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ABSTRACT 

The exc i ton model o f precompound reac t ion i s modif ied such tha t i t 

au tomat i ca l l y reduces to the usual evaporat ion formula a f t e r e q u i l i b r i u m 

has been reached. The r e s u l t i s f u r t h e r modi f ied to conserve angular 

momentum i n a form compatible w i th the Hauser-Feshbach formula. This 

al lows a cons is ten t desc r i p t i on of in termediate exc i t a t i ons from which 

t e r t i a r y reac t ion cross sect ions can be ca lcu la ted f o r t r a n s i t i o n s to 

d i sc re te res idua l leve ls w i t h known spins and p a r i t i e s . Level dens i t i es 

used f o r the compound component of react ion cross sect ions are der ived 

from d i r e c t summation of the p a r t i c l e - h o l e s ta te dens i t ies used f o r the 

precompound component. Predicted neutron, p ro ton , and a l p h a - p a r t i c l e 

product ion cross sect ions and spectra from 14-MeV neutron-induced 

react ions are compared w i th experimental data. Model parameters o f 

general v a l i d i t y are f i x e d beforehand. Two parameters are determined 

from ca l cu la t i ons f o r 56Fe and then used w i th reasonable success f o r 

p red i c t i ng cross sect ions f o r twelve other nuc l ides . 

NUCLEAR REACTIONS 2 7A1, ^ ^ S j i , 5 i v , 5 0 > S 2 C r 
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I . INTRODUCTION 

Development of fus ion energy ca l l s f o r substant ia l improvement in 

the knowledge of neutron cross sections in the energy range from a few 
MeV to about 40 MeV.^ In t h i s energy range, the mu l t i - s tep Hauser-
Feshbach model w i th precompound e f fec ts i s the most v e r s a t i l e and i s 
considered an indispensib le theore t i ca l tool f o r cross-sect ion evalu-

2 a t ions . In analyzing cross sections such as hydrogen and helium pro-
3 

duct ion from 14-MeV neutron-induced react ions, we showed tha t spin and 
pa r i t y e f f ec t s are more important in the second step o f the ca lcu la t ion 
than i n the f i r s t step. However, i t i s not s t ra igh t fo rward to conserve 
angular momentum even in the f i r s t step because the present ly ava i lab le 
models f o r precompound react ions do not conserve angular momentum. In 
add i t i on , the compound and precompound components are general ly calcu-
la ted in the f i r s t step from two phys ica l ly d i f f e r e n t models, thus 
lacking a common basis f o r carry ing out the ca l cu la t i on to the second 
step. 

In Section I I I we develop a model capable o f ca l cu la t i ng the com-
pound and precompound cross sections cons is ten t l y . The model i s f u r t h e r 
developed in Section IV to conserve angular momentum i n both compound 
and precompound react ions. The model becomes tha t o f Hauser-Feshbach^ 
at low energies where precompound e f f e c t i s neg l i g i b l e . In Section V, 
leve l dens i t ies used f o r ca lcu la t ing the compound component are made 
consis tent w i th those used f o r the precompound component. Predicted 
neutron, proton, and a lpha-par t i c le production cross sect ions and spectra 
from 14-MeV neutron-induced reactions are compared w i t h experimental 
data i n Section VI. The exci ton model we s tar ted w i th i s summarized 
f i r s t in Section I I . 

A f u r t h e r mot ivat ion behind the present development i s our conv ic t ion 
tha t the conservation of angular momentum i s c lose ly re la ted to the capa-
b i l i t y o f ca lcu la t ing angular d i s t r i b u t i o n s of outgoing p a r t i c l e s , the 
subject of a second paper in preparat ion. 
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I I . SUMMARY OF THE EQUILIBRATION PROCESS 

The precompound model chosen here as a s t a r t i n g po in t i s the master 

equation approach0 ra ther than the hybr id approach.6 The l a t t e r i s 

s impler but the former provides deeper i n s i g h t i n t o the e q u i l i b r a t i o n 

process. 

The s ta tes o f the composite system are enumerated i n terms of the 

number o f exc i ted p a r t i c l e s , p, and holes, h. For a system w i th exc i t a -

t i o n energy E the s ta te densi ty is given by the equations^ 

g ( 9 e - a d ^ p ^ " 1 

"<P'h»E> = pi h! (p+h-1) ! ( 1 a ) 

A = p2 +h2+p-3h n b x 
p,h 4 U D ; 

where g is the dens i ty of uniformly-spaced s i ng le p a r t i c l e s ta tes and the 
quan t i t y A . contains the e f f ec t s of the Paul i exc lus ion p r i n c i p l e . Par-P, n 
t i d e s and holes are o f ten re fe r red to together as exci tons w i t h the 

exc i ton number of a s ta te given by n = p + h. 

The res idua l i n t e rac t i ons o f the system are assumed to be energy con-

serving and two-body i n nature so t ha t al lowed t r a n s i t i o n s are those f o r 

which Ap = Ah = 0, ± 1. The rates fo r these t r a n s i t i o n s are given by the 

r e l a t i o n s 7 ' 8 

1 In h n - 2TF m 2 9 ( g E ~ C p + l , h + l ) 2
 l 0 V A + (p ,h,E) - -̂ r M 2(p+h+1) ( 2 a ) 

X o ( p > h , E ) ^ M ^ ( g E - C p > h ) P 2 ^ p h - p - h ( 2 b ) 

X_(p,h,E) ^ M 2 | p h ( p + h - 2 ) (2c) 

r - P 2 + h 2 (oa \ 
p,h " 2 " ( 2 d ) 
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where M i s the average matr ix element f o r an i n te rac t i on between spec i f i c 
i n i t i a l and f i n a l s ta tes , and C . contains the e f fec ts of the Paul i 

p,h 
p r i n c i p l e . The quant i ty M has been evaluated emp i r i ca l l y and i s given 

9-11 approximately by the r e l a t i o n 

M2 = k A"3 E_1 (MeV3) (3) 

where k i s a scale fac to r and A i s the mass of the composite system. 

