielson-Olesen (KNO) scaling (i.e. ﬁPn is energy
independent when plotted as a function of the scaled variable n/ﬁ.) In
addition the F/B correlation is essentially zero, in contrast to the
observed strong correlation observed in ISR (pp) and CERN collider (pp)
experiments.

In ref. 1 Derrick et al have shown that the charged multiplicity
distribution Pn can be well described by the negative binomial distribu-

tion (N is the average multiplicity)

" NB _ (n+k=1)! _(N/K)" (1.1)
n n!(k-1)! (1+N/k)n+k

where k is typically rather large, ranging from 57.2 (|y|<2.5) down to
4.85 for |yl|<0.1. Since (1.1) approaches a Poisson distribution acs
k + ®, one can wonder (as many have done) whether a simple Poisson is

+_ - .
appropriate for e -e annihilatxons6’7.

In fact some time agu we
arguod7 that the almost-Poissonian shapes observed should be described

Ly a k-cell partially-coherent laser distribution
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n (1+N/k)n+k 1+N/k n

( ) . (1.2)
This formula gives the photocount distributionB for a radiation field
ensemble of k equal strength emitters with a signal intensity S and
(Gaussian) noise intensity N: the average multiplicity is <n> = N+S.
(For early applications to particle physics see ref. 9.) As S » 0 (1.2)

goes aver to the negative binomial (1.1) and for N » 0 it gives the

Poisson

7]
T

P = Y . (1.3)

=
=

In our earlier paper7 we argued that k should be literally identified
with the number of jets (e.g. about two) and that the narrow distribu-
tion therefore implied a small N/S. (Indeed a few percent noise makes a
large visual impact on the shape of the wings of the distribution).
As for hadronic data, it has been emphasizedw-12 that if the more
general distribution (1.2) is allowed, it is very difficult to uniquely
determine k and N/S from multiplicity fits. In fact one can trade off a
large k in favor of a large coherence parameter S. A substantial region
of parameter space gives equally good x2 fits. As an example, one can
dispense with the large values of k found by the UA5 group in their
negative binomial fits non-single diffractive data at lower energieslo'lz.
The purpose of the present paper is to analyze the new high

+ -
precision e -¢ HRS dalu1 in the context of (1.2) to determine whether

one can in fact distinguish it from the negative bhinomial (1.1). For



this purpose we have paid special attention to the F/B correlation which
can be much more sensitive to the S/N ratio than the KNO plot.lé A con-

densed version of this work has been presented elsewhere15

II. ANALYSIS OF THE MULTIPLICITY DISTRIBUTIONS
In this section we consider the nature of inclusion (whole event,
averaged), two-jet and single-jet events. We shall emphasize the

normalized cumulznt moments, defined by16

2
Yz = i(_“liﬂ_;_)_i = D2/<n>2
<n>
<(n-(n>)3>
=T 3 2.1)
<n>
- <(n-(n>)a> _ gf(n-<n>)2> 2
Yy = 4 A

<n> <n>

As is well known, in the case of the negative binomial distribution the

expressions (2.1) have the explicit form:

NB 1 H
NB 1 3 2
Y3 - —-— + + —;’
<n> <p>k k"
NB _ 1, T, 2, 6,
Vo T3ttt 5t
<n> <>k <n>k k
etc. These results are a special case of the corresponding moments of

; . )
the partially coherent distribution .



pc _ 1 a(1+b)

Y Tt k
(P 1, 3alsb) 22 (1+2b) (2.3)
= , )
3 <n>2 k<n> k2
2 3
5 pc _ _1 7a(1+b) + 12a (1+2b) _ 6a (1+3b)
4 > <>k <n>k? K3
N .5
3 =g ' P E s

where S is the coherent component of <n>. The fraction of Gaussian
noise strength is a, and b is the fraction of coherent signal strength.
In the scaling limit, the negative binomial (1.1) leads to a <n>Pn of

the form

k-1
NB _  k k-1 -kz
Y o (z) = (et 2 € , (2.4)

while the partially coherent distribution leads tc the scaling form

k-1

PE(z) = KB (ot)z] 2 expC-zk B 4 By 1 G JTRD)  (2.5)

where the parameter M = N/S = a/b. We shall also use the variable
m = (N/S)a t. measure the strength of the noise/signal amplitude.

