

#27
18/80
SAND79-1700

Unlimited Release

24/10/81

MASTER

A Microprocessor-Controlled Tester for Evaluation of the Self-Energized Credential System (SECS)

Norman E. Corlis

Sandia National Laboratories

SAND79-1700
Unlimited Release
Printed March 1980

A MICROPROCESSOR-CONTROLLED TESTER FOR EVALUATION OF THE SELF-ENERGIZED
CREDENTIAL SYSTEM (SECS)

Norman E. Corlis
TM Advanced Development Division 1584
Sandia Laboratories
Albuquerque, NM 87185

ABSTRACT

The Self-Energized Credential System (SECS) was developed for use in the Plutonium Protection System (PPS) installed at Hanford, Washington. Evaluation and development of the SECS system was enhanced by the use of a microprocessor-controlled portal tester. This tester used infrared (IR) beam sensors to provide information on the direction of travel of the credential wearer and to detect inoperative credentials. A printed record of the portal number, actual code read, time, and direction of the credential passage provided information essential to an assessment of the operability of the SECS.

DISCLAIMER

DISCLAIMER
This document contains neither recommendations nor conclusions of the Department of Energy. It is the property of the Department of Energy and is loaned to your agency; it and its contents are not to be distributed outside your agency without the express written consent of the Department of Energy. It is to be returned to the Department of Energy when no longer needed by your agency.

ACKNOWLEDGMENT

The circuit designs and technical advice provided by David E. Barnes, Harold O. Jeske, and John P. Wetterberg, all of Division 15R4, contributed greatly to the success of this project.

CONTENTS

	<u>Page</u>
Microprocessor Portal Tester	7
Theory of Operation	9
Input Filter and Detector	10
Code and Parity Discriminator	10
Tester Clock and Control	10
Interrupt Logic -- Standard	11
Interrupt Logic -- Hanford Modification	16
Credential Format	19
Microprocessor	20
IR Beam Sensor Location	22
References	22
APPENDIX A -- Program Software Code	23
APPENDIX B -- System Start-Up Procedure for the Credential Reader	35
APPENDIX C -- F8 Kit Modification	41
APPENDIX D -- IR Sensor Schematics	49

ILLUSTRATIONS

Figure

1	Portal Test Layout	8
2	Block Diagram of Portal System	9
3	Input Filter and Detector Schematic	12
4	Code Discriminator Schematic	13
5	Tester Clock and Control Schematic	14
6	Schematic of Standard Interrupt Logic	15
7	Schematic of Hanford Modification of Interrupt Logic	17
8	Code Format	19
9	Modified F8 Kit 1 Schematic	21

A MICROPROCESSOR-CONTROLLED TESTER FOR EVALUATION OF THE SELF-ENERGIZED CREDENTIAL SYSTEM (SECS)

Microprocessor Portal Tester

The Microprocessor Portal Tester (Figure 1) was designed to assist in the evaluation of the electronic Self-Energized Credential System¹ (SECS) that was developed for use in the Plutonium Protection System² (PPS) installed at Hanford, WA. The tester is augmented by infrared (IR) beam-breaker sensors which detect a person passing through the portal. Logic within the tester determines the direction of the passage.

In a typical operational sequence, entrance of a person into the portal activates one of the IR sensors. Once within the effective detection area within of the portal, the personnel-borne credential is activated and its unique code is detected by the portal electronics. This code is then processed by the microprocessor tester, resulting in a listing of the following data:

- Correct access code
- Actual code read
- Portal number
- Current time
- Direction of credential passage

Two other SECS parameters are also checked by the status logic of the tester. The 110-kHz portal-reference signal is detected to provide an indication of "power up" and the AGC output from the decoder circuit indicates whether the credential transmitted a coded response. The undetected presence of these two parameters is printed out as "NOT UP" and "NO AGC" by the microprocessor.

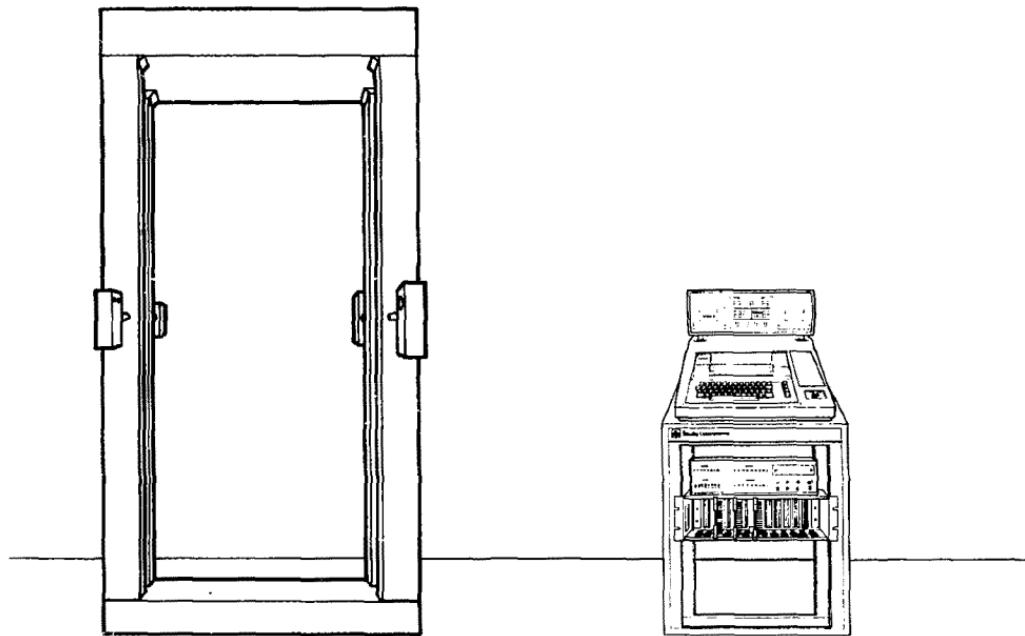


Figure 1. Portal Test Layout

As a result of the above determinations, a thorough monitoring of critical SECS parameters is obtained and a printed record of each passage through the portal is provided. Appendix A contains an example of a typical code printout.

Theory of Operation

The main block elements of the portal system are shown in Figure 2 and are described in greater detail block by block.

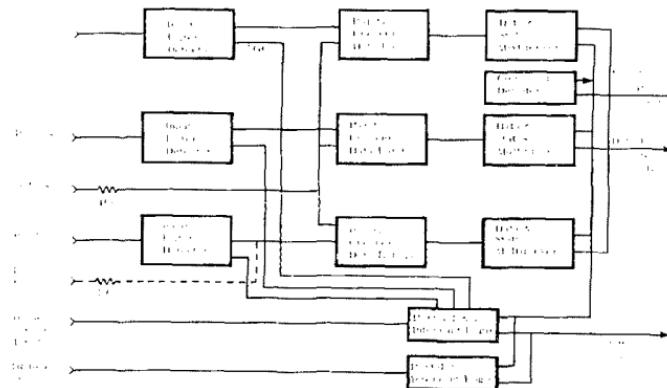


Figure 2. Block Diagram of Portal System

Input Filter and Detector

The input filter and detector (Figure 2) is comprised of two main parts: a passive filter and a peak detector. The passive input filter has a center frequency of 56 kHz with an approximate bandwidth of 2 kHz, followed by an amplifier with a gain of 40 dB. A two-pole filter follows the amplifier for additional selectivity. The code is demodulated by a peak detector controlling the threshold of a clipper which is one-half of the input amplitude. From the clipper, a signal is sent to a one-shot (multivibrator) to retime the data. The one-shot is locked out if the input amplitude is below a selected level to preclude false triggering by noise signals at the input. The circuitry diagram is shown in Figure 3.