Par t i c les of type b and energy E are calculated as being emitted 
from a s ta te w i th p pa r t i c l es and h holes a t an average r a t e 5 ' 1 1 

2sb+l w (p -p , ,h ,U) 
W 5 (p ,h, e )d e = % £ a b ( e )d £ R b (p ) m ( m > e ) (4) 

where, s^, and p b are the sp in , reduced mass and nucleon number of 
the emitted par t ic le - , U i s the residual nucleus exc i t a t i on energy; i s 
the appropr iate inverse react ion cross sec t ion ; and R^ i s a fac to r which 
takes account of the d i s t i n g u i s h a b i l i t y of protons from neutrons. I f p b 

nucleons are imagined to be chosen at random from among the p exci ted 
pa r t i c l es ava i l ab le , Rb(p) i s intended to give the p r o b a b i l i t y tha t the 
chosen ones w i l l have the r i g h t combination of protons and neutrons to 
make a p a r t i c l e of type b. 

Defining P ( p , h , t ) , the occupation p r o b a b i l i t y , as the p r o b a b i l i t y 
tha t the system w i l l be found in a s ta te w i th p pa r t i c l es and h holes a t 
time t , the master equations which describe the approach of the nucleus 

9 11 to s t a t i s t i c a l equ i l i b r ium are given by ' 

P ( p - l , h - l , t ) A + ( p - l , h - l , E ) + P(p+1 ,h+l , t )A_(p+! ,h+l ,E) 

- P(P,h , t ) j x + (p ,h ,E) + A_(p,h,E) + l h / * m a x Wb(p ,h,e)de] ( 5 ) 

where there i s one such equation fo r each allowed class o f p a r t i c l e - h o l e 
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conf igura t ions . The system i s assumed to be formed w i th unique p a r t i c l e 
and hole numbers, p and h so tha t a t time t = 0 o o 

P(p,h,0) = 5 5 h h (6) 
r r o o 

which gives*the i n i t i a l condi t ions f o r numerical i n teg ra t i on of 
Eq. ( 5 ) . 

Spectra emitted up to the equa l ib ra t ion time T are given by 

ab(e,T)de = c ^ L Wb(p,h,e)de / J P ( p , h , t ) d t (7) 

which gives the precompound component of the energy spectrum of p a r t i c l e s 
of type b. The quant i ty a ^ i s the composite nucleus format ion cross 
sect ion. The e q u i l i b r a t i o n time T is the time when a l l states in the com-
posi te system are equal ly populated. 

I I I . CONSISTENT COMPOUND AND PRECOMPOUND MODELS 

A method is derived f o r ca lcu la t ing the compound and precompound 
react ion cross sections cons is ten t l y . S imi la r to Eq. ( 7 ) , spectra emit ted 
from the e q u i l i b r a t i o n time to i n f i n i t y are given by 

c b U , t = T ~ ) d e - a , , E a b U ) d E l Rb(p) ^ ^ f P ( p , h , t ) d t 
T (8) 

where p-1 replaces the o r i g i n a l f ac to r p-p b f o r we sha l l consider alpha 
pa r t i c l es as excitons subsequently. The o r i g i n a l treatment requires at 
leas t four exc i ted nucleons to form an alpha p a r t i c l e . This i s v i r t u a l l y 
impossible f o r low-energy (14-MeV) nucleon induced react ions. The occupa-
t i o n p r o b a b i l i t y a f t e r t ime T, P(p ,h , t>T) , as a func t ion o f p has the same 
shape as cu,(p,h,E) f o r each E. Thus the d e f i n i t i o n of equ i l i b r ium is 

P(p,h, t>T) = c / t E ) { 9 ) 
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where C( t ,E) i s independent of p o r h. I t has been shown t h a t f o r p-1 = h. 

L <o(p-l,h,U) = e x P ( 2 ^ ) 
P M U 

(10) 

where a = ( i r 2 /6 )g . The r igh t -hand s ide of Eq. (10) has a form s i m i l a r to 

the Fermi gas leve l dens i t y . 

I t is seen t h a t Eq. (8) would correspond to the compound component 

i f the f a c t o r RK(p) were not there . The problem i s due to the f a c t t h a t 
10 

the quan t i t i e s Rb(p) as def ined by Kalbach are v a l i d on ly f o r t=0 , 
because t h e i r values depend e n t i r e l y on proper t ies o f the format ion 
channels. As t approaches T , Rb(p) should approach a constant , otherwise 
the system cannot be said to be i n s t a t i s t i c a l equ i l i b r i um . We now drop 
the f a c t o r Rb(p) and redef ine P ( p , h , t ) as P b ( p , h , t ) to serve the same 
purpose. 

The set o f master equations r e f l e c t i n g a time-dependent p a r t i c l e - t y p e 

d i s t r i b u t i o n i s given by 

d P b ( p , h , t ) 
d t 

P b ( p - 1 » h - l , t ) p_-, fb (p)l 
P ( p - l , h - l , t ) p + ~ P ( p - l , h - l , t ) X + ( p - l , h - l , E ) 

[ "P b (p+ l ,h+ l , 

L P ( p + l , h + l , t 
t ) r P(p+1 »h+l, t ) X (p+1 ,h+l ,E) 

- P b ( p , h , t ) [ x + ( p , h , E ) + X_(p,h,E) + / £ m a x X b (p ,h ,e)de] (11a) 

w i th 

and 

P ( p , h , t ) = l b P b ( p , h , t ) 

l b = 1 • 

( l i b ) 

( H e ) 

In Eq. (11) , P ( p , h , t ) i s def ined s i m i l a r l y to t h a t i n Eq. (5) and the 
r a t i o P b ( p , h , t ) / P ( p , h , t ) has the same meaning as R b (p) but i s now t ime-
dependent. In the f i r s t term in Eq. (11) , P ( p - l , h - l , t ) X + ( p - l , h - l , E ) 
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represents the t o t a l t r a n s i t i o n rates from ( p - l , h - l ) states to (p,h) 
s ta tes . Among the p pa r t i c l es in the (p,h) s tates, (p-1) of them re ta in 
the old pa r t i c l e - t ype d i s t r i b u t i o n P b ( p - 1 , h - l , t ) / P ( p - l , h - l , t ) , but the 
newly created p a r t i c l e may have a d i f f e r e n t pa r t i c l e - t ype d i s t r i b u t i o n 
given by f ^ ( p ) , which w i l l be determined a n a l y t i c a l l y . Thus the composi-
t i ons o f p a r t i c l e types i n the new (p»h) states are given by the quant i ty 
i n the brackets. 

