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ABSTRACT

We present a numerical method for nonisothermal,
multiphase subsurface transport in heterogeneous porous
media. Jhe mathematical model considers nonisothermal two-
phase (liquid/gas) flow, including capillary pressure effects,
binary diffusion in the gas phase, conductive, latent, and
sensible heat transport. The Galerkin finite element method is
used for spatial discretization, and temporal integration is
accomplished via a predictor/corrector scheme. Message-
passing and domain decomposition techniques are used for
implementing a scalable algorithm for distributed memory
parallel computers. An illustrative application is shown to
demonstrate capabilities and performance.

1. INTRODUCTION

Many research activities in subsurface transport require the
numerical simulation of multiphase flow in porous media. This
capability is critical to research activities in environmental
remediation (e.g. DNAPL contaminations), nuclear waste
management, reservoir engineering, and to the assessment of
the future availability of groundwater in many parts of the
world. Scientific advancements in each of these areas could
benefit from a high-performance numerical simulation
capability. This paper presents an unstructured grid numerical
algorithm, developed under the laboratory-directed research
and development (LDRD) program at Sandia National
Laboratories (SNL), for subsurface transport in heterogeneous
porous media implemented for use on massively parallel (MP)
computers via message-passing and domain decomposition
techniques. Among the primary objectives of this research were
to investigate the use of MP computing for general multiphase
systems (which involve such complications as phase

RECEIVED
GEP 2 3 1997
@STI

appearance and disappearance), and in particular, to develop
scalable algorithms for general unstructured grids. The numerical
platform which is presented provides an excellent base for new
and continuing research in areas of current interest to the
geoscience community.

2. MATHEMATICAL FORMULATION

The governing equations for nonisothermal multiphase flow
in porous media are statements of mass balance of water and air,
over both liquid and gas phases, and a statement of energy
balance, also over both phases (e.g., Peaceman, 1977; Martinez,
1995). The canonical form of this coupled system of balance
equations is given by

5 d, F, |Q
5| do| +Vo|Fo| = |Ca)- M
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where subscripts w, a and e denote water, air and energy. The
bulk mass densities are given by,

d(l = ¢ 2 Y“BPBSB’ o =w,a (2)
B=1Lg
and the energy density is given by,
e = (1—¢)pses+¢(Slplel+Sgpgeg). 3

In these and subsequent equations subscripts /, g, and s refer to
the liquid, gaseous, and solid phases, respectively. Also, ¢
denotes porosity, Y,g is the mass fraction of component o in

phase B, p is phase density, e is internal energy, and Sy is phase
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saturation, and the pore space is assumed fully occupied by the
liquid and gas phases, $;+S, = 1. The net component mass

fluxes are defined as
Fo=Youpp+Yo v, — Do, V¥, C))

where vg denotes the Darcy flux vector and the effective binary
diffusion coefficient is given by (Vargaftik, 1975; Pruess, 1987),

S P )
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in which 7 is tortuosity, D,

¢ is the free-space binary diffusion

coefficient between water vapor and air, P is pressure, T is tem-
perature, and v is roughly 2 for air and water. The advective

flux of air dissolved in water is ignored in the present implemen-
tation.

In describing flow through porous media, one must
necessarily pose average quantities (defined with respect to a
representative elementary volume (REV), Bear, 1972) rather
than pore-scale continuum values. For example, even though the
Darcy fluxes, vg, have units of velocity, they represent the local

volume flux per unit area of porous medium. As such, they
cannot satisfy the no-slip condition on fluid/solid interfaces. The
flux relations to follow take the place of the momentum balance
in continbum equations; they are the volume-averaged
momentum balances under conditions of “creeping flow,” i.e.,
inertia-free, slow viscous flow (e.g., Martinez and Udell, 1990).

The advective fluxes are assumed to be properly described
by the extended Darcy law, in which relative permeabilities are
introduced to account for the multiphase motion of fluids. Thus
the Darcy flux vector of phase B (liquid or gas) is,

kr
vg = _Efk°(vpﬁ+p“g) 6)

where P is pressure, g is the gravitational acceleration vector,
and p is dynamic viscosity. The intrinsic permeability tensor of
the medium is k£ and the relative permeabilities are denoted k.g-

A particular form of the relative permeability function is
described by Eq. (24), to be discussed in the following. The
intrinsic permeability tensor is assumed to be a property of the
material under consideration, and as such is a spatially heteroge-
neous quantity. Note that we have assumed that each phase has
its own phase pressure. Because the transport problem under
consideration involves multiple, immiscible phases, capillary
forces must be considered. The phase pressures are related via
the capillary pressure relation,

P,—P, = PS) )]

which, as indicated, is assumed to be empirically specified as a
function of the phase saturation of liquid. One of several possi-
ble models is presented in the application section.