Code and Parity Discriminator

Once the input signal is filtered and the amplitude variations are removed, the data are fed to the Code and Parity Discriminator (Figure 2). A serial shift register tests the code for the correct parity and two consecutive code words for identical patterns. Two 12-bit parity integrated circuits (IC) (Figure 4) are used to test the code for odd parity and a 16-bit comparator checks two 24-bit code words for identical bit patterns. If both conditions are met, a data latch stores the 16-bit data word and a "data valid" signal is generated. A data valid pulse is generated for each correct frame and resets a six-bit binary clock counter. If a data valid pulse is missing for more than 64 clock periods, the counter resets the data latches. Therefore, the data valid signal must drop out for at least 37 ms before another valid code can be read.

Tester Clock and Control

The clock for the tester is developed by dividing the 110-kHz portal-reference (REF) signal by 64. The divide-by-64 counter (Figure 5) is reset on the positive side of the data signal to align the edges of the clock and data signals. The data valid signal is used to latch the credential code into the data register and to set the host computer interrupt. However, the computer interrupt is not used in this application because the microprocessor polls the input/output (I/O) signals from the IR beam sensors to detect the interruption of the beams.

This technique permits the detection of both a nonoperating credential and a person not wearing a credential. The IR beam logic is locked out after both beams are broken until the microprocessor resets the logic; the data valid signal then drops out and both beams are set to the normal state. This precludes the possibility of reading the credential a second time while it is still in the fringes of the portal's magnetic field.

Three eight-bit ports on the Fairchild F8 microprocessor are used to interface the microprocessor and the portal tester. The status bus on port 0 of the microprocessor receives the nine-bit status word from the tester in two bytes. Port 1 transmits signals from the microprocessor to the tester for status byte control while Port 5 passes the tester's data word in two eight-bit bytes to the microprocessor.

Interrupt Logic - Standard

This circuit (Figure 6) is designed to provide a computer interrupt from the operation of the IR beam sensors. The interruption of the first beam causes the logic to generate signals to turn on a video camera and the portal loop power amplifier, if the system is so configured. As the credential enters the magnetic field of the portal, the credential's internal circuits are activated and its code is read by the receiving circuits and latched in the data register. When the second beam is broken, a computer interrupt is generated. The direction of the person passing through the portal is determined by which beam is broken first. After the computer has read the data register and the direction code, the logic is reset. If the second beam is not broken within 10 s, an internal reset is generated. The system start up procedure for the credential is detailed in Appendix B.

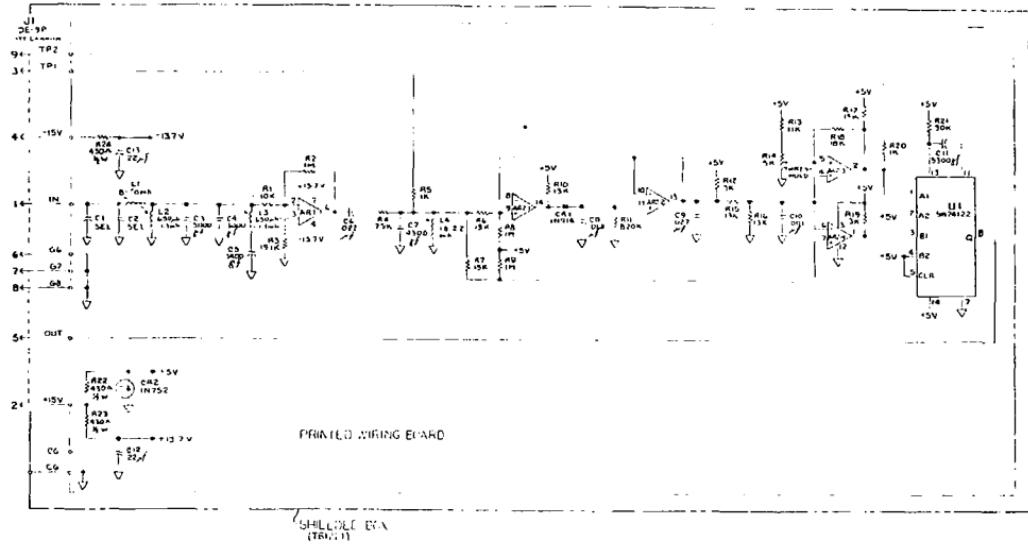


Figure 3. Input Filter and Detector Schematic

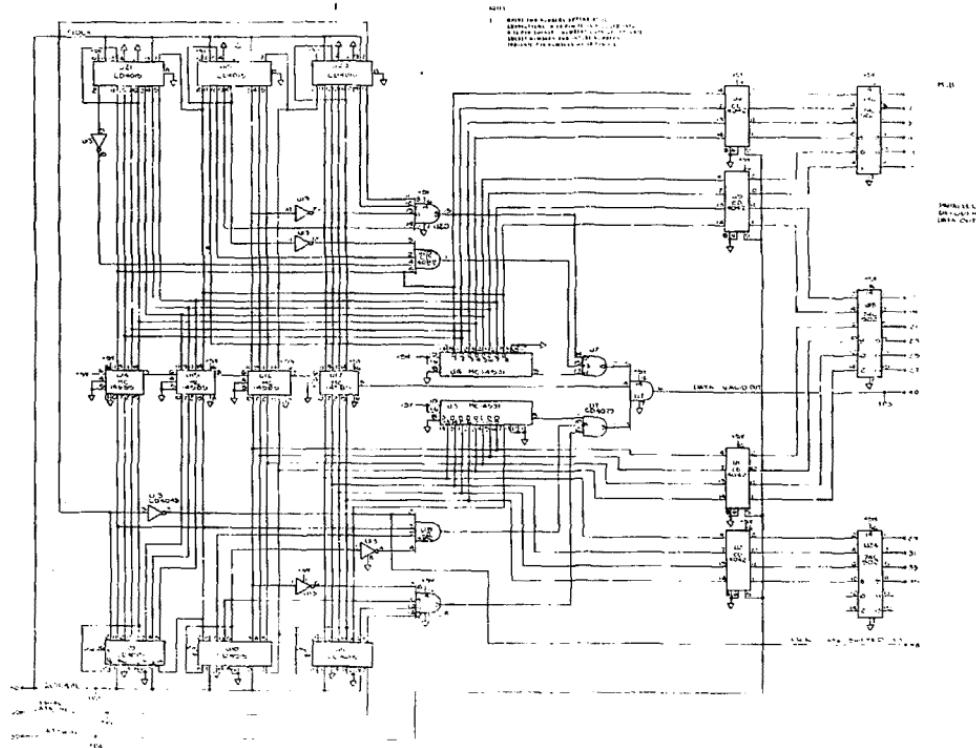
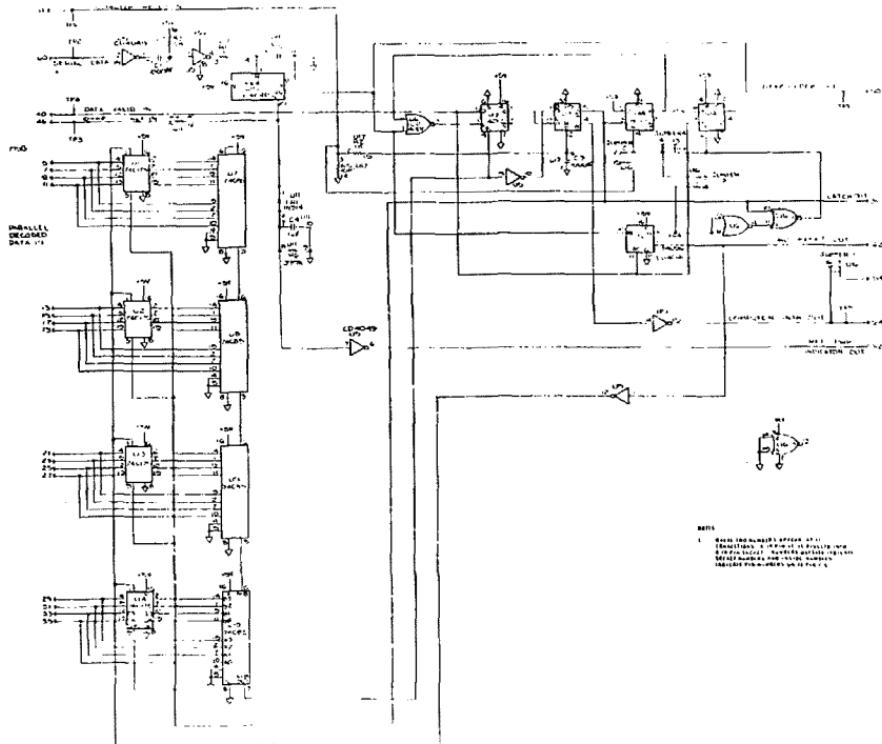



