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INTRODUCTION

The purpose of this lecture is to introduce, describe and illustrate affine

generalizations of some familiar notions from the representation theo~ of semisimple

Lic algebras/groups. We touch upon the multiplicity of a weight and the dimension,

congruence class, and indices of a representation, Our cxampks of the highest weight

representations of affinc Es can be considered as a preview of far more cxtcnsivc results

of this type to appear (Kass et al., 1987).

TIiE WEIGIIT SYSTEM OF A REPRESENTATION

First wc real] some famili,ar facts, Finite-dimensiomd irreducible rcprescnttitions

of SU(2) can be specified by the “angular momentti” $J, J+, I, ,2,,.. of

the representation, and the basis vectors or “anguhtr momentum stntes” within the

representation J ctm be lubellcd by the “projection” M of J, where M takes on

mchvaluc J, J-l,..,,- J, Convenience and consistency with higher rank algcbrus



leads us to change these conventions and to take J as twice the angular momentum

and M as twice its projection, giving

JG 0,1,2,... , II E (J, J-2,...J)J) = Q(J),

where Q(J) is called the weight system of the SU(2) representation J. We will

sometimes denote the representation simply by J and sometimes by L(J).

A finite-dimensional irreducible S U(3) representation is determined by its

highesf weight A = (p, q), wit.!!integer P,q 20. The inherent geometry of the

algetxa allows us to draw the weight system Q(A) as a mangle (for highest weight

(p,O) or (O,q)), a hexagon Of pq > 0), or a vint (for the oneamensional

representation with highest weight (O, O)). For example, one has the following

weight systems Q(A) for the representations L(A) with highest weights

A=(I,O), (0,1) and (1,1):
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fact that there arc two vectors of

weight (O ,0), In general wc suppress the commas between the coordinates of the

weight and economize space by using an overbar insttgxidof a minus sign.

Briefly, the w:ights of a finite-dimensional simpk complex Lie algebra 9 “live”

in a Euclidean lattice, and their coordinates are given in terms of the basis of

furtdarncntul wci~}m A,, ?t2, . . , A& of that lattice, This busis and its tiual

bmis ot’simple roots tX 1, 0t2, . . . , CX2 are related by the matrix Ctl, the

CTurtunmarrit, which is the change of basis matrix between the two bases, and which

completely desu-ibcs the algebm, The same information cont~ined in CM am be given



by a graph, the Dynkin diagram of 9 (DD). Tk Cartan matrices and Dynkin

diagrams for each of the finite-dimensional simple complex J.ie algebras can be fowld in

many places (see Bremner et al., 1985). A thorough development of the

representation theory of these algebras can be found in (Ffumphreys, 1972).

For an affine Kac-Moody algebra 9 an irreducible representation ;.sagain given

by the tup!c A, which now has &+ 1 coordinates Xo, X,, . . . >.2. Although

these coordinates mmpletely describe a module, they do not completely describe A

within the weight lattice, as we shall soon see, and we generally call this 4 + 1 -tuple

the weight label of A.

The distict weights of Q(A) can be calculated recursively from the highest

weight A = (pO, ..., 04) (4 is the rank of 9, and of Cfl) with non-negative

integer coordinates Pk ( if 9 is finite, ~e~ is no PO) using the fo~ofig dgori~m:

(a) Put A into Q(A) and let ).t = A.

(b) For Jl E Q(A), for any positive coodinate Pk of ~, add the Pk weights

A-tXk, A-2(Xk,..., A - Pkwk to Q(A), h the basis of

fundamental weights, the vector u ~ is the 1(-th row of Ctl for 9 (in some

conventions ~k is the k-th column of CR),

(c) Repeat (b), replacing jl by each of the weights found in (b),

The proed.uc terminates for finite-dimensional Lie algebras and cmtinues

forever in the affinc case,

The above algorithm computes only the list of distinct weights of a module, The

nurnbcr of vectors of weight ~ in L(A) ( the mulripliciry of ~ in L(A)) is

difficult to compute in gcncml, and can be found in published tables (13rcmneret al,,

1985 (finite case); Kuss et id,, 1987 (affinc case)),

Wc now consider a fcw cxnmplcs in the atfinc case, Ikh of the



finite-dimensional simple Lie algebras has an “affinizwion.” For g = Al, tl]e Lie

algebra of SU(2), the affinization, Al (1 I has Ctl = (-~’~ ). Consider its

representations with highest weights A = ( 10) and (11 ). hanging Q(A) into

‘horizontalslices according to the number of simple roots which have been subtracted

from A (we call this the principaf sficing of the representation), we obtain the

following diagrams:

m 5.. ...O .... ....,” ,.OO.. .. $. ..
,., ,.. ... ...

