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i Introduction

The ides. that claasical Yang-Mills theory [1] should be formulated over a princi-
pal fber bundle, locally the product of space-time by a Lie group, was first expressed
by Tkeds and Miyachi [2] in 1956 and later by Lubkin (3] in 1063, It was widely
acceptad only in 1975 when Wu and Yang [4] showed that this geometrical setting
was necessary for a proper understanding of the solitons.

Remarkedly, the same classical geometry controls the quantized theory. I have
shown in 1978 {§] that the globally defined Darboux-Maurer-Cartan-Ehresmann
{(DMCE) structural equations of the principal fiber bundle [6] imply in any given
gange, i.e. over a iocal section, the Becchi Rouet Stora (BRS) equations of the
quantum feld theory (7] and hereby control its unitarity and renormalisability [7,8].
The rucaat finding [0] that the BRS equations also control the algebraic classification
of the anomalies greatly increases the interest of this identification.

The aim of my talk is to show that one may identify the anomalies with the
secondary characteristic classes of the principal fiber bundle, and hereby obtain
their complete classification in a gauge invariant geometrical way.

2 The Darboux-Maurer-Cartan-Ehresmann equa-
tion

Let P denote a differentiable fiber bundle of dimension d+n over a base B of
dimension d. Let I be the projection map. Let us adorn with a~ the exterior
dilfervatisl 4 and any exterior form over P . Let z* denote a coordinate system
over B . Using the cotangent map I3i*, we can pull back on P the dz*:

dz* = II*(dz*) = d(z* o 1) . (8]

Lat ws now introduce over P a field of one-forms A valued into a Lie algebra £ of
dimension » :
Aei(P;A), A=A\, Aed, @)

such that the n A* together with the d dz* define a moving frame (Cartan’: repire
mobile) over P .

Note thet A is o field of one-Jorms valued into a finite dimensional vector space
4,0 dletly c collection of veetors of the infinite dimensional cotangent space
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(B = UPusst P | Ao sush, & gsnsraiss on infinits dimansional Grasomenn
alyaivn a8 defincd by Besasin [19]. The space of maliilesel poiynomas in A (Greew's
Junaisens | io infinite dmensionl, whivess e sstorior produst of A dafines ower
e sone point of P flsval aperators) an of masimal dogres 4. In sther words, 4 i
Al @ janction on P velued inde o finita Orusomann algobre A, but on the senirery &
Orommann fuid valued in 6 finite vasior sposs A . A ssrisin sonfusion wes soused
by B3} where dhis distinction was sverieohed.

Lot o 2ew convider the 3-lorm of curvaiave F = dA + § (A, A]. We restrict
the goumowry by impoving ot 7 shuuld be purely horisontal, 1o, that ¥ can be
oprancd ot e & iy

F=r = %t,&'&' . ()]
Tam & the sddhrnted Derbonn-hdssrer-Cartan-Ehresmann siruciure oquation of
e priuvipal fhor bandle 8-
Oonnider & sypviam of & vortor flalds an P dual io 4:
B =4, b i =o0. ()]
The DMCE squoiiun implies that, under Poissen bracket, the » vector felds D,
guiaruie & Bnite Lin aigebes iemerphic to 4 :
iDv, Dops = Duy, . ®

Thoreliwe e Lis goup G, with Lie algebes 4, acio a0 » irsmsformation group on
# . Note howower thal the sirweiase i anly losal :

3 7 may sluis 2o gkl sovtion sver § , 0 weal,
™ 7 sy sduit ae givbei riviclisation mep over Lhe grevp.

Tnded, wy hove net specified the sevion of the sonter of the greup. In this
gt 7 hin & vmier srurture than i weually aeumed for o priacipal fiber
amile. We do 2ot laow how 10 reseive this ambiguity or f i plays s rele in
qenabens nid sheury, but we hove to Bve with i, bevause the local DMCE squation
= Sie miy me prmerved iy tie renermalisstion.

§ The Beech)-Reuet-8tora equations.

A& setivn £ , or gaige divs, i 5 map from on open subeet of the base # inte
# ot sunguat 10 the Shar. Uning the tangent map T,, we con transport forward



the vectors 3, tangent to the base onto 7, :
(Bur = Z.(4) (©
and pull back the Ehresmann connection A onto the base :
Az = B'(A) . Y]
Ag is the Yang-Mills one-form ixf the gauge £ . However, A contains more informa-
tion tham Ar alone. Given the section T, we can complete a coordinate coframe
oa 7 by choosing some coordinates 3 along the fibers such that 3 is sero on T,
i.e. dy' is pormal to 3, :
(5,)5.!(21‘): =0, &adz* = 0. (8)
The otieatation of the y* along each fiber is arbitrary; however, if we expand the
connection A on this coframe :

A= (Apds” + M) ©)
the matrix A? gives at each point the orientation of the coordinate vectors 3, with
respect to the Killing vectors D,.

