. e

UCRL-94095
PREPRINT

. : CONF - R4 1S - -3
MASTER |

COMPARING THE FLOATING POINT SYSTEMS, INC. AP-190L
TO REPRESENTATIVE SCIENTIFIC COMPUTERS: ’
SOME BENCHMARK RESULTS

Thomas A, Brengle and Neil Maron

This paper was prepared for presentation at the
1980 FOURTH ANNUAL FPS USER'S CONFERENCE
San Vwancisco, CA,

April 28, 1980

March 27, 1980

ad

‘This is a preprint of & paper inteaded for publication in & journal or proceedings. Since
L chasiges may be made before publication, this preprint is made wrailable with the un-
“ derstanding that it will not be cited or reproduced without the permission of the author.

DISTRIBUTION OF THIS ODCUNENT iS UNLINITED

PR

COMPARING THE FLOATING POINT SYSTEMS, INC, AP-19QL

TO REPRESENTATIVE SCIENTIFIC COMPUTERS:
SOME BENCHMARK RESULTS*

Thomas A, Brengle and Neil Maron
Lawrence Livermore Laboratory, University of California,
Livermore, Califormia 94550

ABSTRACT

In this paper we preseat the vesults of comparative timing tests made by

running a typical FORTRAN physics siumulation code on the following machines:

—

. DEC PDP-10 with KI processor.

2. DEC PDP-10, KI prorcessor, and FP§ AP-190L,

3. CIC 7600.

G, CRAT-1.

Factors, such as DMA overhead, code size for the AP~190L, and the

relative utilization of floating point functional units for the different

machines, are discussed.
INTRODUCTION

Reseaxchers in the Magneric Pusion Energy Program at the Lawrence
Livermore Laboratory regularly use FORTRAN codes of all sizes to help provide

solutions to many types of engineering and physics problems, Even though the

*WYork performed under the auspices of the U. S. Departwent of Energy by the
Lawrence Livermore Laboratory under contract number W-7405-ENG-48,

DISCLAIMER

ate 34 1T Ay YT SECTmens)ior ¢ Lt by e cried
€T Ty AR N, Sie vemy 200 000 0 TN €RgI 8T PR G vt

afc x vt 2701 e e Slaled Goveitmem . any piency thecat, U:Smmuﬂ,""“ e

Pl BE.280 18 ity

Wad
V,U‘\

¥
¥

e

At

o il 0 v,

A~

-7-

computational resources available include a Digital Equipment PDP-10 with KI
processor, a Control Data 7600, and a CRAY-l, it is often the case that the
elapsed time between the start of a code and the output of the results at
investigator's terminal is quite long, This delay is due to many factorsj not
the least being that these machines operate in a time-sharing environment,

Many codes are too large to be run on any machine but a COC 7600 or
CRAY-1, However, there are several codes, although aot necessarily large,
that still require a great deal of couwputational power. In an effort to
reduce the turparound time of these codes, we connected a Floating Point
Systems AP-190L to act as a slave to our DEC PDP~10. It was installed in June
1978 with the complete software package as available at that time,

Timing tests verified that the AP-190L hardware was indeed fast.
However, without a FORIRAN cross-compiler for the AP-190L, conversion of
existing codes would be slow and arduous. 1In 1979, the installation of
software release 79.1, which included AP FOR'I'RAH,I promised to change that

sitvation.

THE BENCHMARK

In order to make some comparative tests, we decided to use, as a
benchmark, a code which had been developed for use on the PDP-10 and which had
reached a plateau in its development effort. This code, called MAGIC2 by its
authors,2 is a one-dimensional cylindrically-symmetric quasi-neutral
wagneto-inductive particle code, with electromagnetic fields varying only as a
function of radius, The code includes enly radius, radial velocity, azimuthal

velocity, and azimuthal canonical momentum as degrees of freedom for the

=3~

particles. While it is not impoitamt to this discussion that the plysics of

the simulation be underatood, a simplified verbal flow chart of this code is

as follows:

1.

