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A shell model approach leads to a simple constituent quark model for hadron structure in
which mesons and baryons consist only of constituent quarks. Hadron masses are the sums
of the constituent quark effective masses and a hyperfine interaction inversely proportional
to the product of these same masses. Hadron masses and magnetic moments are related by
the assumption that the same effective mass parameter appears in the additive mass term,
the hyperfine interaction, and the quark magnetic moment, both in mesons and baryons.
The analysis pinpoints the physical assumptions needed for each relation and gives two
new mass relations. Application to weak decays and recent polarized EMC data confirms
conclusions previously obtained that the current quark contribution to the spin structure of
the proton vanishes, but without need for the questionable assumption of SU(3) symmetry
relating hyperon decays and proton structure. SU(3) symmetry breaking is clarified.

I. THE EXTENDED AND UPDATED SAKHAROV—ZELDOVICH MODEL

This paper presents an “Eastern view” of the shell-model approach to hadrons, in contrast
to the “Western view” presented by Jaffe. Debates between these two views from regions
separated by the line between time zone GMT+1 (Copenhagen) and GMT+2 (Rehovot) have
long been traditional at Nuclear Physics Conferences. They continue analytically into the

hadron domain.

The shell-model approach to hadrons began in 1966 with similar naive models proposed
independently by two Eastern groups, Sakharov and Zeldovich in Moscow and Federman,
Rubinstein and Talmi in Rehovot!? The model was rediscovered and refined with input from
QCD by De Rujula, Georgi and Glashow? in 1975 and further extended by Cohen and Lipkin*
in 1980. It begins with a standard general shell-model Hamiltonian, the sum of single-particle
energies and a two-body interaction,

H3M=Ze;+2v;j, (1.1)
i (>3]

where ¢; is an effective single particle energy, v;; is 2 a two-body interaction and both ¢; and v;;
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from the assumption that baryon mass sblittings in"/”fhe ground state configuration arise from
the most general two-body forces with arbntrary spin and flavor dependence treated in first
order using a single spatial “shell model wave function” with zero orbital angular momentum

for all states in the configuration.?.
Ma — My =294 MeV = QM' « + Mz — 3M, = 307 MeV (1.2a)
The same assumptions also g.‘ive the relation | ‘
| Mz. — Mz = 216 MeV = Mu — Mg = 192MeV (1.2b)
This 12% discreﬁancy is endemic in any model whic\‘h«,\uses two-body forces® and is discussed

below together with relations for the other states containing two or more strange quarks.

Sakharov and Zeldovich anticipatevaCD by a,ssumiﬁg that all the flavor dependence in

the two-body interaction was in a flavor-dependent hyperfine interaction

vij = vj; + G - &'Jvhw (1.3)

where vf; is independent of spin and flavor, &; is a quark spin operal,or and v ? is the strength
of a ﬂa.vor—dependent hyperfine interaction with different strengths bui the same flavor depen-
dence for quark-quark and quark-antiquark interactions. They obtained two relations between

meson and baryon masses in surprising agreement with experiment?.

3 1 R
€y — €y = MA - ,MfN = 177MeV = Z(MK- - Afp) + Z (Af]( —A'f,r) = 180 MeV (1.40)

_ My-My _ M,-M, i
L83 = e = M = V6= i (1.4b)

where the subscripts u, d and s refer to quark flavors. This striking evidence that mesons and
baryons are made of the same quarks was overlooked for amusing reasons®’ and rediscovered

'in 1978.8

Input from QCD that the hyperfine interaction is produced by one gluon exchange ex-
plained the sign of the A — N and p — 7 mass splittings® and led to a successful prediction
for pp obtained before the experiment® by assuming that the ratio of the quark magnetic

moments uEM [uEM is the same as that of the corresponding color magnetic moments which

produce the hyperfine splittings,

EM col
fip Hts Mo ppMs— My
= ~0.6lnm. = - = = ——— = ~0.6ln.m. .53
HA n.m 3 b 3#“)1 3 Ma M 0.61n (1.5}

where ;1?"‘ denotes the color magnetic moment of a quark of flavor f.