In the second term, P (p+ l , h+ l , t ) X_(p+1,h+l,E) represents the t o t a l 
t r a n s i t i o n rates from (p+ l ,h+ l ) states to (p,h) s ta tes . The quant i ty i n 
the brackets i s the f r a c t i o n of p a r t i c l e type b i n the (p,h) s ta tes . I f 
we assume tha t various types of pa r t i c l es ann ih i la te w i th t h e i r respect ive 
holes a t the same ra te , then the compositions of various pa r t i c l es i n the 
newly formed (p,h) states are the same as in the i n i t i a l (p+ l ,h+ l ) s ta tes. 

The emission rates Xb are given by 

x b ( p , h , £ ) d £ . „ b t " b ( H ,h,u) ( 1 2 ) 

The i n i t i a l condi t ions f o r numerical i n tegra t ion of Eq. (11) are 
given by 

P„(p.h,0) = <5pp 6 h h qb , (13) 
o o 

where q b i s the f r a c t i o n of p a r t i c l e type b in the states (p ,h ) a t 
time 0. This f r a c t i o n is previously contained in Rb(p0). 

We now determine the numerical values o f f b ( p ) by requ i r ing that 
Pb (p,h,T)/ to(p,h,E) be a constant i n b and p. The e q u i l i b r a t i o n time T 
i s the t ime when a l l allowed states i n the composite system are equal ly 
populated. I f summed over b and the fac to r P b ( p , h , t ) / P ( p , h , t ) replaced 
by Rb(p)> Eq- (11) reduces to Eq. (5 ) . A f t e r equ i l ib r ium has been reached, 
the occupation p r o b a b i l i t i e s P(p ,h , t ) can be wr i t t en as 

P ( p , h , t > T ) = P(t) w(p,h,E) . (14) 

In the l i m i t t ha t £b / Wb(p,h,e)de « X+(p,h,E) + X_(p,h,E), i t fo l lows 

from Eqs. (5) and (14) tha t 
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w(p,h,E) A+ (p, h, E) = u ( p + l , h + l , E ) X_(p+1,h+l,E) (15) 

which we sha l l c a l l the cond i t ion f o r the system to stay in equ i l i b r i um 
a f t e r t ime T. Examination o f Eqs. ( l a ) , ( l b ) , (2a) , and (2c) reveals 
t ha t Eq. (15) holds only approximately. The reason f o r t h i s i s t raced 

O 
to approximations used i n de r i v ing Eq. (2a) f o r A+. We sha l l renormal-
ize A+ such tha t Eq. (15) holds herea f te r . Summing Eq. (11) over b leads 
t o an add i t i ona l cond i t ion which i s 

M P > = = i 
IT M 6 ) 

where N i s the number o f p a r t i c l e types included i n the c a l c u l a t i o n . 

Condit ions given by the above two equations assure t h a t f o r t_> T, 

equ i l i b r i um i s maintained at a l l t imes. 

With Eqs. ( 9 ) , (10) , and (11) , the p a r t i c l e spectra comprising pre-

compound and compound components, now cons i s ten t , are given by 

o b (e )d E = oCN 

2Sb + l 

TT2fi3 [ u>b(p-l,h,U) T 
- y b e * b ( £ ) d e I p ; ( p i h > E ) „ / P b ( p , h , t ) d t 

C(E) pb(U) (17a) 

w i th 

C(E) = / 
00 P b ( p , h , t ) d t 

j w(p,h,E) 

and 

Pb(U) = Xp u b ( p - l f h , U ) 

(17b) 

(17c) 

The in teg ra l i n Eq. (17b) can be ca lcu la ted a n a l y t i c a l l y as f o l l o w s . 

Subs t i t u t i ng Eqs. (14) , (15) , and (16) i n t o Eq. (11a) and making use o f 

the i d e n t i t y 

P( t > T) = N P b ( t > T) , 

and summing over b and p, we have 

(18) 
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dP( t ) 
d t - ^ I p ^ ^ / £ m a X X b (p ,h , e )de , 

o 
(19) 

where 

WT = h w ( P ' h ' E ) (20) 

S t ra igh t fo rward i n t eg ra t i on o f Eq. (19) y i e l ds 

r p b ( P , h , t ) d t - p (p .h .x ) zp s ^ ^ i l Eb ; „ ' 
e max X b ( p ,h , e ) de , (21) 

where P(p,h,T) i s ca lcu la ted numerical ly from Eq. (11) . Note tha t on the 
r i g h t side of Eq. (21) we have P(p,h,T) ra ther than P b ( p ,h ,T ) . This may 
be understood as f o l l o w s . A f t e r equ i l i b r i um has been reached, p a r t i c l e 
emission may be dominated by one type of p a r t i c l e s . Deplet ion of the 
occupation p r o b a b i l i t y f o r t h i s type o f p a r t i c l e i s then f as te r than the 
o thers , and thus the e q u i l i b r a t i o n process cont inues. But equ i l i b r i um 
i s maintained as long as e q u i l i b r a t i o n i s a fas te r process than p a r t i c l e 
emission. Therefore, emissions of various types of p a r t i c l e s a f t e r time 
T depend only on proper t ies o f the res idual nucle i — a consequence 

cons is tent w i t h the concept of compound nucleus. 
T °° 

The values of / P b ( p , h , t ) d t f o r b = n, p, and a , and of f j P ( p , h , t ) d t 

as func t ions o f p and h f o r 14.6-MeV neutrons on 63Cu are shown in F ig . 1. 

Parameters used f o r ca lcu la t ions throughout t h i s work are f i x e d and are 

presented in Section VI . Figure 1 i l l u s t r a t e s the r e l a t i v e strengths o f 

each type of precompound emitted p a r t i c l e s and those of compound emit ted 

p a r t i c l e s f o r d i f f e r e n t p-h s ta tes . For example, the r a t i o of precompound 

to compound st rength i s about 16 i n e x c i t i n g I p - l h s ta tes f o l l ow ing neu-

t ron emission and drops to 0.2 i n e x c i t i n g 2p-2h s ta tes . 

