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Generalized Quasi-Variational Inequality
and Implicit Complementarity Problems

by

Jen-Chih Yao

Abstract

A new problem called the generalized quasi-variational inequality problem is introduced. 
This new formulation extends all kinds of variational inequality problem formulations 
that have been introduced and enlarges the class of problems that can be approached 
by the variational inequality problem formulation. Existence results without convexity 
assumptions are established and topological properties of the solution set are investi­
gated. A new problem called the generalized implicit complementarity problem is also 
introduced which generalizes all the complementarity problem formulations that have 
been introduced. Applications of generalized quasi-variational inequality and implicit 
complementarity problems are given.
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Generalized Quasi-Variational Inequality 

and Implicit Complementarity Problems

by Jen-Chih Yao

1. Introduction

The importance of the theory as well as the applications of the variational inequality and the 
complementarity problem has been well documented in the literature. In recent years, various 
extensions of these two problems have been proposed and analyzed. The most general extension 
combining the variational inequality and complementarity problems is the one by Chan and Pang [5], 
They introduced the quasi-variational inequality and implicit complementarity problems inspired 
by the work of Mosco [33] who considered the dependence of the function domain on the variable 
and the work of Fang and Peterson [16] who extended the single-valued function under consideration 
to a point-to-set mapping.

Although the extensions mentioned above are general, they did not include the possible inter­
action between the function value and the variable. In this respect, Parida and Sen [37] perhaps 
were the first ones to extend the variational inequality problem to the generalized variational-like 
inequality problem for multifunctions taking this possible interaction into consideration.

The aim of this report is to introduce a further extension of the classical variational inequality 
and complementarity problems from a theoretical standpoint. Our generalized problems which will 
again be called the generalized quasi-variational inequality and generalized implicit complementar­
ity problems respectively include those problems introduced by Chan and Pang [5], Parida and Sen 
[37], Fang and Peterson [16], Saigal [41], and Karamardian [25] as special cases. It will also be seen 
that our generalized problems have a broader range of applications.

In Section 2 we review some definitions of continuity of point-to-set mappings. We also review 
some concepts on convex sets and convex functions. In particular, we note the fact that any compact 
convex subset of Rn is an acyclic absolute neighborhood retract. We cite a fixed point theorem due 
to Eilenberg and Montgomery [15] which plays an important role in establishing existence results 
for generalized quasi-variational inequality problems. Finally we give some notations that will be 
used throughout this report.

In Section 3 we first give a short introduction on variational inequality problems. Then in 
Section 3.1 we introduce the formulation of the generalized quasi-variational inequality problem 
which is a unification of all types of variational inequality problems in finite-dimensional spaces 
that have previously been introduced and we obtain some general existence results for this general 
problems. In Section 3.2 we introduce the general concepts of copositivity and monotonicity of 
a point-to-set mapping with respect to another point-to-set mapping, and obtain some existence 
results for this general problem under the assumption of coercivity, copositivity or monotonicity of
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the point-to-set mappings. Finally, in Section 3.3, we investigate several properties of the solution 
set of the GQVIP.

In Section 4 we introduce the formulation of the generalized implicit complementarity problem 
and establish a relationship between the generalized quasi-variational inequality and the generalized 
implicit complementarity problems. As a by-product of the results in Section 3, we obtain some 
existence results for this general problem.

In Section 5 we consider some possible applications of the generalized quasi-variational inequal­
ity and implicit complementarity problems. The major areas of our applications are mathematical 
programming and equilibrium programming. The applications are: minimization problems involv­
ing “invex” functions, generalized dual problems and saddle point problems, equilibrium problems 
involving markets with utility, equilibrium problems involving abstract economies, generalized Nash 
equilibrium problems and quasi-variational inequality problems of obstacle type. In all these appli­
cations, we require relatively weak conditions to ensure the existence of solutions to the problems 
under consideration.

2. Notations and Preliminaries

In this report, Rn denotes the n-dimensional Euclidean space with the usual inner product 
(x,y) of x, y G Rn and norm ||a;|| of x E Rn. The nonnegative orthant R+ is the subset of Rn 
consisting of all vectors with nonnegative components. The set of positive integers will be denoted 
by N. For K C Rn, int(A") and Kc denote the interior and complement of K, respectively. For 
K,B C Rn, intK(B) and OkIB) denote the relative interior and relative boundary of B in K, 
respectively. For any x,y E Rn, x > (>) y if and only if X{ > (>) y; for all components of x and 
y. The field of complex numbers is denoted by C. Upper case letters (e.g., F) denote point-to-set 
maps and lower case letters (e.g., /) denote single-valued functions.

There are four definitions of continuity for point-to-set maps that have been introduced in the 
literature. We list two of them that are related to our discussion in this report. Let X and Y be 
Hausdorff spaces and F a point-to-set map from X into Y,

Definition 2.1 (Berge [3]) The map F is said to be upper semicontinuous (u.s.c.) at x E X if and 
only if for any open neighborhood O of F(x), there is a neighborhood V of x such that F(u) C O 
for each u E V.

Definition 2.2 (Hogan [22]) The map F is said to be upper continuous (closed) at x E X if and 
only if a sequence {xn} converging to x, and a sequence {yn} with yn E F(xn) converging to y, 
implies y E F(x),

The relations of the above two definitions can be seen from the following two lemmas.

Lemma 2.3 (Delahaye and Denel [12]) Suppose F{x) is closed. If F is upper semicontinuous at 
x, then F if upper continuous at x. □

A topological space is said to be first countable if it has a countable base.
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Lemma 2.4 (Delahaye and Denel [12]) Suppose Y is first countable and there exists a countable 
neighborhood base at x £ X. Also suppose the closure of Y \ F(x) is compact. If F is upper 
continuous at x, then F is upper semicontinuous at x. □

Definition 2.5 (Hogan [22]) The map F is said to be lower continuous (open) at x £ X if and 
only if for any sequence {xn} converging to x £ X and y £ F{x), there exists an no such that the 
sequence {yn} converging to y £Y and yn £ F(xn) for all n > no.

It is clear that if F is upper continuous at x, then F(x) is closed. Indeed, suppose yn £ F{x) 
and yn —► y. By considering the constant sequence xn = x, it follows immediately that y £ F{x). 
Hence F{x) is closed. F is said to be upper (lower) continuous if F is upper (lower) continuous at 
every point x £ X and F is continuous if it is both upper and lower continuous. The map F is said 
to be uniformly compact near x if there exists a neighborhood of x, V such that F(V) = Uugv F(u) 
is bounded. We say F is uniformly compact on X if it is uniformly compact near x for nW x £ X. 
The following lemma is a direct consequence of Lemma 2.4 and a result due to Berge [3 , Theorem 
3, p.110].

Lemma 2.6 Suppose X C Rn and Y C It,™. Let F : X —► Y be an upper continuous point-to-set 
map such that F is uniformly compact on X. If D is compact, then F(D) = Lbei? F{x) is also 
compact. □

Remark. If the condition of uniform compactness in Lemma 2.6 is replaced by the condition that 
F is compact valued, then the result of Lemma 2.6 may fail to hold. To see this, consider the 
following example. Let X = [0,1]. Let F be a point-to-set mapping from X into R defined by

F(x)
{0} if x = 0 

{1/x} if 0 < a: < 1

Then F is upper continuous and F(x) is compact for all x G X. Clearly X is compact whereas 
F{X) is unbounded. Note that F is not u.s.c., and if F is considered as a single-valued function, 
then it is also not continuous.

A topological pair (X, A) consists of a topological space X and a subspace A C X. A map 
/ : (X, A) —» (Y, B) between topological pairs is a continuous function from X to Y such that 
f(A) C B. Given a topological pair (X, A), we let (X, A) x I denote the pair (X x I, A x I) 
where I = [0,1]. Let X' C X and suppose that /o,/i : (X, A) —► (Y, B) agree on X' (that is, 
fo\X’ = fi\X'). Then fo is homotopic to fi relative to X', denoted by fo ~ fi rel X', if there 
exists a map g : (X,A) x I —► (Y,B) such that 3(2:, 0) = fo(x) and g(x, 1) = /i(z), V x £ X and 
g(x,t) = fo(x), V (x,t) £ X' x 1. If X' = 0, we omit the phrase “relative to 0”. The following 
examples are from Spanier [42, p.23, 24].

Example 2. 7 Let X = Y = E2 = {2 G C : \z\ < 1} and let A = 5 = S1 = {z G C : \z\ = 1). 
Define fo : (E2, S1) —*■ (E2, S1) to be the identity map and fi : (E2, S1) —»■ (E2, S1) to be 
reflection in the origin. Then <7 : /o — /1 rel 0 through the homotopy g defined by g(retd ,t) —
rei(6+tir)
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Example 2.8 Let X be an arbitrary space and let F be a convex subset of It”. Let fo, fi : X —► Y 
be maps which agree on some X' C X. Then fo ~ f\ rel X', because the map g : X x 1 —> Y 
defined by

g(x,t) = tf1(x) + (1 - t)fo(x) 
is a homotopy relative to X' from fo to f\.

A topological space X is said to be contractible if the identity map of X is homotopic to some 
constant map of X to itself. A homotopy from 1^ (the identity map of X) to the constant map of 
X to zo 6 X is called a contraction of X to xq. Example 2.8 shows that any convex subset of R” 
is contractible. Any set that is starshaped at some point xq is also contractible. If A and B are 
contractible, then both Ax B and AC\B are contractible (see e.g. Spanier [42, Corollary 8, p.25]). 
The idea of a contractible space is that it can be deformed continuously into a one-point space. To 
see that the class of contractible sets in R” contains nonconvex sets, consider the following example 
(Spanier [42, p.26]). Let

Y = {(ar, y) G R2 : 0 < y < 1, x = 0,1/n; y = 0, 0 < # < 1, n £ N}.

Let g : Y x 1 —► Y be defined by g{{x, y), t) = (x, (1 — t)y). Then y is a homotopy from ly 
to the projection of Y to the x-axis. Since the latter map is homotopic to a constant map, Y is 
contractible, whereas Y is not convex.

A subset A of X is called a retract of X if the inclusion map i : A —► X has a left inverse 
in the category of topological spaces and continuous maps. Hence A is a retract of X if and only 
if there is a continuous map r : X —► A such that r(x) = x,V x £ A. Such a map r is called a 
retraction of X to A. A space Y is said to be an absolute retract (or absolute neighborhood retract) 
if , given a normal space X, closed subset A C X and a continuous map / : A —► Y, then / can 
be extended over X (or / can be extended to some neighborhood of A in X). The following lemma 
will be useful.

Lemma 2.9 The product of arbitrarily many absolute retracts (or finitely many absolute neigh­
borhood retracts) is itself an absolute retract (or absolute neighborhood retract).