Further input from QCD suggests that the hyperfine interaction is inversely proportional

to the product of the masses of the interacting quarks® and otherwise flavor independent.
hyp gi - 5:.7' o, ‘

i = Vi, (1-6)
J mym; J

v,

where m; is an effective quark mass and ©;; is flavor independent. The relation between this
mass parameter m; and other quark mass parameters is not clear at this stage. However DGG
introduced the assumption that the same mass parameters appear in the hyperfine interaction

(1.6) and in the expression for the quark magnetic moments written as Dirac moments.

Cohen and Lipkin® obtained a very simple and successful mass formula from the additional
assumption that the same effective quark mass parameters m; appear also in the additive
mass terms in the shell model Hamiltonian (1.1) and that these include not only the full single
particle energy ¢; including the kinetic energy but also the spin and flavor independent part

of the two-body interaction

Zm,- ==Z:e,-+zvfj | (1.72)

i>7

F;- ‘
M= Xi:m,- + g m,-m,J- vij. (1.7%)
Although the extreme assumption (1.7a) seems highly questionable the relation {1.7b} has
described hadron masses and magnetic moments with remarkable success. This success re-
mains to be understood at a more fundamental level. Some indications of the underlying
physics has been given in one simple model* which shows that the effective mass includes to a
good approximation some relativistic corrections, kinetic energies and potential energies due
to flavor and spin-independent effective quark-quark and quark-antiquark interactions related
by the standard color factor of two.*!® These conclusions have been further supported by a
variational treatment which shows that relations between;baryon and meson masses like egs.
(1.4) and (1.8c) below are obtained as inequalities by using the exact three-body baryon wave

function as a trial wave function for the meson case, and rescaling the wave function to satisfy

the virial theorem.!

The original shell-model appoach was nonrelativistic, and the nonrelativistic model for
constituent quarks described by an effective Lagrangian has been justified.'> However, the
formula (1.7b) contains no explicit nonrelativistic dynamics and many relativistic effects have
been shown® to be included in the effective masses and effective interactions. The basic as-
sumption that mesons and baryons-consist of a constituent quark-antiquark pair and three
constituent quarks respectively, with no additional constituents and no orbital angular mo-
mentum, determines the baryon wave function uniquely. The so-called SU(6) wave function
is the only one that satisfies the requirements of Fermi statistics for colored quarks and is a

color singlet with maximum space symmetry and zero orbital angular momentum.



The separation of orbital angular momentum can be questioned for the relativistic case,
where a relativistic particle in a j = 1/2 orbit with an s-wave large component has a p-wave
small component. Note, however, that a “relativistic shell model” can be defined in which
each quark is described by a relativistic single-particle wave function with 7 = 1/2 which is a
solution of a Dirac equation, all three quarks in the baryon are in the same j = 1/2 orbit in
the unperturbed shell-model wave function, and the quark spin operators d; in eq. (1.7b) are
replaced by the corresponding total quark angular momentum operators J;

Recently other models have been proposed with additional constituents'® motivated by
recent experimental results in deep inelastic scattering and with different interactions!#*
motivated by an instanton picture.’® Such new models can be tested by comparing their
predictions of ﬁ_jasses and magnetic moments with those obtained from the simple model
(1.7bjl For this reason we examine the predictions of this model in detail, pinpointing the
underlying assumptions for each successful prediction and discovering two new successful mass
relations. We then use this model to examine the implications of the recent analyses of the
polarized EMC result leading to the conclusion that the quark contribution to the proton spin
is zero.!” We first obtain their result without their questionable assumption of SU(3) relations

between proton structure and hyperon decays and then examine the role of SU(3) symmetry
breaking.

To obtain nontrivial significant tests of the model we avoid taking credit for duplicating
known mass formulas like Gell-Mann-Okubo which arise as good approximations in almost
any model. Real tests of the model are obtained by considering only nine hadron masses not
related by these simple formulas; those of the five baryons and four mesons in the ground state
configuration which contain no more than one strange quark. Since the formula (1.7b) has
four free parameters, the two quark masses and the two interaction strength parameters v;;
for mesons and baryons, there are five independent relations. Two involve only baryons (five
masses and three parameters), one involves only mesons (four masses and three parameters)
and two relate mesens and baryons by assuming the equality of the two effective quark masses
in both cases. We choose the the particular linear combinations of these relations which
depend upon different underlying physical assumptions in simple ways. The remaining masses

are then easily determined by using these nine as input into known mass formulas valid in
nearly all models.