Notice that in the limit of large k, Eq. (1) is almost Poisson, and
Eq. (2.5) is almost a singular delta function 6(z). The moment formulas
(2.3) are better behaved. The distribution can be almost Poisson even
for a amall k, as long as N/S is small.

Using the moment formulas it is to understand our claim that it is

difficult to distinguish between distributions (1.1) and (1.2). Suppoze



we choose a value of k (called ke for effective) in the negative

ff
binomial distribution which gives exactly the same second moment ygB as

for the partially coherent distribution (2.2):

Y2k o) = ¥ (k,a,b) (2.6)

which from (2.2)-(2.3) leads to

k

It now occurs automatically, from the structure of (2.2)-(2.3) that Y3pc

NB

is very close in value to Y3 (keff) in the domain of small noise (b<<1)

2
pc - y NB _ 2~ _ _NB
eff

(k (2.8)

eff)

All the higher moments are well approximated to leading order in l/keff
between the two distributions (except that the higher order moments
become progressively more important: This reflects the fact that the
difference is more sensitive to the behavior of <n>Pn in the wings of
the distribution). A very detailed =2xamination of the fits to high
precision data is needed to distinguish between the two representations.

In references 10, 11, 15, and 16, we have used the exact formulas
1-2 and standard chi-squared criteria to assess the quality of data
fits,

Figs. 1-4 illustrate the application of formulas (1.1)-(1.2) to the
inclusive two-jet and single jet data. In these figures we use the

%

notations § = <n>P_, and m = M" = (N/S)ll for the noise/signal amplitude

ratio.



IT1I. MULTIPLICITY DISTRIBUTIONS FOR LIMITED RAPIDITY WINDOWS

Derrick et al have shown! that the multiplicity distributions for
limited rapidity windows are well {it by a negative binomial whose k
value decreases with decreasing acceptance in Ay. Although the qualita-
tive trend of this effect is easy to anticipate17, there exists no
quantitative or fundament»l understanding of this result. Using the
same phenomenological spirit as in ref. 1 we have instead varied the
noise/signal amplitude m = (N/S)a with k fixed at 2 for the two-jet
data, as a function of Iylmax =Y. Fig. 5 shows that the two-jet data
can be equally well accouated for by the negative binomial with a
certain k = k(yc), or by a variable noise parameter m(yc), (k fixed at
2). The xz per degree of freedum in the two cases is scarcely distin-
auishable (290/114 vs. 313/114).

In our alternative interpretation the fact that the entropy (noise)
increases for small Yo is naturally associated with the decrease in
information about the measurement which occurs as Yo decreases. In
Fig. 6 we have made another comparison of the best negative binomial and
partially coherent fits to the limited rapidity interval data. The
solid curves of Fig. 6 giving the function A = (Y(pc) - W(NB))/Y(NB)
are compared with the data of ref. 1. Although An(z) is a very small
number, it aopears that with the stated errors the nartially coherent

distributic * to be preferred.

IV. THE FORWARD-BACKWARD CORRELATION
Consider the subset of all two-jet events (presumably quark jets).
It is known that there is essentially no correlation between the number

of hadrons in the "forward" jet and that in the '"backward" jet.



Writing the joint probability P(nF, nB) in the form

P(n}..nB) = PnSP(nFInS) (4.1)

where n_ = np + np is the total population and P(nFlns) the conditional
probability, to be measured by examining the subset with fixed n. The

simplest assumption for the conditional probability is binomial7'14'18:

n_! n
Plngln,) = oo pTg " (4.2)
with p+tq = 1. In the present reaction symmetry further requires
I T
n_! n

:!
n}_——-———! (n,-ng)! (%)

P(ngln ) =

The analogous analysis of the charged neutral correlation requires the
more general Eq. (4.2). This result is fairly well confirmed in ref. 1
(In contrast to the UAS result13 for pB, that ns/2 is the total number
parameter in a binomial distribution). Note that if the decomposition
(4.1) is to be applied to a component jet (in general, a moving source)
then we can have p#q. The distribution for the total event is then
composite (see Eq. 4.10 below).