The net heat flux vector is defined by
g = -AVT+Y pavphg+ ¥ ho J o, ®
8 o

where A is a saturation-dependent effective conductivity, kg is
phase enthalpy, 4, is the enthalpy of component o in the gas

phase, and Jag is the gas-phase diffusion flux, the last term on
the right-hand-side of Eq. (4).

The foregoing describes the major components of the
mathematical model. Some additional information concerning
thermodynamics and transport models can be found in Martinez
etal., 1997.

3. NUMERICAL METHODS

The numerical method presented for solving the initial-
boundary value problem formed by the coupled system of
governing equations is a finite element method (FEM), enabling
a general representation of complex geologic stratigraphy. The
spatial discretization is accomplished by the Galerkin finite
element method (e.g. Hughes, 1987). The resulting system of
ordinary differential equations is integrated forward in time by a
variable-step backward-difference predictor-corrector scheme.
The backward-difference formulae result in systems of nonlinear
algebraic equations to be solved for nodal quantities. The
effective treatment of the highly nonlinear system considered
here is made possible by the use of Newton iteration.

3.1 Spatial Discretization

Derivations of the Galerkin finite element method (GFEM)
are widely available (e.g., Huebner and Thornton, 1982; Hughes,
1987) and only an abbreviated discussion is presented here. The
idea is to approximate the unknown variables appearing in the
governing equations by a finite-dimensional set of basis
functions with compact support (each basis function is non-zero
in a small subdomain of the complete computational domain).
The FEM also involves subdividing the computational domain
into an assemblage of subdomains, the finite elements. This
representation by a finite-dimensional basis is approximate, and
results in some error, called a residual. In the general method of
weighted residuals, this residual is required to be zero in a
weighted-average sense by forming the so-called weak-form
residual equation. The weak-form residual equations for the
multiphase system are defined by
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where I = 1,...,N, and N is the number of weight functions,
®;, dg ; is the time-rate of change of the bulk mass density at
nodal point J, and ¢; is the time-rate of change of bulk energy

density at nodal point J. In this equation, Q denotes either the
domain of a finite element, or the entire domain under consider-
ation, and »n is the outward pointing normal to the boundary sur-
face of Q, denoted I'. The flux divergence term has been
integrated by parts, resulting in the boundary integral, which is
useful for specifying a boundary flux to the domain. Although
not explicitly denoted in the foregoing expression, it is under-
stood that the variables are numerical approximations to the
exact variables appearing in the original PDE, and that each is
approximated by the same finite-dimensional basis set. Isopara-
metric trilinear 8-node hexahedral elements are implemented for
3D simulations and bilinear 4-node quadrilaterals for 2D.

A discrete nonlinear system of time-dependent ordinary
differential equations is obtained by requiring each weak
residual equation be zero, Ry1=0, I=1,...,N. The principal

behind this weighted residual method is to require the vector of
weight functions to be orthogonal to the residual equation,
thereby enforcing each weak residual equation to be zero in a
weighted average sense.

3.2 Time Integration

The time integration is achieved by using finite-difference
approximations for time discretization. In this work, we consider
a variable-step, predictor-corrector method, first described by
Gresho, et al, (1980). Two time integration methods are
implemented. A first order scheme employs a forward Euler (FE)
predictor with a backward Euler (BE) corrector. A second order
scheme employs an Adams-Bashforth predictor with a trapezoid
rule corrector. The predictors are used to obtain an initial
estimate of variables at the next time step, ¢,,; thereby
improving the initial estimate of the solution vector for use in a
Newton iteration scheme applied to the nonlinear system of
equations. An added benefit of these methods is that they provide
a convenient way to implement a truncation-error-based method
for time-step selection. In the second-order method, the
predicted variables for step n+/ are given by the Adams-
Bashforth predictor,

