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ABSTRACT 

The o v e r a l l  o b j e c t i v e  o f  t h i s  e l e c t r o c a t a l y s i s  program was t o  d e f i n e  t h e  

f e a s i b i l i t y  o f  l o w e r i n g  t h e  e l e c t r o c a t a l y s t  c o s t  and t o  inc rease  t h e  e l e c t r o -  

c a t a l y s t  a c t i v i t y  i n  phosphor ic  a c i d  f u e l  c e l l s  t o  improve t h e  commercial 

v i a b i l i t y  o f  f u e l  c e l l s  f o r  p roduc ing  e l e c t r i c  power. 
4 

H i g h l y  d i spe rsed  p l a t i n u m  was p laced  on carbon suppor ts  t h a t  were developed 

under t h e  EPRI RP 1200-2 program so t h a t  t h e y  c o u l d ' b e  used as phosphor ic  

a c i d  f u e l  c e l l  e l e c t r o c a t a l y s t s .  These c a t a l y s t s  were cha rac te r i zed  f o r  bo th  

t h e  p l a t i n u m  su r face  areas and c r y s t a l l i t e  s i zes .  Foraa g i ven  carbon impreg- 

n a t i o n  techn ique  w i t h  t h e  nob le  meta l  s a l t ,  a  d e f i n i t e  c o r r e l a t i o n  between 

t he  s p e c i f i c  su r f ace  area o f  t h e  d e r i v e d  p la t i num c r y s t a l l i t e s  and t h e  BET 

su r face  area o f  t h e  carbon suppor t  was found. A h i g h  d i s p e r s i o n  o f  p l a t i num 

was achieved on a  novel  h i g h  su r f ace  area c a t a l y s t  suppor t  - CONSEL. 

Using h i g h  r e s o l u t i o n  phase c o n t r a s t  e l e c t r o n  microscopy, t h e  c r y s t a l  1  a t t i c e  

o f  h i g h l y  d ispersed  p l a t i n u m  on, carbon was reso l ved  and, w i t h  t h e  l a t t i c e  

images o f  g r a p h i t i c  carbon b l a c k  as an i n t e r n a l  c a l i b r a t i o n ,  t h e  l a t t i c e  

spacing f o r  a  smal l  c r y s t a l l i t e  o f  p l a t i n u m  was measured w i t h i n  2% o f  t h e  

va lue  f o r  b u l k  p la t inum.  

Twenty-one c a t a l y s t s  were f o rmu la ted  w i t h  v a r i a t i o n s  i n  t h e  -. t ype  o f  carbon 

support ,  t h e  p l a t i n u m  meta l  l oad ing ,  and t h e  p l a t i num c r y s t a l l i t e  s i ze .  A 

h a l f - c e l l  apparatus was cons t ruc ted  t o  determine t h e  c a t a l y t i c  a c t i v i t y  o f  

h i g h  su r f ace  area p l a t i n u m  on carbon e l e c t r o c a t a l y s t s  f o r  t h e  e lec t rochemica l  

r e d u c t i o n  o f  oxygen i n  concen t ra ted  phosphoric a c i d  a t  e l eva ted  temperatures., 

Teflon-bonded, g a s - d i f f u s i o n  e l e c t r o d e s  were f a b r i c a t e d  on porous carbon sub- 

s t r a t e s  and were t e s t e d  i n  a  f l o a t i n g  mode us ing  102 w/o phosphor ic  a c i d  a t  

180'~. . The i R-free e l e c t r o d e  p o t e n t i a l s  were measured r e l a t i v e  t o  a  r e v e r s i b l e  

hyd rogewre fe rence  and were p1:otted a g a i n s t  t h e  l o g - c u r r e n t  t o  o b t a i n  a c t i v i t y  

Q and T a f e l  s l ope  i n f o r m a t i o n  as d i agnos t i cs .  I n  a d d i t i o n ,  g a s - d i f f u s i o n  e l ec -  

t r odes  were formed from s e l e c t e d  e l e c t r o c a t a l y s t s  and t h e i r  performances 
. eva lua ted  f o r  oxygen r e d u c t i o n  and hydrogen o x i d a t i o n  i n  100 w/o phosphor ic  

a c i d  a t .  180'~. 'The i R - f r e e  p o t e n t i a l s  were measured as a  f u n c t i o n  o f  t h e  &r- 

r e n t  d e n s i t i e s  and t h e  s p e c i f i c  r e a c t i o n  r a t e s  were computed as a  f u n c t i o n  o f  

t he  p l a t i num c r y s t a l 1  i t e  s j zes .  
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For oxygen reduction, analysis of the polarization curves suggests tha t  i m -  

: provement i n  electrode s t ructures  i s  required since diffusion controlled 

operation was evident even a t  low current densities,. For hydrogen oxidation, 
e f f ic ien t  electrodes were fabricated fo r  the oxidation of hydrogen molecules. 

The degree of poisoning of the surface by carbon monoxide a: a function of 

temperature was also obtained. 

1. INTRODUCTION 

The driving forces towards commercial ization of fuel cel l  systems a re  e f f i c i en t  
u t i l iza t ion  of the fue l ,  low pollution (including noise as a pollutant) and 

the f ac t  t ha t  fuel cel l  power plants do not incur a penalty of lower efficiency 
when they operate a t  power levels l e s s  than the design maximum. The concept 
of e l ec t r i c  power genqration by fuel ce l l s  needs no introduction. With hydro- 
carbon fue ls ,  gas phase fuel treatments are'used t o  produce hydrogen which i s  

oxidized electrochemically. Carbon dioxide i s  present in the fuel gas stream 

so alkaline electrolytes  are precluded from low temperature fuel cel l  consid- 

eration. Emphasis has, therefore, been placed on, phosphoric acid systems.. 

Cost i s  a c r i t i c a l  factor  in the a p p l i ~ a ~ t i o n  of 'phosphoric.acid fuel ce l l  

systems for  producing e lec t r ica l  power. .In turn, efficiency of the el ectro- 

cataiysts  must be high fo r  fuel ce l l  systems to become commercially viable. 

Present phosphoric acid fuel c e l l s  use platinum as the catalyst  on both the 

anode and cathode. As a r e su l t  of considerable research in the l a s t  ten years, 

the combined platinum loading of the anode and cathode, i s  now less  .than 1 
2 mg/cm . This .has been accomplished by, supporting .plati.num on high surface 

area, conductive carbon blacks. The resulting platinum crystal 1 i t es  are small, 
0 

1 .e. on .the order uf 30 A. 

I t  can be reasoned tha t ,  since there a re  so' few atoms in small c r y s t a l l i t e s ,  

the metallurgical and chemical propert ies  of the bulk material do not hold 

when, very small par t ic les  are obtained. 'Recently, i t  has been claimed tha t  

the ca ta ly t ic  ac t iv i ty  of platin'um decreases' as the surface area of the .catalyst  
i s  increased (1). Even i f  t h i s  i s ,  so, ,  small' c rys t a l l i t e s  are  more e f f i c i en t  

in the current density range of practica.1 in te res t ,  because a.decrease i n  

Tafel slope i s  associated with increased catalyst  surface area. -. . 

 he' preparation of high surface area electrocatalysts i s ,  therefore, an im- 

portant aspect of fuel ce l l  technology. Highly dispersed el ectrocatalyti  c 

Stonehart Associates, Inc. 



mate r ia l s  h i v e  been reviewed by ' ~ i n o s h i t a  and stonehart  (2) .  . They discussed 

d e t a i l s  of var ious c a t a l y s t  p repa ra t i on  techniques. Among these, impregnat ion 

o f  metal s a l t  on a  s u i t a b l e  i n e r t  support has been w ide l y  accepted as an 

i n d u s t r i a l  process. 