Lines indicate subtraction of some simple root u ~. Note in particular that the weight

labels reappear, shifted by units of u o + C%1. In the affme case, the simple roots are

linearly dependent when projected onto the space generated by the fundamental

weights, and an additional label would be needed to separate the repeated occurrencescf

each weight label. Already we can see one of the generalizations of a notion in the

finite-dimensional case. While wc could find the multiplicity of each - and treat

these as separate identities as is generally done in the finite case, it is instructive to write

a generating function for the multiplicities of each weight ~, using powers of q to

separate the occurencc.,. Thus in the fwst example above, where the weight ( 10)

occurs with multiplicities 1, 1, 2, . . . . we could say that its multiplicity is

I+q+zlq z+.,., Remarkably, this p~icular power series is exactly the

generating function of the classical partition function, where the coefficient ~f q“ is

the number of partitions of the integer n, In gcneriil, the generalized multiplicity (with

an appropiute power of q on the outside) is a modulur form, and many interesting

idcnti[ics and propcrt.ies arc known for these series (see Kac and Peterson, 1984), As



the next examples we take tw representations Gfthe zdgebra E 6( 1~, the a.ffini.zation

of the 248-dimensional algebra E8. To remain independent of numbing

conventions, we write the coordinates of the simple roots as well as the weight

coordinates in Dynkin diagram form. One has (in the principal slicing):

o
a+ . oooi2700

7
a ~. Ooooizlo

o
at. OOOO072T

Bi 1ooogoo

oi I oo~oo

1

0

.. ,0

,.. . . .

,00 I00:00

01710:00

.,.

All weights showl~here have multiplicity 1, Higher multiplicities occur further down



when other weights with ncm-negative cmrdinatcs (dominan t weights) appear.

INVARIANT CHARACTERISTICS OF REPRESENTATIONS

There exist smral quantities which arc easy to determine for a rcprcscnwtion A

of 9 of any type, and which arc often very useful in calcuktkms. Suppose that one

has been given ~ and a representation L(A) of 9 with highest weight

A =( PO, Pl,.0., ?4). (If 9 is finite-dimensional, simply let PO = O.) Consider

the two integm:

Congruence number of A C(A) = ~~o b, PI mod (detCM).

Level of A L(A) = ~~o CIP,.

Here det Cfl is the determinant of the C&tan matrix. The cwfficients b and c

dqmd on the algebra only. They are found, for example, in (&cmncr et al., 1984)

and (Kass et al., 1987). For more details and examples of C(A) see (knirc ai]d

Patcra, 1982). In the case of SU(2), C(J) = t 1 for odd (even) dimensional

representations; for SU( 3 ), C(A) is the familiar tia.lity number.

Two representations A and A‘ of 9 Ixlong to the strew congruence class

provided

C(A)= C(A’) for Snite 9;

C(A) =C(A’) and L(A) -L(A’) for affk 9.

h isalwaysuuethat C(al) = C) and L(~j) - 0 forasimpleroot &l, hence

C(A) - C(p) and L(A)- L(g) for my ~ E Q(A), since ~ isobtainc.d!lom

A by the subtraction of simple rum, It can also be shown that for 9 finitc-

dimcnsional, there area finite number (det CM) of congruence classes each

containing infinitely many representations. In contrast, an affme g has infinitely many

congmence classes each containing a finite numlxr of inducible representations.

The most common usc of C(A) is in computing tensor products of

representations or tensor powem of a single representation (with or without a particular



permutational symmetry). ThIIs if

A@ A’w AI Oh. @Aq and A@... @AVT = AI B... @An,

where the subscxipt YT denotes a (Young tableau) pmnutation symmme~ of the

tensor power of A, one has

C(A@A’) = C(A) + C(A’) - C(A1) =..= C(A1) mcd(datCM),

C(A@...@A)VT = C(A)+ ...+ C(A) = C(A1)=..= C(An) mod(det CM).

The dimension d(A) of a representation A of an fime algebra 9 is of course

inftite, but we can proceed as we did with the multiplicity of a weight and write the

dimension as a power series in q according to some particular slicing of 9, letting the

coeffwient of qk be the dimension of the k-1 -st slice. Such a series will have many

of the useful} roperties of the dimension in the fiite case. The dimensions (in the

principid dicing) of the above representations of afilne A 1 and E6 are

d(lO)=l +q+q2+2q3+ 2q$+3qs +...,

d(n)= l+2q+2q2+ 4qs+6qb+... ,

410000:00 ) =l+q+q2+ qg+q~+q=+q6+2q’ +...,

400100800 ) =l+q+2q2+3q3+4q4 +6qs +....

Another type of slicing giving useful information is a slicing into representations

of a fmitedimensional subalgebra of g. Jf one removes the k-th node from the

Dynkin diagram of 9 (quivalcntly, the k-th mw and column fmm CM), one

obtains DD or CM for a maximal finite-dimensional subalgebra of 9, which we

denote g(k). (’W algebras so obtained are essentially all the maximal

finitedimensional scmisimple subalgebras of 9, (R. V. Moody, private

communication, 1986)) We can then define the g(k )-slicing of L(A) so that the

weights of the P-th slice are those weights of the form

~ =A -(p-l)@k -(other ~i’G) G Q(A).

For the affine A, modules above, we can amnge the weights to presrnt the



.