Figure 4. Code Dissemination Schematic

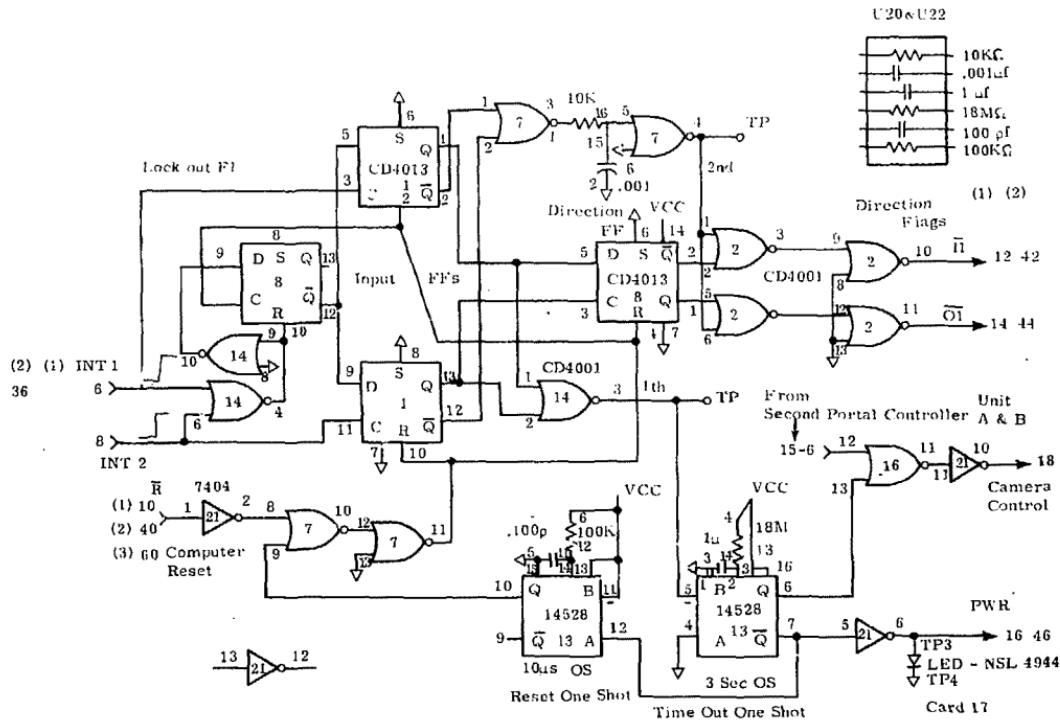
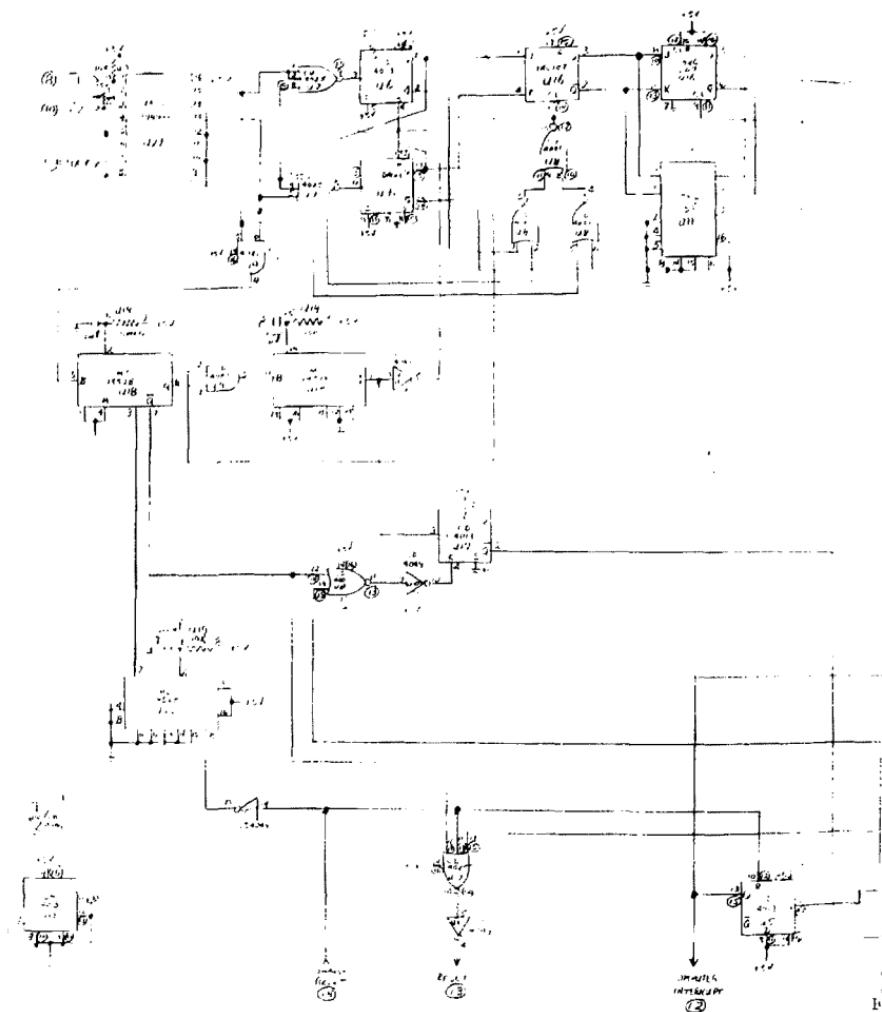


Figure 6. Schematic of Standard Interrupt Logic

Interrupt Logic - Hanford Modification

The first Hanford portal used pressure-sensitive pads to detect a person passing through the portal. These pads produced multiple switch closures as the person walked on the pads. The signals from the pads were filtered by a special IC (MC14490) which produced an output four clock periods after an input signal goes low. A logic circuit was added to prevent multiple computer interrupts from being generated during the passage of one person.


The direction of the person passing through the portal is determined by which switch signal occurs first. When the credential is energized by the portal's magnetic field, the credential's code is read and stored. When the second sensor is activated, an interrupt is generated for the computer which then reads the code, the direction code, and reset the interrupt logic.

System constraints for computer interruption are as follows:

1. Both switches must be activated in less than 10 s
2. The direction of passage must be different or the code must be different from the last stored code
3. The data must be valid.

If only one switch is activated within 10 s, an internal reset is generated.

The complete interrupt logic is shown in Figure 7.