The o v e r a l l  o b j e c t i v e  o f  t h i s  e l e c t r o c a t a l y s i s  program was t o  d e f i n e  the  

f e a s i  b i l  i ty o f .  lower ing the  e l e c t r o c a t a l y s t  cos t  and t o  increase t h e  e l e c t r o -  

ca ta , lys t  a c t i v i t y  i n  phosphoric .ac id fue l .  c e l l s  t o  improve the  commercial 

v i a b i l  i ty of fuel c e l l s  f o r  producing e l e c t r i c  power., The s p e c i f i c  o b j e c t i v e s  

were t o  prepare a  se r ies  o f  h i g h  surface area e l e c t r o c a t a l y s t s ,  t o  u t i l i z e  

these e l e c t r o c a t a l y s t s  i n  t h e  f a b r i c a t i o n  o f  e f f i c i e n t  gas-d i f fus i .on e lec t rode  

s t ruc tu res ,  and t o  determine t h e i r  e lect rochemical  parameters f o r  oxygen 

reduc t i on  and hydrogen ox ida t ion .  ' i n  add i t i on ,  t h e  degree o f  po ison ing  by .  

carbon monoxide a t  t he  hydrogen e lec t rode  was t o  be i n ' v e ~ t i ~ a t e d .  

2. CATALYST PREPARATION AND- CHARACTERIZATION ' 

Support Se lec t i on  

A number o f  carbons have been i d e n t i f i e d  and charac ter ized by Stonehart Associ- 

ates, Inc.  under the  EPRI .  RP 1200-2 program. From these, t h e  f o l l o w i n g  carbons 

were sel 'ected t o  represent  a  cross sec t i on  o f  p r e s e n t l y  v i a b l e  e l e c t r o c a t a l y s t  

supports:  

Vulcan XC-72R 
Vul can XC-72R 
Vul can XC-72R 

, Vul can XC-72R 
Vul can XC-72R 
Vul can XC-72R 
Vulcan XC-72R 
AC BL 
AC BL 
AC BL 

*CONSEL 

as received 
1200HT 
1400HT 
1800HT 
2500HT- . 

2700HT 
3000HT . 

as received 
1200HT 
2500HT 
as rece ived 

* 
Steam t r e a t e d  AC BL 

I n  o rde r  t o  c a r r y  ou t  t he  research t o  determine whether t he  s t r u c t u r e  o f  the  

carbon support was i n f l u e n c i n g  the  r e a c t i v i t y  o f  t h e  p la t i num c r y s t a l l i t e s  

fo r  oxygen reduct ion,  i t  was necessary t o  prepare a se r ies  of  c a t a l y s t s  w i t h  

we1 1  -charac ter ized carbon s t r u c t u r e s  and p la t inum d ispers ions .  

Stonehart ~ssocletes, lnc. 
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Preparat ion 
: Typ ica l l y ,  10 w/o p la t i num on carbon e l e c t r o c a t a l y s t s  were prepared from 

c h l o r o p l a t i  n i c  a c i d  -by t h e  fo l l ow ing  procedure. Carbon b lack  samples ( 1  t o  

2 g) were wetted by pour ing  the  app rop r ia te  amount o f  aqueous s o l u t i o n  o f  

H2PtC16 (10 mg P t / m l  o f  s o l u t i o n )  on to  t h e  powder. A f t e r  a  . b r i e f  u l t r a s o n i c  

a g i t a t i o n  the  s o l u t i o n  was complete ly  impregnated i n t o  the  porous carbon 

;bl.ack and no f r e e  s o l u t i o n  was observed. The m ix tu re  was a i r  d r i e d  i n  an oven 
a 

a t  about 60'~. This  d r i e d  c a t a l y s t  was ground i n  a  mortar  and placed i n  a  

tube furnace. A f t e r  purg ing  w i t h  hel ium f o r  about 2 hours, pure hydrogen 

was. in t roduced and t h e  temperature increased r a p i d l y  t o  200'~. The hydrogen 

reduc t i on -was  c a r r i e d  o u t  f o r  1 hour. The reduced o r  "ac t iva ted"  c a t a l y s t  

was then cooled t o  room tempera tu re . i n  helium. I n  add i t i on ,  several c a t a l y s t s  

were prepared havihy p la t inum load ings  o f  1, 5, 15, and 20 w/o. The se r ies  

o f  e l e c t r o c a t a l y s t s  i s  g iven i n  Table 1 together  w i t h  the  p lat inum metal 

loading,  p la t inum sur face area. and t h e  'carbon support BET. sur face area. ' These 

c a t a l y s t s  were charac ter ized by s lug  f l o w  CO chemisorpt ion and e lect rochemical  

hydrogen adsorp t ion  t o  o b t a i n  the  s p e c i f i c  sur face area o f  plat inum. - Some , o f  

these c a t a l y s t s  were a l so  examined by u1tr.a-high r e s o l u t i o n  t ransmiss ion 

e l e c t r o n  microscopy, t h i n  s e c t i o n  t ransmiss ion  e l e c t r o n  microscopy, and/or 

x-ray d i f f r a c t i o n .  

Chemisorption Charac te r i za t i on  

I n '  t he  s lug  f l o w  CO chemisorpt ion method ( 3 ) ,  a stream of-.helium was passed 

over t he  reduced o r  "ac t i va ted "  c a t a l y s t  sample and a  known amount o f  CO i n -  

j e c t e d  i n t o  t h e  hel ium stream. The amount o f  CO n o t  adsorbed and the re fo re  

remaining i n  t he  hel ium stream was measured by a  thermal c o n d u c t i v i t y  b r idge 

detector .  The amount o f  CO adsorbed on the  P t  sur face was obta ined by t h e  

d i f f e r e n c e  o f  t h i s  response and t h e  response o f  t he  s lug  obta ined i n  a  b lank 

run. The adsorbed CO per  gram o f  c a t a l y s t  i s  a  measure o f  metal d i spe rs ion  

and i s  d i r e c t l y  conver ted t o  s p e c i f i c  sur face area o f  t he  p la t inum c r y s t a l -  

l i t e s  by means o f  t he  f o l l o w i n g  equation:. 

P V '  s = 0.811 ($ (Q) Equation (1 )  

2 
- 

where S = P t  sur face  area, m /g; P = ambient pressure, T o r r i c e l l i ;  T  = ambient 

temperature, OK; V = volume CO adsorbed, cc NTP; and, W = weight P t  i n  c a t a l y s t  

sample, g: . 

Stonehart Associates. Inc. 
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Table 1: E l e c t r o c a t a l y s t  Ser ies  

Weight P la t inum Sur face  
DOE Percent  Area i n  m2/qm 

Number P la t inum - CO - ECA Carbon 

- 

* '  
Vul can XC-72R as rece ived .  

Carbon Sur face  
Area rnZ/grn BET 



0 
The area of surface platinum atoms has been taken a s  8.4 A ( 4 ) ;  

Surface area measurements were a l so  made using an elect'rochemical technique (5 ,6 ) .  

Porous flooded s t ruc tu r e  e lect rodes  w i t h  small amounts of PTFE were prepared 

on a porous carbon subs t ra te .  These electrodes were placed i n  a Model 494 I 

Universal Cell and a periodic t r i angu la r  potential  sweep was applied t o  the  
BC 1200 potent ios ta t .  The e l ec t ro ly t e  was 50 w/o H3P04 saturated w i t h  n i -  

trogen. Platinum c a t a l y s t  surface  areas were determined from the  t o t a l  
coulombic charge required f o r  hydrogen adsorption, a f t e r  correct ing f o r  double 

2 layer charging, using Zl@C/real cm P t .  This corresponds t o  1.305 x 10 15 
r) 

atoms/cmL and assumes each surface platinum ,atom adsorbs one hydrogen atom. 
A typical  voltammetric sweep f o r  a supported ca ta lys t  (10 w/o P t  on Vulcan 

2 XC-72R) i'n t h e  floo'ded s t ruc tu r e  w i t h  0.25 mg P t  per cm of e lect rode is shown 
i n  Figure 1. The cha rac t e r i s t i c s  of the hydrogen on platinum voltammogram 
are  described, i n  de t a i l  elsewhere (4 ) .  The lack of resolut ion f o r  the  hy- 
drogen peaks i s  cha rac t e r i s t i c  of hi.gh surface area platinum ( 7 ) .  For t h i s  

2 c a t a ly s t ,  the  spec i f i c  surface area of platinum was calculated to  be 124 m /g 
2 while the CO adsorption gave 137 m /g of 

Microscopic Characterization 
Electron microscopy has been extensively used t o  character ize  supported cata-  
l y s t s .  Early work was l imi ted to  p a r t i c l e  s i z e  determination and observation - 

of spa t ia l  d i s t r i bu t i on  of metal pa r t i c l e s  on the  support material .  Recently, 
high resolut ion e lect ron microscopy by Prestr idge,  e t  a l l  demonstrated s t ruc-  
tu ra l  d i f ferences  of small p a r t i c l e s  of ruthenium supported on a1 umi,na (8). 