In conclus ion, we emphasize tha t the compound pa r t of our c a l c u l a t i o n , 

as obtained d i r e c t l y from the precompound model developed here, would y i e l d 

i d e n t i c a l resu l t s as the conventional compound model as long as Pb(U) 
def ined i n Eq. (17c) i s used i n both models. Di f ferences between the p-h 

s ta te dens i t i es and the Fermi-gas leve l dens i t i es i n sp in d i s t r i b u t i o n and • 

p a i r i n g co r rec t i on are discussed i n Section V. A re la ted problem, t ha t of 

conserving angular momentum i n the precornpound mode, i s addressed f i r s t . 
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IV. CONSERVING ANGULAR MOMENTUM IN THE PRECOMPOUND MODE 

3 12 
In e a r l i e r c ross-sect ion ca lcu la t ions » w i t h mu l t i - s t ep Hauser-

Feshbach codes conta in ing precompound e f f e c t s , the precompound components 
in the f i r s t step (b inary react ion) were ca lcu la ted w i th Eq. (7) or i t s 
approximations. The resu l t s were then combined w i th the compound cross 4 sect ions ca lcu la ted w i th the Hauser-Feshbach method. In the second step 

13 
of ca l cu l a t i on ( t e r t i a r y r eac t i on ) , the spin populat ions in the i n t e r -
mediate nuc le i are requ i red but are not ava i l ab le from the precompound 
par t o f the c a l c u l a t i o n . A r b i t r a r y assumption has to be made f o r the 
spin populat ions in the intermediate nuc le i f o r the precompound p a r t , 
v i o l a t i n g ru les of angular-momentum conservat ion. We t r y here to remedy 
t h i s s i t u a t i o n by reducing Eq. (17a) to a form compatible w i th the 
Hauser-Feshbach method. 

Para l le l to the de r i va t i on of Eq. (4) by Ka lbach^ ' ^ and tak ing i n t o 
account the spin d i r ec t i ons i n the p r i n c i p l e of de ta i l ed b a l a n c e , ^ we 
decompose the emission ra te def ined by Eq. (12) i n t o spin-dependent pa r t s : 

X b ( p , h , J , I ,E ,e )dc - L ' V ^ p (p ,h , J ,E) • (22) 

where T^ i s the opt ical-model t r ansm iss i on - coe f f i c i en t , J i s the t o t a l 

spin o f the react ing system, I i s the spin of the res idual l e v e l , s ' and 

are respec t ive ly the channel sp in and o r b i t a l angular momentum of the 

emit ted p a r t i c l e b. The s ta te densi ty w(p,h,J ,E) i s re la ted to the leve l 

dens i ty p(p ,h ,0 ,E) by aj(p,h,J,E) = (2J+1 ) p ( p , h , J , E ) . 

The spin-dependent leve l dens i t ies i n Eq. (22) are given by 

where 

p (p ,h ,J ,E) = ui(p,h,E) p n ( J ) , (23a) 

e n
( J > = (2J+1) e 2 n , (23b) 

n i m o3 

wi th 
r2 = 1.17 nc/a , (23c) 
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where a = i r2g/6, and c i s a constant re la ted to the moment of i n e r t i a . 1 5 

Equation (23c) i s der ived as fo l l ows . At a given e x c i t a t i o n energy, the 
dens i ty o f leve ls is dominated by the most probable exc i ton conf igura-
t i o n s . The most probable exc i ton number, n", corresponding to the p a r t i c l e -
hole s t a te dens i t ies def ined i n Eq. ( l a ) has been der ived by Wi l l iams 7 

n = 1.09 ( g E ) 1 / 2 . (24) 

The s p i n - c u t o f f f ac to r i n a Fermi-gas l eve l -dens i t y formula, such as 
15 2 given by G i l b e r t and Cameron, can be equated to a—, leading to 

= CT , (25) 

where the nuclear temperature, T , i s re la ted to the e x c i t a t i o n energy E by 

E = ax2 . (26) 

Noting t h a t 1 6 

a* = n o 2 , (27) 
n l 

Eq. (23c) resu l t s . I t may be worth not ing tha t a* i s independent of the 
2 1 /2 e x c i t a t i o n energy, wh i le a— increases w i th E ' . 

Our c ross-sect ion formula t h a t accounts f o r both the compound and 

the precompound e f f e c t s i s a s t ra igh t fo rward extension of Eqs. (7) and (8 ) : 

°b(E,£)d£ - "'I^L 
J X b ( p , h , J , I , E , e ) de P b ( p , h , J , t ) d t , (28a) 
p o J 

wi th 

= n /eixbd£ rpbd t • (28b> b Iir p o 

The quan t i t y Dj^ was introduced to ensure t ha t the product ins ide the 

brackets o f Eq. (28a) has the meaning of a branching r a t i o . Equation (28) 

d i f f e r s from Eq. (17) in exac t l y the same ways as the Hauser-Feshbach 

formula is d i f f e r e n t from the Weisskopf-Ewing evaporat ion formula, see f o r 

example Go lds te in . 1 7 



n 

Computation w i t h Eq. (28) may be d r a s t i c a l l y s i m p l i f i e d i f we assume 

tha t 

p . ( p , h , J , t ) P. ( p , h , t ) 
— = . (29) 

ti)(p,h, J,E) w(p,h,E) 

This assumption enables us to use Eq. (17) d i r e c t l y and amounts to saying 
tha t a l l spin s tates i n the composite system are equa l l y populated dur ing 
the e q u i l i b r a t i o n process. Noting tha t the t ransmission c o e f f i c i e n t s are 
independent of the p a r t i c l e - h o l e ind ices , we obta in 

a b (E ,c )dc = , A 2 I I T ^ I Tg1Jt, ^ b ( I , E , U ) , (30a) 
Jn S £ J T T s £ 

where 

R b ( I ,E ,U) = I Cb(p,E) p b ( p - l , h , I , U ) , (30b) 
P 

w i th 
oo 

C fa(p,E) = / P b ( p ,h , t ) d t / a j ( p ,h ,E ) . (30c) 
o 

Equation (30) reduces to the usual Hauser-Feshbach formula i f instantaneous 

e q u i l i b r a t i o n is assumed. This amounts to rep lac ing f°° P. ( p , h , t ) d t by 
o " 

u;(p,h,E) and £ p b ( p - l , h , J , U ) by p b ( I , U ) , the convent ional leve l dens i t y . 
Fol lowing the emission of the f i r s t p a r t i c l e s , the res idua l l eve l s 