Proof, (i) Let A be index set and let Ya be an absolute retract for each a € A. The Cartesian 
product of the sets Ya is the set

W'Ya = {x : A —► (J Xa : x(a) € Xa,V a G A). 
a&A a£A

We write xa instead of «(a). Let na be the projection map of flagA Ya on Ya. It is well known 
that / : Y —>■ TlaeA Ya is continuous if and only if 7ra o / is continuous for each a £ A (see e.g. 
Willard [43, Theorem 8.8]). Now given a normal space X , closed subset B C X, and a continuous 
map / : B —+ HagA the composite map TTao f . B —► Ya is continuous for each a £ A. Since
Ya is an absolute retract, there is a continuous map fa : X —► Ya such that fa\B = 7r0 o /, for 
all a £ A. Now define g : X —► Hag.4 ^ by (g(x))a = fa{x),'ioc £ A. Since 7ra o y = 7ra o / is 
continuous for all a G A, y is continuous. Also (g\B)a = fa\B = ira o f,V a £ A. Hence g\B = f. 
Therefore YlaeA is an absolute retract.

(ii) Let Yi. ,Yn be absolute neighborhood retracts. Suppose we are given a normal space X, 
closed subset B C X, and a continuous map / : B —► Y\!k=i Yk- Then nk ° f : B —»• Yk defined
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by (fl-fc o f)(x) = fk(x) (/(z) = (/i(x),..., /n(x))) is continuous for = 1,..., n. Since Yfc is an 
absolute neighborhood retract for each k, there exists a neighborhood Ak of B and a continuous 
map gk : Ak —>■ Yk such that gk\B = tt* o /. Let C — 02=1 -A-k and g : C —>• 112=1 Yk defined 
by g{x) = ((/i(x), ..., 3n(*))- Then C is a neighborhood of B, and g is continuous. It is clear that 
g\B — f. Therefore 172=1 Yk is an absolute neighborhood retract. □

Corollary 2.10 For all positive integers n, Rn is an absolute retract.

Proof. That fact that R is an absolute retract follows from Tietze’s Extension Theorem (see e.g. 
Willard [43, 15.8]). The result then follows directly from Lemma 2.9. □

Lemma 2.11 A retract of an absolute retract (absolute neighborhood retract) is an absolute retract 
(absolute neighborhood retract).

Proof. Let Y be an absolute retract and J3 C Y be a retract. Suppose that we are given a normal 
space X , a closed subset A of X, and a continuous map f : A —► B. Let i : B —>• Y be the 
inclusion map. Since R is a retract of Y, there exists a continuous function r : Y —>• B such that 
r o i = lg. Then r o i o f : A —> Y is continuous. Since Y is an absolute retract, there exists 
a continuous map g : X —► Y such that g\A = r o i o f. Then r o g ; X —» B is continuous 
and clearly (r o g)\A — f. Hence B is an absolute retract. For the case where Y is an absolute 
neighborhood retract, the proof is the similar. □

Lemma 2.12 Any closed convex subset of Rn is a retract.

Proof. Let S' be a closed convex subset of R”. Define p : Rn —► S by p(x) = y where |jx — y|| = 
minug5||x — u|[. Then p is a contraction (see, e.g., [38, p.340]). Consequently, S' is a retract of R”. 
□

A compact metric space X is said to be acyclic if (1) X ^ 0, (2) the homology group Hn(X) 
vanishes for all n > 0, and (3) the reduced 0-th homology group Hq(X) vanishes. It is true that any 
compact contractible space is acyclic but not conversely (see e.g. Spanier [42, p.163]). By Lemmas 
2.11, 2.12 and Corollary 2.10 and, we have the following corollary. Note that it is clear that any 
absolute retract is also an absolute neighborhood retract.

Corollary 2.13 Any nonempty compact convex subset of Rn is an acyclic absolute retract and 
hence an acyclic absolute neighborhood retract. □

The following theorem by Eilenberg and Montgomery turns out to be very useful in our discus­
sion.

Theorem 2.14 (Eilenberg and Montgomery [15, Theorem 2]) Let M be an acyclic absolute neigh­
borhood retract, N a compact metric space, r : N —► M a continuous single-valued mapping and 
T : M —► M a multi-valued upper continuous mapping such that the sets T(x) are acyclic for all 
x G M. Then the combined (multi-valued) mapping r oT : M —» M has a fixed point. □
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Theorem 2.15 Let M be an acyclic absolute neighborhood retract and T : M —► M a multi­
valued upper continuous mapping such that all the sets T(x) are acyclic for all x E M. Then T has 
a fixed point. □

It is worth noting that Theorem 2.15 implies Kakutani’s Fixed Point Theorem, since every 
nonempty compact convex subset is an acyclic absolute neighborhood retract by Corollary 2.13.

Let / : S —► R, where S' is a nonempty convex subset in Rn. The function f is said to be 
quasiconvex if , for any x,y € S, the following inequality is true:

/(Ax + (1 - A)y) < max{/(x), /(y)},V A E [0,1].

Clearly every convex function is also quasiconvex but not conversely.

Lemma 2.16 Let S be a nonempty convex set in Rn and f : S —>• R be quasiconvex. Let 
A = {x E S’ : /(x) = minug5/(u)}. If A is nonempty, then A is convex.

Proof. Let x,y £ A. We then have

max{/(x),/(y)} < /(u),V u £ S.

Since / is quasiconvex, for any A, 0 < A < 1 we have

/(Ax + (1 - A)y) < max{/(x), f(y)} < /(u),V u E S’.

So Ax + (1 — A)y £ A, V 0 < A < 1. Hence A is convex. □

For a nonempty subset K C Rn, the convex hull of K, denoted by Co(/lT), is a convex set 
spanned by K. That is,

Co(If) = { kxi ; A,- > 0, xt E K,V l.f] A,- = 1}.

i=i *=i

A nonempty subset K of Rn is a cone if Ax £ AT, V x E /f, A > 0. A cone K is pointed if 
K D(-K) — {0}. Let K be a closed convex cone in R”. Then K* — {y £ Rn : (y, x) > 0, V x £ K} 
is called the polar cone of K. It is easy to see that if int(iif) ^ 0, then K* is also a solid cone. A 
set K C Rn is said to be solid if it has a nonempty interior with respect to some topology in Rn.

Let K be a convex set in Rn and f : K —>• [-oo, +oo] be a convex function. A vector x* is 
said to be a subgradient (see, e.g. Rockafaller [38]) of / at a point x if

f(z)>f(x) + {x*,z-x),Vz£K.

The set of all subgradients of / at x is called the subdifferential of / at x and is denoted by df(x). 
When /(x) = 6(x\K), that is, / is the indicator function of K, then x* £ dS(x\K) if and only if 
x £ K and (x*,z - x) < 0 for all z £ K. Thus dS{x\K) is the normal cone to K at x (empty if
x£K).

If we take N = M and r(x) = x,V x G M, then we have the following theorem.
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3. The Generalized Quasi-Variational Inequality Problem

We begin this section by giving a short introduction on variational inequality problems. Given 
a subset K of Rn and a function / from It” into itself, the variational inequality problem, denoted 
by VIP(f, K) is to find a vector x & K such that

(x-xj(x)) >Q,V xeK.

This original problem has been extensively studied in the past years. For example, see Eaves [14], 
More [30], and Pang [36]. Basically, the task of the above problem is to find a vector x E K such 
that the image of x under the function / will form an angle less than or equal to 90° with any 
vector with tail x and head x E K.

The variational inequality problem is found to be important in many applications. For instance, 
let K be a closed convex subset of Rn and let / be differentiable on a neighborhood of K. It is 
well known that / is convex on C if and only if

/(*) > f(y) + (V/(y),x - y)

for all x and y in K, where V/ is the gradient of /. If y solves VIP(Vf, K), then from the above 
gradient inequality, we see that y solves the following mathematical programming problem

mmxeKf(x)-

Therefore, the variational inequality problem encompasses the minimization problem.
The theory of variational inequalities was initially proposed for the study of partial differential 

equations (see, e.g., Hartman and Stampacchia [20]). Much of this early work concentrated on 
the study of free boundary value problems, which were usually formulated as variational inequality 
problems over infinite dimentional spaces.

Given a set K in Rn and a point-to-set mapping F from Rn into itself, the generalized variational 
inequality problem introduced by Fang and Peterson [16], denoted by GVIP(F, K) is to find a vector 
x E K and a vector y E F(x) such that

(x — x,y) > 0, V x E K.

We note that the GVIP(F, K) is a different generalization of the VIP(f, K).
Inspired by the work of Mosco [33] and the work of Fang and Peterson [16], Chan and Pang

[5] considered the following generalized variational inequality problem. Given two point-to-set 
mappings X and F from R" into itself, the generalized quasi-variational inequality problem, denoted 
by GQVIP(X, F) is to find a vector x and a vector y E F(x) such that

(x - x, y) > 0, V x G X(x).

Recently Parida and Sen [37] introduced the following generalized variational-like inequality 
problem for point to set mapping. Let K and C be subsets of Rn and Rm respectively. Given 
two maps 9 : K x C —► Rn and r . K x K —*■ Rn, and a point-to-set mapping F : K —► C, 
the generalized variational-like inequality problem, denoted by GVIP(F,9,t, K,C) is to find x E 
K, y E F(x) such that

(6(x,y),T(x,x)) > 0,V x E K.
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Using this problem formulation, Parida and Sen [37] were able to establish some existence results 
for dual problems and saddle point problems. We note that such progress can not be made by 
using other problem formulations directly.

3.1. Problem Formulation, and Some Existence Theorems

Inspired by the work that has been done in the area of variational inequality problems, it is nat­
ural for us to consider the following generalized quasi-variational inequality problem which extends 
all the above variational inequality, generalized variational inequality, quasi-variational inequality, 
generalized quasi-variational inequality, and generalized variational-like inequality problems. Given 
K and C subsets of Rn and Rm respectively, X a point-to-set mapping from K into itself and F 
a point-to-set mapping from K into C, 0 a single-valued function from K x C into Rn and r a 
single-valued function from K x K into R", the generalized quasi-variational inequality problem, 
denoted by GQVIP(X, F, 9, r, K, C) is to find x £ X(x), y £ F(x) such that

(o(x,y),T(x,x)) >o,y x e X(x).