Pt = U”+%((2
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where U denotes the vector of unknown solution variables at a
grid point, the n superscript on U denotes the time level, the p
superscript denotes a predictor vector, the over-dot denotes a
time derivative, and the time step sizes are defined according to
At, =t,-t,_,, etc. The first-order predictor is the standard
forward Euler formula. The variable-step corrector equation is
defined as,

n+1 n

U =A_tn

n+1l

"t -vh-(m-1U", (11)

where 11 = 1 for the first-order backward Euler method, and

n = 2 for the second-order trapezoid rule. Time discretization in
the FEM equations is achieved by applying the variable-step
corrector for approximating the time derivatives of the
capacitance terms (time derivatives of bulk densities and
energy). If we denote the vector of bulk densities and energy at a

grid pointby D = (d,.d, e)T , the grid-point time derivatives are
approximated by

Npor
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in terms of the grid-point “accelerations” (U) given by the
corrector equation. Npop denotes the number of degrees of
freedom per node point.

The predictor equations require that one or more vectors
from previous time steps be available for their application in
estimating variables at the next time step. In this work, the first
step uses the initial condition as predictor, the second step uses
the FE predictor with BE corrector. At the third step, two
previous time derivative vectors are available for use in either of
the user-specified predictor/corrector pairs.

The predictor/corrector scheme provides a method for
estimating the local time truncation error, thereby providing a
rational scheme for automatic time step control based on a user-
specified truncation error tolerance. By using a norm-type
analysis, the local time truncation error is estimated from the
error norm between the predictor and corrector vectors. The time
truncation error norm is defined by

N
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where N, is the global number of unknowns, and 1, and 1,

are relative and absolute user-specified error tolerances. The
next time step size is specified so that the estimated time trunca-
tion error equals the user-specified error (Gresho et al., 1980),
resulting in the formula

At

ﬁ - (ﬁ)’" (14)

where €, is a user-specified tolerance, p = 2 and m = 1/2 for
the first-order method and B = 3(1+A¢,_,/Az,) and m = 1/3
for the second-order method.

3.4 Linear and Nonlinear Solution Procedures

The task for the nonlinear solver is to find the solution vector
U that minimizes the global residual vector, R = (R, R,, Re)T,

given by Eq. (9) once the time derivatives have been discretized
by using the relations in Eqs. (11) and (12). The discretized
system of nonlinear equations can be solved for the solution
variables by Newton iteration (e.g., Gill et al., 1981); each step
of the iteration requires the solution of the following linear

system for the update vector, 8U,

JUuhHsv*! = _rUY), (15)
where J is the Jacobian matrix,

3R,

The solution vector is updated at each iteration (q) according to

vt = vl suitt, (17)
until convergence is achieved; the stopping criteria is

Nun
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The Jacobian can be computed efficiently via forward difference
approximations, by exploiting the fact that most terms are sums
of products of basis functions and grid variables. In this scheme,
Eq. (16) is approximated by

3R, R,U+3Ue;)~R(U)

oU; oU ’

(19)

where e; is a unit basis vector for the j-th unknown in the solu-

tion vector. This “inexact” Newton scheme (the term inexact in
the present context refers to a numerical approximation of the
Jacobian) is a convenient method of determining the Jacobian

because any new transport parameter function or equation of
state can be implemented without the need for the user to also
program the gradient of the functions with respect to the solu-
tion vector variables. This is particularly helpful in the present
class of problems where secondary variable calculations depend
on which phases are present at a particular node point. However,
special care must be taken in computing the forward differences
to minimize finite-precision errors (see for example, Gill et al.
1981).

The Newton iteration scheme generates a linear system of
equations, viz. Eq. (15), to be solved for each update vector. The
systems are solved using a parallel processing preconditioned
Krylov solver library called Aztec (Hutchinson et al., 1995). The
library includes several parallel iterative solution methods,
including the conjugate gradient method for symmetric positive
definite systems and a number of related methods for
nonsymimetric systems, e.g. the generalized minimum residual
method (GMRES). The library includes several preconditioners
(e.g., Jacobi, least-squares polynomial, incomplete LU
decomposition), which can be “mixed and matched” with the
Krylov methods. See Hutchinson et al., 1995 for additional
information.