are populated w i th c e r t a i n spin d i s t r i b u t i o n s . These spin populat ions 
are d i f f e r e n t f o r the compound component and the precompound component. 
As an example, the spin populat ions i n 63Cu f o l l o w i n g 14.6-MeV ( n , n ' ) 
reac t ion are shown i n F ig. 2 f o r two outgoing p a r t i c l e energies, 4.5 MeV 
and 8.5 MeV. Two ca l cu la t i ons are compared. The f i r s t i s based on Eq. 
(30) which inc ludes precompound e f f e c t s , and the other i s based on the 
usual Hauser-Feshbach formula. Parameters used f o r these ca l cu la t i ons 
are presented i n Sect ion V I . The precompound e f f e c t i n spin populat ions 
i s seen to s h i f t them toward lower spins. The e f f e c t i s not la rge a t 3 13 18 
low outgoing p a r t i c l e energies. However, as we have shown p rev ious l y , » » 

ca l cu la t i ons f o r t e r t i a r y reac t ions such as (n,na) are qu i t e s e n s i t i v e 

to changes i n spin popu la t ions . In a d d i t i o n , the s h i f t i n spin populat ions 

i s expected to increase w i t h increasing i nc iden t p a r t i c l e energ ies. 
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Equation (30) may be s p l i t up i n t o a compound and a precompound com-
ponents i n the same manner as i n Eq. (17) . I t i s convenient to use the 
Fermi-gas l e v e l - d e n s i t y formula f o r the compound component, p a r t i c u l a r l y 
at low p r o j e c t i l e energies where the precompound e f f e c t i s n e g l i g i b l e . 
This dens i ty formula may d i f f e r s u b s t a n t i a l l y from tha t def ined in Eq. 
(17c), p a r t i a l l y dest roy ing our attempt a t consistency and in t roduc ing 
large unce r ta in t i es i n t o our ca lcu la t i ons and der ived parameters. This 
problem we now address. 

V. LEVEL DENSITIES AND PAIRING CORRECTIONS 

For ca l cu l a t i ons where precompound e f f e c t i s n e g l i g i b l e , i t i s con-

venient to use the composite leve l dens i ty formula developed by G i l b e r t 

and Cameron.15 The high energy por t ion of the formula i s 

'v -I exp(2/alP") 
Pb(U) = i / 4 5/4 < 3 1 ) 
D 12S2 a a ' 

where a2 = CT i s used f o r spin d i s t r i b u t i o n s in the usual manner and 

U' = U-U0. The parameter UQ accounts f o r the odd-even e f f e c t and i s o f ten 

re fe r red to ( i n c o r r e c t l y ) as the pa i r i ng co r rec t i on . The low energy 

por t ion of the composite formula has constant temperature and is normalized 

to Eq. (31) at E , an energy determined e m p i r i c a l l y . 
A 

The formula corresponding to Eq. (31) but based on the p-h leve l 

dens i t ies i s given by 

p b ( U ) = V H ' h . l l ) < 3 2 ) 
K /2TT O 

n 

where ^ ( p - l ,h,U) i s given by Eq. (1) and the e x c i t a t i o n energy U i s used 

instead of the e f f e c t i v e e x c i t a t i o n U1 i n Eq. (31) . 

The two formulas given by Eq. (31) and Eq. (32) are both based on the 

uniformly-spaced s i ng le p a r t i c l e s ta tes . They a re , however, very d i f f e r e n t 

numer ica l ly . The major d i f f e rence between the two ar ises from the p a i r i n g 

co r rec t i on UQ in Eq. (31) and the absence of a comparable co r rec t i on i n 

Eq. (32) . Thus a p a i r i n g co r rec t i on i s needed f o r Eq. (32) , a t l eas t to 

account f o r the odd-even e f f e c t . 
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I f an average energy 2A i s expended to break a nucleon p a i r , then the 
minimum energy requ i red to exc i te p-1 p a r t i c l e s and h holes (p-1 = h) are 
l i s t e d below f o r odd-odd, odd-even, and even-even res idua l nuc le i : 

h odd-odd odd-even even-even 

1 0 0 2A 

2 0 2A 2A 

3 2A 2A 4A 

4 2A 4A 4A 

In odd-odd residual n u c l e i , f o r example, a t leas t a pa i r must be broken in 

order to exc i t e three p a r t i c l e s . Once a pa i r i s broken, a fou r th nucleon 

is already f reed , the minimum energy requ i red to exc i t e four p a r t i c l e s i s 

also 2A. 

The maximum energy tha t may be expended in e x c i t i n g p-1 p a r t i c l e s 
and h holes is 2hA, which impl ies a new p a i r i s always broken in e x c i t i n g 
each add i t i ona l p a r t i c l e . The densi ty o f leve ls tha t can be formed w i th 
t h i s maximum co r rec t i on is o f course small comparing to t ha t w i t h the 
minimum co r rec t i on . Therefore, as an approximat ion, the minimum p a i r i n g 
co r rec t i on , smoothed over h, may be used f o r Eq. v32) and i s given by 

Up,h = + • (33) 

15 
The odd-even s h i f t UQ, tabulated by G i l b e r t and Cameron and adjusted f o r 
local e f f e c t s , i s approximately 0 f o r odd-odd nuc l e i , A f o r odd-even n u c l e i , 
and 2A f o r even-even nuc le i . Thus f o r I p - l h s ta tes , the value of Up ^ i s 
approximately -0.5A f o r odd-odd nuc le i , 0.5A f o r odd-even nuc l e i , and 1.5A 
f o r even-even nuc le i . For 2p-2h s ta tes , these are 0.5A, 1.5A, and 2.5A 20 respec t i ve l y . The mass dependence o f A i s given by 

A = U / 7 K (34) 

The leve l dens i t ies o f 63Cu ca lcu la ted w i th var ious formulas discussed 

above are compared i n Fig. 3. Curve 1 represents Eq. (32) w i th g = 6a/ i r2 . 

Curve 2 is based on the composite formula of G i l be r t and Cameron. Curve 3 
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is based on Eq. (32) but replac ing U by U' = U-U , w i th A given by Eq. 
(34). Curve 1 i s c l ea r l y unacceptable. Curve 3 agrees reasonably w i t h 
G i lbe r t and Cameron below 7 MeV. The d i f f e rence between curve 2 and 
curve 3 at 7 MeV amounts to 7% change in the parameter a , but becomes 
larger a t higher energies. This may be in te rpre ted as fo l l ows . 