2,

Read in parameters and initialize output files.
Enter the simulation particles and their physical characteristics.
Accumulate the current due to the initial velocities of the
particles.
Repeat the following loop several times:
a, Sulve for new electric and magnetic fields as induced by
particle currents,
b, Move each particle an incremental amount according to
the new fields, and accumulate the new currents due to
their velocities. Also, provide for the particles
which are moved out of the system,
c. Occasionally sample the physical quantities of interest
in the system, for instance: local field values, particle
velocities, ete,
d. Go back to (a).
When the loop is finished, perform some diagrostics on the
system, such as determination of local particle densities, enmergy
densities, etc,
1f enough simulation time has not elapsed, go back and repeat
step (4).
Otherwise, do the historical sumaries of sampled information and

terminate the rum,

s

4=

The majority of the computation was within step (4}. Moving of the

particles in step (4b) actually required 70 to 90 percent of the looptime,

PROCEDURE

The comparative test procedure was as follows:
1. Modify the source, as necessary, to allow error-free compilation
on the given machine.

2, Compile and load the code.

3. Execute code for a typical problem.

While step (3) of the test procedure gave a measure cf the hardware
speed, it was felt that there should also be a comparison of the time required
to set up the executable code, as this could be important when code

development or debugging might be in progress.

COMPARLSON OF SETUP TIMES

In each case the conversion of the source from the FDP-10 to the CDC
7600 and CRAY-1 required about the same amount of time. Approximately four
hours of work was needed to make the source compatible with the two resident
FORTRAN compilers: CHAT on the CDC 7600 and CFT on the CRAY-1. This included
the time required to make several runs of the compilers in order to deal with
the errors arising from slight compiler differences. The run time to do a
compile and load was about 45 seconds on the CDC 7600 and about 2 seconds on

the CRAY-1.

[T S S —

ot e —

=5

However, the conversion to the AP Tequired more than 2 days, due mainly
to twe factors. The first was that AP FORTRANY aad AFLOAD3 were written in
host FORTRAN and ran on the host machine. They were very slow. The run time
to do a compile and load was about } hour. The second was due to the relative
small size of the program memory in the AP-190L, When compiling and loading
code for the AP-190L, it was difficult to know what the final sizes of the
modules would be. Although modules that were too large could be brcken up
into two or more overlays, it was difficuit to detexrmine a convenient size
until several passes through the compile and load procedure had been made,

When overlays were iptroduced, data memory managemeut became a problem.
Since overlays occupy twicr 45 much data memory as program memory, the amount
of data memory available to the cxde for data storage was reduced
significantly, In the final configuration of the 4P-~190L version of the code,
the major loop was the only piece of code running in the AP~190L. The rest of
the code was nob repetitive and wag primarily input/output operations which
the AP-190L FORTRAN does not support, amd which tne AP-190L was not able to
initiate in our system’'s configuration. Within the loop, each step was
assigned its own overlay, resulting in a driver which was always regideat in
program memory, and three overlays.

1t should be noted at this point that vectorization was difficult within
the structure of the benchmark program and could not be done at all by an

automatically vectorizing compiler like CFT on CRAY-I,

A TYPLCAL PROBLEM

The two benchmark code parameters, which primarily determined the length

of time that the problem required to be completed, were: the number of

b

-f~

gimulation particles used and the pumber of simulation time steps that the
code was allowed to run. The tun time required increased linearly as either
parameter was increased, As a representative case, we chose to use 2000
simulation particles, and to let the simulation run for 1024 time steps, We
knew from past experience that this was a typical setup, and was too lomg to
attempt to tunm on the PDP-10 by itself,

We also knew from past experiem:e4 that we would have to comsider the
overhead incurred by the APEX calls to the PDP-10 aperating system, and the
overhead due to the DMA transfers of data to and from the AP~190L. This
overhead was minimized by allowing the simulation to run 128 time steps for
each AP-190L run call. This permitted the AP-I90L to run for several seconds

each time the loop was executed,

RESULTS

The results of the test runs are tabulated in Table I.

