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INTRODUCTION

The purpose of this lecture is to introduce, describe and illustrate affine
generalizations of some familiar notions from the representation theory of semisimple
Lic algebras/groups. We touch upon the multiplicity of a weight and the dimension,
congruence class, and indices of a representation. Our examples of the highest weight
representations of affine Eg can be considered as a preview of far more extensive results

of this type to appear (Kass et al., 1987).

THE WEIGHT SYSTEM OF A REPRESENTATION

First we recall some familiar facts. Finite-dimensional irreducible representations
of SU(2) can be specified by the “angular momenta™ J, J = 0,17, 1 ,g,2 ,... of
the representation, and the basis vectors or “angular momentum states” within the
representation J can be labelled by the “projection”™ M of J, where M takeson

each value J,J-1,...,~J. Convenience and consistency with higher rank algebras



leads us to change these conventions and to take J as twice the angular momentum
and M as twice its projection, giving

Jeo,n,2,..., Me (J,J-2,...,~d) = Q(J),
where Q(J) is called the weight system of the SU(2) representation J. We will
sometimes denote the representation simply by J and sometimes by L(J).

A finite-dimensional irreducible SU(3) representation is determined by its
highest weight A =(p,q), withinteger p,qQ 2 O. The inherent geometry of the
algeora allows us to draw the weight system Q(A) as a triangle (for highest w=ight
(p,0) or (0,q)), ahexagon (if pq > 0), or a point (for the one-dimensional
representation with highest weight (0,0)). For example, onc has the following
weight systems Q(A) for the representations L(A) with highest weights
A =(1,0), (0,1) and (1,1): |

[o1]

[eT] 1]

[i1] [%]
In the last example the symbolism represents the fact that there are two vectors of
weight (0,0). In general we suppress the commas between the coordinates of the
weight and economize space by using an overbar instead of a minus sign.

Briefly, the w=ights of a finite-dimensional simple complex Lie algebra g “live”
in a Euclidean lattice, and their coordinates are given in terms of the basis of
fundamental weights N4, N,, . . . Np of that lattice. This basis and its dual
basis of simple roots 04, 05, . . ., 0p arerclated by the matrix CM, the
Cartan matrix, which is the change of basis matrix between the two bases, and which

completely describes the algebra. The same information contained in CM can be given



by a graph, the Dynkin diagram of g (DD). The Cartan matrices and Dynkin
diagrams for each of the finite-dimensional simple complex Lie algebras can be found in
many places (see Bremner et al,, 1985). A thorough development of the
representation theory of these algebras can be found in (Humphreys, 1972).

For an affine Kac-Moody algebra g an irrecucible representation is again given
by the tuple A, which now has £+ 1 coordinates Ay, A4, . . . 2. Although
these coord:nates completely describe a module, they do not completely describe A
within the weight latticc, as we shall soon see, and we generally call this £ + 1-tuple
the weight label of A.

The disuinct weights of Q(A) can be calculated recursively from the highest
weight A =(pg,...,Dp) (£ isthe rank of g,and of CM) with non-negative

integer coordinates P (if g is finite, there is no po) using the following algorithm:

(@) Put Ainto Q(A) andlet p=A.

(b) For W € Q(A), for any positive coodinate p, of M, add the p, weights
N-ot, A-20,...,A-p.oc, to QCA). In the basis of
fundamental weights, the vector & is the K-throw of CM for g (in some
conventions 0, isthe K-th columnof CM).

(c) Repeat (b), replacing [ by each of the weights found in (b).
The procedure terminates for finite-dimensional Lie algebras and continues

forever in the affine case.

The above algorithm computes only the list of distinct weights of a module. The
nurnber of vectors of weight B in LCA) (the multiplicity of W in L(A)) is
difficult to compute in gencral, and can be found in published tables (Bremner et al.,
1985 (finite case); Kass et al.,, 1987 (affine case)).

We now consider a few examples in the atiine case. Each of the



finite-dimensional simple Lie algebras has an “affinization.” For g = A,, the Lie
algebra of SU(2), the affinization, A, (1) has CM = (_g _% ) Consider its
representations with highest weights A = (10) and (11). Armanging Q(A) into
horizontal slices according to the number of simple roots which have been subtracted
from A (we call this the principal slicing of the representation), we obtain the

following diagrams:

Lines indicate subtraction of some simple root 0.,. Note in particular that the weight
labels reappear, shifted by units of otq + 4. In the affine case, the simple roots are
linearly dependent when projected onto the space generated by the fundamental
weights, and an additional label would be needed to separate the repeated occurences cf
each weight label. Already we can see one of the generalizations of a notion in the
finite-dimensional case. While we could find the multiplicity of each weight and treat
these as separate identities as is generally done in the finite case, it is instructive to write
a generating function for the multiplicities of each weight Jabe], using powers of q to
separate the occurence.. Thus in the first example above, where the weight (10)
occurs with multiplicities 1, 1, 2, ..., we could say that its multiplicity is
1+Qq+2q2%+.... Remarkably, this particular power series is exactly the
generating function of the classical partition function, where the coefficient >f q" is
the number of partitions of the integer N. In general, the generalized multiplicity (with
an appropriate power of q on the outside) is a modular form, and many interesting

identities and properties arc known for these series (see Kac and Peterson, 1984). As



the next examples we take two representations of the algebra E8(1 ), the affinization
of the 248-dimensional algebra Eg. To remain independent of numbering
conventions, we write the coordinates of the simple roots as well as the weight

coordinates in Dynkin diagram form. One has (in the principal slicing):