In ref. 14 we developed techniques for deriving joint distributions
from assumptions (4.1)-(4.2) for all Pn belonging to the class of

B
Poisson transforms. As a particular case, the negative binomial gives

(nl_‘ + k)

<n> +2k_ (A'A)

<nB(nF)> = <>
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for p = q = %. The slope parameter b usually presented by experimen-

talists is the best linear fit parametrized as
<nB(n_F)> =a + bn_F . (4.5)

In the case of the negative binomial distribution linearity is exact and

NB _ <n>

b S @eak “.©

For the partially coherent distribution (1.2) one gets instead

- N k M kt1 k-1
@pp)> = ez e, (0 * TaRzzd, WV (W)
-k 1 :
X = § TR (4.7)

Here 1; is the associated Laguerre polynomial (positive definite for
negative argument.) In general the function (4.7) is not a straight
line. However, for large k or small noise N (or M), we find the approxi-

mate form

<ng(a.)> = <o> (1 - ";?’ + E a) (4.8)

In these limits the slope parameter is
Pc _
b7 = B<n>/k oo (4.9)

where ke is given in (2.7). For small noise, k = kS/N >> 1 and Eq.

13 eff =
2 is nearly Poisson. As N + 0 the slope goes to zero, as it must from
the exact culculationla

Although (4.3) is reasonably well confirmed experimentally, con-

sideration of the underlying dynamics leads to the realization that
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P(nF, nB) should be considered as the result of a summation over the

1“’19-21. The sources can be

contributions of individual sources
discrete or represented by a coantinuum, with suitable weights in either
case. Here we chall restrict our attention to the simple case of two
(equal weight) jets. Each source is represented as (4.1) but with p#q
in (4.2) to represent the effect of source motion. The quantities p, q
are clearly theoretical constructs since the experimentalist cannot tell
from which source, a backwards particle came, for example. (We also
note that this classical composition of probabilities could be suspect,
a point worthy of investigation.)

In our previous work on the F/B correlation14 we studied the
sensitivity to the emission probabilities pj, qj of the individual

clusters j with respect to the chosen axis. (A condensed disrussion was

given in Eqs. (29) ff of ref. 14. Thus instead of (4.1) we should write
k
P(nF’nB) = jzl Pj(nFj’nBj)6(anj-nF)6(anj-nB) . (4.10)

The individual Pj of (4.10) are now assumed to obey (4.1) with pj’qj
chosen by models, theories or instinct. pj - qj > 0 clearly means that
source j is emitting predominantly to the right (hence presumably moving
to the right). For Pj = q.j = %, all j, Eq. (4.10) reduces again to
(4.1).

Figs. 7-12 present 2 cell (k = 2) results calculated using the
methods of ref. 14. The top half of each curve shows <nB>F as a function
of n. for PR 0.5, 0.80 and 0.95 (implying the symmetrical choices

F

P = 0.5, 0.20 and 0.05). The lower curves give the ratio of Ps(nF)
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(i.e. n fixed) compared with the simplest case of (4.3). This ratio is
unity for p = % but can and does deviate for the other choices.

The above deviation can be analytically calculated for the
important case of the Poisson distribution. Consider tke individual
Pj's of (4.10) with binomial distribution in (nF, nB), Poisson distri-
bution in hs = np + Dg» and with arbitrary pj’ i.e.,
np n

- . B
-n_. _ n_, (p.) j(q,) 7j
P.(ng ,ng ) =e 81 n . 83 1~ ) . (4.11)
J j B,

'sj nF.! nB_!

J J

Eaquation (4.10) can be evaluated explicitly by using the relationship

n. n.
nm)Jdp. I/nt =30 p)%nr 4.12
j (nJ) P; /nJ (nJ pJ) /n ( )
where
n=2n,
j o
Defining
<p> = (2 ns.pj)/Zns. , (4.13)
J J
<> = (2 ns_qj)/Zns_ ) (4.13)
J J
we get
=<ng? e < >nF< >nB
P(np,ng) = e <« P27 (4.14)
s nF! nBI

Nctice that (4.14) is of exactly the same form as the individual Pi of

(4.11); it is therefore form invariant under the convolutional procedure
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of (4.10). This is a reflection of the underlying assumption of indepen-
dence in both the Poisson and the binom:ial distribution. Applying Eq.

(4.14) to the extreme case of symmetrical jets, we get <p>=<q>, and the

forward/backward correlation b = 0. When nsj distributions are highly

coherent, we also expect the compound distribution of (4.10) to be

nearly binomial in (nF, nB) with b nearly zero.