If r(x, y) — x — y, then GQVIP(X, F, 6, r, K, C) reduces to the problem of finding x £ X(x),y £ 
F(x) such that

(9(x,y),x - x) > 0,V x E X(x), 

which we denote by GQVIP(X, F, 9, K, C).
We note that GQVIP(X,F,9,t,K,C) reduces to GVIP(F,9,t,K,C) if X(ar) = K for all 

z £ K. The GQVIP(X,F,9,t,K,C) reduces to QVIP(X, F) if we set K = C = Rn,9(x,y) = 
y, r(x, y) = x — y. By letting K = C — Rn, 0(ic, y) = y, t(x, y) = x — y and F a single-valued func­
tion, the GQV I P{X, F, 9, r, K, C) reduces to QVIP(X, /). Finally, if we set X(x) = K for all x £ 
K, 9{x, y) — y and t{x, y) = x — y, and F a single-valued function /, then GQVIP(X, F, 9, r, K, C) 
reduces to VIP(f, K). Therefore, it can be seen that our formulation of the generalized quasi- 
variational inequality problem extends all kinds of variational inequality problem formulations.

The following is important in establishing existence results for GQVIP(X, F, 9, r, K, C).

Theorem 3.1.1 Let K C Rn be a compact contractible absolute neighborhood retract and C C Rm 
be a closed contractible absolute neighborhood retract. Let X be a nonempty-valued continuous 
point-to-set mapping from K into itself and F a contractible-valued upper continuous and uniformly 
compact point-to-set mapping from K into C. Let ip be a continuous single-valued function from 
K x C x K into R. suppose that

(i) there exists a compact contractible absolute neighborhood retract H such that F(K) C H C C,

(ii) ip(x,y,x) >Q,V x £ K,

(iii) for each fixed (x,y) £ K x C, the set

V(x,y) = {u £ X(x) : <p{x,y,u) = minseX^)^(a;, y, s)}

is contractible.
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Then there exist x £ X{x), y £ F{x) such that

<p{x,y,x) > 0,V x £ X(x).

Proof. It follows from Lemma 2.9 and Corollary 2.13 that K x H is an acyclic absolute neighbor­
hood retract. Now let G be a point-to-set mapping from K x H into itself defined by

G(x,y) = (V(x>y),F(x)).

Then G(x, y) is contractible for all (x, y) E K x H. We claim that G is upper continuous. Suppose 
(x„, yn) converges to (x, y) and (vn, wn) £ G(xn,yn) converges to (u, iy). Then for each n,

> <p(xn,yn,Vn),y S E X(xn). ^ (1)

For each 2: in X(x), since X is continuous, there exist no such that zn converges to z with zn £ 
X(xn),y n > no. From (1), we have

^(xn.ynGn) > ^(xn,y„, vra),V n > n0.

By passing to the limit, we then have

<p(x,y,z) > <p(x,y,v).

Also it is clear that v £ X(x) and w £ F(x). Therefore (v, w) £ G(x, y) and consequently G is upper 
continuous. Therefore by Theorem 2.14, there exists (x, y) £ G{x,y). Hence x £ X(x),y £ F(x) 
and

^>(x,y,x) > y?(x,y,x) > 0,V x £ X(x). □

Remarks.

(i) If C is compact, then the condition that F is uniformly compact is unnecessary. Because in 
this case, if C C is clearly compact.

(ii) If C is compact, then condition (i) of Theorem 3.1.1 is unnecessary. Because in this case, we 
merely let if = C in the above proof and proceed with the same argument.

(iii) If the set Co(F(K)) Pi C is a retract of C, then we can let if = Co(F(K)) fl C. Since K is 
compact and F is upper continuous and uniformly compact, if is compact and contractible 
by Lemma 2.6. Also by Lemma 2.11, if is an absolute neighborhood retract.

(iv) If C is convex, then condition (i) of Theorem 3.1.1 holds automatically. Because in this case, 
the projection PCo(F(if))(') establishes that Co(F(K)) is a retract of G.

(v) If F is not uniformly compact, then the conclusion of Theorem 3.1.1 may fail to hold. For 
example, let K — [1, 2], C — R, Let X be the constant point-to-set mapping K and let F be 
defined as

f {l/(x- 1)} if 1 < x < 2 F(x) = l
l {-1} if x = 1

9



Finally, let ip(x,y,u) = (y, u — x). Then all conditions in Theorem 3.1.1 except that F is 
uniformly compact are satisfied. But it is easy to see that there is no a; £ K such that 
(p(x, F(x),x) >0, V x £ K.

We now have the first existence result for the GQVIP(X, F, 9, r, K, C).

Theorem 3.1.2 Let K C Rra be a compact contractible absolute neighborhood retract and let C C 
Rm be a closed contractible absolute neighborhood retract. Let X be a nonempty-valued continuous 
point-to-set mapping from K into itself and F a contractible-valued upper continuous and uniformly 
compact point-to-set mapping from K into C. Let 6 : K x C —>■ Rn and r : K x K —► R” be 
continuous single-valued functions. Suppose that

(i) there exists a compact contractible absolute neighborhood retract H such that F(K) C H <Z C,

(ii) (6(x,y), t(x,x)) > 0,V (x,y) £ K x C,

(iii) for each fixed (x, y) £ K x C, the set

V(x,y) = {u £ X{x) : (B(x,y),T(u,x)) = minsejy(;,)(0(a;, y), r(s, r))} 

is contractible.

Then there exists a solution to the GQVIP(X, F, 9, r, K, C).

Proof. By letting <p(x, y, u) — (0(x, y), r(u, x)), the result follows directly from Theorem 3.1.1. □ 

Remarks.

(i) Condition (ii) will be satisfied if, for example, r(x, x) = 0 V x £ If.

(ii) Condition (iii) will be satisfied if, for example, (9(x,y),r(u,x)) is quasiconvex in u £ X(x) 
for each fixed (x, y) E K x C and X is convex-valued.

(iii) The condition that F is uniformly compact is unnecessary if C is compact.

The following corollaries are immediate.

Corollary 3.1.3 Let K C Rn 6e a compact contractible absolute neighborhood retract and C C 
Rm be a closed contractible absolute neighborhood retract. Let X be a nonempty convex-valued 
continuous point-to-set mapping from K into itself and F a contractible-valued upper continuous 
and uniformly compact point-to-set mapping from K into C. Let 9 : K x C —> R” be continuous. 
Suppose that there exists a compact contractible absolute neighborhood retract H such that F(K) C 
H <Z C. Then there exists a solution to the GQVIP(X, F, 9, K, C). □

Corollary 3.1.4 Let K C Rn be a compact contractible absolute neighborhood retract and C C 
Rm be a closed contractible absolute neighborhood retract. Let F be a contractible-valued upper 
continuous and uniformly compact point-to-set mapping from K into C. Let 9 : K xC —>■ Rn and 
t \ K x K —>■ Rn be continuous. Suppose that
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(i) there exists a compact contractible absolute neighborhood retract H such that F{K) C H C C,

(ii) (9(x,y),T(x,x)) > 0,V (x,y) eK xC,

(iii) for each fixed (x,y) £ K x C, the set

V(x,y) = {ueK : (6{x,y),T{u,x)) = mms£K(9(x,y),T(s,x))}

is contractible.
Then there exists x £ K that solves GVIP(F,9,t, K,C). □

Corollary 3.1.5 Let K C Rn be a compact contractible absolute neighborhood retract and C C 
Rm be a contractible absolute neighborhood retract. Let F be a closed contractible-valued upper 
continuous and uniformly compact point-to-set mapping from K into C. Let 9 : K x C —>■ Rn be 
continuous. Suppose that the set Co(F(K)) Pi C is a retract of C. Then there exists x £ K that 
solves GVIP(F,9,K,C). □

In the case that K is unbounded, we have the following existence result for GQVIP.

Theorem 3.1.6 Let K a be nonempty subset of W1 and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
9 : K x C —> Rn and t : K X K--- > Rn be continuous single-valued functions. Suppose that there
exists a nonempty compact convex subset B of K such that the following conditions hold:

(i) t(x, x) = 0,^ x £ B,

(ii) F is contractible-valued upper continuous and uniformly compact on B,

(iii) y(x) = X(x) Pi B is a nonempty convex-valued continuous point-to-set mapping on B,

(iv) for each fixed (x,y) £ K x C,{9{x,y),T{u,x)) is convex in u £ Y(x),

(v) for all x £ B, intx(a.)(y(x)) is nonempty and for every x £ dx(x)(Y(«)), there exists a 
u £ intj^^y(x)) such that

(9(x, y), t(u, x)) < 0,V y E F(x).

Then there exists a solution to the GQVIP(X, F,9,r, K,C).

Proof. By Theorem 3.1.2 there exists x £ Y(x) and y £ F{x) such that

(9{x,y),T{x,x)) > 0,V x £ y(x). (2)

Let x £ X{x). There are two possibilities.

(i) x £ intx(S)(F(ir)). Then there exists 0 < A < 1 such that Ax + (1 — A)x £ T(x). Then by (2) 
and (iv), we have

0 < (0(x, y), r(Ax + (1 - A)x, x))

< A(6>(x, y), r(x, x)) + (1 - A)(5>(x, y), r(x, x))

= A(0(x,y),r(x,x))

Thus (9(x, y), r(x, x)) > 0.
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(9(x,y),r(utx)) < 0,V y £ F(x).

In particular for y = y, we have by (2) {9{x, y), t(u, x)} = 0. Now choose 0 < A < 1 such that 
A* 4- (1 — A)u £ Y(i). Then we have

0 < (9(x, y), t(\x + (1 - A)u, *))

< \(9(x, y), r(x, x)) + (1 - A)<0(x, y), r(u, x))

= A^^y),^,®)).

So again (0(®, y), r(®, x)) > 0, Hence (9(x, y), t(x, x)) > 0, V x G X(x). Therefore (x,y) is a 
solution to the GQVIP(X, F,9,t, K,C). □

We note that Theorem 3.1.6 extends a result due to Chan and Pang [5, Theorem 3.2]. By 
letting X(x) = K for all x G K, we have the following existence result for the GVIP.

Corollary 3.1.7 Let K be nonempty subset of Rn and C be nonempty closed convex subset of 
Rm. Let F : K —>- C be a point-to-set mapping. Let 9 : K x C —»■ R” and t ; K x K —► Rn be 
continuous. Suppose that

(i) r(x, x) = 0, V ® G K,

(ii) there exists a compact convex subset B C K with int/<-(B) ^ 0 such that F is upper continuous 
on B with F(x) contractible and uniformly compact near x for all x £ B, and for each 
x G dfciB), there exists u G int#(5) such that (0(x, y), r(u, x)) < 0, V y G F(x). Also 
(9(x, y), r(ii, x)) is convex in u £ B for each fixed (x, y) £ K x C.

Then there exists x £ B which solves GVIP(F, 9, r, K, C). □

It is worth noting that we do not require F to be upper continuous, uniformly compact and 
contractible on K, and K need not be closed or bounded. The following corollary is immediate.