Based on the  di f ferences  i n  t h e  op t ica l  density they concl'uded t h a t  some of 
the smaller pa r t i c l e s  were two-dimensional and r a f t - l i ke .  Ul.tra-high re- 

! 

solution e lect ron microscopy has been used t o  study the  microstructure and 

morphology of carbon blacks ( 9 ) ,  and t o  obtain l a t t i c e  images of P t  (111) 
I 

planes using evaporated platinum f i lms (10). More recent ly ,  w i t h  the  new 
0 

generation of microscopes, resolving power of 1.4 A has been demonstrated 
by shpwing the  l a t t i c e  image of (220) planes i n  gold s ing le  c r y s t a l s  (11): 
L i t t l e ,  i f  any, of this technology has been applied towards character izat ion 

and understanding of highly dispersed e lec t roca ta lys t s .  I t  has been s u g -  

gested t h a t  the very small p la thum c r y s t a l l i t e s  a r e  amorphous o r  l iquid-Hke 
and i t  has 'been argued t h a t  the  non-crystal1 i n i t y  of small platinum pa r t i c l e s  
may be a reason why the  oxygen reduction charac te r i s t i cs  of high surface area 
platinum a re  d i f f e r en t  from those of bulk platinum. There.was no d i r e c t  

Stonehart Associates, Inc. 
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Figure 1. ~ ~ t e n t i o d ~ n a m i c  current/potential profile .for 10 w/o Pt.,on 
Vulcan XC-72R in 50 w/o li3P04 at 23 '~ ;  Sweeprate=.010 V/S. 

t II 

I 



evidence, however, t h a t  showed c r y s t a l l i n i t y  o r  l i c k  o f  i t  f o r  very  smal l  

p la t inum p a r t i c l e s  supported on carbon black. Due t o  t h e  advent o f  u l t r a -  

h igh  r e s o l u t i o n  e l e c t r o n  microscopy, t he  m ic ros t ruc tu re  o f  these very  small 

p la t inum p a r t i c l e s  now has been viewed i n  a completely new way. 

Using h igh  r e s o l u t i o n  (1  a t t i c e  image) phase con t ras t  microscopy, t h e  c r y s t a l  

l a t t i c e  o f  h i g h l y  dispersed p la t i num supported on carbon b lack  was resolved.  

This  was achieved by t h e  in te r fe rence. .o f  t h e  (111) d i f f r a c t e d  beam w i t h  t h e  
. . 

c e n t r a l  e l e c t r o n  beam. A micrograph. of 10% p la t inum on g r a p h i t i z e d '  Vulcan 

i s  shown i n  F igure  2. These images show t h a t  f i n e  p a r t i c l e s  o f  p la t i num down 
0 

t o  20 A i n  diameter a re  c r y s t a l l i n e  i n  na ture  as opposed t o  amorphous o r  1 i q u i d -  

l i k e .  

The f r i n g e  images produced .by phase con t ras t  e l e c t r o n  microscopy o f  f i n e  
' 

.p la t inum p a r t i c l e s  prov ide  :a novel t o o l  t o  o b t a i n  s t r u c t u r a l  i n fo rma t ion  

which cou ld  n o t  have been deduced f rom x-ray d i f f r a c t i o n  s tud ies . -  

L a t t i c e  dimensions of these small p la t inum c r y s t a l  l i t e s  were accu ra te l y  

measured. It has been es tab l i shed  t h a t  t h e  (002) spacing o f  g r a p h i t i z e d  
0 

carbon b lack i s  3.44 A (12).  Extensive g r a p h i t i c  (002) l a y e r s  and p la t i num 

(111) l a t t i c e  l a y e r s  a r e  ev ident  i n  t he  photographic p r i n t  o f  F igure 2. The 

g r a p h i t i c  (002) l a t t i c e  image was, there fore ,  used as an i n t e r n a l  c a l  i b r a t i o n  

t o  measure the  (111) l a t t i c e  spacing o f  plat inum. A value o f  2.30 8 was ob- 
0 

ta ined;  t h i s  va lue i s  w i t h i n  2% o f  2.27 A, the  (111) l a t t i c e  spacing of b u l k  

plat inum. 

A rep resen ta t i ve  h igh  r e s o l u t i o n  p r i n t  of. p la t inum on as-received Vulcan 

XC-72R i s  shown i n  F igure  3. This  c a t a l y s t  and the  c a t a l y s t  dep ic ted  i n  

F igure 2 represents t h e  two extremes i n  sur face p r o p e r t i e s  a v a i l a b l e  w i t h  
-. t h i s  support.  These p r i n t s  were used t o  subs tan t i a te  the  e lect rochemical  

sur face area measurements f o r  these two c a t a l y s t s .  Mean p a r t i c l e  s i zes  o f  

p la t inum c r y s t a l  1  i t e s  were measured. Assuming a spher ica l  geometry, t h e  
2 f o l l o w i n g  equat ion was' used t o  c a l c u l a t e  " the  s p e c i f i c  sur face area S i n  m /g  

o f  p lat inum: 

Equation (2 )  

where d i s  t he  mean p a r t i c l e  diameter i n  I(, and p i s  t h e  d e n s i t y  o f  p la t i num 

(21.4 g/cm3). Th i s  r e l a t i o n s h i p  i s  shown i n  F igure  4. I n  a d d i t i o n  t o  con- 

f i r m i n g  the  sur face area measurements by o t h e r  methods, t h i s  technique revea l  s  

.Stonehert Aeeocletee, Ino. 
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Figure 2. Phase contrast electron micrograph of 10 w/o Pt on 
graphiti~ed~vulcan XC-72R. Magnification X 2,700,000; 
1 mm = 3.7 A. 
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Figure 3. Electron micrograph of 10 w/o platinum supported on 
Vulcan XC-72R. Magnification X 830,000; 
1 mm = 12 R. 
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F i g u r e  4: The r e l a t i o n s h i p  between t h e  p l a t i n u m  ~ ~ r y s t a l l i t e  s i z e -  and 
t h e  s p e c i f i c  s u r f a c e .  a r e a  a c c o r d i n g  t o  Eqn. ( 2 ) .  



- 
the p a r t i c l e  s i ze  d i s t r i b u t i o n ,  the spa t i a l  dispersion, and the morphology 

. . o f  the support mater ia l .  From the ca ta l ys t  samples 'examined,. the pa i - t ic le  

. s i ze  d i s t r i b u t i o n  appeared t o  be uniform. 

U l t ramic ro tow f o r  TEM i s  corrunonly used i n  b i o l og i ca l  sciences. However, 

u l  t r am ic ro tow  o f  hard inorganic mater ia ls  such as carbon supported cata lys ts  

requ i re  high l eve l s  of techn ica l  sk i 1  1. This technique involves: 

- Embedding i n  a  su i t ab le  medium which could vary-from 

ca ta l ys t  t o  ca ta l ys t  depending on the f i na l  cure hard- 

ness proper t ies  o f  the r e s i n  used. 

- Thin sect ion ing w i t h  a - c a r e f u l l y  selected diamond' kni fe.  

The c u t t i n g  speed and the angle o f  the k n i f e  are c r i t i c a l  

fac to rs  i n  obta in ing t h i n  sections and are dqpendent on 

the choice o f  the embeddi'ng r e s i n  and the type o f  diamond 

kn i fe .  

w i th  t h i s  aim, three samples o f  p lat inum on carbon catal 'ysts were analyzed 

by Structure Probe, ~ n c . ,  which has the capab i l i t y  f o r  diamond kn i f e  th in -  

sect ioning o f  hard inorganic mater ia ls .  The qua l i t y  o f  the sections as . 

ref lected.  i n  the transmission e lec t ron  micrographs. were not  su i tab le  f o r  ob- 

t a i n i ng  the desired informat ibn.  It appeared t h a t  the embedding medium d i d  

not form a bond w i t h , t h e  carbon.par t ic les  and hence instead o f  forming a  

s l i ce ,  the carbon p a r t i c l e s  were peeled o f f  the resin.  I t  was also evident 

• t h a t  dur ing the process o f  sample preparation, the plat inum pa r t i c l es  were 

dislodged from the ca ta l ys t  support. The f ue l  c e l l  ca ta lys ts  developed i n  
0 

t h i s  work have very small p lat inum p a r t i c l e  s ize (about 10 - 25 A) and are 

supported on high surface area carbon blacks. For such work the presence o f  

an embedding r e s i n  causes loss o f  reso lu t ion.  