Fig. 7 gives numerical results for the partially coherent distribu-
tion with k = 2, <n> = 10.86 and m = (N/S)a = 0.13. The resulting slope
for p=5% (b =0.041) is small, but differs from the observed value
(0.001) by an amount greater than the quoted error. Biasing the jet
decay by choosing p = 0.80 or 0.95 produces ar acceptable slope value.
At first sight the lower curve might seem incompatible with our state-
ment that (4.3) is approximately verified. Visual inspection of the
data shows that the modification is entirely acceptable.

In Figs. 11-12 we compare 2 jet, full rapidity range data with /B
correlation predictions for the negative binomial and for the partially
coherent distribution. The parameters are determined by fits to the KNO
data plot. For a given parameter p the negative binomial slope is about
50% greater than that for the partially coherent distribution. However,
in each case a plausible value of p (p>.8) can be found for which the

experimental slope of b = 0.006 can be matched.

V. CONCLUSIONS AMD D1SCUSSIONS

We have shown the impossibility of distinguishing between the
negative binomial and the partially coherent distributions by means of a
phenomenological fit to multiplicity distributions for varying rapidity

intervals as well as for the forward-backward correlation. Indeed the
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deviation of the HRS data from Poisson is negligibly small, in fact a
smaller deviation than for JADE and TASSO data in the same energy
rangea. It Beems likely that systematic errors are responsible for the
(small) differences among Lhese experiments.

What is clearly missing is a persuasive dynamical underpinning to
the mysteriously successful statistical formulas Eq. 1 and Eq. 2. In
Ref. 7 we suggested on the basis of an analogy to QED (i.e., that the
radiation from a classical current source produces a coherent state)
that the nadronization might be highly coherent too. Indeed, QCD calcu-
lations show the importance of coherence at the quark-gluon level. In
particular Catani, Ciafaloni, and Marchesiniz1 have exhibited22 a very
suggestive form for the S-matrix in which the typical exponentiation
characteristic of coherent states is seen. Unfortunately, no one
presently knows how to bridge the gap to real hadrons, or can connect
coherence in the quark-gluon sector to that in the hadronic density
matrix.

For clarity we review briefly some well-known results relating
coherent states to the (classically) forced harmonic oscillatorza.
These states arise natural]yza in the QED infrared problam in which the
emitting charge current suffers negligible recoil fluctuations in the
emission of long wavel=ngth photons. In this case each momentum state
of the radiation couples linearly to the pth Fourier component of the
current. The pth oscillator has the forced oscillator Hamiltonian
w(a+a+5) - xo(a+a+)F(t), when X measures the zero point fluctuation.
To solve the scatrering problem posed by this Hamiltonian we intro-

23,25
ce

du the coherent state |o>



15

. — > . (5.1)

These states are eigenstates of the destruction operator: aja> = ajo>

for any complex a (hence not orthogonal though (over) complete). Hence,

- +
n = <alatalo> = Ja|?

<alx(V)|o> = x_(a e IVt 4 i o1VY (5.2)

ax <n>!i cus(p-wt)

where x(t) is the (Heisenberg) displacement operator and ¢ is the phase

of ar- <n>,i exp(i¢). The counting distribution of 5.1 is Poisson:

2 n <n>
p" = |<nla>|€ = <> e /n!

The connection of the states |a> with classical-like motion has bean
much studiod26. Here we note that these are the states created by the
action of a lincarly coupled classical driving force. To express this

most succinctly note that (5.1) can be written as
la> = D(a) |0 (5.4)

where {0> is Lthe ground state and D(a) the unitary displacement operator

D(a) oxp((m+ - w*a) (5.5)

[a,D(a)] o D(a)
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As shown in Ref. 23, the in and out operators are connected by

aout = ain * ifo
=s’a. s
in
+
a, F(w) + a F* (w)
S = D(if ) = expil “5 ] (5.6)
° (2N h w)

where F(w) = [ dt elWt F(t). Hence the S matrix creates coherent states
when a force F(t) acts on the ground state,

Note that the observation of a Poisson distribution gives no infor-
mation on the phases in the above example. Although (5.1) leads to
Poisson, the inverse deduction cannot be made. Put in another way the

(pure) density matrix
p = |o><a] (5.7)

corresponding to classical-like coherent motion has rich phase infoima-
tion in the off diagonal elements not visible in the diagonal element
Pn = <n|p|n> (see Eq. (5.3). It is exactly this off-diagonal structure
responsible for the occurrence of coherent motion, Eq. (5.2).