Corollary 3.1.8 Assume that

(i) K is a nonempty (possibly unbounded and nonclosed) convex subset in Rn,

(ii) F is a (possibly non-upper continuous) mapping from K into the family of subsets of Rn,

(iii) there is a solid convex set E in Rn, such that

(a) K C\E is nonempty and compact,
(b) F restricted to K D E is upper continuous,
(c) F(x) is contractible and uniformly compact near x for each x £ K C\E,
(d) for each x £ K O d(E), there is an x £ K C\ intfl?), such that

0 < (x - x, y), V y G F{x).

(ii) x G 5x(s)(^/(a:))- By (v), there exists u G intjf(s)(y(*)) such that
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Then there is a solution (x, y) to GVIP(K, F) with x £ E.

Proof. Let B = K f] E. Then B is a nonempty compact convex subset of K. First we claim that 
K H int(.E') C intji-(B) and 8k(B) C K fl 8(E). Suppose x £ K 0 intfB). Then there exists an 
open set O such that x £ O C E and x £ K. Then A = K DO is open in K and x £ A. Since 
A C B. We have A C intA'(B). Therefore x £ intft-(I?). Hence K fl int(B) C int/f (B). Next, 
suppose x £ 8k{B). Let A be any neighborhood of x in K. Then T Pi B ^ 0 and A fl (K\B) 0.
Then %^Ar\KC\EcAr\E. Also

A n {k\b) = a n {K n (ec u kc))

= An ((K nec) u(K nKc))

= AnKDET

So A D Ec ^ 0. If A is any neighborhood of x, then A is also a neighborhood of x in K. Thus by 
what we have shown, AdE ^ 0 and AnEc 0. Therefore x £ A"Pi9(B). Hence 8k(B) C ATl9(B). 
Now, let x £ 8k(B). By (2) x £ K D 8(E). Then by (iii)(d), there is an x £ K Pi int(B) C intA'(B) 
such that

0 < (x - x,y), V y G B(x).

By letting 6(x, y) — y and r(x,y) — x — y, the condition (iii) of Corollary 3.1.7 is satisfied. 
Consequently, the result follows directly from Corollary 3.1.7. □

At first glance, it seems that the condition (iii) of Corollary 3.1.7 and those of Corollary 3.1.8 
are the same. But in fact, the condition (iii) of Corollary 3.1.7 is actually weaker than those in 
Corollary 3.1.8. To see this, let us consider the following example. Let K — {(x, y) : y > 0} and 
E = {(x, y) : x2 + y2 < 1, y > 0; —1 < x < 1, y — 0}. Then E is solid in R2 and we have

K n 9(B) = {(x
9k (K Pi B) = {(x
A PI int(B) = {(X

intA'(B Pi B) = {(x

y) : x2 + y2 = l,y > 

y) : x2 + y2 = l,y > 

y) : x2 + y2 < l,y > 

y) : x2 T y2 < 1, y >

0; -1 < x < 1, y = 0},

0),

0),

0; -1 < x < 1, y = 0}.

It is easy to see that 8k(K Pi E) is strictly contained in K Pi 9(B) and K Pi int(B) is also strictly 
contained in intA'(A Pi B).

For r > 0, let Br = {x £ K : ||x|j < r} and Cr = {x £ K : ]|x|| = r). The next corollary follows 
directly from Theorem 3.1.6.

Corollary 3.1.9 Let K a be nonempty subset of Rw and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
6 : K x C —> Rn be continuous single-valued function. Suppose that there exists an r > 0 such 
that the following conditions hold:

(i) F is contractible-valued upper continuous and uniformly compact on Br,

(ii) Y(x) = X(x) Pi BT is a nonempty convex-valued continuous point-to-set mapping on Br,
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max^eF(x) (9{x, y),u- x) < 0.

Then there exists a solution to the GQVIP(X, F, 6, K, C). □

By following the same reasoning as in Theorem 3.1.6, we have the following existence result for 
GQVIP{X,F,e,K,C).

Theorem 3.1.10 Let K a be nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively, Let 
9 : K x C —> Rn be continuous single-valued functions. Suppose that there exists a compact subset 
B of K such that the following conditions hold:

(i) F is contractible-valued upper continuous and uniformly compact on B,

(ii) y(*) = X(x) Pi B is a nonempty convex-valued continuous point-to-set mapping on B,

(iii) for each x £ B and for each z G X(x)\B, there exists a vector u G Y(*) such that

maXyzFix) (d(z, y), u-z) <0.

Then there exists a solution to the GQVIP(X, F,6,K,C).

Proof. By Corollary 3.1.3, there exist x G Y(x) and y G F(x) such that (6(x,y),x — x) > 0 
for all x G Y(:c). Now for x G X(x)\B, by condition (iii), there exists a u G Y(^) such that 
{9(x, y), x — u) > 0. On the other hand, we have {9(x, y), u — x) > 0. By adding the last two 
inequalities , we have (9{x, y),x — x) > 0. Hence (x, y) solves GQVIP(X, F,9, K,C). □

Remark. We note that the assertions due to Saigal [41, Lemma 4,1], Parida and Sen [37, Theorem 
2], and Fang and Peterson [16, Theorem 3.2], respectively, may not be true in general by considering 
the example from Remark (iv) following Theorem 3.1.1.

3.2. Coercivity, Copositivity and Monotonicity

Normally, it is not easy to identify the compact set B in Theorem 3.1.6 or Corollary 3.1.9. We 
therefore consider some coercivity conditions on X and F that can be easily checked in some cases.

Theorem 3.2.1 Lei K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —> Rn and t : K x K —>• Rn be continuous single-valued functions. Suppose that

(i) r(x,x) = 0,V x G K,

(ii) for each fixed (x, y) G K x C, (0(x, y), r(tt, x)) is convex in u E X(x),

(iii) F is contractible-valued upper continuous and uniformly compact on K,

(iii) for each x G X(x) Pi Cr, there is a u E X(x) Pi inti^(Br) such that
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(iv) there exists a vector xo 6 C\xeK X(x) such that

lim||a;||—t-oc, xeX(x) mzXyeF(x) {Q(z,y),T{x0,x)) < 0,

(v) there exists a po > 0 such that X(x)r\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-

Then there exists a solution to the GQVIP(X, F,9,t,K,C).

Proof. By condition (iv), there exists an ro > 0 such that for all r > ro, if £ 6 X(x) D Cr, then 
maXyg^) {9(x, y), r(xo, *)) < 0. Now let r > max{ro, ||a:o||,po} and B = Br. Then the condition
(vi) of Theorem 3.1.6 is satisfied. Therefore the result follows from Theorem 3.1.6. □

The following corollary is immediate.

Corollary 3.2.2 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —>■ Rn be continuous single-valued function. Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) there exists a vector xq G Ox£K ^(*) such that

hmjj^n—(a;) ^l^^y^F(x) {9{x,y'))Xo ■ x) < 0,

(iii) there exists a po > 0 such that X(x)r\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-

Then there exists a solution to the GQVIP(X, F, 9, K, C). □

The following corollary is a direct consequence of Corollary 3.2.2.

Corollary 3.2.3 Let K be a nonempty subset in Rn and F : K —> Rn a point-to-set mapping 
which is upper continuous, uniformly compact and contractible on K. Suppose there exists z G K 
such that

lim||x||—kx), xei< (infj/gF^)(« - z,y)) = oo.
Then GVIP(F, K) has a solution. □

Next, we have the following existence result for GQVIP(X, F, 9, K, C).

Theorem 3.2.4 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —> Rn be continuous single-valued function. Suppose that there exists an r > 0 and 
xo G K such that

(i) xo e (fLecv X(x)) D mtK(Br) and

inf^ex^ncr infyeFfr) (0(x, y),x - x0) > 0,
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(ii) F is contractible-valued upper continuous and uniformly compact on Br,

(iii) Y(x) = X(x) n Br is a nonempty convex-valued continuous point-to-set mapping on Br. 

Then there exists a solution to the GQVIP{X, F, 9, K, C).

Proof. By letting B = Br, it suffices to verify that the condition (iii) of Corollary 3.1.9 is satisfied. 
If there is no vector x such that x (E dx(x)(Y(#)), then clearly the condition (iii) of Corollary 
3.1.9 is satisfied. On the other hand, for each x £ dx(x)(Y(*)), we have xq E X(x) D intK(Br) C 
intjf(a.)(F(a;)) and (0(x,y),xo — x) < 0. Therefore the condition (iii) of Corollary 3.1.9
is satisfied. Hence the result follows from Corollary 3.1.9. □

Now we derive some existence results under certain monotonicity and copositivity conditions. 
First, let us introduce the following definitions.

Definition 3.2.5 Let X and F be two point-to-set mappings on a set A\

(i) F is said to be monotone with respect to X on If, if for any x% E X(ari) and X2 E X(x2), we 
have

(yx - 1/2, xi - X2) > 0,V y\ E F(x\), y2 E F(x2).

(ii) F is said to be strictly monotone with respect to X on K, if for any Xi E X(xi) and X2 E X{x2) 
with xi / X2, we have

(yi - V2,xi - x2) > 0,V yi E F(xt),y2 E F(x2).

(iii) F is said to be strongly monotone with respect to X on K if there exists a scalar or > 0 such 
that for any xi £ X{x\) and x2 E X(x2), we have

(yi - ~ x2) > oc\\x\ - x2||2,V yi G F(xi), y2 G F(x2).

(iv) F is said to be b-monotone with respect to X on K if there exists an increasing function 
b : [0,oo) —► [0,oo) with 6(0) = 0 and 6(r) —► oo as r —»■ oo such that for any x\ E X(xi) 
and x2 E X(x2), we have

(yi - y2,£i - x2) > ||*i - *2||Klki ~ *21|), V yi G F(xi),y2 E ir(x2).

(v) F is said to be copositive with respect to X at the point xo on K if Xo G X(xo) and there 
exists a yo G A(*o) such that for all x E K with x G X{x), we have

(y “ yo, * - *o) > o, V y G F{x).

(vi) F is said to be strictly copositive with respect to X at the point Xq on K if xo G X(xo) and 
there exists a yo G F(xq) such that for all x G K with x G ft(x), x ^ xq, we have

(y - yo, x - x0) > 0,V y G F(x).

16



(vii) F is said to be strongly copositive with respect to X at the point xo on K if *o G X(xo) and 
there exists a scalar a > 0 and a yo G i^(xo) such that for all x £ K with x £ X(x), we have

(y - yo,* - *o) > oc\\x - *0j|2,V y £ F{x).

(viii) F is said to be b-copositive with respect to X at the point xq on K if there exists an increasing 
function b : [0, oo) —► [0, oo) with 6(0) = 0 and 6(r) —»■ oo as r —» oo, and if xq £ X(xo) 
and there exists a yo £ F(xq) such that for all x £ ii with x £ X(x), we have

(y - yo,* - *o) > ||* - *o|IKIk - *o||),V y £ F(x).