Two relations are {1.2a) and (1.4a). Assuming the hyperfine interaction inversely pro-
-portional to the same effective mass parameter m; in the first term of (1.7b) gives two new

relations, one with only baryons and one with only mesons,

My + My (Mo My

6 Mo — Mg 1) =190MeV. (1.8a)

Me — My = My —~ My =17T7TMeV =



m, +m, = %T‘L—A—Ji = 793 MeV =

3M,+M,_( M, ~ M,

- Y 1) =791 MeV. (1.86)

Assuming the same effective mass parameter m; in the first spin-independent term in eq.

(1.7b) for both mesons and baryons gives the relation

M = Mﬂ—z—@é = 362MeV = g M, + % - M, = 306 MeV. (1.8¢)
The relations for the quark mass difference (1.4a) and for the quark masses separately in
baryons (1.8a) and mesons (1.8b) are in excellent agreement with experiment, as is the relation
between baryon hyperfine splittings (1.2a). Assuming the same quark mass in mesons and
baryons gives a relation off by 13%. The Sakharov-Zeldovich relation (1.4b) for the quark
mass ratio is a linear combination of the poorer relation (1.2a) and the others and is therefore
in between. The five reactions were choser to exhibit this basic physics, with four in excellent
agreement and the 13% disagréement concentrated in a single relation. Assuming the same
effective mass parameter in for both terms in eq.(1.7b) is thus an excellent approximation for
baryons and mesons individually, and also for baryon magnetic moments (there are no data
for meson magnetic moments). A 13% discrepancy from assuming the same effective masses
in mesons and baryons appears to be additive for both flavors and does not appear in flavor
differences. |
The simplest explanation for this discrepancy, the change in potential energy due to the
different sizes of the wave functions, is confirmed in the simple model mentioned above?!.
Small corrections due to scali:ig the wave functions between mesons and baryons introduce a
difference between the effective quark masses in mesons and baryons, thereby explaining the

discrepancies in the relations (3) and (1.8c), with no appreciable effect on the quark mass
difference.
We also note three predictions of hadron magnetic moments with no free parameters;

namely (1.5) and

5=t 3
146= 12 = 2 (1.9a)
oM, )
pp + tin = 0.88n.m. = Mt Mo 0.865 n.m. (1.95)

The well-known prediction for the ratio of the nucleon magnetic moments (1.9a) follows from
the assumption that hadron magnetic moments are obtainable from the constituent quark
wave functions with quark magnetic moments proportional to their electric charges. The
relation (1.9b) was obtained by using Dirac moments for the quarks with effective quark

18,19

masses determined from hadron masses and the first term of eq. (1.7b). The agreement

with experiment of this prediction expressing a magnetic mement with a scale determined



entirely by masses with no {ree parameters is impressive. Assuming the same parameter m;

for both terms in eq. (1.7b) gave a new independent good prediction for ys?°

M, —2M, B
_0'61—/‘1\_? Im, - A’IN-f-A’IA-f-ﬁ(A{A—M,,) -

—(.58. (1.10)

This is now expressible in-terms of egs. (1.8a) and (1.8c) and its physical significance is better

understood in terms of these relations.

That the simple model (1.7b) should succeed particularly well for masses of hadrons with no
more than one strange quark can be seen by examining the perturbation series in a formulation
beginning with an unperturbed zero-order Hamiltonian and wave function which are exact for
a gedanken baryon with mass M, consisting of two nonstrange quarks and a third quark whose
mass is (m, + m,)/2. The exact mass of a nonstrange or singly strange baryon can then be

expressed as a power series in the third quark mass difference (m, — m,)/2,

(ms — my) (m, — m,)? (my —m,)?

M.
2 + M3

+ J‘Ig

Mp = M, + M, T (1.11)

where the plus sign is used for singly strange baryons and the minus sign for nonstrange. The
coefficients M,, in the perturbation series are determined by standard perturbation theory. The
first coefficient M, is given by the Feynman-Hellmann theorem as a function of expectation
values of derivatives with respect to the mass of the third quark of operators appearing in the
mass 6perator (1.7b). Although we do not know the wave function of the gedanken baryon and
cannot calculate the expéttation values of the necessary operators, we can obtain meaningful
results by leaving these expectation values as unknown parameters because the number of

experimental masses known is greater than the number of parameters.