I n  summary, although some.genera1 information on the plat inum p a r t i c l e  s ize 

and gross d i f ferences i n  the' carbon supports can be observed, the th in-sect ion- 

, i ng  method not  on ly  showed no advantages over conventional e lec t ron .microscopy 

o f  such cata lys ts ,  but a lso destroyed the spa t ia l  d i s t r i b u t i o n  o f  the sup- 

ported metal p a r t i c l e s  and produced i n f e r i o r  resolut ion.  The embedding and 

u l  t r am ic ro tow  techniques need t o  be developed f u r t he r  f o r  a  meaningful t k i n -  

sect ioning o f  such mater ia ls .  

X-Ray Character izat ion 

I n  add i t i on  t o  CO adsorption, electrochemical hydrogen deposi t ion and e lec t ron 

microscopy, x-ray l i n e  broadening was used t o  character ize two of the e lec t ro -  

Stone,hert Associates. Inc. 
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catalysts  - 10 w/o P t  on as-.received Vulcan XC-72R and 10 w/o P t  on graphi- 
t ized (3000HT) Vulcan XC-72R. For highly dispersed platinum crys ta l l  i t e ~ ,  
the x-ray peaks a re  diffuse and. broad. Further complications a r i se  due to  
interference from the support material. The measured half widths were cor- 
rected f o r  the instrument l i ne  w i d t h .  Average.platinum c r y s t a l l i t e  s izes  
were calculated using the Scherrer equation. Assuming a spherical -geometry, 

the specif ic  surface area of platinum was calculated by Eqn. ( 2 ) .  

Characterization Summary 
Table 2 summarizes platinum c r y s t a l l i t e  s ize and the corresponding specif ic  
surface areas using different  measuring techniques. Considering the d i f f i  - 
cul t i e s  involved fo r  measuring very high surface areas, '  the agreeme'nt among 
various techniques f o r  the 10 w/o P t  on ~ u l c a n  XC-72R is quite reasonable and 
for  10 w/o P t  on graphitized .carbon support i s  exceptionally good. 

Analytical data fo r  selected carbons 'and electroc'atalysts contain-ing 10 w/o 
platinum are presented i n   a able 3. The heat-treated carbons have improved 
corrosion. resistance from the point of view of carbon 1 oss .under operating 
fuel cel l  conditions. I t  should be noted, however, tha t  the heat treatment 
also reduces the support surface area. Dur ing  the course of t h i s  work i t  
was found tha t  fo r  the impregnation catalyzation .process, the specif ic  sur- 
face area of platinum c rys t a l l i t e s  deposited on carbon was related to  the BET 

surface area of the support. Figure 5 demonstrates tha t  higher platinum 

surface areas can be realized on supports exhibiting higher BET surface areas.  
A simi 1 a r  rela t ionship between platinum crystal 1 i t e  surface area and BET area 
has been reported previously. (13). In t h i s  study, carbon supports with la rge  
differences in crystal  structure (amorphous to  graphitic) and surface proper- 
t i e s  (as  measured by vola t i le  contents and pH) were selected fo r  catalyzation. 

.The data are  shown i n  Figure 6. .Note that the scale  i n  Figure 6 is d i f fe rent  

from tha t  used in Figure 5. ~ l t h o u ~ h  there i s  some sca t te r ,  a def in i te  in.- 

crease of platinum surface area w i t h  increased surface area o f  carbon support 
can be seen. Part of the sca t te r  is  believed. t o  be due to  inadequacy of the 

N2 adsorption BET method' t o  distinguish between t rue and available surface 
areas f o r  microporous materials (14). 

The crystal  l i t e  surface area versus BET surface area correlation can be ex- 
plained by a number of theori-es; the simplest of them being that  carbon de- 

fec ts  act  as t rap  . s i t e s  for  platinum crystal1 i t e s .  Graphitic c,arbons have 

Stonehart Aesociates. Inc. 
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Table 2: Platinum C r y s t a l l i t e  Size Comparison Using D i f f e r e n t  Measuring Techniques 

Cata lyst  

10 w/o P t  on 
Vul can XC-72R 

10 w/o P t  on 
Graphit ized 
XC-72R 

CO Adsorption Electrochemical Electron Microscopy . X-ray D i f f r a c t i o n  
,- d .- d ,. d d 

* \ .  

The average p a r t i c l e  s izes  were ca lcu la ted  from P t  s'urface area assuming spherical  p a r t i c l e s  and 
using Equation ( 2 )  and v i c e  versa. 
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Figure  5 .  Plat inum c r y s t a l l i t e  s u r f a c e  areas a t  1 0  w/o P t  loadixig as 
a f u n c t i o n  of  the carbon .support s u r f a c e  a r e a s .  
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f u n c t i o n  of t h e  ca rbon  s u p p o r t  s u r f a c e  areas. 
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lower surface areas,  tience, fewer defect.  s i t e s  than turbostrat ic  carbon blacks. 
Carbons with lower surface area should have relat ively fewer defect s i t e s .  As 
a resul t ,  the platinum crystal 1 i tes  should be larger  than those on h i g h  sur- 
face area carbons for  a given platinum loading. - Since the number of growth 
s i t e s f o r  P t  c r y s t a l l i t e s  may be considered constant fo r  a given carbon sample, 
the deposition of l e s s  P t , .  e.g'. 1% loading, should be expected t o  give smaller 
c rys t a l l i t e s .  As a t e s t  of t h i s  theory, electrocatalysts w i t h  only 1 wlo, 
platinum were prepared on as-received Vulcan ~ ~ 1 7 2 ~  (BET surface area 254 

2 m2/g )  and Vulcan XC-72R 3000HT (BET surface area 60 m /g). The electron micm- 
graphs indicated tha t  even for  1 w/o platinum loading, the s ize.of  the crystal-  
l i t e s  on graphitized carbon black were larger than those on the high surface 
area carbon black. For a given carbon support, platinum c r y s t a l l i t e  s ize  was 
about the same for  both 10 w/o P t  and 1 w/o P t  loadings. Some of the resul ts  
i n  Table 1, however,.show the expected differences based on CO and ECA measure- 
ments. Other related factors  such as wettabi 1 i ty.'and microporosi t y  of -the 
support material will influence the catalyzation. . .  

There i s  s t i  11 considerable rodm for  ca ta lys t  improvement.. The platinum surface 
2' area, for  example, will approach 250 m /g i f  a l l  atoms are  surface atoms. 

This limiting surface area has not been approached in this work. 

3. ELECTROCHEMICAL EVALUATION 
~xperimental -_ 
A half-cell apparatus was constructed t o  determine the ca ta ly t ic  ac t iv i ty  of 

h i g h  surface area platinum supported on carbon for. the electrochemical re- 
duction of oxygen and oxidation of hydrogen i n  concentrated phosphoric acid 
a t  elevated temperatu'res. The performance measurements were made with t h l s  

apparatus using PTFE-bonded gas-diffusion electrodes on porous carbon substrates.  
Prior t o  the ca ta lys t  layer deposition, t h e  carbon substrate was wetproofed using 
a PTFE emulsion t o  provide the gas diffusion path. The catalyst  was dispersed 

i n  water using ultrasonic agitation and TFE-30 dispersion was added t o  give a 
50 w/o .catalyst  to  PTFE content. The solution was f i l t e red  direct ly  onto the 

carbon substrate.  Following a i r  drying a t  about 75OC, the electrode was placed 

i n  a s inter ing oven a t  330'~ for  15 minutes. Some e,lectrodes were also pre-, 

pared using Teflon-3416 emulsion. Since Teflon 3416 has a s ignif icant ly lower 

surfactant concentration than Teflon-30, the ra te  of flocculation, hence, the 

agglomerate s ize ,  i s  more easi ly  control led. Electrodes were prepared using 

each of the ca ta lys ts  l i s t e d  in Table 1. 
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The floating mode method deicribed by Giner and Smith (15) was used to  t e s t  
2 1 cm electrodes in 102 w/o H3P04 a t  180'~ for  oxygen reduition ac t iv i ty .  The 

acid concentration was maintained by presaturating the reactant gas (02 o r  a i r )  
to provide a water vapor pressure in equilibrium with the 'e lec t ro ly te .  Tempera- 
A 

tures of both the t e s t  ce l l  and presaturator  were controlled to  within i l O c  

by proportional controllers.  The electrode potential s were measured re1 a t ive '  
to a reversible hydrogen reference electrode i n  the same electrolyte .  A BC-1200 

potentiostat was used i n  both the potent iostat ic  and galvanostatic modes for 
these measurements. The electrode potent ials  were i R  corrected. 