3.5 Boundary Conditions

Both Dirichlet and specified flux boundary conditions can
be imposed on the discrete equations. Several combinations of
Dirichlet and flux conditions are also allowable, as discussed in
the following.

Fixed values for some or all degrees-of-freedom at a
particular boundary node can be specified directly into the
residual equation for that unknown. For the Newton iteration, the
residual equation in the Jacobian matrix corresponding to the
boundary node is replaced by an identity specifying the desired
value. Specified surface fluxes are the “natural boundary
conditions” for the FEM formulation shown earlier. Surface
fluxes are conveniently applied by specifying values for the
boundary flux terms appearing in Eq (9). In general the fluxes are
time dependent, and can depend on the solution vector at the
considered node. Note that these terms specify the net
component flux, in the case of the component mass balance
equations, or the total heat flux in the case of the energy equation.
The fluxes can be specified in terms of transfer coefficients in the
form,

gon = K(T-T,,),

for the case of energy transport, and in analogous forms for the
mass balance equations. If the parameters are dependent on the
solution variables in a general way, a user-supplied function can
be included to allow such an application.
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Figure 1. Schematic of a domain decomposition in which the global mesh (a) is decomposed
into two subdomains, (b) and (¢). The dashed elements denote the “ghost
elements” on each partition. The global mesh displays the global node numbering
scheme, whereas the subdomains display the processor-level node numbering,
with the corresponding global node numbers dispiayed in parenthesis.

Combinations of surface fluxes and Dirichlet conditions can
also be applied, so long as they form a mathematically consistent
set of boundary conditions.

3.6 Parallel Implementation

The foregoing numerical algorithm is implemented for
distributed memory parallel computers, or networked systems,
via domain decomposition and message-passing techniques
(e.g., Foster, 1995). We used the MPSalsa code (Shadid et al.,
1996) as a platform, including the parallel-processing
implementation. However, there are several properties of the
current problem which necessitated some special developments.
A special data structure was necessary for the porous medium
calculations. In our formulation it is necessary to have a unique
material type specified on a node-point basis. This requirement
can be attributed to the capillary pressure vs. saturation
constitutive model, which is non-unique at a material boundary,
and our choice of primary variables. Our solution to
accommodate this non-FEM data structure was to build a
processor node-point-to-material mapping. To ensure a
consistent mapping across processors, inter-processor
communication is required to update the correct mapping for the
“ghost nodes” on each processor.

Domain decomposition, as used in the current context, refers
to the process of breaking the geometrical computational domain
into an assemblage of sudomains for the purpose of assigning the
computational work for each subdomain to one unique
processor. The domain decomposition itself is performed with a

modified version of the Chaco (Hendrickson and Leland, 1993)
graph partitioning code. The task for Chaco is to decompose the
global node set graph into a user-specified number of partitions
(subgraphs) in such a way as to minimize the edge interactions
between partitions.

A simplified schematic of a domain decomposition is shown
in Figure 1 for a structured grid (the algorithm is implemented
for general unstructured grids). The global domain is
decomposed into two subdomains, wherein the set of nodes
assigned to each processor are numbered sequentially, starting
with the set of nodes that “belongs” to the processor, and with the
ghost or external nodes numbered last. In the figure, the global
node numbers corresponding to the processor-level node
numbers on the mesh partitions (Figures 1b and 1c) are shown in
parenthesis. The dashed elements are the so-called “ghost
elements” and the associated node points are referred to as “ghost
nodes” or external nodes. Each processor is assigned the nodes
corresponding to the un-dashed elements in Figure 1. However,
on each processor the data for the external nodes is necessary to
complete the processing for the border nodes, i.e. the surface
nodes on each subdomain. Clearly, interprocessor
communication is required for exchanging information
associated with the ghost nodes, and those “border” nodes
associated with the current processor.

The implementation of this communication requires an
inter-processor communication mapping, i.e., for each processor
alist of other processors with which data must be shared, and, for
each of these processors, a list of nodes with which data is to be
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Figure 2. Grid composed of 358,000+ node points. Selected
coordinates (x,y,z) in meters are shown for scale.

exchanged. The interprocessor communication is set up to take
advantage of the native Intel Paragon communication structures,
enabling efficient communication on the Intel Paragon, and is
also set up to use the standard message-passing library definition
MPI (Gropp, et al., 1995), thus making the algorithm highly
portable. The domain-decomposition itself is done in a pre-
processing step, creating a file containing the decomposition
information necessary for interprocessor communication.