Remark. If X(x) = K for all x £ K and xq = 0, then (i), (ii), (iii), (v), (vi), (vii) of Definition 
3.2.5 reduce to the usual definitions ([41, Definition 3.1, 3.2]) of monotonicity and copositivity for 
point-to-set mappings. If K = R”, then the above definitions of strong copositivity and strong 
monotonicity reduce to the ones introduced by Chan and Pang [5]. Clearly, if jF^xo) is nonempty 
and if xq £ X(xq), then monotonicity, strict monotonicity, strong monotonicity and 6-monotonicity 
imply copositivity, strict copositivity, strong copositivity and 6-copositivity respectively.

The following gives an existence result for the GQVIP(X, F, 9, K, C) under the strong coposi­
tivity condition.

Theorem 3.2.6 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —► Rn be continuous single-valued function. Suppose that

(i) there exists xq £ X(x) such that the point-to-set mapping

V(x) = {9(x, y) : y £ F(x)}

is either b-copositive or strongly copositive with respect to X at xo on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > Q such that X(x)nBp is a nonempty convex-valued continuous point-to-set 
mapping for all p > Po.

Then there exists a solution to the GQVIP(X, F, 9, K, C).

Proof. Since strong copositivity implies 6-copositivity, it suffices to prove this theorem under the 
assumption that V is 6-copositive with respect to X at the point xq. Then there exist an increasing 
function 6 : [0, oo) —► [0, oo) with 6(0) = 0 and 6(r) —>■ oo as r —>• oo and a yo £ F(xo) such that 
for all x £ K with x £ X(x), we have

(y - y0,* - *o) > ||* - *o||^(||* - *o||), V y £ F(x).

Then we have for all y £ F(x),

(8(x,y),x0 - x) < -||* - xoj|6(|[* - x0||) + {0(*o, yo),*o - *)

< ||*o - *||(Hlko - *||) - p(*0, yo)||).
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Since b(r) —> oo as r —► oo, we then have

!im||a;||—>oo,x6X(x) n[iaXygjp(;r) t/), Xo x) = OO.

Thus the condition (ii) of Corollary 3.2.2 is satisfied. Hence the result follows from Corollary 3.2.2.
□

The following corollary is immediate.

Corollary 3.2.7 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C, respectively. Let 
0 : K x C —>■ Rn be a continuous single-valued function. Suppose that

(i) the set flare A' n°t empty and the point-to-set mapping

V{x) ~ {9{x,y) : y G Tfa;)}

is either b-monotone or strongly monotone with respect to X on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > 0 such that X(x)f]Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-

Then there exists a solution to the GQVIP(X, F, 9, K, C). □

Remark. In general, solutions in Theorem 3.2.6 and Corollary 3.2.7 are not unique. To see this, 
consider the following example. Let K = C = Rra. For any x G Rn, let X(x) = {ax : 0 < or < 1} 
and F(x) = {2x}. Let 0{x, y) = y — x. Thus condition (iii) of Theorem 3.2.6 is satisfied. We claim 
that X is continuous. To see this, assume that the sequence {xn} converges to x and the sequence 
{yn} converges to y with yn G X(xn) for all n. Then for each n, yn = anxn for some Q < an < 1. It 
is clear that {an} has a convergent subsequence. Without loss of generality, we may assume that 
{an} is convergent with limit a. Clear 0 < a < 1. Then by letting n approach oo, we get y = ax. 
Thus y G X(x). Hence X is upper continuous. On the other hand, suppose that y G X(x) and 
xn converges to x. Then y = ax for some 0 < a < 1. Let {an} be a sequence in [0,1] such that 
an converges to a and let yn — anxn for all n. Then yn G X{xn) for all n and yn converges to y. 
Hence X is also lower continuous. Consequently, X is continuous as claimed. It is clear that X\BP 
is also continuous for all p > 0. Also it is easy to see that F is 6-copositive, strongly copositive 
(at the point 0), 6-monotone and strongly monotone with respect to X on R". But it is clear that 
every vector in R” is a solution to the GQVIP(X, F, 9, Rn, R71). Hence solutions are not unique 
in this case. However, as the following two corollaries show, the solutions are unique if we assume 
that X is a constant point-to-set mapping with X(x) = K for all x G K.

Corollary 3.2.8 Let K be a nonempty subset of Rn and C a nonempty closed convex subset 
of Rm. Let F be a point-to-set mapping from K into C. Let 9 : K x C —> Rn be continuous 
single-valued function. Suppose that

18



(i) there exists xo G Qce/f X(x) such that the point-to-set mapping

V(x) = {9(x, y) : y G F(x)}

is either b-copositive or strongly copositive with respect to xq on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K.

Then the problem GVIP(F, 6, K, C) has a unique solution.

Proof. It suffices to prove this corollary under the assumption that V is 6-copositive with respect 
to the point xq on K. Suppose that x\ and *2 are both solutions to the GVIP(F, 9, K, C). Then 
there exist y; G F(x{), i — 1,2 such that

(0{xi,yi),u - xi) > 0, V u G K,i = 1,2. (3)

From (3), we have

(0(zi,yi) - 9{x2,y2),x\ -X2) < 0. (4)

On the other hand, since V is 6-copositive, there exist an increasing function 6 : [0, 00) —» [0,00) 
with 6(0) = 0 and 6(r) —>■ 00 as r —>■ 00 and a yo G F(xq) such that for all i = 1, 2, we have

(9(xi,yi) - 9(x0,yo),Xi - x0) > ||xt- -xo||6(|[x2- - x0||). (5)

From (5), we have

2
{9(xi,yi) - 0(x2,y2),ri - ^2) > ^ \\xi - xQ\\b(\\xi - x0||). (6)

t=i

Combining (4) and (6), we then have x\ = X2 = xq. Hence the GVIP(F, 6, K, C) has a unique 
solution. □

The following corollary is a direct consequence of Corollaries 3.2.7 and 3.2.8.

Corollary 3.2.9 Let K be a nonempty subset of Rn and C a nonempty closed convex subset 
of Rm. Let F be a point-to-set mapping from K into C. Let 9 : K x C —*• Rn be continuous 
single-valued function. Suppose that

(i) the set OxeA' n°t empty and the point-to-set mapping

F(x) = {9(x,y) : y G F(x)}

is either b-monotone or strongly monotone with respect to xq on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K.
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Then the problem GVIP(F, 6, K, C) has a unique solution. □

We note that by letting 9{x,y) = y and C =■ Rn, Corollary 3.2.9 extends a similar result 
due to Saigal ([41, Theorem 3.1]) where he did not consider the uniqueness of the solution of the 
GVIP(F, K).

Let t : K x K —► Rn be a single-valued function such that r(a:, x) = 0 for all x £ K. F is said 
to be r-monotone with respect to X on K if for any aq G X(xi) and X2 G X(x2), we have

(yi > t(x2, xi)) + (y2,T(x1;x2)) < 0,V yi G F(xi),y2 G F(x2).

An example of r—monotone point-to-set mapping is the following. Let K = C = H and

r(x, y) =■ ex — ey

X(x) = {ax : 0 < a < 1}

F(x) = {2r}.

Then F is r—monotone with respect to X on R. If X(x) = K for all x G K, then this definition 
reduces to the definition of r-monotone point-to-set mappings introduced by Parida and Sen [37].

Theorem 3.2.10 Let K be a nonempty subset ofHn and C a nonempty closed convex subset of 
Rm. Let X and F be point-to-set mappings from K into K and from K into C, respectively. Let 
9 : K x C —► Rn and r : K x K —>■ Rn be continuous single-valued functions. Suppose that

(i) t(x, r) = 0, V r G K,

(ii) for each fixed (x,y) £ K x C, {9(x, y), t(u,x)) is convex in u G X{x),

(iii) F is contractible-valued upper continuous and uniformly compact on K,

(iv) the point-to-set mapping P(x) = {9(x, y) : y G F(*)} is r-monotone with respect to X on K,

(v) there exist vectors xo G fixe A' -^C*) an^ Vo £ ^(^o) such that

iini||j;||—.Co, x£X(x) (0(*o, J/o)) t^x, ®o)) > 0,

(vi) there exists a po > 0 such that X(x)r\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-

Then there exists a solution to the GQVIP(X, F, 9, r, K, C).

Proof. By condition (v), there exists an ro > 0 such that for all r > ro, if £ G X{x) H Cr, then 
(%0, yo), t{x, xq)) > 0. Thus for such x, since ro G X{xo),x G X(x) and V is r-monotone with 
respect to X on K, we have

(9(x,y),r(xo,x)) < -(9(xo,yo)>r(x, x0)) < 0, V y G F(x).

Let r > max{ro, ||roj|, po} and B — Br. Then the condition (vi) of Theorem 3.1.6 is satisfied. 
Hence the result follows from Theorem 3.1.6. □
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Given two point-to-set mappings F and X on K, F is said to be pseudo-monotone with respect 
to X on K if for any xi G X(xi),X2 G X(x2) and yi G F(xi),y2 G F(x2), {^i — X2, y2) > 0 implies 
(xi - x2,yi) > 0.

Theorem 3.2.11 Let K he a nonempty subset of Rn and C be a nonempty closed convex subset 
o/Rm. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —► Rn be continuous single-valued function. Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) the point-to-set mapping V(x) = {9(x, y) : y G ^(a;)} is pseudo-monotone with respect to X 
on K,

(iii) there exist vectors xo G Dze/c X(x) and yo G F{xq) such that 9(xo, yo) 6 intfU^g/^ X(a:))*,

(iv) there exists a po > 0 such that X(x)r\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-

Then there exists a solution to the GQVIP(X, F, 6, K, C).

Proof. Let S = {x £ X(ar) : (9(xo,yo),x — xq) < 0}. We claim that S is compact. Clearly 
S is closed. Suppose that S is unbounded. Then there exists a sequence {xn} C S such that 
||xn|| —i- oo. Let xn = Xn/Hxnll. Then the sequence {xn} is bounded and thus has a convergent 
subsequence. Without loss of generality, we may assume that the entire sequence {xn} converges 
to a vector e. Clearly ||e|| = 1. For each n, we have

0 < (6(xo,yo),xn) < (9(xotyo),xo/\\xn\\).

By passing to the limit, we obtain (0(xo, yo), e) = 0. By (iii), there exists an e > 0 such that 
9(x0,yo) - ee G (U xeK X{x))*. Then for each n, we have

{0{xQ,yo) - ee,xn) > 0.

By passing to the limit, we have

0 < (0(xo, yo) - ee, e) = -e < 0

which is a contradiction. Hence S is bounded and thus S is compact as claimed. Now choose 
p > po such that S C intK(Bp). All the conditions of Corollary 3.1.9, except (iii) are satisfied. 
To show that the condition (iii) is also satisfied, let x G X(x) fl Bp. Then x ^ S' which implies 
{f?(xo,yo),x — xo) > 0. By the pseudo-monotonicity of V, we have

(6(x, y), x - x0) > 0, V y G F(x).