i R  correction and compensation f o r  the r e s i s t ive  losses can be demonstrated 
by constancy of the corrected output during t ranslat ion of the Luggin capi l lary 
to  and from the electrode surface with corresponding i R  bridge correction se t -  
tings. The measurement of porous electrode performance curves involves a cor- ' 

r ec t ion  of the potential term which i s  often taken for  granted, or treated 

casually. Since. a potentiostat  can control only the difference i n  potential 
between the t i p  of the reference probe and the working.electrode; and not the 
working electrode metal/solution interface.  potent ial ,  the control potential '  
contains an error  due to  the.solution resistance. Under load, when current 
flows through the cel l  solution, a potential gradient occurs between the 
counter electrode and the working electrode. ' This gradient is  caused by the 
resistance of the solution to  ionic current.flow. Due to t h i s  potential gradient 

the measurement of the.solution/working electrode potential difference by d i r ec t  
means i s  impossible, since the reference probe cannot be 1ocated.at  the solution/ 
working electrode interface without perturbing the interface and influencing 

the potential difference. Loca.tion of the reference' electrode probe a t  a 

distance f a r  enough away from the working electrode so ' t t ia t  i t  does no t  dis- 
turb the potential difference means tha t  the reference probe measures not only 
the working electrode/solution interface potential b u t  also part  of the po- 

tent ia l  gradient between the counter and working electrode when the ce l l  i s  
under load. The  part  of the potential  gradient tha t  the reference probe 

measures i s  referred to  as  the i R  polarization or  solution resistance. 

Correction of th.e measured potential fo r  the iR polarization can be accom: 

plished by several methods and when data a r e  reported to  be "iR f ree  o r  ".iR 
corrected", one should know how tha t  has been achiev.ed and whether the pro- 
cedure used i s  legitimate. Early automat ic  iR correction c i rcu i t ry  described 

by Kordesch and Marko (16) u t i l ized  a switching pulse derived from the 
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60 Hz 1 ine voltage. I t  i s  now recognized. tha t  t h i s  pulse frequency was too 
low to  give adequate i R  correction. Later, potentiostat c i r cu i t s  were de- 
signed employing posit ive feedback from the power output t o  the sensing 

c i rcu i t s .  Balance was achieved by driving the potentiostat into unstable 
osc i l la t ion  and then backing off  until the control c i r cu i t s  were s table .  
This procedure produces two resu l t s .  The f i r s t  i s .  tha t  an electrode under 
tes t  i s  easi ly  destroyed by ' t he  v io lent  current and potential excursions 
during oscil  la t ion when maximum power of the potentiostat/galvanostat i s  
applied. The second i s  tha t  there i s  no cr i te r ion  that  indicates the iR 
term has. been adequately neutralized.. 

In the rapid current interruption procedure with the electrode potential 
decay observed on an oscilloscope, the instantaneous potential decay r e f l ec t s  
most of the iR:in .the solution..but only to  the outer face of the, porous 
electrode. , I t  does not correct for  the i R  within the porous electrode struc- 
ture .  The wide band bridge c i r cu i t  used in t h e .  BC-1200 potentiostat  does 
essent ial ly  the same t h i n g  as the current interruption technique, except 
tha t  a small (+5 mA or  25 m V )  hi 'gh speed square wave i n p u t  ( r i s e  time 10 

nano seconds) is 'followed by the potentiostat control c i r cu i t s .  If  the r i s e  
time of the perturbing signal exceeds the response of . the .potent ios ta t ,  
only the instrumental s lew.rate  i s  measured, even though the current or  po- 

ten t ia l  s tep appears a s  an interruption to the potentiostat. In order for  

th i s  technique t o  work, the potentiostat  must have a very f a s t  rise-time. 
The same waveform i s  observed under these. conditions as. would be seen with 
a physical c i r cu i t  interruption! iR balance i s  achieved when the current1 

voltage perturbation i s  no longer observed by an oscilloscope. 

Oxygen Reduction Activity . . 

-. 
Activity data f o r  reduction of 100% oxygen i n  180°c, 100 w/o phosphoric acid 
were meaiured fo r  several platinum on a c h l e n e  black carbon catalysts .  
Figure 7 shows performance curves for  an electrode with 0.5 mg ptlcm2 loading. 

• The solid points in the figure denote performance of baseline ce l l s  (17). 

Table 4 i s  a summary of the ac t iv i ty  data. Analysis o f . t h e  data i s  i l l u s t r a t ed  

in Figures 8-10. 

In Figure 8, the ac t iv i ty  data a t  800 mV and 900 mV are compared. The.re i s  an 

apparent c rys ta l l  i t e  s ize  e f fec t  based on the leas t  squares f i t  of the data. 
However, visual inspection of the data suggests tha t  one l ine  could adequately 

f i t  a1 1 the data as  well, 
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Figure  7.  Performance curves  on 02 ( ) and on' a i r  ( + ) f o r  an improved 
e l e c t r o d e  s t ruc t . l i re  i n  t h e  h a l f - c e l l  appa ra tu s  a t  1 2 0 ~ ~  i n  
102 w/o H ~ P O ~ ;  e l e c t r o d e  loading  0.5 ag pt/cm2 a s  10 w/o P t  
on ~ u l c a n  X C - 7 2 ~ .  The s o l i d  p o i n t s  b a s e l i n e  performances 
from Ref. (17). ' - 
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Table 4: E j e c t r o c a t a l y s t  A c t i v i t y  Data 

. , 

Post Test Ca ta l ys t  
P l  a t i  num Plat inum Laver 

C a t a l y s t  . n! 
Surface Area ~h i c i kness  A c t i v i  y B 900 mV A c t i v i t y  @ 800 mV 

( ~ g /  cm ) ( d l  gm) & (pA/cm 8 Pt  (07) 1 ~ A I C ~ ~  P t  (02) ) 

5% PtIShawinigan 

10% PtIShawi rii'gan 
D 

I a 10% PtIShawini 'gan 
. I U a  

W 0 
0.5 

n 
2 .  15% PtIShawi ni'gan 0.5 
(0 
a 15% PtIShawi n i  gan 0.75 





The a c t i v i t y  data o f  Bregol i . ( l )  are  p l o t t e d  i n  F igure  9 a long  w i t h  t h e  da ta  

ob ta ined a t  900 mV p la t inum on acety lene b lack.  B r e g o l i  ' s  da ta  were taken 

' f o r  p la t inum on Vulcan XC-72 and p la t inum b l a c k .  The apparent c r y s t a l l i t e  

s i z e  e f f e c t  e x h i b i t e d  by c a t a l y s t s  supported 'on Vulcan and p la t i num b lack  

i s  d i f f e r e n t  from t h a t  e x h i b i t e d  by c a t a l y s t s  supported on acety lene b lack.  

This  imp1 i e s  t h a t  the  measured a c t i v i t y  f o r  oxygen reduc t i on  i s  dependent 

on the  subs t ra te  used t o  support t he  ca ta l ys t .  

An a l t e r n a t i v e  argument f o r  the  apparen t . c rys ta .7 l i t e  s i z e  . e f f e c t  i s  t h a t  

t he  observed decrease i n  s p e c i f i c  a c t i v i t y  w i t h  increase i n  surface area i s  

due t o \ d i f f u s i o n  e f fec ts .  As t h e  sur face area o f  . the e l e c t r ~ c a t a l ~ s t  i n -  

creases; t h e  tu rnover  number approaches a -  r a t e  whereby r e a c t a n t  cannot be 

supp l ied  t o  the  c r y s t a l l i t e  a t  a  comparable ra te .  Hence, t he  a c t i v e  metal i s  

n o t  e f f e c t i v e l y  u t i l  i z e d  and performance i s  1  i m i t e d  by d i f f us ' i on .  This  

d i f f u s i o n  phenomena produces an observed decrease i n  s p e c i f i c  a c t i v i t y  w i t h  

increase i n  sur face area. 