Tale I. Benchmark Results (in seconds)

DEC Fpsc) cne
PDP-10 AP-190L 7600 CRAY-1

H1psd) 1 18 3% 80
Theoretical MFLOPSD) 0.25 12 54-56 160-240
Elapsed time 5640 564 375 271
CPU 7559 276 99 50
MFLOPS 0.4 1.3 3.5 7.0
Realized MFLOPS/Theoretical MFLOPS 0.56 0.11 0.06 0,04
Megabucks/Realized HFLOPS 3.6 0.08 1.4 1.1
NOTES:

a. MIPS: Million instructions executed per second.
b. MFLOPS: Million floatimg-point operations per second.
¢, API0IL CPU time was determined by counting cycles.

SOME OBSERVATIONS

From the table, it can be seen that the AP-190L was able to improve the
turnaround {elapsed) time by a factor of 10 over what was pogsible with the
PDP-10 by itself. In addition to this, we observed that the overhead imcurred
by the host was less than 5 percent, which we felt to be an acceptable
figure, The tumaround time was alwost within a factor of 2 of that for the
CRAY-1, which we also felt was vary good. Of course, the CRAY-1 was operating
in a time-sharing situvarion, so this implies more that the CRAY~1 was heavily
loaded than it does that the AP-130L has half the computational power of a
CRAY-1. This can be seen by looking at the CPU time which indicates a ratio
af close to 5:1,

Using the ratio of realized MFLOPS to theoretical MFLOPS as 2 measure of
the floating peint functional umit utilization, we see that relatively little
use of the functional units was made, and that neither more functional umits
nor faster omes could be expected to improve the performamnce of this type of
code, This was largely due to the very scalar nature of the code,

The ratios of megabucks to realized MFLOPS clearly shows that if the
AP~190L was not the fastest benchmark routine run, it certainly was the most

cost effactive.

CONCLUSIONS

Several conclusions can be reached as a result of these comparative

timing tests,

-8-
First, while the AP-190L hardware is very fast, the AP-190L code

development software is not, This means that the AP-190L will prave to be a
cost effective resource, if and enly if, it is primarily used in a production
environment where code modifications are kept to a minimum,

Second, the user ~ust conatantly be aware of the host's overhead when
making use of the AP-190L. Calls to the host operating system must be
minimized, and DMA transfers must be minimized as often as possible,

Third, the run time in the AP-190L should be maximized so the overhead
becomes comparatively small,

Fourth, the AP-190L is cepable of efficiently rumning only relatively
small programs, even with the use of overlays, Uverlays use twice as much
data memory as program m:mcry and this tends to use up data memory quickly as
overlays are introduced,

And lastly, if all of the above are taken into consideration for a
particylar problem program, it is quite possible for the AP-190L to be a

highly acceptable substitute for one of the much larger machines,

|
|

-9-
REFERENCES

Array Processor Fortran Reierence Manual, Floating Point Systems, Iac.,

Publication No. FPS 860-7408-000, November 1978.

T. A. Brengle, B. I. Cohen, MAGIC: A OUne-Dimensional Magneto-Inductive

Particle Code, University of California UCID-17795, Kev, 1, July 18,
1978,

APLOAD Reference Manual, Floating Point Systems, Inc., Publication No.

FPS 860-7410-000, January 1979.

Neil Maron and George G, Sutherland, AP190-L and PDP-KIIQ: A

Hardvare/Softvare Measurement Report, University of California

UCRL~B2652, May 25, 1979 (contained in 79 UG 3/FPS, "Record of 1979

User’s Group Meeting"),

NOTICE

This report was prepared us an account of work sponsored by the United
Staies Governmenl. Neither the United States nor the United States
Department of Energy, nor any of ther vmployees, nor eny of their
conlractars, subcontrattors, or theit erployces. makes amy Warsanty.
express of implied. or assumes any iegal liability or responsibility for the
accuracy, completeness of usefulness of ty information, apparatus,
product or process disclased, or tepresenis that ils use would not infringe
privately-owned rights.

Reference to a company or product name docs not imply approval or
recommendation of the product by the University of Califomia or the US.
Department of Energy to the exclusion of others that may be suitable,