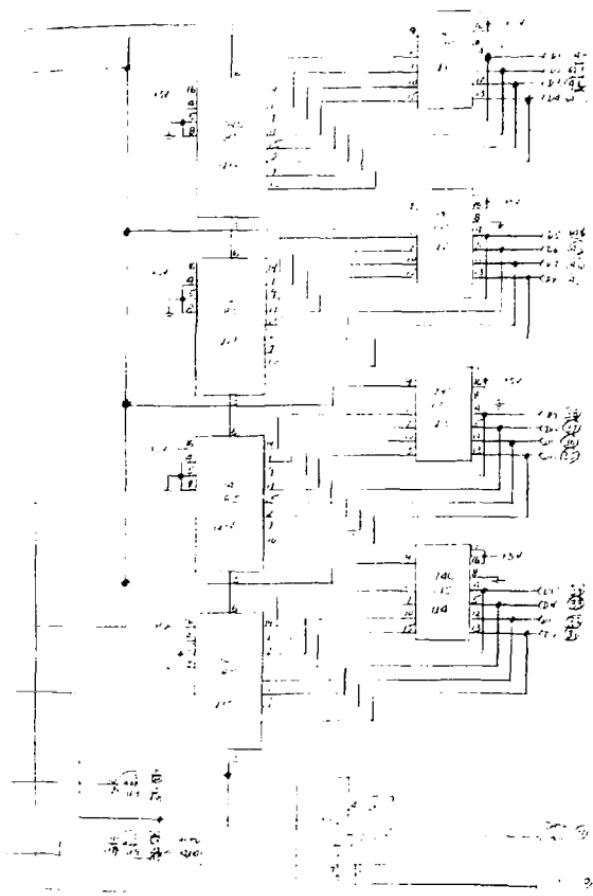


Figure 7. Schematic of Hanford Modification of integrated logic

Credential Format

The data from the credential are transmitted serially at 1.7-kbits/s in an asynchronous mode. The format has start and stop bits to identify the coded word and a parity bit for error detection. Eight bits of data are included in each 12-bit word, so two 12-bit byte words are transmitted for the full 16-bit code word. The bytes are transmitted continuously as long as the code module is powered. Figure 8 shows the code format, Byte 1.

MSB											
START	1	X	X	X	X	X	X	X	Parity	STOP	STOP
Byte 2											
START	0	X	X	X	X	X	X	X	Parity	STOP	STOP

Figure 8. Code Format

The first bit (MSB) in the code word is defined as a "one" while the ninth bit is set to a "zero". Therefore, only 14 bits are variable. This restricts the number of unique code words to approximately 2^{14} minus some ambiguous code words for a net of 16,192 available codes. The time rates are as follows:

Baud rate	1.718 kbps
24-bit word rate	14 ms
Valid code rate	14 ms
First data bit to valid code	18-42 ms
Min time between valid codes	37 ms

Microprocessor

The Fairchild F8 microprocessor was selected for this project. The F8 is a very good "controller" microprocessor with four eight-bit ports and an internal timer which can be used as a clock. There is a cross assembler on the Sandia network operating system (NOS) for software development. However, without an F8 emulator, the machine code must be off-loaded onto a magnetic tape (TI 733 terminal) and then loaded into the microprocessor for each program iteration. Since the F8 has semiconductor memory for RAM, the program has to be loaded after each power loss.

The F8 development board was modified (Figure 9) to adapt it to a 300 baud rate, TI 733 data terminal which has a hard copy printer for output and two magnetic tape machines (Appendix C). The F8 machine code is recorded on magnetic tape and then loaded into the microprocessor for system startup. The development board has a 1-k RAM memory which is more than sufficient for the operating system. The last 26 words in the RAM memory cannot be used for program storage because the board has FAIRBUG monitor routines in a special ROM that uses that portion of the memory and will overwrite those locations.

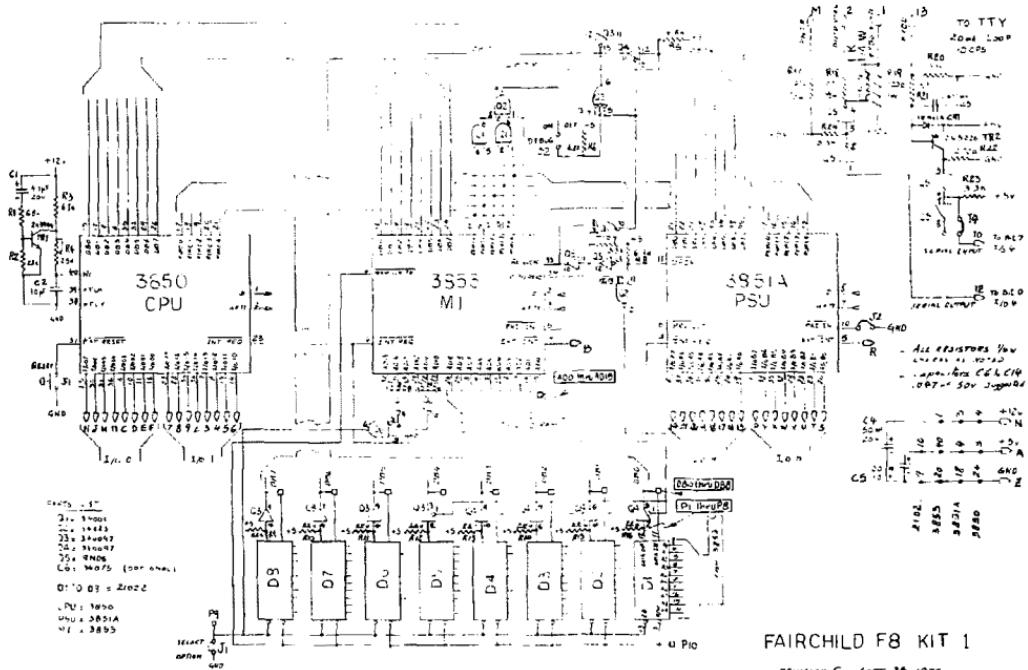


Figure 9. Modified F8 Kit 1 Schematic

FAIRCHILD F8 KIT 1

REVISION C, SEPT 25 1975

IR Beam Sensor Location

The optimum height for the IR sensors was found by experimentation to be approximately 130 cm. This height reduces the possibility of the swinging arms of a person breaking the beam first and too soon. The horizontal distance of each sensor should be 50 cm from the center line of the portal, one pair on each entry/exit. The dimensions permit the credential to be in the primary portion of the magnetic field before the beam is broken and allows the code to be read. The sensors should not be mounted on the portal due to undesirable electromagnetic pickup of the portal field, and shielded-twisted pair cable should be used to connect the sensors to the control chassis. An external support structure must be provided on both sides so that the pairs of sensors can be positioned to face each other. These particular sensors have a conical sensing angle of $\pm 10^\circ$, so the adjustment of the sensors is not critical. There is a LED indicator light in the receiver sensor which may be used for alignment. The LED is normally ON and should go off when the IF beam is interrupted. Appendix D contains schematics of the IR sensor.

References

1. David E. Barnes et al, Self-Energized Credential System, SAND76-0540 (Albuquerque: Sandia Laboratories, December 1976).
2. Thurlow W. H. Caffey and David E. Barnes, The Self-Energized Credential System for the Plutonium Protection System, SAND78-2156 (Albuquerque: Sandia Laboratories, January 1979).