Kunz and Gruver (18) der ived e lect rochemical  r a t e  equat ions. f o r ,  gas d i f f u s i o n  

elec,trodes opera t ing  under a c t i v a t i o n  c o n t r o l  o r  under d i f f u s i o n  c o n t r o l .  

These.equat ions resu l  t ed  i n  t he  c u r r e n t  a t  a  g iven p o t e n t i a l  va ry ing  1  i n e a r l y  

w i t h  c a t a l y s t  l oad ing  i f  the  e lec t rode  operates i n  t he  k i n e t i c  c o n t r o l  regime 

and w i t h  t h e  square r o o t  o f  c a t a l y s t  loadi,ng if the  e lec t rode  operates i n  t h e  

d i f f u s i o n  contr.01 regime. It was therefore suggested . t h a t  t h e  c o n t r o l  1  i n g  

regime cou ld  be determined by v a r y i n g - t h e  c a t a l y s t  load ing .  Two caveats 

e x i s t ,  however. The f i r s t  i s  t h a t  t he  spec i f i c -  sur face '  area may change w i t h  

l oad ing  so it. i s  more c o r r e c t  t o  use t h e  p lat fnum sur face area i ns tead  o f  t h e  

p la t inum . loading. Th is  was done f o r  t h e  data repor ted  i n  Table 4. The 

-. 
cu r ren t / su r face  area r e l a t i o n s h i p  i s  shown i n  F igure 10. A ' . leas t  squares 

ana lys i s  r e s u l t s  i n  an approximately l i n e a r  v a r i a t i o n  suggest ing t h a t  t he  

e lec t rodes ope.rate under k i n e t i c  c o n t r o l  . The second caveat i s  t h e  va l  i d i  t y  
. . o f  t he  c r i t e r i o n  f o r  a p p l i c a b i l i t y  o f  the.  d i f f u s i o n  c o n t r o l  r a t e  equat ion de- 

• r i v e d  by Kunz and Gruver -- which i s  n o t  c lea r .  The c r i t e r i o n  f o r  a p p l i -  

c a b i l i t y  i s  t h a t  t he  parameter 

R a  SWior  exp (anFq/RT) )i 

Stonehert A ~ s o c i a t e h ,  inc. 
r 



Figure  9. S p e c i f i c  oxygen r educ t ion  r a t e  a s  a  f u n c t i o n  of s u r f a c e  a r e a  

,s 
a 100,- 

i s 
3 - 

A Platlnum on acetylene black 
in this report 

0 0 Platinum on vulcan XC72 
from Bregoli (1) 



!.m2 -Pt/m2 ELECTRODE SURFACE 

Figure 10.  V a r i a t i o n  of  c u r r e n t  d e n s i t y  with P t  s11rfar.e area f o x  P t  
suppor ted  on a c e t y l e n e  b l a c k  a t  180°C i n  100 w/o H3PO4 on 02.  



i s  "large". Here, Ra is  the agglomerate radius in cm, L i s  the electrode 
2 thickness in cm, W i s  the platinum loading in  g/cm frontal area, S i s  the 

2 platinum surface area in cm / g , ~  i s  the agglomerate tor tuosi ty ,  D a i s  
O2 O2 the oxygen diffusivi ty-solubi l i ty  product in mole/cm-sec.,~ i s  the 

2 agglomerate porosity, i i  i s  the exchange current density in A/cm P t ,  and 
the remaining terms have the i r  usual electrochemical definit ions.  Numeric 

1 imi t s  were not specified. Using the electrode properties n Table 4 and 
data specified by Kunz and Gruver, the c r i te r ion  for  the electrodes used in 
t h i s  work i s  only on the order of 5 or  less .  Hence, the square root relation- 

ship may not be valid. 

'0 '. .I?* Apparent activation energies f o r  oxygen reduction were estimated from the 

temperature e f fec t  on the polarization curves. The data shown i n  Figure 11 
2 are. for  an electrode.containing 0.53 mg Pt/cm electrode and operating on a i r .  

2 The p o s t  t e s t  surface area of the platinum was 30 m / g  based on electrochemical 
adsorption measurements. The PTFE loading was 30 w/o, and the carbon support 
was Shawinigan acetylene black. The temperature range investigated was 139- 

. . 2 ~ 8 ~ ~ .  All measurements were i R  compensated. The da ta  compare favorably t o  

previously reported performance r e su l t s  (18,19) as seen in Figure 12.  
The data reported i n  Figure .ll cannot be used direct ly  to  extract kinetic i n -  

formation since they do not account f o r  the change i n  the theoretical open 
c i r cu i t  potential (TOCP) of . the oxygen, electrode with temperature. The overa- 

a l l  reaction which occurs in the ce l l  ' is :  -. 

-The reversible Nernst potential f o r  t h i s  reaction i s :  

Equation ( 3 )  

where: 
CL 

7 3 ~ F E ;  = 57,410 + 0.94TlnT + 3.92T + 0 . 0 0 1 6 5 ~ ~  - 3.7 x 10- T 
Equation (5 )  
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E vs H 2 (Volts) & 

F i g u r e  11. Perfornlance curves f o r  oxygen r educ t ion  a t  v a r i o u s  temperatures. 
E l ec t rode  run  on a i r  a t  1 ohm i n  104.6 w/o H3PO4. E l e c t r o d g i s .  
0.53 mg ~ t / c m 2  (30 m 2 / g  pos t  test a n a l y s i s )  on Shawinigan 
a c e t y l e n e  b l ack ,  w i th  30% Teflon.  
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. . .  
Figure  12. Current  d e n s i t y  a s  a  funct ' ion o f . ' l / T  f o r  v a r i o u s  p o t e n t i a l s .  . 

. I n  104.6 w/o H3P04. 
.' . 

. . . . 
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To understand the  e f f e c t  o f  temperature on the  oxygen reduc t ion  ,e lec t rode 

k i n e t i c s ,  i t  . i s  necessary to, generate in format ion on ' t h e  p a r t i a l  pressure 

of water i n  concentrated acids as a f u n c t i o n  o f  temp,eratu,re. The c loses t  . 

in format ion i s  t h a t  g iven by MacDonald .and Boyack (20). The i r  data a r e  r e -  

por ted  f o r  temperatures between 130 '~  and 1 7 0 ' ~  and f o r  phosphoric a c i d  con- 

cen t ra t i ons  i n  t h e  range 75-102 w/o. An empi r ica l  c o r r e l a t i o n  was developed 

f o r  these cond i t ions .  This c o r r e l a t i o n  was used t o  ext.rapolate t o  104.6 w/o 

a c i d  and 250'~. Results are  repor ted  i n  F igure 13. The, water vapor pressure 

can then be used i n  Eqn. (4)  t o  est'imate the  t h e o r e t i c a l  open c i r c u i t  potentia.1 

f o r  t he  oxygen reac t ion .  The r e s u l t s . f o r  oxygen are reported, i n  F igure  14. 

• I d e n t i c a l  c a l c u l a t i o n s  can be performed fo r  a i r .  

To. determine t h e  r e a l  a c t i v a t i o n  energy f o r .  oxygen reduct ion,  i t  i s  necessary 

t o  know t h e ,  exchange cur rent  dens i t y  f o r  t he  reac t ion .  The exchange cu r ren t  

dens i t y  i s  obta ined by e x t r a p o l a t i n g  t h e  Tafe l  slope o u t  t o  t h e  t h e o r e t i c a l  

open c i r c u i t  p o t e n t i a l .  Appleby has done t h i s  and repor ted  a value o f  22 

k. ca l  /mol-e (.21) f o r  oxygen reduct ion  on smooth p l  atinum. others (18,19) have 

measured oxygen reduct ion  o'n p la t inum black and p la t inum on carbon and extrapo- 

1 ated t h e  . p o l a r i z a t i o n  curves back t o  the  t h e o r e t i c a l  open c i r c u i t  p o t e n t i a l  

t o  o b t a i n  values c lose  t o  22 k.cal/mole. 