.

9(0) slices as horizontal slices and the 9(1) slices as vm-t.icalslices. h this case

both 9(0) and @1) are isomorphic to S U(2), hence the slices are (generally

reducible) SU( 2) modules.

%

10

12 10 32

i2 10 33

~efirst few slices of L(10) and L(l 1 ) in the 9(0) slicing are

r,=(o), r2=(2), rq=(2)f Mel, rd=(2)ax2),...;

rq=m, r2=(3)am), r3=(3)a3)f3( 06x0,... ,

with corresponding dimens;on series ~ 1d ( r I) q 1-1, here giving

l+3q+4q2+6q3 +...;

2 + 6q+ 12q2+ 18q~+ . . . .

)More interesting are tic Es examples. Consider A = ( ,OooO~Oo of

9(0) = E8 C affine EB. One has

1‘t S1

2nd s

ce + Q10000:00

Viewing the slices by ignoring the P. coordinate of each weigh~ one sees

immediate]y that the top slice here is a one-dimensional E ~ (scalar) representation,

( )while the second slice contains the representation r2 = 1ooo~oo of

dimension 248 (further computation shows that no other representation appears at

this slice), The dimension series for thin slicing thus begins with



41OOOOLO ) =l+248q +... .

For A = ( )OG1OO:OO ‘Wehave
I 7 1

Ist slice

o 0

2 ‘d slice

I / / I “ ‘“

ht-EFal-
(Here the first slice is the Es representation r 1 = 01 oo~oo )

27000, and the second one contains the representation r2 =

of dimension 2450240.

Next let us take 9(2) = SU(3) + Efj. The slices now are defined by the

with d(rl) =

( 0010:00 )

number of times tXz has been subtracted ~rotn A, and affine E8 weights are read

as the subalgebra weights as follows:

( ‘8 ~ ) = (POP, )(P3P$?P6P,).POP1P2PJP+P5P61+

)h 9(2)-slicing the top slice of the basic representation A = ( loooo~oo of

affine E8 is an SU(3) triplet with a E6 singlet, r 1 = (l O)(OO~OO); the

second slice contains r2 = (O~)(lo~oo), the singlet of SU(3) and the

27-plet of E6 :



Ist slice
o

10000:00 11000000 OTIOO:OO

2 ‘d slice

The other E8 representation slices

follows:

1‘i slice

2nd slice

Lzil
I

o

1-
0

0 0
~ 0 g -

0 0 0

with respect to 9(2) = SU(3) + EG as

I ; I

o O1OOOLO
OEJ O1OT18OO

1- Iiloi!oo
5 17010:00

Tolilgoo

3rd slice Bl#!iF”””””
The top is a singlet of SU(3)+ EG, rl = (OO)(OOgOO). Nextisarnpletof

SU(3) and an E6 representation of dimension 27, rz = (01)(,0:00);

the third slice is r~ = (10)( (),:(J e (02)( o&-j,) @

(l O)(oo~ol ). The dimension ist.hen d(ooloo~oo )

=d(rl)+d(rz)q +... = 1 +81q+ 1296q2 +... .

Firmlly let us point out a general property of the repnxentations r of the

subalgebra 9(k) in different slices: all irreducible components of a slice belong to the

same congruence class, though the congruence classe may vary from slice to slice. It is

not difficult to wtite specific roles for each case.

The indices cfrepresenrations of finite Lie algebras 9 (Patera et al., 1976) as

well as the anomaly numbers (Patem, Sharp, 1981) also generalize into power series

(different series in different slicings) retaining all their useful properties. The index of



degree k can be defined in the affme case as the power series

l(k)(A) = ~ qj-l I(k)(rj) .
j-l

Here 1‘k)(Ij ) is the index of degree k (Patera et al., 1976; Patera, Sharp, 1981) in

the finite-dimensional case. Using its definition, we have, for example

~(2k](A)= ~ qj-l I(2k](rj) = y qj-l z (p,p)k,
j=l j=l JAd(lp

Let I(k)(A) be the index and d(A) the dimension of a representation A. Then we

have all the properties from (Patera, Sharp, 1981; !dcKay et al., 1981). As an

example,

l(zl(A@A’) = l@)(A) d(A’) + do,

or, denoting by a Young tableau a permutation symmetry component of a tcrlsor power

A@... @A,

i(2)(~... ~) = d(A) + k)!

(d(A) +I)!(k -l)!
I(2)(A) ,

+k+

TO
1(2)(k :) = d(A) -2)!

1~ (d(A) -k-l) !(k-l)!
I(2)(A) ,

&+ 2 (1k(A))2 ,I(4)(m) = (d(A)+ 8) 1(4](A) + ~

1(4)(9)= (d(A) - 8) I(4)(A) + ~ (I(2)(A)) 2”’

Using the anomaly-index (Patera, Sharp, 1981) as I(k)(rj ), one has also

I(3)(m) - (d(A) + 4)1(3)(A) ,

p(g) = (d(A) - 4) I[3)(A) , etc.
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