Our mass relations can thus be interpreted as first-order perturbation results calculated
with a zero-order wave function corresponding to the exact wave function for the gedanken
baryon. Our simple model therefore includes these first order contributions. Since the second
order term contributes equally to the strange and nonstrange baryons and does not contribute
to flavor mass differences, the first non-vanishing corrections to mass difference relations in our

model are third order and express the error in using the same wave function for all baryons.

This treatment holds only for nonstrange and singly strange baryons, where the perturba-
tion can be expressed as the mass change of only one quark in the hadron, and the expansion
parameter is only half the flavor mass difference. A perturbation series valid for doubly strange
hadrons will be a double series involving two quark mass differences, even when only ¥ and
= masses are considered. A similar result is obtainable for mesons. Thus we sece that the use
of the same hadron wave function for the entire hadron SU(3) multiplet and the neglect of

differences in the wave function for different quéi‘k masses is a much better approximation



" for relations involving only nonstrange and singly strange hadrons than for relations involving
masses of hadrons with more than one strange quark. Such a difference between the £ and =

wave functions has been shown to explain the 12% disagreement in the relation (1.2b)°.

Predictions for the remaining ground state mesons and baryons containing two or three
strange quarks and for the magnetic moments of the £, = and £ hyperons are obtainable with
no further free parameters but do not provide further significant tests of the model. The mass
predictions are in reasonable agreement with experiment, but similar relations are obtained
in almost any model; with small differences mainly due to the specific form of the strangeness
dependence of the hyperfine interaction. Predictions of hyperon magnetic moments agree
with experiment at the 15-20% level, which may be good enough for such a crude model.
However no attempts to do better have succeeded, since any attempts to introduce additional
physical effects unavoidably introduce new parameters, and it is difficult to obtain a significant

improvement in agreement with experiment.

It therefore seems reasonable to test any new proposed model which introduces different
physics not contained in the model (1.7b) by its agreement with experiment in relating the
masses of nonstrange and singly-strange mesons and baryons and its predictions of the nucleon
‘and A moments. Any disagreement with experiment in ‘these cases is serious evidence that

the physics which is left out of these models may be more important than the extra ingredient

which has been put in.
II. The New EMC Results and the Spin of the Proton.

We now apply this constituent quark model to weak decays and the recent EMC experiment
which has given rise to considerable controversy over the way in which quark spins contribute
to the proton spin!”. Tke standard analyses of the polarized EMC experiment to determine the
spin structure of the proton” introduce the quantities Au(p), Ad(p) and As(p) which denote
the fractional contributions of the u, d and s - flavored quarks and antiquarks respectively to

the spin of the proton. The EMC result gives the relation
4 1 1
§Au(p) + §Ad(p) + §As(p) = 0.246 £+ 0.026 £ 0.056 . (214)

where the numbers on the right hand side come from the EMC data, multiplied by a factor

of 1.08 from the perturbative QC D corrections introduced later on.!” This can be rewritten

Au(p) + Ad(p) + As(p) = 1.11 £ 0.12 £ 0.25 — [Au(p) — Ad(p)] — %[Ad(p) ~ As(p)] (2.1b)

The total contribution of the %, d and s - flavored quarks to the spin of the proton is thus
expressed in terms of the EMC experimental result and two other quantities to be determined;

namely Aulp) — Ad(p) and Ad(p) — As(p). The SU(6) wave function relates these two



" quantities and it is convenient to define a parameter ¢ which expresses the deviation of the

experimental value of Ad(p) — As(p) from the SU(6) value.

[Ad(p) ~ Bs(P)lswie = ~5lBu(p) ~ Adp)lsue (220)

£ = SAd(p) — As(p)] + 15 [Bu(p) — Ad(p)] (22%)

N =

BEK determine these quantities from weak ‘decays. These decays, unlike the EMC exper-
iment, do not measure directly a particular linear combination of Au(p), Ad(p) and As(p).
They mea.éure flavor changing transition matrix elements which can be related to the spin con-
tributions only via syﬁlmetty assumptions. The Wigner-Eckart theorem gives unique relations
for transitions between states in the same multiplet of an SU(2) subgroup of flavor SU(3).

. These are most conveniently expressed as relations for G4 /Gy, since the vector and axial-
" vector currents transform in the same way under SU(3) and the Clebsch-Gordan coefficients

arising in the application of the Wigner-Eckart theorem cancel out in the ratio.