The decomposition in Figure 1 suggests some features of the
parallel performance associated with interprocessor
communication. The amount of communication for a particular
decomposition is proportional to the ratio of the number density
of surface nodes to internal plus surface nodes in the partition.
The relative amount of communication is analogous to the rate of
heat loss of a volume, which is proportional to the surface area to
volume ratio. For a user faced with solving a problem on a
particular mesh, there will be a more-or-less optimal number of
processors (partitions) which will minimize run-time. Too few
processors will render communication costs negligible but will
over-load (assuming more processors are available) the work on
each processor. With too many processors, communication costs
will overwhelm CPU processing. With ever-increasing demands
on resolution, the latter condition is less likely than the former.

4. APPLICATION AND PERFORMANCE

Verification of the numerical implementation of the
nonisothermal two-phase flow algorithm in the code was

accomplished by comparison with existing numerical solutions
to some standard problems involving isothermal unsaturated
flow, and thermal simulations of two-phase flow. The
presentation of these verification studies can be found in
Martinez et al., 1997. In the following we present a sample
calculation designed to demonstrate the capabilities of the
simulator.

4.2 Hydrothermal Simulation

In this example we examine multiphase hydrothermal
transport, due to a heat-generating source distribution, in a large
scale 3D region modeled after Yucca Mountain (YM), Nevada,
a site being considered for placement of a high-level nuclear
waste repository. The computational grid, shown in Figure 2, is
composed of over 358,000 node points and includes the major
hydrostratigraphic units at YM. The waste repository is to be
sited in the Topopah Springs unit and is indicated by the fine
discretization in the figure, where the heat source is located. This
hexahedral unstructured finite element mesh was created with
the CUBIT (Blacker et al., 1994) mesh generation program. This
domain was meant to be similar to YM, but it is not a true
representation. The front-facing cross section shown in Figure 2
is in fact representative of YM. However, the full 3D region was
generated by “sweeping” this cross section backward for 3 km at
a vertical inclination of about 5 degrees. Figure 2 includes spatial
coordinates of selected points for scale. The entire region
measures about 1.6 kin east to west, includes about 0.7 km above




the water table (the lower boundary) and extends 3 km along its
length.

The materials are modeled as composite fractured media
using the so-called equivalent continuum model (ECM) model
(Peters and Klavetter, 1988) which assumes the fracture and
matrix systems are locally in pressure equilibrium. The resulting
models for bulk porosity, saturation, and permeability, are given
by

0p = 0p+(1-0,)0,,, (20)
05y = 05+ S, (1-00)9,,, @n

and
ky = ks +k,(1-0p), (22)

where ¢, S, and k denote porosity, liquid saturation and perme-
ability (product of intrinsic and relative permeability), and sub-
scripts f, m, and b denote fracture, matrix and bulk values. Each
of the matrix and fracture capillary pressure functions, §,.(P,)

and S #(Pe)s is described by the van Genuchten (1978) model,

1
1 -
_ 7 B _ §$-5
PC(S)=%3[SK-1}, §=_r (23)

where A = 1 -1/, and g is the gravitational acceleration. The

scaled saturation, S, is a function of the liquid saturation, S, and
the material residual saturation, S,. The two material parameters,
o and B, influence the degree of nonlinearity in the problem.
The former provides a pressure scale for capillary forces, while
the latter is indicative of pore-size distribution. Individual mate-
rial parameters (e, By, S, y» ¥Y=f, Or m) are prescribed for the
fracture and matrix functions, which, when substituted into Eq.
(21), results in a nonlinear expression between the capillary
pressure and bulk saturation. Similarly, the relative permeability
functions for the liquid phase in the fracture and matrix is speci-
fied by a model corresponding to the van Genuchten function,
developed as suggested by Mualem (1976),

12

k, (8) = Ji[l —(1 -3 ) } (24)

in which S corresponds to fracture or matrix scaled saturation
and k, = k, /k, ,, Y=f, or m, and k; . denotes the saturated per-

meability for the fracture or matrix. For the gas phase, the rela-
tive permeabilities are given by the functional form 1 -k, .