The pa i r i ng cor rec t ion Up b increases w i th increasing hole number. 
Since the most probable number of excitons a t an exc i t a t i on energy U 

1/2 increases wi th U , the pa i r i ng energy cor rec t ion U . increases wi th 
1/2 " 

U also. For t h i s reason, the cor rec t ion UQ used in Eq. (31), repre-
senting an average o f pa i r i ng cor rect ion f o r I p - l h and 2p-2h s ta tes , i s 
expected to be too small above 7 MeV, near which the values of UQ are 
determined. Thus, the leve l densi t ies ca lcu la ted from the formula of 
G i lbe r t and Cameron is expected to be too high above 7 MeV. In add i t i on , 
the Paul i -exc lus ion co r rec t i on , Ap in Eq. (32) also reduces curve 3, 
p a r t i c u l a r l y f o r high e x c i t a t i o n energies. However, i t s e f f e c t is not 
large comparing to the pa i r i ng cor rec t ion . 

We therefore choose t o use Eq. (23) f o r the precompound component and 
the corresponding quan t i t i es summed over p or h f o r the compound component, 
both w i t h e f f e c t i v e exc i t a t i on U1 = U-Up to assure consistency in leve l 
dens i t i es . More basic and de ta i led study i n the appropr iate pa i r ing cor -
rect ions i n both the Fermi-gas and the p-h representat ions i s necessary but 
i s beyond our present purpose. 

With the above cons iderat ion, Eq. (30) may be s p l i t up in to the 
compound and the precompound components by w r i t i n g Eq. (30b) as: 

« b ( l , E , U ) = I p Db(p,E) P b ( p - l , h , I , U ' ) + C(E) P b ( I , U ' ) (35a) 

where T 
Db(p,E) = / P b (p ,h , t )d t /ao(p,h,E) (35b) 

o 
00 

C(E) = J P(p,h , t )d t /u) (p ,h ,E) (35c) 

P b ( I , U ' ) = l p P b ( p - l , h , I , U ' ) (35d) 

The f i r s t term corresponds to precompound and the second compound. This 
separation i s now unnecessary but i s computat ional ly convenient. 
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VI . PARAMETER DETERMINATIONS AKD CALCULATIONS 

Calcu la t ions of neutron, proton, and a l p h a - p a r t i c l e product ion spectra 
f o r 14.6-MeV neutrons inc iden t on t h i r t e e n isotopes are compared w i th 

20 21 

experimental data. ' These ca lcu la t ions are based on Eqs. (30a) and 
(35) . Parameters of general v a l i d i t y are f i xed beforehand. Two parameters 
are determined from ca lcu la t i ons fo r 56Fe and then used f o r p red i c t i ng the 
other twelve isotopes. Calculat ions shown in Figs. 1 to 3 were based on 
the same parameters. 22 Opt ica l model parameters are taken from Wilmore and Hodgson f o r 

23 24 neutrons, Becchett i and Greenlees f o r protons, and Huizenga and Igo 
f o r a l pha -pa r t i c l es . Ca lcu la t ion of gamma-ray t ransmission c o e f f i c i e n t s 

13 was described previously i n d e t a i l . Level densi ty parameters are ca lcu-
1 c 

la ted from '.he empir ical formalism of G i l be r t and Cameron and used i n 
various formulas throughout t h i s paper. The s ing le p a r t i c l e densi ty g f o r 
each nucleus i s ca lcu la ted from the corresponding parameter a and thus has 
the e f f e c t o f she l l co r rec t ions . 

A few d isc re te leve ls are used f o r each residual nucleus in the binary 
step. These leve ls are given a weight »E,Uc)/PjJ(I>!J^), def ined i n 
Eq. (35c) w i th Uc being the continuum c u t o f f , such t h a t con t i nu i t y i n the 
ca lcu la ted spectra across E -»- U is maintained. A l a rge r number of d i sc re te w L 
leve ls i n each res idual nucleus i s used in the second step such tha t more 
than 80% of decays by proton emission exc i t e the d i sc re te l eve l s . Often 
only a few d isc re te leve ls are exc i ted by the second outgoing p a r t i c l e s i n 
(n,np) and (n,na) reac t ions . In such cases, the ca lcu la ted t e r t i a r y -
react ion cross sect ions are sens i t i ve to the spacings and spins of the 
res idual d i sc re te l eve l s . 

The remaining parameters are k, the scale f ac to r f o r the res idual 
two-body mat r ix elements, and q^ , the f r a c t i o n of p a r t i c l e type b i n the 
states (P0»hQ) a t t ime 0. A neutron i nc iden t on a nucleus sees N neutrons, 
Z protons, and a maximum o f Z/2 alpha c l u s t e r s . In t roduc ing a parameter f 
as the c l u s t e r i n g p r o b a b i l i t y 1 1 f o r alpha p a r t i c l e s and using pQ = 2 and 
hQ = 1, we have 
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q n = 0.5 N/A' + 0.5 

q p = 0.5 Z/A' 

q a = 0 .5 (0 .5 f Z / A ' ) 

where A' = N + Z + 0.5 fZ and the f r a c t i . , i 0.5 accounts f o r the inc iden t 

neutron. 

The value o f k has been determined by Kalbach^1 to be 400 MeV^. This 

value depends s t rong ly on the leve l dens i ty parameters. Since the leve l 

dens i t i es we used here have strong p a i r i n g co r rec t i ons , the value of k i s 

expected t o increase. The value k = 700 MeV^ was determined by f i t t i n g 

the high-energy ha l f o f the 14.6-MeV 5 6Fe(n,xp) spectrum measured by Grimes 
20 et al. as shown in F ig . 4. The (n,xn) spectrum, measured by Hermsdorf 
21 25 et al. and in tegra ted over angle by Het r i ck et al., was not used f o r 

determining the value of k because o f possib le presence of c o l l e c t i v e 

e x c i t a t i o n s . We have reported DWBA ca lcu la t i ons f o r 15 of the 26 d i s -

c re te l eve l s up to 4.5 MeV i n 14.5-MeV 5 G Fe(n ,n ' ) reac t ions . The dashed 

histograms i n the ca lcu la ted (n,xn) spectrum in Fig. 4 represent such DWBA 

c a l c u l a t i o n s . Co l l ec t i ve strengths in higher-energy leve ls may not be 

n e g l i g i b l e , making the determinat ion of the parameter k on (n,xn) spectrum 

somewhat uncer ta in . 