APPENDIX A

Program Software Code

```

        TITLE  REAL TIME CLOCK
        OPG H:20
INTP  DC 4
        BNZ DUT
        LI 250    INC TO SLOW DOWN CLOCK
        LP 4,A
        LIS 1
        AI H:66
        ADD 8
        LP 8,A    STORE SECS
        CI H:60    TEST FOR 60
        BC TS
        CLP
        EI
        POP
DUT   TS    JMF T10
        *
        *
        *    START ROUTINE
        *
INTA  LI H:A4
        LR 0,A    LOAD DELAY COUNTER
        LIS 0
        +
        8,A
        H:8306/    CR/LF
        LIS 5
        LP 4,A
        LIS 0
        PI H:83E5/    DELAY
        DC 4
        BNZ DEL1
        LIS 13
        LP 4,A
        DCI MSR1
        PI H:83E5/    PRINT '(INPUT HOURS)'
        DC 4
        LM
        LR 1,A
        BNZ OPT1    RET
        DCI H:83AD/    LOAD 0 REG
        LR 0,DC
        PI H:837B/    INPUT HOURS
        DCI HOUR
        ST
        LR 0,L,A
        PI H:83EB/    ECHO HOURS
        PI H:83D6/    CR/LF
        LIS 5
        LP 4,A
        LIS 0

```

```

DELB PI H'83E5'    DELAY
DS 4
BNZ DELB
LIS 14
LR 4+A
DCI MSG2
OPT2 PI H'83E5'
DS 4
LM
LP 1+A
BNZ OPT2    PRINT <INPUT MIN>
DCI H'83BD'
LP 0+DC
IN2 PI H'837B'    INPUT MIN
DCI MIN
JT
LP 0L,A
PI H'80EB'    ECHO MIN
PI H'83D6'    CR-LF
LIS 5
LP 4+A
LIS 0
DELB PI H'83E5'    DELAY
DS 4
BNZ DELB
LIS 12
LP 4+A
DCI MSG3
OPT3 PI H'83E5'
DCI 4
LM          PRINT GO TO START
LP 1+A
BNZ OPT3
DCI H'83BD'
LP 0+DC
IN2 PI H'837B'
PI H'83D6'    CR-LF
*      START SECOND COUNTER
LI 253
LR 4+A    LOAD TIMER
LI H'7F'    CLEAR TIMER
DUTS 7
LIS 3    START TIMER
DUTS 6
EI      ENABLE INTERRUPTS
JMP H'110'    JMP TO DAVIDC ROUTINE
*      MINUTES    COUNTER

```

```

T10  LIS 0
    LR 8,A
    LIS 1
    AI H'66/
    DCI MIN
    AND
    DCI MIN
    ST
    CI H'60/
    BC T20      JMP TO HOUR COUNTER
    CLR
    EI
    POP
    *      HOUR COUNTER
T20  LIS 0
    DCI MIN      CLEAR MIN COUNTER
    ST
    LI 153      CORRECT .3985-HOUR
    LP 4*H
    LIS 1
    AI H'66
    DCI HOUR
    AND
    DCI HOUR
    ST
    CI H'24/
    BNC T30
    CLR
    DCI HOUR
    ST
    EI
    POP
    *
    *
MSG1  DC 6*C'INPUT '
    DC 6*C'HOURS '
MSG2  DC 6*C'INPUT '
    DC 7*C'MINUTE '
MSG3  DC 5*C'GO TO '
    DC 6*C'START'
HOUR EQU H'3E4'
MIN   EQU H'2E5'
END

```

```

TITLE SEC03 EVALUATION
ORG H'110'
CLR
DC1 CNT1
ST
ST
ST
ST
ST
JMP BEGIN
ID0  DC 2+H'DC00'
DC 2+H'DB01'
DC 2+H'D261'
DC 2+H'9777'
DC 2+H'D268'
DC 2+H'9207'
DC 2+H'8920'
DC 2+H'8008'
DC 2+H'CD11'
DC 2+H'S108'
DC 2+H'CE4A'
DC 2+H'9117'
DC 2+H'AB01'
DC 2+H'AB1D'
DC 2+H'AC1B'
DC 2+H'AB01'
DC 2+H'AB02'
DC 2+H'AB03'
DC 2+H'AB04'
DC 2+H'B268'
DC 2+H'B468'
DC 2+H'D468'
BEGIN CLP
EI
DUTS 0
DUTS 1
DUTS 5
WAIT  INS 0      LOOK FOR DOOR ACTIVATION
      BZ WAIT
      D1
      NI H'40'  CHECK B6 FOR 1 (ACTIVATION TOTAL DUT)
      BZ CTO
      JMP CNT0
CT0   INS 0
      NI H'03'  CHECK FOR PORTAL 1 ACTIVATION
      BNZ STA1
      INS 0
      NI H'0C'  CHECK FOR PORTAL 2 ACTIVATION
      BNZ STA2
      INS 0
      NI H'30'  CHECK FOR PORTAL 3 ACTIVATION
      BNZ STA3
      BR BEGIN

```

STR1	BC1 IO	STORE IN OR OUT DATA
	ST	
	LIS 1	
	CT	PORTAL 1 STORED
	LI H'11	
	CT	STAT CONTAINS RESET ON B4 AND PORTAL ADDRESS
	BR CNT	
CTR2	SR 1	
	CR 1	
	BC1 IO	STORE IN OR OUT DATA
	ST	
	LIS 2	
	CT	STORE PORTAL 2
	LI H'23	
	ST	STORE RESET ON B5 AND STORE PORTAL ADDRESS
	BR CNT	
CTR3	CR 4	
	BC1 IO	STORE IN OR OUT DATA
	ST	
	LIS 3	
	CT	STORE PORTAL 3
	LI H'45	
CNT	NI 7	STORE RESET ON B6 AND PORTAL ADDRESS
	OUTS 1	BLANKS RESET BITS
	INS 0	ADDRESS PORTAL BEING ACTIVATED
	NI 04	
	BNC ER1	CHECK FOR FIELD POWER
	PI RES	
	JMP EPP1	
EP1	INS 0	
	NI 08	CHECK FOR AOC
	BNC EPP2	
	PI RES	
	JMP EPP2	
EP2	INS 0	
	NI H'10	CHECK FOR DATA VALID
	BNC EPP3	
	PI RES	
	JMP EPP3	

ER3	LI H'18'	
	LR 7+A	SET R7 TO NUMBER OF STORED I.D.'S
	INS 5	
	LR 8+A	LOAD FIRST BYTE OF ID
	DCI ID1	
	ST	
	DCI STAT	
	LM	
	NI 07	
	INC	
	OUTS 1	
	INS 5	
	LR 3+A	LOAD SECOND BYTE OF ID
	DCI ID2	
	ST	
	PI PES	
	DCI IDC	SET DC TO BEGINNING OF STORED ID ARRAY
O	LR A+2	
	CM	COMPARE FIRST BYTE ID WITH STORED ID
	BE CKA	
	CM	
	DS 7	
	BNZ CK	
	PI PES	
	JMP ERR4	
CKA	LR A+3	
	CM	
	BNZ VAD	COMPARE SECOND BYTE ID WITH STORED ID
	JMP VAD	
VAD	DI 7	
	BNZ CK	
	PI PES	
	JMP ERR4	
CHTO	PI H'83D6'	
	PI H'83D6'	ROUTINE OUTPUTS NUMBER OF TRANSACTIONS AND
	PI DEL	
	LIS 7	BREAKDOWN OF TYPES OF TRANSACTIONS
	LR 3+A	
	DCI MIGE	
	PI TYPE	
	DCI CNT1	
	PI H'80E9'	
	PI H'83D6'	
	PI DEL	
	LIS 7	
	LR 3+A	
	DCI MIGE	
	PI TYPE	
	DCI CNT2	
	PI H'80E9'	
	PI H'83D6'	
	PI DEL	
	LIS 6	

LR 3,A
DCI MSG6
PI TYPE
DCI CNT3
PI H'80E9'
PI H'83D6'
PI DEL
LIS 3
LR 3,A
DCI MSG4
PI TYPE
DCI CNT4
PI H'80E9'
PI H'83D6'
PI DEL
LIS 4
LR 3,A
DCI MSG5
PI TYPE
DCI CNT5
PI H'80E9'
PI H'83D6'
PI DEL
JMP OPT
ERR1 PI H'83D6'
PI DEL
LIS 7 OUTPUTS MESSAGE OF FIELD FAILURE
LR 3,A
DCI MSG6
PI TYPE
DCI CNT1
LM
INC
DCI CNT1
ST
JMP OPT
ERR2 PI H'83D6' OUTPUTS MESSAGE OF NO AGC
PI DEL
LIS 7
LR 3,A
DCI MSG7
PI TYPE
DCI CNT2
LM
INC
DCI CNT2
ST
JMP OPT