Two assumptions a re  made t o  o b t a i n  the  a c t i v a t i o n  energy b y  ex t rapo la t i on  

t o  the  o p e n . c i r c u i t  p o t e n t i a l .  F i r s t ,  i n  t h e  Nernst equation, i t  i s  assumed 

t h a t  the r e v e r s i b l e  p o t e n t i a l  can be accura te ly  ca l cu la ted  a t  e levated tempera- 

tu re '  and t h a t .  t he  p a r t i a l  pressures o f  oxygen, -hydrogen, and water vapor can 

be.used ins tead  o f  t h e i r  a c t i v i t i , e s .  Since t h e  vapor pressure data above 

170% and 102 w/o H3P0,, were extrapolated,  some doubt e x i s t s  as t o  t h e  accuracy 

o f  these est imates. The second assumption i s  t h a t  pe.rformance curves can be 
.-. 

ex t rapo la ted t o  t h e  open c i r c u i t  along an exper imental ly  determined 

Tafe l  s lope ., Th is  procedure i s  d i f f i c u l t  because' t he  p.erformance curves 

o f t e n  do n o t  e x h i b i t  l i n e a r i t y  over a l a r g e  range o f  p o t e n t i a l s  t o  pe rm i t .an  
. . 

a unequivocal Tafe l  slope determinat ion. Kunz and Gruver (18) r e p o r t  a ,Tafel  

slope o f  90 mV/decade a t  1 6 0 ~ ~ .  and equate t h i s  t o  2.3 RT/F. 

An a1 t e r n a t i  ve procedure can be developed t o  est imate a c t i v a t i o n  energies. 

. . The e lectrochemical  r e a c t i o n  r a t e  i s  : 

6n Fn l = io exp (--) KT 

where 

i = k0c exp - EIRT) 

Equation ( 6 )  

Equation ( 7 )  
Stonehart Aesocietes. Inc. 
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Figure 13. Water vapor pressure over concentrated phosphoric acid at various 
acid concentrations as a function of 1/T. 
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Figure 14. Change in the theoretical open circuit potential with 
temperature for various acid concentrations. 
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In Eqn. ( 7 ) ,  E is the activation ene,rgy a t  zero overpotential, i .e. the 

standard chemical activation energy. Extrapol ation to  the open c i r cu i t  potential 
gives the exchange' current dens.ity which can then .be used to estimate E. The 
exchange current, density, io, thus the reaction ra te ,  i s  suitably small so 

\ that the concentration term, C;remains unchanged. I t  is c lear  tha t  ac t i -  , 

vation energy estimates can be made a t  any overpotential provided tha t  both the 
.overpotential and the concentration terms are  essent ial ly  constant. 

For the experiments reported in Figure 11, about. 3.12 x g mole 02/sec 
2 are introduced to the electrode: A t  1 amplcm 2.59 x g mole 02/sec are  

turned over. This represents a maximum oxygen conversion of only about 8%. 
As a result,,  the approximation.of constant concentration can be used. The 
Arrhenius ,plot then takes the form: . 

Equation (8) 

so , that the activation energy can .be estimated from: 

E = mR - BnFq 1 Equation (9)  

. . 

where rn i s  the Arrhenius slope, and E is  i n  joules/mole OK.  

The data of Figure 11 were corrected f o r  changes i n  the theoretical open c i r cu i t  
,potentla1 and these rqsul ts  a re  reported i n  Figure 15. Figure 16 is the Ar- 

# 

fhenius representation a t  30D, 400, and 500 bv' overpotential. A l ea s t  squares 

ana'fysis yields  Arrhenius., slopes of approximately 6.7 x lo3 O K  a t  each over- 
potentia.1. The activation energies a t  each overpotential were estimated using 

Eqn. ..(9). The resu l t s  are  rep,orted in Table 5. Based on resul ts  from pre- 

vious work (.17,19,21), diffusion control i s  indicated. I f  the data in Figure 

15 are  extrapolated to  the theoretical open.circui t  potential along an assumed 
Tafel slope of 2.3 TR/F, an activation ene,rgy of 25 k.cal/mole i s  obtained. 
This' value i s  about twice tha t  obtained u s i n g  Eqn. (9) a t  zero overpotential. 

I t  has 'been shown tha t  fo r  'the case where diffusion factors control the ra te  

of reaction, the apparent activation energy i s  about one-half the a c t i v a t i 6  , 

energy 'obtained when kinet ic  factors,  dominate (22). The correspondence t o  

e l e c t r ~ c a ' t a l ~ s i s  has been pointed out previously (23). This phenomenon has a 

direct  analog in flooded agglomerate pore theory. 

Stonehart Associates, Inc. 
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i (Volts) 

Figure  15. c u r r e n t  dens i ty  a s  a '  f u n c t i o n  of overvol tage  f o r  oxygen r educ t ion  
. . a t  va r ious  tempera tures .  E l ec t rode  i s  0.53 mg ~ t / c r n Z  on a c e t y l e n e  , 

black  w i t h . 3 0 %  TFE r u n  011 a i r  i n  104.6 w/o H3PO4. 



"C ( SCALE) 1 

Figure 16 .  Current density a s  a function of 1/T for various overvoltages. 
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\ 
Table 5:  Apparent A c t i v a t i o n  Energies 

f o r  'Oxygen Reduction 

Stonehert Aesocletes, Inc. 
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Hydrogen' oxidation Activity 
Electrodes were prepared by the procedure out1 ined in the experimental section 

for  each electrocatalyst  l i s t ed  i n  Table 1. The hydrogen oxidation characteris- 
t i c s  of these electrodes were determined. 'Since the ra te  ' o f .  hydrogen oxidation 
reaction on platinum i s  very f a s t ,  the electrode structures probably operate '  
i n  a diffusion controlled mode. Polarization data were obtained over the 

temperature range 125-240'~. A representative s e t  of polarization curves i s  
shown i n  Figure 17. These data were used to  construct Arrhenius plots a t  25, 
50 and 100 mV polarization in Figure 18. The Arrhenius slopes'for operation , 

on hydrogen (shown as the continuous l ine  i n  the figure) were constant a t  
about 4 x lo3 OK. Analysis similar t o  that  employed fo r  the oxygen data can 

2 be used. The'hydrogen conversions a t  1 amp/cm are on the order of 2-4% so the 

a hydrogen concentration term can be assumed constant. I t  must 'also be assumed 
tha t  the hydrogen surface coverage'remains 'essentially constant ,over the range 
of temperatures investigated. Based on' the work o.f Ferrier; e t  a1 .' (24),  

t h i s  i s  a reasonable assumption for  the experimental conditions employed. 
. A  decrease in the apparent activation.energy i s  observed as indicated i n  

Table 7. Clearly, the electrode i s  operating i n  a di.ffusion controlled regime. 
Improved performance can therefore be realized by development of bet ter  elec- 

trode s t ructures .  

I t  was found that  lowering the Teflon content from 50 w/o.to 40 w/o improved 
the performance. Figure 19 shows the performance curve for  the best of these 

electrodes. Arrhenius plots a t  25 and 50 mV were l inear  and approximately 

parallel  as  shown by the open c i r c l e s . i n  Figure 20. The Arrhenius slope 

was estimated t o  be about 4.5 x 1 0 3  O K  using leas t  squares resulting i n  some- 
what higher apparent activation energies. Comparison of these values w i t h  

-. those obtained from the data in Figure 18 i s  shown i n  Table 7. The apparent . ' 

activation energy indicates tha t  the diffusion character is t ics  of the electrode 
have been improved. 

As pointed out in a previous iection, the variation of the standard chemical 

activation energy i s  indicative of 'diffusion controlled,operation. Even though 

the electrodes tested in th i s  work are  diffusion controlled, improved s tructure 

can be real ized thereby improving electrode performance. 

Hydrogen Oxidation Poisoning by CO 

The ef fec t  of carbon monoxide as a '  s i t e  specif ic  poison for. e lectrocatalysis  

of the hydrogen oxidation reaction using the platinum e l e ~ t r o c a t a l ~ s t s  pre- 

pared in t h i s  program was also investigated. 
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Figure 17. Polarization curves for  hydrogen oxidation a t  various temperatures 
i n  104.5 v /o  H3PO4. Catalyst i s  10% platinum on Vulcan. Electrode 
i s  50% catalyst/50% Teflon, 0.25 me pt/crn2;' 40st fe&t platinum 
surface area i s  58 me/gm. . . 