The (n,xn) spectra measured by Hermsdorf et al. are the only set 

covering a l l t h i r t e e n irrotopes studied here. Five other sets o f measure-
?c 

ments f o r 5 6Fe, considered p rev ious ly , are omitted f o r c l a r i t y . The 

(n,xp) and (n,xa) spectra measured by Grimes et al. are probably the only 

high q u a l i t y data ava i l ab le . 

A f t e r the value o f k was determined, the value f = 0.2 was found 

from the high-energy t a i l of the 5 6Fe(n,xa) spectrum shown i n F ig. 4. 

This value o f f increases the t a i l o f the (n,xa) spectrum near 13 MeV by 
only 25% from a case ca lcu la ted w i th f = 0, thus i s weakly determined. 

27 
A survey o f previous ca l cu l a t i ons f o r heavier isotopes (A > 100), f o r 

which the precompound e f f e c t i s more pronounced, shows large f l u c t u a t i o n s 

o f f w i t h A and she l l s t ruc tu res . 

With the above parameters, we proceed to p red i c t s i m i l a r spectra f o r 

the o ther twelve isotopes: 2 7A1, ^ ' ^ T i , 5 1V, 5 0 ' 5 2 C r , 5HFe, 5 8 ' 6 0 N i , 
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63 6 5 93 
' Cu, and Nb. The resu l t s are compared in Figs. 5 to 17 w i th exper i -

mental data. The (n,xn) data are f o r natura l elements, so are shown 
separately in Fig. 5. The same data f o r natura l elements are re ta ined i n 
Figs. 6 to 17 f o r the isotopes, but should be viewed w i t h caut ion . 

The ca lcu la ted (n,xn) spectra represent sums of p a r t i a l spectra from 
( n , n ' ) , 2x(n ,2n) , (n ,pn) , and (n,an) reac t ions . The (n,xp) spectra are 
sums o f ( n , p ) , (n ,pn ) , and (n ,np) . The (n,xa) spectra are sums of ( n , a ) , 
(n ,an ) , and (n ,na) . The dashed curves i n Figs. 6 to 17 inc lude ca lcu la ted 
resu l t s from the f i r s t step on ly . The high-energy edge in each (n,xn) 
spectrum represents the pos i t i on of the f i r s t exc i ted s ta te in the r e s i -
dual nucleus i n ( n , n ' ) reac t i on , wh i le those in the (n,xp) and (n,xa) 
spectra correspond to the ground s ta tes . The d ip in the high-energy t a i l , 
when present , i s from the odd-even s h i f t , which i s the most pronounced i n 
even-even residual nucleus. 

Best agreement between ca lcu la t ions and experiments i s seen f o r the 
(n,xp) spect ra . This i s probably not su rp r i s i ng since the react ions com-
p r i s i n g the (n,xp) spectra are ra ther pure compound and precompound com-
b ina t ions . The measured (n,xn) spectra contain c o l l e c t i v e e x c i t a t i o n s . 
Although DWBA ca lcu la t i ons are r o u t i n e l y performed f o r the l ow- l y i ng d i s -

14 27 28 
c re te l eve ls f o r c ross-sect ion eva luat ion works, ' ' i t i s not 
s t ra igh t fo rward to deal w i t h c o l l e c t i v e exc i t a t i ons f o r the continuum 
s ta tes . However, in view of the reasonable agreement between ca lcu la ted 
and measured (n,xn) spect ra , the c o l l e c t i v e e x c i t a t i o n i n continuum s ta tes 
cannot be large in most cases. In several cases, the agreement between 
ca lcu la ted and measured (n,xa) spectra i s not qu i t e s a t i s f a c t o r y . Since 
the precompound e f f e c t i s ra ther small i n (n,a) react ions induced by 
14.6-MeV neutrons, we speculate tha t the opt ical-model parameters used 
f o r a l pha -pa r t i c l es are not v a l i d f o r a l l the isotopes and energies, 
p a r t i c u l a r l y f o r low-energy t r a n s i t i o n s . The conclusion by McFadden and 

29 
Satchler t h a t a global set o f opt ica l -model parameters f o r alpha-

p a r t i c l e s could not be found has not y e t been chal lenged. 

The pa i r i ng cor rec t ions impact our ca l cu la t i ons in several ways. 

The odd-even e f f e c t scale the leve l dens i t i es in var ious competing reac-

t ions d i f f e r e n t l y , changing the r e l a t i v e magnitudes o f cross sect ions f o r 
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these competing reac t ions . The ta rge t nuc le i s tudied here are e i t h e r 

even-even or odd Z-even N. For neutron-induced reac t ions , the composite 

nuc le i are e i t h e r even Z-odd N or odd-odd. Therefore, the composite 

nuc le i have e i t h e r non-zero U q or zero U Q , making the emissions rates 

def ined in Eq. (12) d i f f e r as a func t ion of mass f o r the two types of 

composite nuc le i . Had the odd-even s h i f t s been ignored, two d i f f e r e n t 

values o f k would have been required f o r the two types of t a rge ts . A 

t h i r d e f f e c t concerns the co r rec t i on Up which reduces the slope of a l l 

l eve l dens i t i es at high energ ies. A smaller precompound component or a 

l a rge r k i s requi red. This has the e f f e c t of increas ing the compound 

components o f a l l reac t ions . The cross sect ion of the reac t ion tha t has 

the smal lest precompound component i s increased most. 

The computer code resu l t ed from the present study i s dubbed TNG1. 

This model code i s capable o f ca l cu la t i ng other reac t ion cross sect ions 

not mentioned here, such as capture, (n ,3n ) , (n ,2na) , gamma-ray product ion 
3 13 

cross sect ions and spectra. ' The code has an opt ion to use the leve l 

dens i t i es of G i l b e r t and Cameron. In t h i s op t i on , the leve l dens i t i es 

based on the p-h represen ta t ion are normalized to the G i l b e r t and Cameron 

d e n s i t i e s . A smal ler value of k (400 MeV ) i s requ i red. With t h i s 

op t i on , changes in the ca l cu la ted (n,xn) and (n,xp) spectra are n e g l i g i b l e 

but (n,xa) spectra decreased by up to 30%, r e s u l t i n g in poor ove ra l l 

agreement w i th experimental data. 