Therefore, the GQVLP(X, F, 9, K, C) has a solution by Corollary 3.1.9. □

The following corollaries are immediate.

Corollary 3.2.12 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
RTO. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let 
9 : K x C —► Rn be a continuous single-valued function. Suppose that
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(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) the point-to-set mapping V(x) = {&(x, y) : y € F(x)} is monotone with respect to X on K,

(iii) there exist vectors xq € fligA' Uo G F(xq) suck that

H^o, yo) e int( U X(x))*,
xeK

(iv) there exists a pa > Q such that X(x) f]Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > Pq.

Then there exists a solution to the GQVIP(X, F,6, K,C). □

Corollary 3.2.13 Let K be a nonempty subset ofHn and C be a nonempty closed convex subset 
of Rm. Let F be a point-to-set mapping from K into C and let 8 : K x C —► Iin be a continuous 
single-valued function. Suppose that

(i) F is nonempty contractible valued upper continuous and uniformly compact on K,

(ii) the point to-set-mapping F(a;) = {0(x, y) : y £ F(x)} is monotone or pseudo-monotone on 
K,

(iii) there exist vectors xq £ K and yo £ F(xo) such that 8(xo,yo) C 

Then there exists a solution to the GVIP(F,8, K, C). □

Next, we present an existence result for the GQVIP which does not employ Theorem 3.1.6.

Theorem 3.2.14 Let K and C be nonempty closed convex subsets of W1 and Rm, respectively. 
Let X and F be point-to-set mappings from K into K and from K into C, respectively. Let 
8 : K x C —>■ Rra and r : K x K —> Rra be continuous single-valued functions. Suppose that

(i) t(x,x) - 0, V £ £ K,

(ii) for each fixed (x,y) & K x C, {0(z, y), t(u, x)) is quasiconvex in u £ X(x),

(iii) F is contractible-valued upper continuous and uniformly compact on K,

(iv) there exists a po > 0 such that Xp(x) = X(x) H Bp is a nonempty convex-valued continuous 
point-to-set mapping for all p > po*

Then

(v) there exists xp £ Xp(xp) that solves the GQVIP(Xp, F, 8, r, BP,C) for each p > po,

(vi) if the set has a convergent subsequence, then GQVIP(X, F, 8, t, K, C) has a solution.
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Proof. The result (v) follows directly from Theorem 3.1.2. Suppose that the set {xp} has a 
convergent subsequence {xn} with limit xq and xn 6 XPn(xn) for all n. Then for each n, there 
exists yn £ F(xn) such that

{8{Xn,yn),r{x, Xn)) > 0,V X £ XPn(xn).

Clearly G X(xo) and {yn} has a convergent subsequence. Without loss of generality, we may 
assume that the entire sequence {yn} converges to a limit yo. Then yo £ F(xq). For each x £ X(xo), 
there is an m such that x £ BPm. Then x £ XPn(xo) for all pn > Pm - Since X is continuous, there 
exist k and zn such that zn —> x and zn £ X(xn) for all n > k. Also there exists an £ such that 
zn £ BPn for all n > f since we can choose pm large enough such that x £ mt(BPm). Then for all 
n > max{m, k, £}, we have zn £ XPn(xn) and

{®{Xn,yn),T{zn,Xn)} > 0.

By passing to the limit, we obtain the inequality (8(xo,yo), r(z, xq)) > 0. Therefore (xo,yo) is a 
solution to GQVIP(X, F, 9, r, K, C). □

The following corollary is immediate.

Corollary 3.2.15 Under the assumptions of Theorem 3.2.14, it follows that

(i) there exists xp £ Xp{xp) that solves the GQVIP(Xp, F, 6, r, Bp, C) for each p > po,

(ii) if the set {Tp} is bounded, then the GQVIP(X, F,6,r, K,C) has a solution. □

3.3. Analysis of the Solution Set of GQVIP

In this subsection we shall discuss various properties of solution sets of generalized quasi­
variation al inequality problems, Though such results are important in sensitivity analysis, very 
few results have been seen in the literature. See Hartman and Stampacchia [20], McLinden [28, 
29] and Fang and Peterson [16]. As a matter of fact, to determine whether the solution set of a 
GQVIP possesses some interesting properties, such as compactness and convexity, is a fairly dif­
ficult task. Our first result is that the solution set of any GQVIP is always closed under fairly 
general conditions.

Theorem 3.3.1 Let K and C be nonempty subsets o/Rn and Rm, respectively. Let X : K —>■ K 
and F : K —» C be point-to-set mappings. Also let 9 : K x C —» Rn and t : K x K —> Rn be 
continuous single-valued functions. Suppose X is continuous on K and that F is upper continuous 
and uniformly compact on K. Then the solution set S of GQVIP(X, F,6,t, K, C) is closed.

Proof. The result is clearly true if S is empty. So let us suppose that S is not empty. Let x be a 
limit point of S. Then there exists a sequence {xn} C S such that xn converges to x. For each n, 
since xn £ S, xn £ X(xn) and there exists yn £ F(xn) such that

{9{xn,yn),T(u,xn)) > 0,V u C X{xn). (7)
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Clearly x £ X(a;). Since F is upper continuous and uniformly compact, {yn} has a convergent 
subsequence. Without loss of generality, we may assume that {yn} converges to y. Then y £ F(x) 
by the upper continuity of F. Now for any u £ X(x), since X is continuous, there exist no and zn 
such that zn £ X(xn) for all n > no and zn converges to u. By (7), we have

(&(Zn,yn),T(zn,Xn)) > 0, V Ti > n0.

Passing to the limit, we have, since 0 and r are continuous,

(0(x,y),r(u,x)) > 0.

Consequently, x £ S. Since S contains all of its limit points, it is closed. □

Under some conditions, the solution set of a GQVIP can be shown to be compact as the 
following theorem illustrates.

Theorem 3.3.2 Let K and C be nonempty subsets o/Rn and Rm, respectively. Let X : K —>• K 
and F : K —>• C be point-to-set mappings. Also let 9 : K x C —► Rn and t : K x K —»■ Rn be 
continuous single-valued functions. Suppose X is continuous on K and that F is upper continuous 
and uniformly compact on K. Suppose there exists a vector xq £ thut

lim||a:|l—kx>, xZXix) mzXy€F(x) (8{x, V), r(x0, x)} = -OO.

Then the solution set S of GQVIP(X, F,9,t, K,C) is compact.

Proof. The result is clearly true if S is empty. Suppose that S is not empty. The closedness of S 
follows from Theorem 3.3.1. By assumption, there exists an r > 0 such that for all ||x|j > r with 
x £ X(x) we have

max^i^) (9(x,y),T(xo,x)) < 0.

It then follows that S C Br. Consequently S is bounded and hence compact. □

As we indicated in the remark following Corollary 3.2.7, even the point-to-set mapping V(x) = 
{9(x,y) : y £ F(x)} is strongly monotone with respect to the point-to-set mapping X on K, the 
GQVIP(X, F, 9, K, C) does not necessarily have a unique solution. Nevertheless, the solution set 
is necessarily compact as the following corollary shows.

Corollary 3.3.3 Let K and C be nonempty subsets of Rn and Rm, respectively. Let X and F 
be point-to-set mappings from K into K and C, respectively. Also let 9 : K x C —>■ Rn and 
r : K x K —> Rn be continuous single-valued functions. Suppose X is continuous on K and F is 
upper continuous and uniformly compact on K. Then the solution set S of GQVIP(X, F, 9, K, C) 
is compact if one of the following conditions holds:

(i) there exists xq £ Qceft' ^(•c) suc^ ^at the point-to-set mapping

V(x) = {9(x,y) : y € ^(x)}

is either b-copositive or strongly copositive with respect to xq on K,
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(ii) the set flreA'^W ?s n°t empty and the point-to-set mapping V(x) is either b-monotone or 
strongly monotone with respect to X on K.

Proof. It is clear that it suffices to prove this corollary under the assumption that V is 6-copositive 
with respect to X at xq on K. Then there exist an increasing function b : [0, oo) —>• [0, oo) with 
6(0) = 0 and 6(r) —>• oo as r —>■ oo, and a yo E F(xo) such that for all x £ K with x £ X(x), we 
have

(9(x,y) - 6(x0,yo),x - *0) > IN - a:o||6(|N - xo||),V y £ F(x).

Consequently, we have

maXj,eF(a;) (6(x, y), x0 - x) = -min^^) (9(x, y), x - x0)

< (9(xo,yo), x0- x) - ||x - zo||6(|N - «o||)

< -IN - ^o||(6(|N - ^oll) - |N(xo, yoll).

Therefore, we have

limlMI—>oo,xex(x) nrnXy£F(x) (9(x,y),x0 - x) = -oo.

Hence by Theorem 3.3.2, S is compact. □

In the case that X is the constant mapping K, we can further strengthen the result of Corollary 
3.3.3.

Theorem 3.3.4 Let K be a nonempty subset of Rn and C a nonempty closed convex subset of 
Rm. Let F be a point-to-set mapping from K into C and 6 : K x C —► R" be a continuous 
single-valued function. Then the solution set S of GVIP(F,8, K, C) is either empty or a singleton 
if one of the following conditions holds:

(i) there exists xq £ fNe/f -^(x) such that the point-to-set mapping

V(x) = {9(x,y) : y £ -F(a:)}

is strictly copositive, b-copositive or strongly copositive with respect to xq on K,

(ii) the set PlieAT ^(x) n°t empty and the point-to-set mapping V{x) is strictly monotone, 
b-monotone, or strongly monotone on K.

Proof. It suffices to prove this theorem under the condition that V is strictly copositive with respect 
to xq on K. If S is empty, then we have nothing to prove. Otherwise suppose that Xi,X2 £ S with 
xi ^ X2- There are two cases to be discussed:

(a): Both xi and X2 are not equal to xq. Then as in the proof of Corollary 3.2.8, there exist 
yi £ F(xi), i = 1,2 such that

(9(xi,yi) - 0(x2,y2),xi - x2) < 0. (8)

25



On the other hand, since V is strictly copositive, there exists yo € F(xq) such that

(0(xi,yi) - 6(x0lyo),Xi ~ x0) > 0, i - 1,2. (9)

From (9), we have
{0(zi,yi) - &(x2,y2), - *2) > 0

which contradicts (8).
(b): Either x\ or X2 equals xq, say x<z = xq. Then there exists y\ G F(xi) and y'0 G F(a;o) such 

that

(0(£i,yi), £0 - £1} > 0 (10)

and

(0(«o,yo),*i ~ «o) > 0. (11)

From (10) and (11), we have

<0(zi,yi) - 5(x0,yo),*i - a^o) < 0. (12)

On the other hand, there exists yo G F{xq) such that

(0(*i,yi) - ^(*0, yb), - «o) > 0. (13)

Note that yo is not necessarily equal to x/0. Since (B(xo,yo) ~ B(xo, yo), 0) = 0, combining this with 
(13), we have

{0(ah,yi) - 0(xo,yo),xi - *0) > 0

which again contradicts (12).
Consequently, we conclude that S' is a singleton. □

The following characterizes the boundedness of the solution set of GVIP(F, 9, K, C).