Because the saturation functions so described are nonlinear
implicit functions of the capillary pressure, the functions were

Table 1. Material properties.

Unit k (m?) oxio® | B ¢ St
(1/Pa)
matrix
TCw 3.06x 10716 7.56 1.95 0.22 0.14
tpp 7.44x 10°14 34.1 1.43 0.5 0.1
tpy 47x 10718 115 1.3 008 | 013
CHv 1.03x 1004 98. 1.29 0.34 0.06
Repo 47x 1018 1.15 13 0.08 0.13
fracture
TCw 1.47x 10712 1030 3.0 7.55 104
tpp 3.71x 10°13 1025 3.0 1.91 104
tpy 2.07x 10712 1018 3.0 12.6 104
CHv 1.01 x 10°12 1330 3.0 3.59 104
Repo 2.07x 10°12 1018 3.0 12.6 104

a. matrix porosity ¢, , or fracture porosity, ¢ fx104

specified in tabular form. The FORTRAN code for these models
was provided by R. R Eaton of SNL. The property data for this
problem are those specified in the study of Altman et al. 1996,
and are shown in Table 1. These materials, and especially with
the ECM, display many orders of magnitude variation in perme-
ability from unit to unit, rendering a highly nonlinear problem
which requires the Newton iteration scheme for convergence.

Lateral boundaries are specified as no-flow for all mass and
energy balance equations. The entire lower boundary is modeled
as a water table (moisture saturation unity) at 1 atmosphere
pressure and a temperature of 20° C. The upper boundary is also
at 1 atmosphere pressure, but at a temperature of 15°C. An
infiltration flux of water at 0.1 mm/yr is applied uniformly over
the entire upper boundary. These conditions simulate an upper
boundary in contact with the atmosphere. The heat source term
for the repository was specified as

Q.= Qoexp(_ N — %(()7 —Gyo))z) ,

with g, = 075 W/m?, A = 1/6337yr'}, 6 = 4943 m, and
¥o = 1500 m. The y-coordinate is perpendicular to the plane

shown in Figure 2. The repository block measures 750m by 10m
in the cross section shown in Figure 2.

The simulation was performed in two steps. In order to start
with a pre-waste-emplacement condition, a steady state solution
was first obtained with no repository heating. This solution pro-
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Figure 3. Pressure and temperature distributions at 23
years. Each geologic unit is modeled as
fractured medium, which provides enough
gas permeability 1o negate significant gas
pressure build-up.

vided the initial condition to the next phase of the study which
included repository heating.

Figure 3 shows pressure and temperature distributions after 23
years of heat output by the model repository. The temperature is
very near to the (thermodynamically) saturated temperature for
this pressure. Much of the air has been driven from the reposito-
ry at this time. This phenomenon could be important to the
question of corrosion of waste containers, a process whose
chemistry may be affected by the absence of air during the hot
phase of the repository. Some gas pressure build-up above the
repository is noted. However, due to the high gas permeability
afforded by the fractured medium, the variation in gas pressure
is small. An earlier 2D simulation which modeled materials as

matrix-only (unfractured) and with @, = 1.0 W/m? resulted in

repository temperatures on the order of 160 ° C and gas pres-
sures of 0.68 MPa after 53 years of heat output. The unfractured
matrix permeabilities are ultra-low at YM, on the order of 10718

m? for the repository horizon, which, in the absence of fractur-
ing, can trap the evaporated gases in and around the repository
resulting in very high pressures and temperatures.

This simulation, on a mesh consisting of 358,000+ grid points,
requires the solution of a linear system composed of about 1.1
million equations which are solved at each time step. Transient
simulations of this type require many hundreds or thousands of
time steps to simulate flow over many thousands of years. This
magnitude of simulation can only be performed with parallel
processing computers, as in the current simulator; this is a sig-
nificant capability. The simulations were run on SNL’s 1800-
processor Intel Paragon computer; numerical performance stud-
ies are discussed in the following section. The capacity of the
simulator depends on the size (number of processors and memo-
ry per processor) of the parallel computer available. The present
example did not utilize the full capacity of the Paragon. SNL
has recently procured an Intel-built 9000 processor teraflop ma-
chine. This machine enables fully transient simulations with

108 grid point resolution capacity.
4.2 Parallel Performance

The foregoing problem was run on various numbers of
processors to assess the parallel performance on the 1800
processor SNL Intel Paragon. In order to reduce the CPU
requirements for a mock heatup and cool down cycle, the heat

output was reduced by setting Q, = 0.5 W/m> and the

simulation was carried out to 3000 years, starting with the pre-
emplacement solution, as described earlier. The GMRES solver,
with incomplete iLU preconditioning and row-sum scaling, was
used. The iLU preconditioning algorithm was not overlapped
over the processors (overlapping is available, but the memory
and communication costs are substantial), hence, the number of
linear solver iterations required will vary with the number of
processors.

