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1. INTRODUCTION
We have proposed1 a quark model for NN annihilation which consists of a linear super­

position of the so-called 3Pq (scalar) and 3Si (vector) models. We have argued that this 
approach is more consistent with QCD and the analogous NN system than the use of either 
model alone. Recent precise measurements2 of the pp —*• A A reaction by the PS 185 collabo­
ration at LEAR provide a test of this model. An advantage of strange baryon production is 
the polarization information that can be obtained due to their weak decays. Spin effects are 
known to be more sensitive to details of the reaction mechanism. In this paper we present 
the results of distorted wave calculations for the production of A A; distortion effects due to 
real and imaginary (absorptive) potentials in both initial and final states are included. Our 
results at piab = 1.5075 GeV/c and piab = 1.564 GeV/c show that the best fits to the dif­
ferential cross section and polarization data are obtained with an interference between scalar 
and vector terms. The sensitivity of our results to the parameters of the AA potential indi­
cates that this reaction may be used to provide information about the hyperon-antihyperon 
interaction, about which very little is known.

2. REACTION MECHANISM
One possible description of the pp —► AA reaction is that of K- and K*-meson exchange.3-6 

Such exchanges are of short range, at distances for which quark effects might be expected 
to play a role. Therefore alternative descriptions0’7 -10 based on constituent quark dynamics 
have been developed. These models are based on either the 3Pq model, in which a uu 
pair annihilation into the vacuum is followed by an Js creation, or the “3Si” model, in 
which a virtual vector quantum is exchanged. The simplest graphs for these models are 
shown in Fig. 1. We have proposed that the correct description for NN annihilation consists

* Supported in part by the U.S. Department of Energy



of a superposition of the 3Pq and ^Si” mechanisms, since the former can arise from the 
confining scalar force and the latter describes the vector quantum exchange expected in the 
N N interaction.
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FIGURE I
Lowest order diagrams for pp —*• AA.

In our model, the operator for vector exchange is

-fy — 9v ‘

and that for scalar exchange is

where ms and m are the strange and up quark masses respectively. Our matrix element for 
the reaction is

in which and $jvjv are distorted waves and 0 is a harmonic oscillator wavefunction.

3. INITIAL AND FINAL STATE INTERACTIONS
We used the same distorting potentials for NN and AA as Kohno and Weise.5 For NN 

the real part of the potential is determined by G-parity transformation of the long-range 
part of a realistic one-boson exchange potential, with a smooth extrapolation to r = 0. The 
imaginary part, which represents annihilation, is of Gaussian form and is adjusted to produce 
good fits to experimental data. For the real part of the AA interaction Kohno and Weise use 
the isoscalar boson exchanges of the real part of the NN potential. The annihilation term is 
taken to be of the same form as that for the NN, but with a strength adjusted to fit total 
cross section data.
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FIGURE 2
Differential cross section and polarization for p lab momentum of 1.5075 GeV/c. The long- 
dashed curve is the vector contribution (for r0 = .65 fm) and the short-dashed curve is the 
scalar contribution (for r0 = .56 fm). The solid curves are the result of a linear combination 
(I,. — Is), with gv = -.19 gs and r0 = .89 fm.
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FIGURE 3
Differential cross section and polarization for p lab momentum of 1.564 GeV/c. The long- 
dashed curve is the vector contribution (for r0 = .82 fm) and the short-dashed curve is the 
scalar contribution (for ro = .62 fm). The solid curves are the result of a linear combination 
(Iv — Is) with gv = -A2ga and r0 = .98 fm.

4. RESULTS
Our results for differential cross sections and polarization at 1.5075 GeV/c and 1.564 

GeV/c are shown in Figs. 2 and 3. Our best fits (minimum x2) the experimental data2 
are shown for the scalar model alone, the vector model alone, and the superposition. For the 
scalar and vector models alone we searched on the oscillator radius ro; for our supegp—ition 
we searched on r0 and the ratio gv/ga. As seen in Fig. 2, at the lower momentum the
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differential cross section can be ^treasonably well by either term alone or the superposition, 
but a much better fit to the polarization data is obtained by using the combined terms, with 
ro = .89 fm and gvfg, — -.19. At the higher momentum shown in Fig. 3 the vector term alone 
fits the differential cross section better than the scalar, but neither fits the polarization well. 
An improved fit is found by using the linear combination, with r© = .98, gvjg, — -.42. One 
characteristic of the polarization data that we, as well as other authors, have found difficult 
to fit is the crossing point, i.e. the angle at which the polarization changes sign.

Because not much is known about the A A interaction, we studied the effect of varying the 
strengths of the various components of the AA potential, which includes a real central term, 
an imaginary central term, and real spin-orbit and tensor terms. We found our results to be 
very sensitive to the strengths of all but the tensor term. For example we can obtain a much 
better fit to the polarization data at 1.546 GeV / c by turning off the real part of the central 
potential as shown in Fig. 4. Similar fits are found by changing the sign of the spin-orbit 
term, or by multiplying the strength of the imaginary part of the potential by a factor of 3. In 
each case the fit to the differential cross section is not as good at backward angles as we found 
with Weises AA potential, but the overall x2 is still acceptable. This strong dependence of 
our results on the parameters of the AA interaction suggests that a fit to the reaction data at 
all available energies may provide us with information about the various components of this 
little-known interaction. Such a fit is now in progress.
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FIGURE 4
Differential cross section and polarization for p lab momentum of 1.564 GeV/c. The solid 
curves are found by keeping our best fit parameters of Fig. 3. but turning off the real part of 
the central term in the AA potential.



5. coNCLUsiorr
We have shown that the best fit to pp —► AA at two energies occurs for an interference 

between scalar and vector mechanisms, rather than for either term alone. The sensitivity of 
our results to the parameters of the AA potential indicates that the pp —► AA reaction may 
be a source of information on the AA interaction.
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