The density matrix corresponding to a Gaussian mixture,

2
_ 2_ exp(-la|®/N)
p=Jf d%a nN

lo><al (5.8)
leads to the Bose-Finstein distribution. (For k equal strength oscil-
lator modes one gets the negative binomial.) This density matrix has no

oft diagonal elements. The displacred Gaussian welght
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2
p= [ da e’EP(‘r't;’ﬁJ /N | 4><al (5.9)

leads to (5.2) for k = 1. (Again k equally weighted modes leads to the
general formula (5.2).)
These techniques are explained in detail in Ref. 16. Here we

simply stress that what is needed to discriminate between physical

models having the same (to within experimental error) counting distribu~

tion P = <n|p|n> is information on the off-diagonal elements of the
3l

density matrix. As 1is well known in quantum optic527, the requisite

phase information is contained in intensity correlation functions; the
first example being the Hanbury-Brown Twiss effect (corresponding to a
Gaussian field ensemble for starlight). As has been noticed, the Bose-
Einstein correlation is an analogue to this effect, except that mixed
coherence is possible. Indeed Fowler and Weiner28 have proposed trans-
plauting formulas like (5.8)-(5.9) into rapidity space, in which case
the (02 = 0) intercept of the ratio R of like sign particles to all
directly measures N/S. Pure Gaussian noise corresponds to R = 2 and
pure coherence to R = 1. Experimental uncertainties abound but it
appears that R is larger for hadron-hadron data than for e+ - e-,
indicating greater coherence in the latter. We terminate the discussion
of this point because further work is needed to clean up this idea.

Malaza and Webber29 have ccmputed quark a;d gluon jet multiplicity
moments in order a . 1t is 11 .cresting to compare their results to
those from the statistical formula (1.2), eveu Lhough the latter was of

necegsity fit to hadronic data. A convenient measure of the moment

prediction is given by the quantity



=1

Ko 1 Gra/é-y) (5.10)

where i denotes quark or qluon, and the gi are the normalized Lth order

factorial moments

<n(n-l)...(n—L+])>i

E’l = . (5.11)
L <n>P
i

In Ref. 7 the gL were given for the partially coherent distribution

(1.2):

(~kS/N)al . (5.12)

In the limt § » 0, a » 1 one easily finds

KL = 1/k (5.13)

for the negative binomial, in agreement with Ref. 28.

Malaza and Webber29 find on evaluating the left hand side of (5.10)
from their QCD calculation effective values of k (i.e., in 5.13) between
6 and 12. As we have seen such values do not give sufficiently narrow
negative binomial fits to the data.

1f we use (1.2) and its consequence (5.12), the evaluation of

(5.10) leads to a modification of (5.13). For simplicity consider the

limit of dominant coherence, defined by

x * k§/N > 1 . (5.14)
Using the asymptotic expansion

ll
X

k ~ .
L Gx) ™

(1 + L(L + k=1)/x + ...) (5.145)
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we find for (5.10), independent of L (as indicated by the theoretical

calculation):
KL ~ 2N/kS = 2a/k = 2/keff (5.16)
where keff is the "effective" k already defined in (Eq. (2.7). As

before the actual k in (1.2) can be small while keff is large due to

dominance of coherence.

A numerical illustration is provided by our m = 0.06, k = 2 fit to

2 3

the total inclusive data. a ¥ m“ =3.6x10". To compare with the

H

experimental dispersion we take L = 1 and rewrite

K, = ¢ /78 -1 = <n(n-1)>/<n>2 -1
1 2" 1
= p%/<>? - 1> (5.17)
Derrick et al. givel R?xpt' = 3.9 x 1073 {(which corresponds to their

large negative binomial k;; = 3.9 X 10-3. Using k = 2 and our fit
a = m2 = 3.6 % 10-3 we get 3.6 Xx 10"3 for the evaluation of Kl’ almost
too good to be true. Ignoring the lack of justification for the compar-
ison vt (1 2) with QCD predictions we see that the seeming discrepancy
between (5.13) and the HRS data are completely removed if coherence
dominates.