Applying the Wigner-Eckart theorem to any u < d or any u « s transition between two

states in the samne isospin or V-spin multiplet gives

Au—Ad
d) = ——— 2.
Gi(u « d) s (2.3a)
Au— As
GV('U. — S) = —n—u—_~n’— (236)

where G(x) denotes the value of g4/gv for the transition x, ny denotes the number of quarks
of flavor f in the baryon under consideration, and the right hand side can be evaluated for
any state in the isospin or V-spin multiplet. The relation (2.3a) which assumes only isospin
symmetry is on firm ground. Relations like (2.3b) which assume nontrivial SU(3) symmetry

must be examined carefully to assess the effects of known SU(3) symmetry breaking.
Applying (2.3a) to the neutron beta decay gives a quantity which we denote by
Aya(Nuc) = Au(p) — Ad(p) = Ad(n) — Au(n) = G{n — p) = 1.259 = 0.004 (2.4)

if isospin symmetry is assumed for the nucleon wave functions. Substituting Egs. (2.2b) and
(2.4) into eq. (2.1b) gives same result obtained in the original EMC analysis'” if the correction
€ to the SU(6) value of Ad(p) — As(p) is small; namely that the total quark spin contribution

to the proton spin is very close to zero,

Au(p) + Ad(p) + As(p) = ~0.02 £ 0.12£0.25 — £. (2.5)

We now use the constituent quark model to determine the value of £. For low momentum

phenomenology, the structure of the constituent quark is not observed, and it is described with



phenomenological parameters, including an effective constituent quark mass and an effective
axial vector coupling. The observed value of G4/Gy for the nucleon is obtained?! by the

trivial procedure of introducing one new free parameter to fit one new piece of data. From

the SU(6) wave function and setting
eff
3
(i‘;> =2 (2.6a)
gv conast 4

GA) (QA)CH
e =53 — = 1.25 2.6
(GV Nucleon / gv ( )

const

which is close enough to the experimental value 1.239 for our purposes and allows us to work
with simple fractions. This result has also been obtained with a chiral Lagrangian approach
by Manohar and Georgi'?.

We now apply this model] to the EMC results and show that the experimental results are
compatible with a model for the structure of the constituent quark in which each constituent
quark contains a valence quark plus its share of the gluon and sea components of the hadron?.
Deep inelastic scattering data are interpreted in terms of the current-quark partons for which
(ga/gv) = 1. Let bu(f), 6d(f) and és(f) denote the fra‘é:tionalv contributions of the u, d and
s - flavored current quarks and antiquarks respectively to the spin of a constituent quark of
flavor f. We further decompose these fractional contributions into a valence contribution and

a sea contribution, denoted by the superscripts v and s respectively.

The constituent quark of a given flavor has only a single valence quark of the same flavor

and no contribution from valence quarks of a different flavor. Thus
$u”(d) = éd*(u) =rés"(d) = 6s"(u) =0 (2.7a)
Applying eq. (2.3a) to the valence quark and substituting the value (2.6a) give
u(u) = 6d¥(d) = 3/4. | ' (2.76)

Since there are no valence strange quarks in the proton, and isospin but not SU(3) symmetry

1s assumed for the sea quark contributions

As®(p) =0 (2.8a)
Su*(u) = 6d*(u) = 6u’(d) = 8d°(d) (2.8b)
Au’(p) = Ad*(p) (2.8¢)

Aw'(p) = Ad’(p) = (1 4 €)As*(p) = (1 + €)As (2.8d)



where € is an SU(3)-breaking parameter defining the excess of nonstrange quarks in the sea®>.

From (2.7b) and the SU(6) wave function expressed in terms of constituent quarks,
Au'(p) = —48d*(p) =1 (2.9)
Au’(p) + Ad’(p) + As®(p) = 3/4 (2.10)

Ife=0, su:t)stituting eqs’.“;‘ (2.8a) and (2.9) into eq. (2.5) gives & = 0. Thus the constituent
quark model with the SU(6) wave function for the constituent quarks and an SU’(3) symmetric
sra again give the BEK result. The total quark spin contribution to the proton spin is very
ciose to zero, but the valence quark contribution from (2.10) is 3/4 of the proton ~pin. The
sea contribution must canccl the quark contribution?? and be V-(3 /4) x the proton: :‘spin. The
proton spin therefore comes from elsewhere; e. g. gluons or crbital angular momentum. The
peculiar result of BEK!7 is now shifed to the constituent quari{ level, with a vanishing sum
of valence and sea contributions to the constituent quark spin and with gluons and orbital
angular momentum contributing the total spin of the coﬂétituent quark. However, we have

done more than simply shifting the problem elsewhere.