ERR3	PI H'83061	OUTPUTS MESSAGE OF NO VALID ID
	PI DEL	
	LIS 6	
	LR 3,A	
	DCI MSG8	
	PI TYPE	
	DCI CNT3	
	LM	
	INC	
	DCI CNT3	
	ST	
	JMP DPD	
ERR4	PI H'83061	OUTPUTS MESSAGE OF UNAUTHORIZED ID
	PI DEL	
	LIS 4	
	LR 3,A	
	DCI MSG8	
	PI TYPE	
	DCI CNT4	
	LM	
	INC	
	DCI CNT4	
	ST	
	DCI ID1	
	PI H'80E91	
	DCI ID2	
	PI H'80E91	
	JMP DPD	
VAID	PI H'83061	OUTPUTS MESSAGE OF AUTHORIZED ID
	LIS 7	
	LR 1,A	
	PI H'83061	RING BELL
	PI DEL	
	LIS 4	
	LR 3,A	
	DCI MSG8	
	PI TYPE	
	DCI CNT5	
	LM	
	INC	
	DCI CNT5	
	ST	
	DCI ID1	
	PI H'80E91	
	DCI ID2	
	PI H'80E91	
	BR DPD	
RES	DCI STAT	
	LM	
	NI H'701	
	OUTS 1	RESET LATCH
	CLR	
	OUTS 1	
	POP	

OPD DCI MSGB OUTPUTS PORTAL NUMBER, TIME OF DAY,
LIS 2
LP 3,A
PI TYPE
DCI MSGD
PI H 80E9
DCI MSGC
LIS 1
LP 3,A
PI TYPE
DCI SEC
LP A,B
DCI HOUR
PI H 80E9
LIS 1
DCI HIGH
LP 3,A
PI TYPE
DCI MIN
PI H 80E9
LIS 1
DCI HIGH
LP 3,A
PI TYPE
DCI SEC
PI H 80E9
DCI ID
LIS 1
CM
BNC CM2
DCI MSGD
LIS 3
LP 3,A
PI TYPE
H JMP BEGIN
CM2 DCI ID
LIS 2
CM
BNC CM2
DCI MSGE
LIS 4
LP 3,A
PI TYPE
JMP BEGIN
CM3 DCI MSGF
LIS 2
LP 3,A
PI TYPE
JMP BEGIN

TYPE	LR F+P LR A+KU LR T+A LR A+KL LR S+A	
TY	LM	TYPES OUTPUT MESSAGE
	LR 1+A PI H 83E5 DS 3 BNC TY LR A+7 LR KU+A LR A+5 LR FL+A LR P+F PDP	
DEL	LR F+P	DELAY 5 CHAR
	LIC 5 LR S+A LIC 0 LR 1+A	
CID	PI H 83E5 DS 6 BNC CID PK	
M162	DC 7+C NOT UP=1	
M163	DC 7+C NO AGC=1	
M164	DC 3+C NO=1	
M165	DC 4+C YES=1	
M166	DC 7+C NOT UP=1	
M167	DC 7+C NO AGC=1	
M168	DC 6+C INVAL=1	
M169	DC 4+C NO=1	
M16A	DC 4+C YES=1	
M16B	DC 2+C -P	
M16C	DC 1+C -	
M16D	DC 3+C INV	
M16E	DC 4+C OUT=1	
M16F	DC 3+C NOT COMP=1	
M16G	DC 6+C INVAL=1	
M16H	DC 1+C 1	
ID	EQU H'3E1'	
DOOR	EQU H'3E2'	
CNTT	EQU H'3D9'	
CNT1	EQU H'3DB'	
CNT2	EQU H'3DC'	
CNT3	EQU H'3DD'	
CNT4	EQU H'3DE'	
CNT5	EQU H'3DF'	
STAT	EQU H'3E3'	
ID1	EQU H'3D8'	
ID2	EQU H'3D9'	
HOUR	EQU H'3E4'	
MIN	EQU H'3E5'	
SEC	EQU H'3E6'	
	END	

APPENDIX B

System Start-Up Procedure for the Credential Reader

APPENDIX B

System Start-Up Procedure for the Credential Reader

NOTES

- (1) All bit switches on the front panel of the microprocessor (μ P) must be in either the MID or HI Z position.
- (2) The REF IN BNC is common to all three decoders.
- (3) Two interrupt modules (P1 and P2 on card 17) are wired for positive going signals from the IR beam sensors. The third module (P3 on card 19) requires negative going signals.

Loading Procedure from Magnetic Tape in the T1733:

Insert tape

Rewind - load forward

Reset μ P

Key in "L" and "RET"

μ P will load first program

Reset μ P

Key in "L" and "RET"

The second program will be loaded

Rewind tape

Key in "G35" for the start of the routine

Figure B-1 is a copy of an operating system hard copy record. The μ P will respond with "Input hours". Two numeral characters, including leading zeros, must be keyed in and no "RET" is required. The μ P will print the numeral characters and then "Input minutes". Two characters must be keyed in and the μ P will print the characters and then "Go to Start". Keying in any two characters will start the internal clock and set the interrupt enables. When an interrupt from the beam sensors is detected, the μ P will print:

YES or NO for an authorized code

The actual code read - four hexadecimal characters

The number of the portal - P01, P02, P03

The current time - hours, minutes, seconds

The direction of passage - IN or OUT

The time clock in the system is a count-down software divider from a RC oscillator, so it will not be very accurate.

The RC oscillator on the μ P PC board should be adjusted with the variable resistor on the board to 2 MHz \pm 40 kHz; use Pin 1 on IC3850 as the test point.

The system may be reset and restarted by pushing the reset button on the microprocessor's PC board and typing "GO" which starts the preset menu.

Pushing bit "6 UP" PORT 0 on the front panel of the microprocessor causes a printout of the total of the five system conditions:

NOT UP, NO AGC, INVAL, NO, YES, and the current time. Restarting the program resets the five accumulators.

```
?G35
INPUT HOURS 14
INPUT MINUTE 10
GO TO START

NO--FF6A-PO3 14:12:34 OUT
NO--FF6A-PO3 14:15:45 IN
YES-AB1D-PO3 14:19:42 OUT
NO--FF70-PO3 14:21:31 IN
NO--FF75-PO3 14:34:29 OUT
YES-AB1D-PO3 14:43:33 IN
YES-DCOD-PO3 14:56:11 IN
YES-DCOD-PO3 15:14:57 IN
YES-AB1D-PO3 15:16:53 OUT
NO--FF6A-PO3 15:32:64 OUT
NO--FF70-PO3 15:46:58 OUT
YES-DCOD-PO3 16:28:53 IN
YES-AB1D-PO3 16:33:25 IN

NOT UP = 00
NO AGC = 00
INVAL = 00
NO = 06
YES = 07
16:34:04 IN
```

Figure B-1. Record Print Out

APPENDIX C

F8 Kit Modification

APPENDIX C

F8 Kit Modification

The Fairchild F8 kit used is an F8 Design Evaluation Kit Number One without a case or power supply. The bare PC board and three power supplies are mounted on a metal chassis with a front panel for switches and LED indicators. One 5 V/1 A and two 12 V/175 mA power supplies are used for the system. The teletype interface circuitry was modified to adapt it to an RS 232 configured I/O. The "0", "1", and "5" ports are cabled to the main control chassis. Port "4" is connected to the data terminal. The kit board has 1 K of RAM, most of which is used by the software program. Since the kit has a preprogrammed FAIRBUG ROM which uses some of the memory addresses for its program, these addresses must not be used by the user's program. The internal timer uses address H '21' for its vectored interrupt; addresses H '3E6' to H '3FF' and scratch pad registers H '3C' to H '3F' are used by the "save routine" of the FAIRBUG monitor program. The user's program must be written around these addresses. Figures C-1 through C-5 show various facets of the kit.