0 )
L 27000000 10000000
127009 w:
o, = 2700000 11000000
e = 0 —
o= 01210000 -0
2 01100000
. .0 I_
ol,= 007127000 _ 0
0 90110000
- 1
o, = 00012700 o
1 00011000
o = 000012710 r'—ro—
0 00007100
¢ ™ 00000127 . .}
0. 000007110
o.,= 00000012 T N
2 00000010 0000007 1
®,= 00000100 T o
0
00100000
D
0
01710000
]
0 0
17010000 (01071000
1 N\ I
0 o 0
10010000] [1T171000] |01007100
- 0 0 0 ]
10171000/ {:5701000] |1T107100| 01000710
/ \\
0 _ .0 ) 1 1 1
T1701000] |10107100] |10T1T100] |1T100T10| |01000071]|01000010

All weights shown here have multiplicity 1. Higher multiplicities occur further down



when other weights with non-negative coordinates (dominant weights) appear.

INVARIANT CHARACTERISTICS OF REPRESENTATIONS
There exist s:veral quantities which are easy to determine for a representation A

of g of any type, and which are often very uscful in calculations. Suppose that one
has been given g and a representation L(A) of g with highest weight
A =(Pg,Pq..-..Dg). (f g is finite-Cimensional, simply let po = 0.) Consider
the two integers:

Congruence number of A C(A) = Zf_o b,p, mod(detCM).

Level of A L(A) = Z.'_o c,P;-

i
Here detCM is the determinant of the Cartan matrix. The coefficients b and ¢
depeud on the algebra only. They are found, for example, in (Bremner et al., 1984)
and (Kass et al., 1987). For more details and examples of C(A) see (Lemire aid
Patcra, 1982). In the case of SU(2), C(J) =21 for odd (even) dimcn;ional
representations; for SU(3), C(A) is the familiar triality number.
Two representations A and A’ of g belong to the same congruence class
provided
C(A)=C(A") for Snite Q;
C(A)=C(A") and L(A)=L(A" for offine g.
It is always true that C(ot;) = O and L(o,) = O for a simple root &,, hence
C(A)=C(p) and L(A)=L(u) forany B € Q(A), since M is obtained from
A by the subtraction of simple roots. It can also be shown that for g finite-
dimensional, there are a finite number (detCM) of congruence classes each
containing infinitely many representations. In contrast, an affine g has infinitely many
congruence classes each containing a finite number of irreducible representations.
The most common use of C(A) is in computing tensor products of

representations or tensor powers of a single representation (with or without a particular



permutational symmetry). Thus if
ABA' = A, ®.. .OA; and AB...@Ay7 = A1© ...BA,,
where the subscript YT denotes a (Young tableau) permutation symmmetry of the

tensor power of A, one has

C(A®A") = C(A)+C(A') = C(Aq)=..=C(A,) mcd(datCHM),
C(A®..®A)y1 = C(A)+..+C(A) = C(A4)=..=C(A) mod(detCM).

The dimension d(A) of arcpresentation A of an affine algebra g is of course
infinite, but we can proceed as we did with the multiplicity of a weight and write the
dimension as a power series in q according to sorne particular slicing of g, letting the
coefficient of QX be the dimension of the k-1-st slice. Such a series will have many
of the useful } roperties of the dimension in the finite case. The dimensions (in the
principal slicing) of the above representations of affine A, and Eg are

d(10) = 1+q+q%2+2q°+2q*+3q°+...,

d(11) = 1+ 2q+2q2+4q%+6q"+...,

d(10000800) =1+q9+q2+qQ°+q*+q°+q®+2q"+...,

d(omoogoo) = 1+4Q+2q2+3q%+4q*+6q°+... .

Another type of slicing giving useful information is a s'icing into representations
of a finite-dimensional subalgebra of g. Jf one removes the k-th node from the
Dynkin diagram of g (equivalently, the K-th row and column from CM), one
obtains DD or CM fur a maximal finite-dimensional subalgebra of g, which we
denote g(K). (The algebras so obtained are essentially all the maximal
finite-dimensional semisimple subalgebras of g. (R. V. Moody, private
communication, 1986)) We can then define the g{k)-slicing of L(A) so that the
weights of the P-th slice are those weights of the form

H=A-(p-Do, - (other a,'s) € Q(A).

For the affine A; modules above, we can arrange the weights to present the



g(0) slices as horizontal slices and the g(1) slices as vertical slices. In this case
both g(0) and g(1) are isomorphic to SU(2), hence the slices are (generally
reducible) SU(2) modules.