1. The same results obtained by ref. 17 have been obtained without use of any weak hyperon
decay data and no assumptions of SU(3) symmetry relating hyperon decays to proton

strqcture.

2. The model used preserves all the good results of the constituent quark model, including

the ratio -(3/2) of the proton and neutron magnetic moments.

3. That the valence, sea and other contributions to the proton spin are all of order unity
and conspire to give a total spin of 1/2 for the proton is less mysterious at the quark
level. The spin of a “dressed” elementary fermion is 1/2 as the interactions which dress
the fermion conserve angular momentum. The angular momentum of the lowest-lying

composite bound state of three elementary fermions is not obvious.

IT1. SU(3) Symmetry breaking and the Use of Hyperon Decay Data

We now examine SU(3) symmetry breaking and the additional experimental input available
from hyperon decays. We have used two of the three experimental inputs 'ljlsed by BEK'? to
determine the three unknowns Au(p), Ad(p) and As(p); namely the EMC result (2.1b) and
the observed value of G4/Gyv for the nucleon. Our third input eq. (2.9), comes from the
standard constituent quark model wave function and can also be obtained by writing

28w (pj—Ad(p) 3

ta  2AdY(p) — Au¥(p) ) 7 (3.1)




We first consider SU(3) symmetry breaking when € > 0; i.e. the sea contains a greater
number of nonstrange than strange quark pairs. This has been discussed by Ramsey et al??

who introduced eq. (2.8d) and noted the cancellation by sea contributions of the valence quark

contributions to the proton spin. We then obtain

3¢
{= 24 + 20¢ : (3-2)

This correction to (2.5) is smaller than the experimental errors even with ¢ = 1/2.

The experimental data on semileptonic hyperon decays can be used as additional input
or as a test of our model, with allowance for SU(3) symmetry breaking. We use the direct
rrlations (2.2) between experimentally measured quantities and the proton spin contributions,
rather than the conventional analysis with parameters like D/ F which have no direct physical
interpretation. Applying eq. (2.3b) to the decay £~ — n + leptons gives a quantity which we
denote by '

Ay (Hyp) = Au(n) — As(n) = Ad(p) — As(p) = As(E7) — Au(E7) =

i

=G(Z” - n)=-0328+0019 - (3.3)

by the assumption of SU(3) symmetry for the baryon wave functions. The experimental value®®
disagrees by 4o with the SU(6) prediction (2.2a) using (2.4) and gives { = —0.04 + 0.01.

However the correction to (2.5) is negligible.

-~ Applying eq. (2.3b) to the decays A — p .+ leptons and =~ — A + leptons is more
complicated because the A is not a V-spin eigenstate. Eq. (2.3b) gives

G(\i — p) = G(E™ - W) = (1/2)Au.(Hyp), - (344)

where 1} denotes the linear combination of A and Z° which is a member of a V-spin vector,

and whose projections on the physical states are given by
[{(AIVi) P=3](Z° W) |’= 3/4 - (3.4h)

We also note the SU(3) relations,

Au(p) = Ad(n) = Au(T) = Ad(E") = As(E™) = As(Z°)  (3.5q)
Ad(p) = Au(n) = As(EZ1) = As(£7) = Ad(Z™) = Au(=°) (3.5b)
As(p) = As(n) = Ad(EY) = Au(T™) = Au(Z") = Ad(Z%) (3.5¢)

From egs. (3.4) and SU(3) relations we obtain

G(Z™ — A) = (1/3)[Au(p) + Ad(p) — 2As(p)] = (1/3)G(rn — p) + (2/3)G(E~ — n) (3.6a)



G(A — p) = (1/3)[2Au(p) — Ad(p) — As(p)}-= (2/3)G(n — p) + (1/3)G(Z~ — n) (3.6b)
Substituting eq. (3.3) and the experimental values® into egs. (3.6) give§
Ay (Hyp) = G(Z7 —n) = (3/2)G(Z~ = A) = (1/2)G(n — p) = —0.254+0.08  (3.7a)