We call Faddesv Popov ghost the section dependent object :

e = A (@) . (10)

In the same coordinate systen, we call Becchi-Rouet-Stora operator the differential

s = (&) 3, . (1)
Ia these notations, the DMCE equation splits into 3 components known as the BRS
equations {7) :

QA+ 3 ANl = F(A), sA+de+c] =0, s+ 3 led =0. (12)
or ia & more concise form :
Fa+c) = F(4) (13)

This equation, that I first proposed in 1978 [5] has been recently nicknamed by
Stors the Russian (?) formula.



4 Charssterietic classes.

i this sasiics, we wish to flad the sehomsiogy classes of 7 , i.0. the closed
e rme i of dagroe p meduie wiast farms

&an=e , 6 =&+ ak. (19)

# 8 < & vhen the & tve wiarior polynomes In 7 aad represent the primary char-
ashiranc cie of the manifoid. Honever, viea p = 4+ g, these polynomm
waish susee 7 s borinental and & reprasents the sesondary classn. These forms
carvuipand 15 the Seseyeies of Jumise (15

We shall pavisrns the siamifisation intrinsieally, without chosolag & section, and
thes vidkont desempaning A inte it gauge aad gheot componmis. Ta the next
ansumm, we shall prove that this geomeivic problem i squivalont to the classification
if e sssmaiien of Yang Mills thoory whish may sbeteues the gauge lavariancs, 1.0,
amtinn indupmadasie, of the ruermalined actien.

W procand in e nape :

o) ¢ ming the DO apuation. Than 7 and A sre indepmndant and the coko-
meingy of § an the speee of eneier polynamen in (4 , 7 ) bosomes trivial. Thon
e damiliestine of farme of degres 4 + g mediule auaet forms besomes oquivalent
e the chaniivation of siased forme 7 of degree d+ 9+ 1.

M’f = ,(al’) (19)

¥/ we tmguee the DMOR spation ¥ = 7 . A polysome ia F of degres § o
figher waiher a & consequence of the herissainlity of 7 . Obsorve now that if
WA Py 2 Sth, P, voew o s slwuge of highr degree i P thaa v. Theselors, ¥
» vauhibes baspuee of the DMOE ssndition, v valshe a farilerl. Reciprocally, ¥ »
dowe 20 vasilh, cur Gom . Thus, whas / s aanihilaied by the DMCE squation
bt 808 3 , & ropeesunty & whomniegy chm of don 7 .

Voo gl sotution (10} is the preduct of 4 Charn Simens forms G, by & Weyl
et peipuene P i F of degren v :

AP gmﬁ.nmn. 30a(An = Pouin . (1)
The soflisionts are sobjast be the comstrnints ;
Lmeir=ire, cs'};nsﬂ-*(w) an
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For asy value of g such that d 4 g is odd, there exists a solution with g = 1. This
iacludes the Deser-Jackiw-Templeton topological mass term in odd dimension and
the weual ¢ = 1 ABJ anomaly in even dimension with its associated ¢ = 2 Faddeev
asomaly ia the Hamilionian formalism. Unusual solutions with ¢ > 1 occur with
¢ = 1 only in the presence of two U(1) groups in odd dimension :

o = AANAX P(F,F) (18)
With ¢ =2, g =3, d 0odd, we note the 5U(2).U(1) anomaly :

& = Trapp)(A®, &, &%) 370 Ppy(F) (19)

5 The Wess-Zumino and the descent equations.

Consider a closed non exact form & of degree d 4+ g :
AF)=0, 0 # dK . (20)

I we chooss a section T and expand & in gauge and ghost components :
4 -
Garg = LB, WiH = (e —-) D(AF) [pun - (1)
=4 (s + W+

The expansion of Iy, starts with w§ since higher horizontal forms vanish identically.
i we sxpand the closure equation, we obtain a set of equations known as the descent

suwft 4 dufttl = o . (22)
Istegrating the i = O equation over the base and discarding the surface terms, we
o0 thet s satislies the dual Carten form of the Wess Zumino consistency condition
[8] which delines the possible anomalies

[out = 0. (23)

However, in quantum field theory, the anomaly considered as a quantum correction
te the BRS variation of 1pi action [7,8] is a priori a function of A,, ¢, the antighost
and the source operators) and (23) could have many more solutions. But recently,
1 have shown [13] that all Yang-Mille anomalies are of the type (20-22). The proof
invelves 4 steps :

) wsing auxiliary flelds, the antighosts and source operators are gauged away
(Dinoa's problem {9]);



D the Yoag Mite fidid A, is shows, by leagthy Toyler supansions, o contribute
8 in ewier e A, fe” 10 these sasimatias sech that v # 0;

¢) e ghvut ¢ and Yang Mills form A are combined lnie 4 = A+ ¢;
@ wj ® shows 10 be ihe font lerm of the aupansion of some & cohomology clase

@

The qiaatods Seid theery problams is therefore reduced to the geometric problem
sbidied 1 e proconding sestion aad its geaeric selution {» ohtalned by expandiag
{10} daing e dmient equation (30). Gisps «) aad d) have beoa established by
aaverai sddhary [i4] with siuailer results (in particular Vinilet ol this conference).