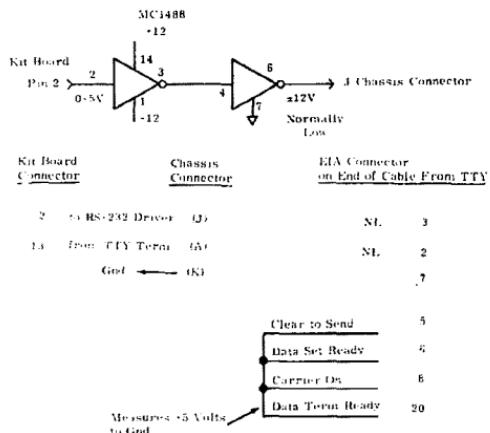


Figure C-1. RS232 Driver

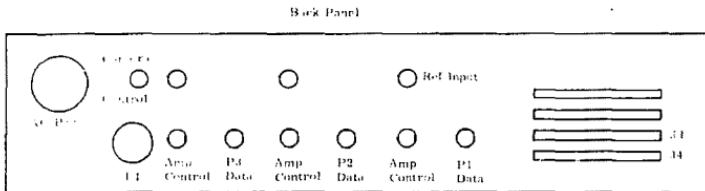


Figure C-2. Back Panel Layout

			<u>Function</u>	
<u>P - 0 Status</u>	<u>Pin</u>	<u>Bit</u>	<u>Byte 1</u>	<u>Byte 2</u>
	F	0	I 1	X
	E	1	0 1	X
	D	2	I 2	Pwr Up
	C	3	0 2	Agc
	H	4	I 3	Data Valid
	K	5	0 3	X
	J	6		X
	H MSB 7		X	X

			<u>Function</u>
<u>P - 1</u>	<u>6</u>	<u>0 - 3 Lines</u>	<u>0 Nop</u>
	5	1 - Decoded to:	1 1 Byte 1
	4	2 -	2 1 Byte 2
	3	3	3 2 Byte 1
	L	4 Reset 1	4 2 Byte 2
	9	5 Reset 2	5 3 Byte 1
	8	6 Reset 3	6 3 Byte 2
	7	Bell	7

			<u>Function</u>
<u>P - 4 TTY</u>	<u>15</u>	<u>0</u>	<u>To TTY RS 232</u>
	16	1	X
	17	2	X
	18	3	X
	19	4	X
	20	5	X
	21	6	X
	14 MSB 7		<u>From TTY RS 232</u>

			<u>Function</u>
<u>P - 5 Parallel IN</u>	<u>S</u>	<u>0</u>	<u>Data</u>
	T	1	
	U	2	
	V	3	
	W	4	
	X	5	
	Y	6	
	P MSB 7		

Figure G-3. F8 Port Pinouts

	<u>Pin</u>	<u>Positive Inputs</u>	<u>Card 17</u>	<u>Pin</u>
	2	Positive		6
	4	Inputs		8
Portal 1				
	6	gnd		
	8	gnd		
	10	gnd		
	12	gnd		
Portal 2	36	Positive	35	
	38	Inputs	33	
Portal 3	18	Negative		8
	20	Inputs		10
	22	gnd		
	24	+5 volts		

Figure C-4. J3 Interrupt Sensor Inputs

<u>Pin</u>	<u>Card 5</u>	<u>Card 9</u>	<u>Card 13</u>	
2	31	31	31	MSB <u>Data Bus</u>
4	32	32	32	
6	33	33	33	
8	34	34	34	
10	35	35	35	
12	36	36	36	
14	37	37	37	
16	38	38	38	
18				
20				
22				Bell
24	5	5	5	Control Lines
26	7	7	7	Control Lines
28	9	9	9	Control Lines
30	19			Reset
32		19		Reset
34			19	Reset
36	61	61	61	I1
38	62	62	62	01
40	63	63	63	I2
42	64	64	64	02
44	65	65	65	I3
46	66	66	66	03
48	67	67	67	
50	68	68	68	

All odd pins are gnd.

Figure C-5. J4 Microprocessor Interface

APPENDIX D

IR Sensor Schematics

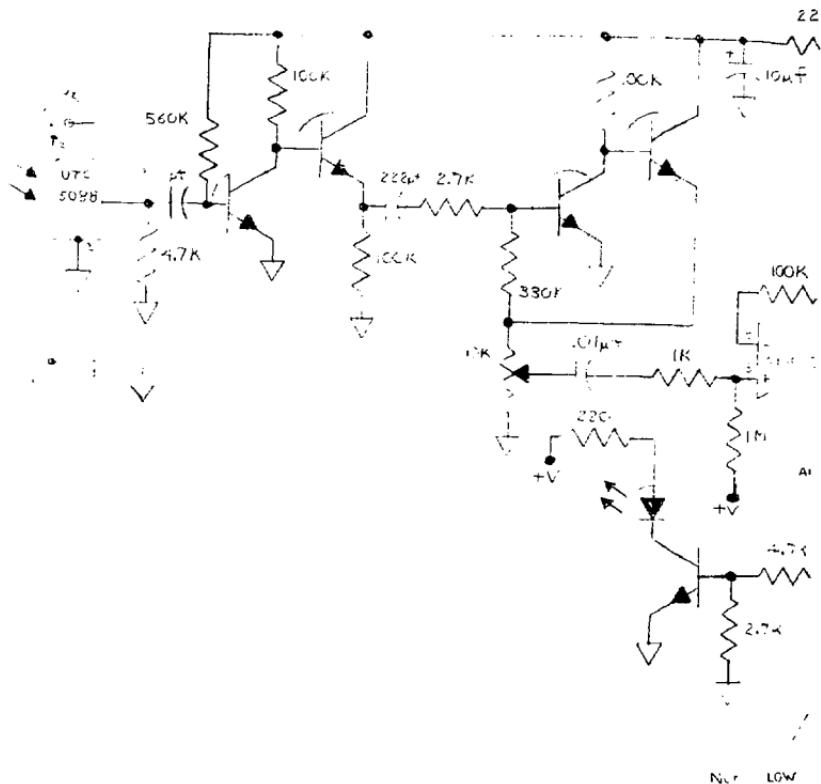
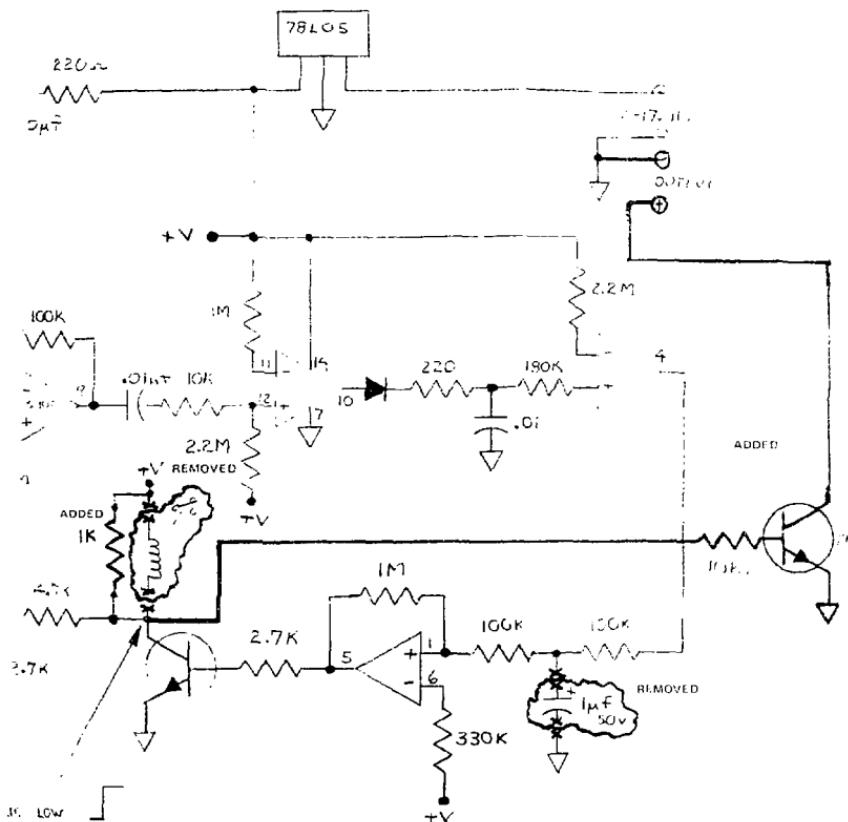