Aus(Hyp) = G(Z~ — n) = 3G(A —-p) — 2G(n — p) = —0.£3 £ 0.07 (3.76)

Egs. (3.3) and (3.7) show that the hyperon beta decays all give the same parameter
Au,(Hyp) with the more accurately measured A,4(Nuc) as input and that the SU(3) predic-
tion of equality is consistent with experiment at the 2o level. The magnitude of the discrepancy
is expressed by the values of our correction term (2.2b), which is zero in our model and should
have a definite value if SU(3) symmetry holds. The experimental values (3.3) and (3.7) place
¢ in the range ‘ :
~0.09 4 0.04 <€ =(1/2){0.25 + A,,(Hyp)] <0£0.04 (3.8)
This range is smaller than the other errors in the expression (2.5) and includes the value { =0
of the simple model. Thus our result is essentially the same as that obtained!? by using the
hyperon data as input. The errors introduced by using SU(3) relations may‘be appreciable;
however they are still down in the noise when using the present EMC data to determine thé’ 7

contribution of the quarks to the spin of the proton.

Two additional SU(3)-breaking effects are flavor asymmetry in the sea and configuration
mixing in the valence quarks. In anymodel where baryons contain a sea of quark-antiquark
pairs which is not flavor symmetric? the second equality in eq. (3.3) is clearly violated. It
holds for the valence quarks, but impli\é's; that the sea in the £~ contains less u quarks than
s quarks and is seen to be inconsistent with the relations (3.5) and isospin. Breaking SU(3)
in the nucleon wave function means breaking isospin in the £~ wave function if the SU(3)
relations (3.5) are used. Thus the treatment used to determine Au(p), Ad(p) and As(p) with
the aid of SU(3) symmetry and hypero; data is incorrect for a model with a sea which breaks

SU(3) syr:metry and which is essentially the same in nucleons and hyperons.

This effect might be treated by assuming that the hyperon décays involve only the valence
quarks with a spectator sea, since a flavor-changing operator on the sea will not give a flavor-
neutral sea and will have a negligible overlap with the final baryon wave function. In this
case eq. (2.3b) can be used for the valence quarks alone. This assumption can be justified
in a model which assumes an SU(3) classification only for the weak currents and not for the

hadron spectrum. The hyperon decay data thcrefore give the quantity
G(2™ — n) =A% (Hyp) = A'u(n) — A¥%s(n) = A¥s(X7) — AVu(E7) (3.9)

where the superscript denotes that only valence contributions are considered. This effect can

now be taken into account and leads to the same additional small correction term appearing



in eq. (3.2). Thus we can obtain an expression valid for the case where the sea is not SU(3)

symmetric. The correction term ¢ is now given by

£ = (1/2)[0.25 + A, (Hyp)] — 24—-:'@ (3.10)

This’is one example where the simple SU(3) assumption is clearly invalid, but an understand-

ing of the way in which SU(3) is broken still leads to useful relations.

Further SU(S:);}_ breaking arises with configuration mixing, implied if the hyperon decay
data do not give the SU(6) value A,,(Hyp) = —0.25. All models for configuration mixing
also introduce strong SU(3) breaking, primarily because the dominant mechanism for SU(6)
breaking, the two-body tensor force, depends upon quark masses. The simplest example, a
D-wave admixture analogous to the case of the deuteron in nuclear physics, admixes an SU(3)
decuplet with orbital angulér momentum L=2 and quark spin S=3/2. Such &:tet-decup]et
mixing can occur in the ¥ and =, but is isospin forbidden in the nucleon and A. This mixing
cannot be described by a “J/F ratio” and any attempt to use hyperon data in this formalism
to obtain information about nucleon spin structure is highly questionable. In fact such mixing
can explain the SU(6) violations in hyperon data without affecting the spin structure of the

nucleon and retaining the relation (2.2a).

We therefore conclude that the simple constituent quark model gives a remarkably good
description of low energy hadron spectroscopy and also of weak decays and the spin structure
of the proton. However, the structure of the constituent quarks and the values of their effective
masses and couplings remains a mystery to be resolved by QCD. The questions raised by the
evidence for peculiar spin structure in the proton are shifted to the quark level, where it

appears as peculiar spin structure for the constituent quark.
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