Theorem 3.3.5 Let K be a closed convex cone in Rn and C a nonempty subset of Rm. Lei F 
be a point-to-set mapping from K into C and 6 a continuous single-valued function from K x C 
into R”. Suppose that the point-to-set mapping V(x) — {9(x, y) : y G F(x)} is copositive on K 
and V(0) C int(/\*). Then the solution set S of GVIP(F, 9, K, C) is bounded. If in addition, F 
is upper continuous and uniformly compact on K, then S is compact.

Proof. The result is clearly true if S is empty. So let us suppose that S is not empty. If S is 
unbounded, then there exists a sequence {xn} C S such that ||x*n|| -—>• 00 as n —>■ 00. For each n, 
there exists yn G F(xn) such that

(9(xn,yn), u — Xn) > 0, V U G K. (14)

Since V is copositive, there exists z G F(0) such that

(9(x,y) - 9(0, z),x) > 0,V x G K,y G F(x).
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Thus we have, for each n

{&{xn,yn),xn) > {9{^,z),xn). (15)

Since {#„} is unbounded, there exists i such that xt ^ 0. For this particular £, since V^O) C int(/\*), 
we have from (15)

{B{xi,yi),xt) > 0.

On the other hand, since 0 £ Ji", by (14) we have

(^t^,^),^) < 0

which is a contradiction. Therefore S is bounded. The second assertion follows from Theorem 
3.3.1. □

Recall that a point-to-set mapping F is pseudo-monotone on a nonempty set K if for any 
pair of vectors xi, X2 in K and every yi £ F(xi) and every t/2 £ F{x2), (zi — X2,y2) > 0 implies 
(*1 —*2, yi) > 0. As pointed out in Karamardian [26], if F is pseudo-monotone and y\ £ F(xi), j/2 G 
F(x2), then (x\ — *2, y2) > 0 implies (x\ — X2,y\) > 0. With this observation, we have the following 
characterization of compactness of the solution set of GVIP(F,6, K,C).

Theorem 3.3.6 Let K be a closed convex cone in Rn and C be a nonempty closed convex subset 
of Rm. Let F be a point-to-set mapping from K into C and 9 : K x C —>■ Rn be a continuous 
single-valued function. Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) the point-to-set mapping V(x) — {9(x, y) : y £ F(x)} is pseudo-monotone on K,

(iii) there exist vectors xq £ K and y0 £ F(xq) such that 9(xo,yo) £ int(if*).

Then the solution set S of GVIP(F, 9, K, C) is nonempty and compact.

Proof. The fact that S is nonempty and closed follows directly from Theorem 3.2.11 and Theorem 
3.3.1. To see that S is also bounded, let

D = {x e K : (9(xo,y0),x - x0) < 0}.

Then since 9(xo,yo) G intf/f*), D is compact. Now for x £ K\D, we have

{0(£o,yo),£ - Xq) > 0.

Thus by the pseudo-monotonicity of V, we have

(9(x,y),x - Xq) > 0,V y £ F(x).

Then x can not be a solution to the GVIP(F,6,K,C). Consequently, we have S C D and the 
result follows. □

The condition (iii) in Theorem 3.3.6 can be looked upon as a Slater-type constraint qualification. 
We next turn to the question on the convexity of the solution set.
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Theorem 3.3.7 Let K be a nonempty convex subset o/Rn and C a nonempty subset o/Rm. Let 
F be a convex point-to-set mapping from K into C and 0 : K x C —► R" be an affine function. 
Suppose that the point-to-set mapping V(x) — {0(x, y) : y £ ^(x)} is monotone on K. Then the 
solution set S of GVIP(F, 6, K, C) is convex.

Proof. The result is clearly true if S is empty. So let us suppose that S is nonempty. Let x%,X2 £ S 
and x = ax\ 4- px? with a + (3 = 1 and a,(3 >0. Then there exist yi £ F(xi), i = 1,2 such that for 
i=l,2

Vi), u - Xi) > 0,V u £ K.

Let y = ayi + (fy^. Then y £ F(x) since F is convex. Now for any u £ K, we have

(16)

(0(x,y),u- x) =

>

>

(a0(xi ,yi) + f39(x2,y2), - xi) + (3(u - x2))

oc2(8{xi,yi),u - xi) + P2{8(x2,y2),u- x2) + 

a(3[(8(xix2) +9(x2, ya), u - ari)]

w - x2) + (0(x2,y2),u- xi)] (by (16)) 

a/?[(0(:ci,yi),zi - x2) + 0(x2,y2),x2 - Xi)] (by (16))

= O'/3(0(xi,yi) - 0(x2,y2),^i ~ x2)

> 0.

The last inequality follows from the monotonicity of V. Therefore x £ S'. Consequently, S is 
convex. □

The following corollary is immediate.

Corollary 3.3.8 Let K be a nonempty convex subset of Rn. Suppose that F is a convex and 
monotone point-to-set mapping from K into Rn. Then the solution set S of the GVIP(F, K) is 
convex.

Remark. A point-to-set mapping F from a nonempty subset K of Rn into Rn is said to be maximal 
monotone over K if it is monotone on K and it is not properly contained in any other monotone 
mapping over K. In [16, Theorem 4.4], Fang and Peterson required F to be maximal monotone 
over K and deduced the same result as that in Corollary 3.3.8. We note that our conditions on 
F in Corollary 3.3.8 is different from the maximality condition. To see this, consider the following 
examples. Let = [0,1] and F : K —► R" be defined as F{x) = {x} for all x £ K. Then it is 
clear that F is both convex and monotone on K. But it is not maximal monotone over K because 
F is properly contained in the monotone point-to-set mapping G on K defined as

( {x} if 0 < x < 1 
G(x) = {

[ [1, oo) if x = 1

On the other hand, let K = R2 and F(x) = dS(x\B) for all x £ R2 where B is the closed unit disk

28



in R2. That is, F(x) is the sub differential of the indicator function of B. Then is easv to see that

F(x)

{0} if a? E int(j5)

< {ax : a > 0} if ^ G d(B) 

k 0 else

It is true that F is maximal monotone over R2 (see, e.g. Rockafellar [38, Corollary 31.5.2, p.340]). 
But it is clear that F is not convex.

Since any monotone point-to-set mapping is also pseudo-monotone, the following corollary is a 
direct consequence of Theorem 3.3.6 and Theorem 3.3.7.

Corollary 3.3.9 Let K be a closed convex cone in Rn and C be a nonempty closed convex subset 
£>/Rm. Let F be a point-to-set mapping from K into C and 9 : K xC —> Rn be an affine function. 
Suppose that

(i) F is nonempty contractible valued upper continuous and uniformly compact on K,

(ii) the point-to-set mapping V{x) = {B(x,y) : y E F(x)} is monotone on K,

(iii) there exist vectors xq G K and yo E ir(xo) such that 9(xq, yo) E int(if*).

Then the solution set S of GVIP(F, 0, K, C) is nonempty, compact and convex. □

4. The Generalized Implicit Complementarity Problem

We begin this section by giving a short introduction on complementarity problems and some 
possible applications. Let / be a mapping of Rn into itself. The original complementarity problem, 
denoted by CP(f), is to find a vector x E R" such that

x > 0, f{x) > 0, (x,/(x)) = 0

where x > 0 means all the components of x are nonnegative and {•, •) is the usual scalar product 
in Rn. The task of the above problem is to find a nonnegative x such that its image under / is 
also nonnegative and perpendicular to itself. When f is nonlinear, CP(f) is called a nonlinear 
complementarity problem. In the case where f is an affine mapping of the form / : x q + Mx 
for some q E Rn and M E RnXn, the complementarity problem CP(f) is said to be linear and is 
denoted by the pair (q, M). The complementarity problems have many applications, for example, in 
control and optimization, economics and transportation equilibrium, contact problems in elasticity, 
fluid flow through porous media, game theory, and mathematical programming. The nonlinear 
complementarity problem was first introduced and studied by Cottle [6] and Cottle and Dantzig 
[8] where the notion of positively bounded Jacobians was introduced and the proof was constructive 
in the sense that an algorithm was employed to compute the unique solution. Also see More [30, 
31, 32],

Given a closed convex cone K of Rn and a mapping / from Rn into itself, the generalized 
complementarity problem, denoted by GCP(f,K), is to find a vector x E K such that

/(x) E 1C, (x,/(x)) = 0.
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The idea of generalized complementarity problem was first introduced by Habetler and Price [17] 
and latter refined by Karamardian [25].

To extend the GCP(f, K), Saigal [41] introduced the following generalized complementarity 
problem where he considered / to be a point-to-set mapping. Given a closed convex cone K of Rn 
and a point-to-set mapping F from if into Rn, the generalized complementarity problem, denoted 
by GCP(F, K), is to find a vector z £ K and a vector y £ F(x) such that

y e K*, (x,y) = 0.

It is worth noting that if T1 is a single-valued function, then the GCP(F, K) reduces to the 
GCP(f, K).

Motivated by the quasi-variational inequality problem introduced by Mosco [33], Chan and Pang 
[5] defined a new complementarity problem as follows. Let m and F be respectively, point-to-point 
and point-to-set mappings of Rn into itself. Let L be a cone-valued point-to-set mapping on R" . 
The generalized implicit complementarity problem, denoted by GICP(F, m, L), is to find a vector 
x £ m(x) + L(x) and a vector y £ F(x) such that

y £ L(z)*, (z - m(x), y) = 0.

They established some existence results under the assumption that L(x) is a constant closed solid 
cone for all x.

Recently Parida and Sen [37] introduced the following generalized complementarity problem. 
Given K a closed convex cone of Rn, C a closed convex subset of Rm, 9 : K —>■ Rn single-valued 
function, F : K —>■ C a point-to-set mapping, the generalized complementarity problem, denoted 
by GCP(F, 9, K, C), is to find a vector x £ K and a vector y £ F(x) such that

9(x,y)£K*, (6(x,y),z) = 0.

It is interesting to observe that Parida and Sen’s problem formulation generalizes that of Saigal.