Figure D-1. Colorado Electro-Opti

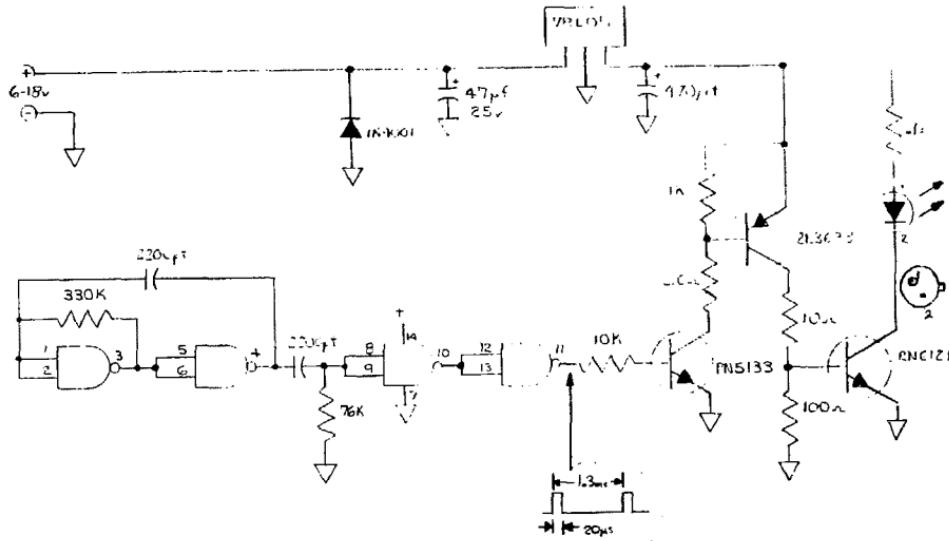


Figure D-3. XMTR 1A-76 Photoelectric System Colorado Electro Optics

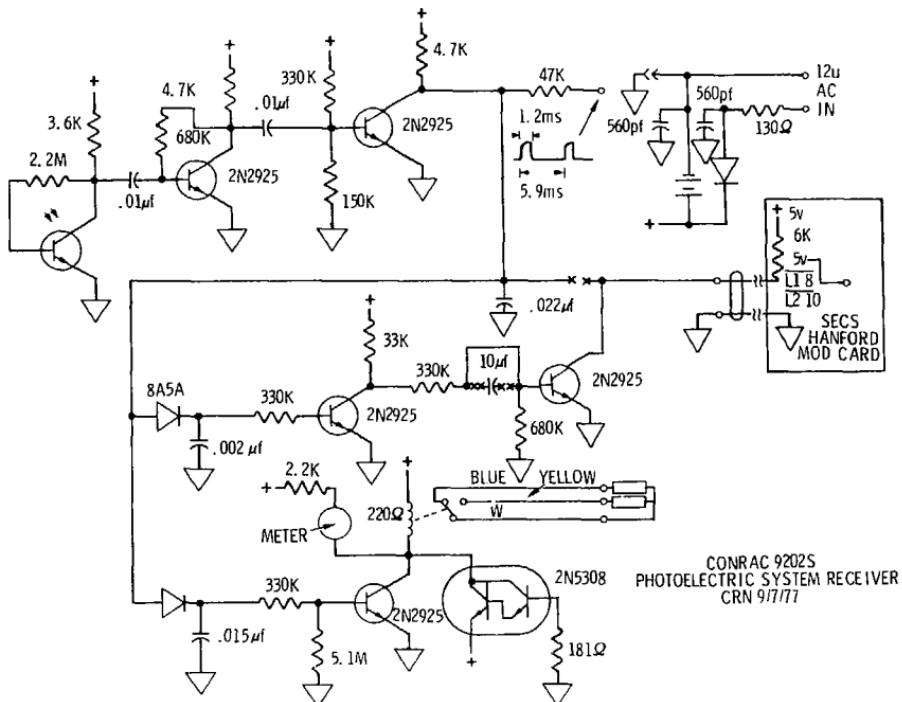


Figure D-4. CONRAC 9202S Photoelectric System Receiver

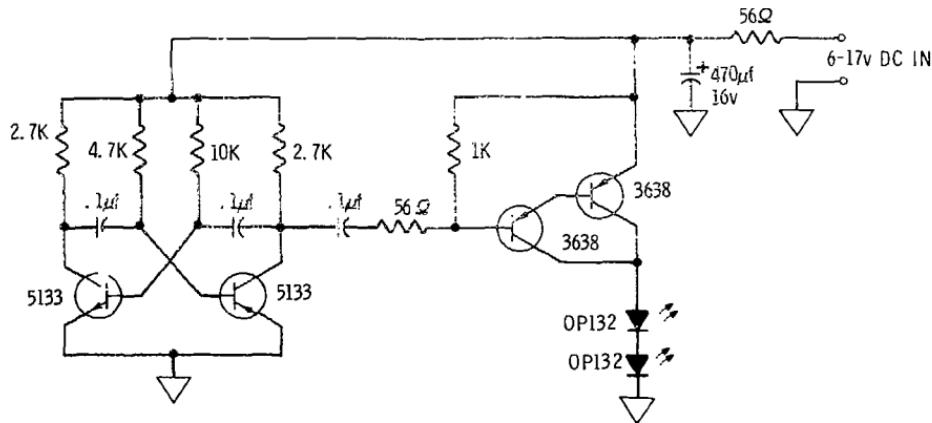


Figure D-5. Colorado Electro-Optics 1A-151 XMITTR

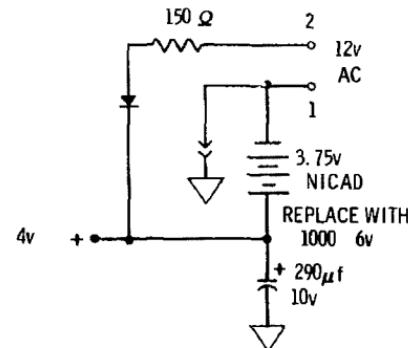
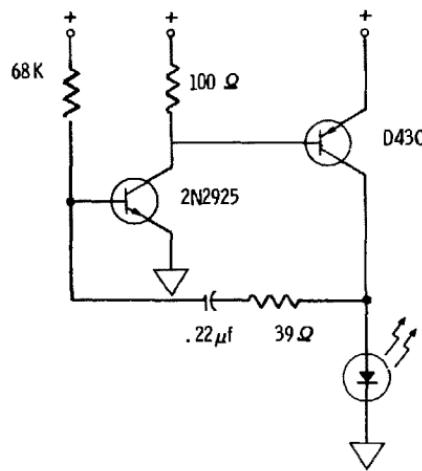



Figure D-6. CONRAC 9202S Photoelectric System Transmitter
(Arrowhead 1900-3R/MC)