. . 
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Figure 18. Current .dens?ty . as a . function of. temperature for hydrogen oxidation 
on 100% H2 - and 2% CO/H2 ---- at.25, 50 and 100 mV po$arizafi~u, 
in 104.5 w/o H ~ P Q ~ .  0.25 mg ~t/cm*, 1 0 %  Ptl~ulcan, 50% PTFE. 



Table 7:. Apparent A c t i v a t i o n  Energies 
f o r  Hydrogen Ox ida t ion  
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ELECTRODE POTENTIAL (mV vs H 2 )  

Tigure 19 .  Polarizatiotl curves for  hydrogen oxidation a t  various ter!peratures 
i n  104.5 w/o C3POq cata lys t  in  30% platinum on Vulcan. Electrode 

' i n  60% catalyst/l;O% Teflon, 0 .25  mg pt/cmZ. Post t e s t  platinum 
qurface area i s  52 rn2fg8\. 
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Figure 20. Current'density as a function of temperature for hydrogen 
oxitlation on 100%'H2 and H2 + 30% CO, at 25 and 50 mV 
polarization, it 104.5 w/o H3P04. 0.25 my ,pt/cm2, 10% 
~t/~ulcan, 40% PTFE. . . 
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I .  

The e lec t rode  s t ruc tu res  used t o  ob ta in  the da ta  shown i n  F igu re  17 and 

F igure  19 were subjected t o  a f u e l  gas stream o f  hydrogen con ta in ing  2% 

carbon monoxide. P o l a r i z a t i o n  curves were run  as be fo re  over  t he  temperature 

range 240 '~  t o  1 2 5 ~ ~ .  The data are shown i n  F igure  21  and should be compared 

t o  the  curves shown i n  Figure 17. Apparent a c t i v a t i o n  energy p l o t s  were ob- 

t a i n e d  f o r  25, 50, and 100 mV p o l a r i z a t i o n s .  These values a l s o  a re  p l o t t e d  

i n  F igure  18 as the  dashed 1 ines. At  the  h ighes t  temperatures t h e r e  i s  a 

very small decrease i n  t he  hydrogen o x i d a t i o n  a c t i v i t y .  Th i s  means t h a t  the  

carbon monoxide sur face coverage i s  low and o n l y  a smal l  p a r t  o f  the  p la t i num 

sur face i s  covered by t h i s  poison. A t  lower temperatures, however, t he  

poison coverage increases. If methanol i s  considered as a pr imary  hydrogen 

f u e l  source f o r  f u e l  c e l l  s, thermal c rack ing  r e s u l t s  i n .  a m i x t u r e  con ta in ing  

a 2 /1  r a t i o  o f  H2/C0. Performance curves were, t he re fo re ,  ob ta ined f o r  f u e l  

streams con ta in ing  30% carbon monoxide. These p o l a r i z a t i o n  curves a r e  shown 

i n  F igure  22. It can be seen t h a t  a t  temperatures up t o  1 5 0 ' ~  t h e  f u e l  c e l l  
2 e l e c t r o c a t a l y s t  i s .  incapable o f  running a t  t h e  100 mA/cm l e v e l .  ' Corresponding. 

pseudo Arrhenius p l o t s  a r e  shown i n  .F igure 20 as the  f i l l e d  symbols so t h a t  a 

comparison can be made w i t h  hydrogen o x i d a t i o n  values i n  ' the presence and the  

absence o f  carbon monoxide but  t he  same p a r t i a l  pressure o f  hydrogen. A t  t h e  

h igher  temperatures. carbon. monoxide adsorp t ion  r e s u l t s  i n  a r e l a t i v e l y  small 

decrease i n  performance f o r  hydrogen ox ida t i on .  At. lower temperatures, however, 

appreciable .carbon.monoxide coverages a r e  a t t a i n e d  r e s u l t i n g  i n ' a  dramat ic  

performance decrease. 

There i s  one f u r t h e r  ex tens ion , tha t  t he  poisoning data prov ides.  By comparison 

o f  the c u r r e n t  dens i ty  f o r  hydrogen o x i d a t i o n  i n  t h e  absence o f  carbon monoxide 

t o  t h a t  c u r r e n t  dens i ty  obta ined f o r  hydrogen o x i d a t i o n  i n  t he -  presence o f  

carbon monoxide, the  carbon monoxide coverage as a f u n c t i o n  o f  temperature and 

p a r t i a l  pressure can be estimated. The r e s u l t s ' f o r  , t h e  2% and t h e  30% carbon 

monoxide l e v e l  a r e  shown. i n  F igure  23. A.t the  30% carbon monoxide l e v e l  and 

125Oc, o v e r  90% o f  the  p la t inum sur face i s  covered by carbon monoxide. A t  ' 

t he  same carbon monoxide l e v e l  and 240°c, o n l y  25% o f  t h e  sur face i s  covered 

by carbon monoxide. 

I f  a Langmuir isotherm i s  assumed: 

Equation (10) 
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Figure 21. Polarization ourv$s fox hydrogen oxidation with 2% CO In fuel 
gas at various temperatures in 104.5 w/o H3p0.1,. 10% PtIVulaan, 
0.25 mg ~t/cm2. 50% PTFE. 

' 
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ELECTRODE POTENTIAL (mV vs H 2 )  

' 
Figure 22. Polarization curves for hydrogen oxidation with 30% CO in fuel gas at 

. . . various temperatures in 104.5 w/o H3P04. 10% Ptlvulcan, 0.25 u g  pt/cm7 
40% PTFE. 
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TEMPERATURE ("C) 

. . 
F i ~ ~ l r p  2 3 .  Pcrccntagc ~f plaLll lum surface covered by CO poison as a function 

of temperature for 2 %  CO/H2 and 30% CO/H2. 
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where K i s  the equilibrium constant, p i s  the gas phase part ia l  pressure and 

8 i s  the surface coverage. If  K i s  small, the Henry's Law isotherm resul ts  
so tha t ,  as an app'roximation: 

Equation (11) 

where C i-s a constant. Because the adsorption i s  exothermic", In8 increases 
w i t h  reciprocal temperature. As a f i rst approximation, then, one woul d expect 
the logarithm of the carbon monoxide coverage to  change approximately l inearly 
with temperature. T h i s  relationship i s  demonstrated i n  Figure 23. 

. . 

4. SUMMARY 
In tti"is program a number of high surface area platinum on carbon supported 

electrocatalysts  were prepared, characterized for  surface area, and investi- 
gated i n  terms of the i r  e lec t roca ta ly t ic  ac t iv i ty .  The catalysts  were 
typ ica l .1~  prepared a t  10% P t  loading by an impregnation' *A technique. A def ini te .  
corre,lation was found' between the specif ic  metal surface area and the support 
BET surface area. 

The catalysts  were characterized fo r  surface area by chemisorption, micro- 
scopic, and x-ray techniques. The surface area estimates by a l l  techniques 
were comparable. Using high resolution phase contrast microscopy, -. the crystal 

l a t t i c e  of highly dispersed platinum on carbon was resolved and the l a t t i c e  
spacing fo r  small c r y s t a l l i t e s  was measured to  within 2% of the value fo r  
bulk platinum. 

The oxygen reduction ac t iv i ty  exhibited an apparent p la ' t inum crystal1 i t e  
s ize e f fec t ;  however, t h i s  was thought to  be caused by diffusion 1 imitations. 
The apparent activation energy fo r  oxygen reduction was estimated to  be about 
13 k. cal/mole, approximately one ha1 f tha t  estimated by other researchers. 
The one-half relationship i s  known t o  ex i s t  for  catalysts  governed by dif-  

. . 
fusion factors.  

I t  was demonstrated tha t  the hydrogen oxidation electrode was also governed 

by diffusion ef fec ts ;  however, i t  was shown that  the gas diffusion proper- 
t i e s  could be improved by changing the electrode structure.  Activity under 

carbon monoxide poisoning conditions was a l so  investigated. Isobars fo r ' 2% 

and 30% carbon monoxide levels in hydrogen fuel streams were measured by com- 

paring the hydrogen oxidation current density obtained i n  the presence of car- 
bon monoxide to  tha t  obtained in the absence of carbon monoxide. 
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