The first few slices of L{10) and L(11) inthe g(0) slicing are
I,=(0), T5=(2), T3=(2)8{0), [4=(2)®(2),...;
I'=(1), T=(3)®(1), T3=(AaeG)a(1)e(1),...,

with corresponding dimension series Z(d(I";)q'-", here giving
1+3q+ 4q2 + 6g5 + ... ;
2 +6q+ 1292 + 18q° + ... .

More interesting are the Eg examples. Consider A = (10000800) of
g(0)=Eg C affine Eg. One has

st ; 0
17" slice  —  |10000000
[ . ,
) ) T 1.
nd . =] o§ oé 08 o-S-J-.: 0000001 1],
2"9 slice — 1 81 =1 5 ‘g g .
- b 'S | IR
|| 5] 8 § 00000010

Viewing the slices by ignoring the pg coordinate of each weight, one sees
immediately that the top slice here is a one-dimensional Eg (scalar) representation,
while the second slice contains the representation I'5 = (10008 00) of
dimension 248 (further computation shows that no other representation appears at

this slice). The dimension series for thic slicing thus begins with



d(10000000) = 1 + 2489 «... .

For A= (06100000): wehave

T 1.
1 01000010
01000710
S S .0 | | ] / 1_1....
stogpi o8| |eg| lotoi1000[ 01007100 o 01000071
17" slice | 8| 17107100 —
ol =k . o T "0 -1 1.
&/l ol 17010000 117171000 Y17100710
_ 0 \."
10701000} . —5
© l1oT17100]
0
3 jo101100] "
2"9 slice °8l _|°2
by -0 |...
.-8- o 71701000

Here the first slice is the Eg representation T', = (0 100800) with d(I'4) =
27 000, and the second one contains the representation I'5 = (0010800)
of dimension 2 450 240.

Next let us take g(2) = SU(3) + Eg. The slices now are defined by the
number of times O, has been subtracted irom A, and affine Eg weights are read

as the subalgebra weights as follows:

P P
(pop,p2p3p~p;p6p7) = (p°p‘)(PJP~P:PGP7)
In g(2)-slicing the top slice of the basic representation A = (10000800) of
affine Eg isan SU(3) tiplet witha Eg singlet, T, =(1O)(00800); the

second slice contains r2=(00)(10800), the singlet of SU(3) and the
27-pletof Eg :



15t i ) _ 0 _ 0
siice 10000000{ |11000000[ |01100000
SIEIREE T
nd s o8| |e8| |e 2| {~= [loooocois[-
2" slice °H —=H 'aH 8 -
sl 8l 8| 8 !
oll &/l o]l & |looooooio

The other Eg representation slices with respect to g(2) = SU(3) + E¢ as

follows:

st : 0
17" shice !oomoooo

1 f....
5 3 01000010
g 0 01001100 010007110 1
d .. o3| A01071000 01000071] """
2" glice | © Tan10d T 070
- 0 10010000 17107100 1
o| 11010000 5 5 17100110f """
17171000/ [1101711000 5
10101100] "
Q )
3"‘d sllce 0.8_ 1071?100 ......
= 0
e 11701000) """

The top is a singlet of SU(3)+Eg, 'y = (OO)(OOSOO)- Next is a triplet of
SU(3) and an E¢ representation of dimension 27, T'5 = (01)(10800);
the third slice is F3= (10)(01800) @ (02)(00801) (23]

(10)(00801). The dimension is then d(00100800)
=d(T';) +d(T,)q+... = 1+81q+ 1296q° + ... .

Firally let us point out a general property of the representations I of the
subalgebra g(k) in different slices: all irreducible components of a slice belong to the

same congruence c.ass, though the congruence classe may vary from slice to slice. It is

not difficult to write specific rules for each case.
The indices cf representations of finite Lic algebras g (Patera et al., 1976) as
well as the anomaly numbers (Patera, Sharp, 1981) also generalize into power series

(different series in diffcrent slicings) retaining all their useful properties. The index of



degree K can be defined in the affine case as the power series

109A) = F g 1T
J=!

Here I(k)(l"]) is the index of degree k (Patera et al., 1976; Patera, Sharp, 1981) in

the finite-dimensional case. Using its definition, we have, for example

11290 = E 12U = ' Tk,
je=t Jj=1 uEQ“;]

Let 1¢(A) te the index and d(A) the dimension of a representation A. Then we
have all the propertics from (Patera, Sharp, 1981; McKay et al., 1981). As an
example,

I2(A®AY) = 1ID(A)I(A) + dlAI2(AY,
or, denoting by a Young tableau a permutation symmetry component of a tcnsor power

A®...®A,

20y d(A) + K)I (2)
PR D) = oA ik LA

+ 0
@ 1% dn-21 @
I ('1(8) (d(/\)-k-1)!(k-1)!l (A,

\

19(m) = (dA)+8) 19A) + 2£2(1)(7))?

o

1(4)(8 ) = (d(A)-8) 1(4)(A) . 2 ; 2 (1(2)(/\))2,}'

Using the anomaly-index (Patera, Sharp, 1981) as I(k)(l"]), one has also
1%(m) = (d(A) + IPA),
1%E) = (dn) -1y, etc.
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