Grimes et ca l cu la ted (n,xp) and (n ,xa) spectra using the m u l t i -

step Hauser-Feshbach method f o r e igh t of the t h i r t e e n isotopes included i n 

the present study. They inc luded the precompound e f f e c t f o r the (n,xp) 

spectra by a separate model, so t h e i r ca l cu la t i ons are comparable to what 

we s ta r ted out w i t h i n t h i s paper. In a d d i t i o n , they d id not show t h e i r 

ca lcu la ted (n,xn) r e s u l t s nor inc lude the precompound e f f e c t i n the (n,xa) 

c a l c u l a t i o n s . 
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By the time t h i s a r t i c l e i s ready to be submitted f o r pub l i ca t i on , we 
have completed some ca lcu la t ions fo r heavier isotopes, some at she l l 
c losures. I t became apparent tha t when large shel l correct ion is incor -
porated in to the s ing le p a r t i c l e level dens i ty , g , the parameterization of 
the residual two-body matr ix elements M2 should be changed from M2 = kA~3E~l 

to M2 = k'g~3E~1 to maintain a r e l a t i v e l y constant A+. Otherwise, the 
value of k w i l l f l uc tua te rap id ly across shel l c losures. For example, k 
was found to be near 10,000 f o r 208Pb to obtain agreement wi th experimental 
(n,xn) data. 2 1 When M2 = k'g~3E~1 was used, the value k' = 0.3 was found 
to be qu i te sa t i s fac to ry f o r 18 isotopes from mass 27 to mass 235, inc lud ing 
several isotopes near shel l c losures. An independent conclusion to the 
same e f f e c t has also been obtained by Holub and Cindro.3® Few other works 
used shel l corrected values f o r g, a pract ice tha t i s un rea l i s t i c a t low 
inc ident energies. 

V I I . CONCLUSIONS 

Our consistent treatment of the compound and precompound react ions 
leads to a s ingle model that reduces to the usual Hauser-Feshbach model 
at low energies where the precompound e f fec ts are neg l i g i b l e . A s ing le 
set of parameters, inc lud ing those f o r level dens i t i es , are used f o r both 
modes of react ions. For 14.6-MeV neutron-induced react ions, the second 
outgoing p a r t i c l e o f ten sees only a few d iscre te leve ls in the residual 
nuc le i . Therefore, the mu l t i - s tep Hauser-Feshbach method i s used f o r 
descr ibing the t e r t i a r y react ions. For the same reason, spin populations 
in the intermediate nuclei are important, and are ca lcu lated w i th conser-
vat ion o f angular momentum i n both modes of react ion. Model parameters 
were determined from one isotope and then used fo r the pred ic t ion of 
twelve other isotopes. Overall agreement between predicted and measured 
neutron, proton, and a lpha -pa r t i c l e production spectra i s reasonably good. 

To the best o f our knowledge, t h i s i s the f i r s t time that the three 
most important competing react ions induced by 14-MeV inc ident neutrons are 
calculated simultaneously and compared w i th experimental data fo r so many 
isotopes. The resu l ts tend to confirm the neutron and proton occupation 
p r o b a b i l i t i e s in the i n i t i a l 2p- lh conf igura t ions , a quant i ty of much 

5 q i i 
d i v e r s i t y i n the past. 
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Extension o f the present model to the c a l c u l a t i o n o f angular d i s t r i -

but ions i s i n progress. The extension i s based on a p a r t i a l r e l axa t i on of 

the random phase assumption when precompound reac t ion i s invo lved. The 

random phase assumption i s t h a t employed i n de r i v ing the Hauser-Feshbach 

model. Therefore, angular d i s t r i b u t i o n s are ca lcu la ted quantum-mechanically 

and are expected to be forward-peaked i n the center-of-mass system when 

precompound e f f e c t s are s i g n i f i c a n t . When precompound e f f e c t s are smal l , 

the angular d i s t r i b u t i o n s become those o f Hauser-Feshbach ( f ron t -back 

symmetry i n center-of -mass) . 
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1 2 3 4 5 6 7 h 
PARTICLE-HOLE NUMBERS 

Fig. 1. Time-integrated occupation p robab i l i t i es fo r 14.6-MeV 
neutrons on 63Cu. 
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SPIN IN 63Cu 

Fig. 2. Spin populat ions i n 63Cu fo l l ow ing 14.6-MeV ( n , n ' ) reac t i on 
f o r two outgoing neutron energ ies, E' = 4.5 MeV and E' = 8 .5 MeV. The 
s o l i d curves are based on the present model which includes precompound 
e f f e c t s . The dashed curves are based on the Hauser-Feshbach method. 
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ORNL-DWG 7 9 - 1 4 9 0 7 

EXCITATION ENERGY (MeV) 

Fig. 3. 63Cu level densi t ies calculated with various formulas. 
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OUTGOING PARTICLE ENERGY (MeV) 

Fig. 4. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 56Fe. The s o l i d curves are ca l cu la t i ons . The dashed 
curves inc lude ca lcu la ted cont r ibu t ions from the binary step only. The 
histograms represent DWBA ca lcu la t ions o f ( n , n ' ) cross sections f o r 15 
d i sc re te l eve l s . 



27 

OUTGOING NEUTRON ENERGY (MeV) 

Fig. 5. Calculated and experimental neutron production spectra from 
14.6-MeV neutrons on eight natural elements. See Figs. 6-17 fo r resu l ts 
calculated f o r indiv idual isotopes. 
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Fig. 6. Calculated and experimental n, p, a production spectra 
from 14.6-MeV neutrons on 27A1. The dashed curves include contr ibut ions 
from the binary step only. 
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OUTGOING PARTICLE ENERGY (MeV) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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OUTGOING PARTICLE ENERGY ( M e V ) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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OUTGOING PARTICLE ENERGY ( M e V ) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 



34 

OUTGOING PARTICLE ENERGY ( M e V ) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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OUTGOING PARTICLE ENERGY (MeV) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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OUTGOING PARTICLE ENERGY (MeV) 

Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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Fig. 12. Calculated and experimental n , p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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Fig. 12. Calculated and experimental n, p, a production spectra from 
14.6-MeV neutrons on 51+Fe. 
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