Ab we kave s0mm & swtion ¥, the intriasic goometsical clasvification formally
dinpenais of proving 244 indend, ¥ the anemaly hao aa iatrinsic meaning, it is
206 ¥ soendmate artolout Sinl muat b glebally defned. Thevefore it seuet depend
i ¢ ek A, obly Vsouglh the inirins combination 4 and on  sad 4 only through
é.

® Graviaiional anomalies.

N B ervanly simple te inchide geaerel relativity in this formalism. One just
A o fepiace the meving Pame (4 , de” ) of 7 by a Poincaré valund ome-form
Aol i ; # ) aver & 10 Somensienal madileld M, the Rogge Ne'sman grodp manifold
|04 & denaites & conteetien form for the Lorenta gioup, which plays the role of the
Yang Miils graap, abd § i the ‘guantined’ vierhein. Dy ‘quantised’, I mean that in
B ey spem of cosvdinaies § desompene as 2 clamica] vierbein plus ghost
o :

i'= i+ o, (24)
¥ & e ghet feid of lveal wonsintions in the iangent space. Equivalently, one
ﬁ”fllﬂ.dl““i&itw&iiﬂomdl«ddﬂ»

W=fal' (=00, = n(). (23)
Toe guninwd DMCE-DRE equations, alse knewn as the theonomy conditions,
s Whit § andd li ite Lovends asvariant saterior differentiols can be expanded over
# wik slnsseni corlivioniy.
F=gr, PR = Inearr, g = d mwEr, oo
[ ]



whers :
T* = De* = de* + wie', RY = du® + oo™ . (a7

The sys’sm is rlossd and consistent since :
De=T, DT = Re, DR= 0 . (28)

Coasidering the dual vector fields (1-7“, f).), one may easily verify that the D,,
represeat the Lorents algebra [15] ¢

(D, D) = Diaseq - (29)
The difference between Mand a principal fiber bundle is that there is no predefined

projection map, but the space develops a ‘spontaneous fibration’ along the D,,
directions as a result of the DMCE-BRS equations {16].

The best choice of varizbles to classify the anomalies is to devellop the & themselves
onthee:

&= wet+ 0 (30)
aad to introduce [17] a ‘translation covariant’ BRS operator &' such that the ‘alibi’
active translation, or displacement in the tangent space, parametrized by the ghost
n* » compensated for by and ‘alias’ transformation, a passive relabelling of the
coordinates, or displacement along the curved section, induced by a Lie derivative
aloag the ghost vector field £ associated to n* :

& =46-L, (31)
In these variables, é has no ghost ! and the structure equations read (18] :

se = st 05 =0, Je= —Zl6d, (32)

do= D, IO = —g .0 . (33)
These beautifully simple aquations show that the clasification of the anomalies of
geasral relativity is reduced to the classification of the anomalies of a Yang Mills
theory of the Lorents group [12,18] since the local cohomology of s and o are
identical :
[ ot = [ow - deaw) - (adw) = [ (34)
Indeed, the second term is exact and the third vanishes since dw is a horizontal
(d+1) form.



1 have dovelopped thiv prasentation of the gange structure of quanium grav-
Ay iw sovarel sioga Tivet Rogue and Ne'eman (18] analysed the classical theory
shd abtained the siructare squalions M squotions of meiien which Ne'sman aad
§ seindirgueiad 20 DS equations (M) Later with Ne'sman snd Takasugi [17] we
ntradused the & sparsier and fually with Bevlice (18] we have simplified the squs-
vone s chistided the ahamalios. fin this jast papar, our proef that all anomalies
Skl W SONeE 30 aniarier fortas is incompleie. We were uasbie (o gauge away the
W i st erie of the frm ¢ = [ (79, A f) whare A 10 aa arbitrary scalar.
Fhin i Aowever possible sinee Aivaier aad Zumise have fouad that ¢ 10 0 axact :
8= =§ bl M-

7 Conelusion.

The gumiiviial formaiive: teviewed have loads to & claar vadervisadiag and s
smple dumifsarion of the anomalies of Yang Mills thaery and general relativily.
A sweghulerverd geaerciivation ads to the quadtisation of sailsymmetric toasor
uge Guide 2nd it i hopod vhat she formalion ¢ad be axvtended to supergravily.

N & rowanding o sov had the geometrical snderviondiag of the snomalias, the
cani of & nor guad siudy by mathematical phimiciots sometimes convidered s
futile by the maded bnilders, har Saally lod 10 & renewsi of vailied theories through
e dueevery of din coneciotion of saomalios of d=18, N=1 supargravity whes the
e eup & $0{20) (Grem and Scbwars [i9]) o B; @ By (Thiarry-Mieg (20)).

Thin work wan supgeried by CVRS and in part by the Diracter, Office of Energy
Nuemeh, Ofive of Migh Joargy aad Nuclesr Physies, Divisien of Nigh Eaergy
Paguis o the V.5 Degarvmant of Buwgy whiar Coniracts DE-ACO3- 768700008,
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