The total CPU time, excluding loading mesh data and file
handling, is shown in Figure 4 as a function of the number of
processors. Each simulation, performed with different numbers
of processors, required 71 time steps and 125 Newton iterations
to integrate the solution out to 3000 yrs. This demonstrates the
correct parallel implementation of the solution algorithm. As
noted above, the iLU preconditioner was not overlapped on the
various processors, and therefore the number of linear solver
iterations varies with the number of processors. For the present
simulation, 9023, 9841, and 10103 total linear iterations were




necessary on 256, 500 and 1024 processors, respectively. The
speedup ratio shown is defined as

256 o T'ps6

T,

where T}, denotes the CPU time on p processors. The numerator
estimates the CPU time on a single processor based on the CPU
time for 256 processors. This estimate is not expected to be
accurate (relative to the speedup ratio based on execution time
on one processor), and neither is the speedup ratio for 256 pro-
cessors shown on Figure 4. However, the current problem is far
too large to fit on a single processor of the Intel Paragon. On a
fixed size grid, such as in the present case, the efficiency will
always decrease as the problem is partitioned onto more proces-
sors, which increases the relative amount of communication
compared to floating point operations. This is inevitable when a
fixed-size mesh is partitioned onto an increasing number of pro-
cessors. At 1024 processors the relative efficiency is about 79%,
a good value for an unstructured grid parallel algorithm.
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Figure 4. Parallel processing performance data
for the 3D hydrothermal simulation.
Each simulation required 71 time steps,
and 125 Newton iterations,
demonstrating a fully parallel solver
implementation.
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Figure 5. Time step history comparison between the
first-order and second order time integration

methods.
Figure 5 compares the time-step history between the second-

order Adams-Bashforth/trapezoid-rule (ABT) integrator and the
first-order forward-Euler/backward-Euler (FEBE) scheme. The
former scheme performs the integration to 3000 years in 48 time
steps (77 Newton iterations) versus 71 steps (125 Newton
iterations) for the Euler scheme. On this problem, the second-
order method performs the integration in about 59% of the time
required by the first order method. Note that although the ABT
method increased the time step sizes quicker, the time step size
for the FEBE method nonetheless “caught-up” at the end of the
simulation.

5. CONCLUDING REMARKS

This paper discusses the development of a 3D unstructured
grid, two-phase, two-component subsurface transport simulator
implemented for distributed memory parallel computers. This
simulator has been run on the Intel Paragon, the IBM SP-2, as
well as on a network of workstations. Through the
implementation of the MPI message-passing protocols, the code
can be used on any system which has MPI installed. The
performance results clearly show the potential for this general-
purpose MP capability. In particular, the sample application
presented demonstrates that 3D, large-scale multiphase
simulations with high resolution of geologic strata are feasible,
and moreover can now be performed routinely on the SNL Intel
Paragon. However, the parallel processing capabilities can also
be accessed on (ubiquitous) networked systems via MPIL. This
enables 3D high-resolution parallel processing simulations to be
performed on common networked systems. The numerical
platform provides an excellent base for performing research in
subsurface transport related activities.




ACKNOWLEDGEMENTS

This work was performed under the LDRD program at
Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under
Contract DE-ACO04-94A1.85000.

REFERENCES

Altman, S. J., S. Mishra, C. Li, J. T. Birkholzer, J. E. House-
worth, C. F. Tsang, S. A. McKenna, Y. W. Tsang, R. R.
Eaton, V. C. Tidwell, J. S. Y. Wang, B. S. RamaRao, M. J.
Martinez, P. B. Davies, 1996, Multi-scale modeling to evalu-
ate scaling issues, percolation flux and other processes for PA
recommendations, Level E Milestone T6540, Yucca Moun-
tain Project, Las Vegas, NV, September, 1996.