A few remarks on KNO scaling can be made in the context of the
present work. Although currently available data are compatible with
scaling, no theory we know of can make a decisive statement on this
topic, For (1.1) KNO scaling obtains for fixed k, and observed
deviations in hadron-hadron collision can be parameterized by a energy-

dependent k. In Ref. 7 we noted that the existence of scaling at
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different energy requires a careful tuning of the noise parameter, not

+
predicted by our theory. Chou and Yang remark that if the e - e
multiplicity distributions are indeed Poisson then no KNO scaling is to

be expectede’ao.
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Figure Captions

Fig. 1. The inclusive whole event KNO data ¢n = EPn (vertical lines)
are compared with the partially coherent distribution Eq.
(1.2) for the parameter choice k = 2, m = (N/S)k = 0.0245
(upper curve). The xZ/DF is 11.1/14 in this case. In the
lower curve the deviation of the data from Poisson is measured
by An = (wn-¢n(P))/¢n(P) in the vertical lines. The deviation
of the negative binomial (dashed line) is indicated for the
case k = 200.

Fig. 2. The inclusive single-jet KNO data ¢n = EPn (vertical lines)
are compared with the partially coherent distribution Egq.
(1.2) for the parameter choice k =1, m = (N/S)a = 0.014
(upper curve). The x2/DF is 11.4/18 ir this case. In the
lower curve the deviation of the data from Poisson is measured
by An = (¢n - wn(P))/wn(p) in the vertical lines. The devia-
tion of the negative binomial (dashed line) is indicated for
k = 100.

Fig. 3. The two-jet KNO data wn = EPn (vertical lines) are compared
with the partially coherent distribution (1.2) for the param-
eter choices k=1, m = 0.0245 (upper curve) the xZ/DF is
7.6/14. 1In the lower curvz the deviation of the data from
Poisson is measured by An = (wn - ¢n(P))/¢n(P) in the vertical
lines. The deviation of the negative binomial (dashed line)

is indicated for the case k = 200.

Fig. 4. The single jet data (taken from the two jet sample) KNO
function wn = EPn (vertical lines) are compared with the
partially coherent distribution Eq. (1.2) for the parameter
choices k = 1, m = 0.014 (upper curve). The leDF is 25.5/18.
In the lower curve the deviation of the data from Poisson is
measured by A = (wn - wn(P))/¢n(P) in the vertical lines.
The deviation of the negative binomial (dashed line) is
indicated for k = 100.
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The best-fit parameters to the limited-rapidity multiplicity
distributions -yc<0<'yc are shown for the partially coherent
formula (1.2) (i.e., the left hand ordinate gives m = (N/S)lj
as a function of yc) and for the negative binomial formula

(1.1) (i.e., the right hand ordinate gives kNB (and <n>) as a

function of yc).

The (very small) discrepancy between the pzrtially coherent
and (1) the negative binomial fit, and (2) the data are shown
bere, by the solid curve. The data points show the typical
fractional discrepancies of the dasta from the negative

, . e exp , NB
binomial, i.e., Ath = ¢u p/¢n - 1.

The upper curve shows the theoretical prediction for <n >F
as a function of np for <n> = 10.86, k = 2 and m = (N/S)* =
0.13 in the partially coherent distribution. The three curves
are for ap intrinsic probability of p = 0.5, 0.8 and 0.95 per
cell for emission along the direction of motion. The slope
parameter b is indicated in each case. In the lower curve the
ratio of Ps(nF) to Ps(nF, Binomial) is shown for the same

choices of p, with n, fixed at 11.

The upper curve shows the theoretical prediction for the
negative binomial distribution for <mn> = 10.86 k = 58 and

m = (N/S)a = ®» The three curves correspond to an intrinsic
probability of p = 0.5, 0.8 and 0.95 per cell for emiseion
along the direction of motion. The slope parametcrs b are
roughly twice as big as for the pc distribution of Fig. 7 with
parameters chosen to fit the total multiplicity distribution.

These curves differ from those of Fig. 7 only in the choice of
parameters <n> = 4.27, k=2, m = 0.32 (upper) and ng = 5

(lower).
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These curves differ from those of Fig. 8 only in the choice of

parameters <p> = 4.27, k = 9 (upper) and n_ = 5 (lower).

The full rapidity interval 2 jet data are compared with
negative binomial assumptions in the appropriate (large) k
values. For these parameters determined by the fit to the KNO
plot, one needs a forward hacron emission probability p > 0.8

to approach the experimental value of b = 0.006.

As in Fig. 1] except that k is fixed at two and the noise/
signal amplitude is m = 0.06 as in Fig. 1.