Bear, 1., 1972, Dynamics of Fluids in Porous Media, American
Elsevier, New York, 764 pp.

Blacker, T. D., W. J. Bohnhoff, T. L. Edwards, J. R. Hipp, R. R.
Lober, S. A Mitchell, G. D. Sjaardema, T. J. Tautges, T. L.
Wilson, W. R. Oakes, S. Benzley, J. C. Clements, L. Lopez-
Buriek, S. Parker, M. Whitely, D. White and E. Trimble,
1994, Sandia National Laboratories Tech. Rept., SAND94-
1100, Sandia National Laboratories, Albuquerque, NM, 180
pp-

Foster, L., 1995, Designing and Building Parallel Programs, Ad-
dison-Wesley Publishing Company, Menlo Park, CA, 390
pp-

Gill, P. E., W. Murray, and M. H. Wright, 1981, Practical Opti-
mization, Academic Press, New York, 401 pp.

Gresho, P. M., R. L., Lee, and R. L. Sani, 1980, On the time-de-
pendent solution of the incompressible Navier-Stokes equa-
tions in two and three-dimensions, Recent Advances in
Numerical Methods in Fluids, Volume 1, Pineridge Press
Ltd., Swansea, U, K., 27-81.

Gropp, W., E. Lusk, and A. Skjellum, 1995, Using MPI, MIT
Press, Cambridge, 307 pp.

Hendrickson, B., and R Leland, 1993, The Chaco user’s guide,
SAND93-2339, Sandia National Laboratories, Albuquerque,
NM, 22 pp.

Huebner, K.H., and E. A. Thornton, 1982, The Finite Element
Method for Engineers, John Wiley & Sons, New York, 623

pp-

Hughes, T. J. R., 1987, The Finite Element Method, Prentice-
Hall, inc., Englewood Cliffs, NJ, 803 pp.

Hutchinson, S. A., J. N. Shadid and R. S. Tuminaro, 1995, Aztec
user’s guide, Version 1.0, Sandia National Laboratories
Tech. Rept., SAND95-1559, Sandia National Laboratories,
Albuquerque, NM, 40 pp.

Martinez, M. J.,, and K. S. Udell, 1990, Axisymmetric creeping
motion of drops through circular tubes, J. Fluid Mech., 210,
565-591.

Martinez, M. J., 1995, Mathematical and numerical formulation

of nonisothermal multicomponent three-phase flow in porous
media, SAND95-1247, Sandia National Laboratories, Albu-
querque, NM.

Martinez, M. J., P. L. Hopkins, and J. N. Shadid, 1997, LDRD
Final Report: Physical simulation of nonisothermal mul-
tiphase multicomponent flow in porous media, SAND97-
1766, Sandia National Laboratories, Albuquerque, NM, 65
pp-

Mualem, Y., 1976, A new model for predicting the hydraulic
conductivity of unsaturated porous materials, Water Resourc-
es Research, 12 (3), 513-522.

Peaceman, D. W., 1977, Fundamentals of Numerical Reservoir
Simulation, Elsevier, New York.

Peters, R. R., and E. A. Klavetter, 1988, A continuum model for
water movement in an unsaturated fractured rock mass, Wa-
ter Resources Research, 24, No. 3, pp. 416-430.

‘Pruess, K., 1987, TOUGH user’s guide, LBL-20700, Lawrence

Berkeley Laboratory, Berkeley, CA.

Shadid, J. N., H. K. Moffat, S. A. Hutchinson, G. L. Hennigan,
K. D. Devine, and A. G. Salinger, 1996, MPSALSA, A finite
element computer program for reacting flow problems, Part 1
- Theoretical development, Sandia National Laboratories
Tech. Rept., SAND95-2752, Sandia National Laboratories,
Albuquerque, NM, 81 pp.

van Genuchten, R., 1978, Calculating the Unsaturated Hydraulic
Conductivity with a New Closed Form Analytical Model,
Water Resources Bulletin, Princeton University Press, Princ-
eton University, Princeton, NJ.

Vargaftik, N. B., 1975, Tables of the Thermophysical Properties
of Liquids and Gases, 2nd Ed., John Wiley and Sons, New
York.