In this section, we consider the following generalized implicit complementarity problem which 
unifies the above complementarity problems. Let K be a closed convex cone of Rra and C a 
nonempty closed convex subset of Rm. Let m be a point-to-point mapping from K into itself 
and T be a point-to-set mapping of K info C. Let L be a cone valued point-to-set mapping 
from K into itself and 0 a point-to-point mapping from K x C into Rn. The generalized implicit 
complementarity problem, denoted by GICP{F, 6, m, L, K, C) is to find a vector x £ m(x) + L(x) 
and a vector y £ F(x) such that

9(x, y) £ L(x)*, (9{x, y), x - m(x» = 0.

We note that GICP(F, 6, m, L, K, C) reduces to GICP(F,m, L) if 6(x, y) = y and K = 
C = Rn. If m(x) = 0 and L{x) = K for all x £ K, then GICP(F, 6, m, L, K, C) reduces to 
GCP(F, 9, K, C). Since GCP{F, 9, K, C) extends GCP{F, K), GCP(f, K) and CP{f), our formu­
lation of the generalized implicit complementarity problem generalizes and unifies the others.

Remark. Throughout the rest of this section, it is assumed that

(i) K is a closed convex cone in Rn and C is a nonempty closed convex subset of Rm,
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(ii) m is a single-valued function from K into itself,

(iii) L is a cone-valued point-to-set mapping from K into itself,

(iv) F is a point-to-set mapping from K inot C,

(v) X(x) = m(x) + L(x) for all x G K,

(vi) 6 is a continuous single-valued function from K xC into Rn.

The relationship between a variational inequality problem and a generalized complementarity 
problem was first investigated by Karamardian [25]. Karamardian showed that if the set involved 
in a variational inequality problem is a closed convex cone, then both the variational inequality 
problem VI(f, K) and the generalized complementarity problem GCP(f, K) have the same solution 
set. Later Saigal [41], Chan and Pang [5], Noor [35] and Parida and Sen [37] also established the 
same result on the relationship between the generalized variational inequality problem and the 
generalized complementarity problem they introduced. Following this direction, we have

Lemma 4.1 The GQVIP(X, F, 9, K, C) and the GICP(F, 9, m, L, K, C) have the same solution 
set.

Proof. Let x be a vector in K that solves GQVIP{X, F, 9, K, C). Then x E X{x), and there exists 
y G F(x) such that

(6{x,y),z - x) z £ X{x).

Since x — m(x) E L{x) and L{x) is a cone, we have 2(x — m(x)) G L(X). Thus 2x — m(x) E 
X{x), and we have {9{x,y),x — m(x)) > 0. On the other hand, since m(x) G X(x), we have 
(9(x, y), m(x) — x) < 0. Consequently, (9(x,y),x — m(x)) = 0. Now for each z E L(x), we have 
m(x) + z £ X(x). Accordingly,

{9(x, y), z) - (9{x, y),m(x) + 2 - x) > 0.

Therefore 6(x, y) G L{x)*. Hence (x, y) solves the GICP(F,9,m, L, K, C). Conversely, suppose x 
solves the GICP(F, 9, m, L, K, C). Then x £ m(x) + L(x), and there exists y £ F(x) such that

9(x,y) £ L(x)*, (9(x,y),x- m(x)) = 0.

For any 2 E m(x) + L(x), there exists v £ L(x) such that 2 = m(x) + v. Thus we have

{9(x, y), z — x) = {9(x, y),v) > 0.

Therefore (x, y) solves GQVIP{X, F, 9, K, C). □

Corollary 4.2

(i) GCP(F,9, K,C) and GVIP(F,6, K,C) have the same solution set.

(ii) GCP{F, K) and GVIP(F, K) have the same solution set. □
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The following gives an existence result for the GCP.

Lemma 4.3 Let B C K with intft'(.B) ^ 0. If x solves GVIP(F, 9, B, C) and x £ intK(B)r then 
x solves GCP(F,9,K,C).

Proof. Since x solves GVIP(F,6, B ,C), there exists y £ F(x) such that

{9(x, y),u — x) > 0, V u € B,

For each z £ K, since x £ int/c (B), there exists 0 < A < 1 such that A,? + (1 — A)x £ B. Then

{9{x, y), A^r + (1 - X)x - x) = X(9(x, y), z - x) >0.

Thus (9(x, y), z — x) > 0. Hence x solves GVIP(F, 9, K, C) and the result follows from Corollary 
4.2 (i). □

With the aid of Lemma 4.1 and the existence results for GQVIP in Section 3, we obtain the 
following existence results for the GICP(F, 9, m, L, K, C).

Theorem 4.4 Suppose that there exists an r > 0 such that the following conditions hold:

(i) F is contractible-valued upper continuous and uniformly compact on Br,

(ii) F(^) = X(x) fl Br is a nonempty convex-valued continuous point-to-set mapping on Br,

(iii) for each x £ X(x) D Cr, there is a u £ X{x) nint/i'(Br) such that

maxy€F(a;) {^(*,y),U - x) < 0.

Then there exists a solution to the GICP(F, 9, m, L, K, C).

Proof. This follows directly from Corollary 3.1.9 and Lemma 4.1. □

Theorem 4.5 Suppose that there exists a compact subset B of K such that the following conditions 
hold:

(iii) F is contractible-valued upper continuous and uniformly compact on B,

(ii) Y(x) = X(x) D B is a nonempty convex-valued continuous point-to-set mapping on B,

(iii) for each x £ B and for each z £ X(x)\B, there exists a vector u £ Y(x) such that

max^F^) {9(x, y), u-z) < 0.

Then there exists a solution to the GICP(F, 9, m, L, K, C).

Proof. This follows directly from Theorem 3.1.10 and Lemma 4.1. □
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Theorem 4.6 Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) there exists a vector xq £ X(x) such that

lim||a:|j—>-00, xeX(x) maxyeF(x) (8(x,y),%o -x) <0,

(iii) there exists a po > 0 such that X(x)nBp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po.

Then there exists a solution to the GICP(F, 9, m, L, K, C). □

The following corollary is immediate.

Corollary 4.7 Let F : K —► Rra be a point-to-set mapping which is upper continuous, uniformly 
compact and contractible-valued on K. Suppose there exists z £ K such that

lim||a;||—.oo, xeK (infy€F(x)( x-z,y))-oo.

Then GCP(F, K) has a solution. □

The following theorem is a direct consequence of Theorem 3.2.4 and Lemma 4.1.

Theorem 4.8 Suppose that there exists an r > 0 and xq £ K such that

(i) x0 £ (flxecv ^(z)) H intA'(5r) and

infxGXixjnCr infyeF(x) (B{x,y),x -Xo) > 0,

(ii) F is contractible-valued upper continuous and uniformly compact on Br,

(iii) Y(x) = X(x) Pi Br is a nonempty convex-valued continuous point-to-set mapping on Br. 

Then there exists a solution to the GICP(F,0,m, L, K,C).

The following gives an existence result for the GICP under the strong copositivity condition.

Theorem 4.9 Suppose that

(i) there exists xq £ f)xeK X(x) such that the point to set mapping V(x) = {9(x, y) : y £ F{x)} 
is strongly copositive with respect to X at Xq on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > D such that X(x)C\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p > po-
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Then there exists a solution to the GICP(F, 6, m, L, K, C).

Proof. This follows directly from Theorem 3.2.6 and Lemma 4.1. □

We note that the remark following Theorem 3.2.6 is also valid for Theorem 4.9. The following 
corollary is immediate.

Corollary 4.10 Suppose that

(i) there exists xq G DxeK X(x) such that the point to set mapping V{x) = {0(x,y) : y E F(x)} 
is strongly monotone with respect to X on K,

(ii) F is contractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > 0 such that X(x}nBp is a nonempty convex-valued continuous point-to-set 
mapping for all p> po-

Then there exists a solution to the GICP(F, 9, m, L, K, C). □

The following gives an existence result for the GICP under the pseudo-monotonicity condition. 

Theorem 4.11 Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) the point to set mapping V(x) = {9(x, y) : y E F{x)} is monotone or pseudo-monotone with 
respect to X on K,

(iii) there exist vectors xq E C\X£K X(x) and yo E i?(®o) such that

9(xo,yo) G int( fj X(x))*,
xeK

(iv) there exists a po > 0 such that X(x)nBp is a nonempty convex-valued continuous point-to-set 
mapping for all p> po-

Then there exists a solution to the GICP(F,9,m> L, K,C).

Proof. This follows directly from Theorem 3.2.11 and Lemma 4.1. □

In the case where the point-to-set mapping L is constant, the condition that X(x) fl Bp is 
continuous on Bp for large p is automatically true if the function m is continuous. We then have

Theorem 4.12 Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) there exists a vector xq E flxeK ^(®) such that

limiia-n—kx>,xeX(®) maxyg/r^) (9(x,y),x0 - x) < 0,
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(iii) there exists a vector no E K such that uo — m(x) E L,V x E K.

Then there exists a solution to the GICP(F,6,m, L, K,C). □

Theorem 4.12 can be proved by a standard argument as in [5, Theorem 4.2]. We close this 
chapter by remarking that most of the existence results for GICP rely very heavily on the existence 
results for GQVIP. This suggests that we should exploit other approach rather than GQVIP.

5. Applications

In this section we shall give several applications of our general problems. Mathematical pro­
gramming and equilibrium programming are the two major areas of the applications. The applica­
tions are: minimization problems involving “invex” functions, generalized dual problems and saddle 
point problems, equilibrium problems involving markets with utility, equilibrium problems involv­
ing abstract economies, generalized Nash equilibrium problems, and quasi-variational inequality 
problems of obstacle type. In all these applications, we require relatively weak conditions to ensure 
the existence of solutions to the problems under consideration.

5.1. Minimization Problems Involving “Invex” Functions

Recently Hanson [18] introduced into optimization theory a broad generalization of convexity 
for differentiable functions on Rn which was called invex by Craven [10]. Let K be a nonempty 
subset of Rn. A differentiable function f on K is invex if there exists a vector function r from 
K x K into Rn such that

/(z) - f{y) > (V/(y), r(x, y)), V x,y E K.

Hanson showed that both weak duality and Kuhn-Tucker sufficient results, in constrained opti­
mization, hold with the invex conditions.

We note that if r(x, y) = x — y, then the invexity condition for f reduces to convexity condition. 
An example of invex function is the following (Hanson [18]). Let K = {(x,y) E R+ : x2 + y2 < 3/2} 
and let function f be defined as f(x, y) = x — siny for all (r, y) E K. Then / is invex with respect 
to r, where

r((a, /?), (7, 6)) = ((sina — sin7)/cos7, (sin/? — sin<5)/cos<5).

For more details on the concept of invexity, see Rueda and Hanson [40], Craven [10] and Jeyakumar
[24] •

Consider the following minimization problem:

mmxeK /(a;) (17)

where K is a nonempty subset of R" and / is a differentiable invex function with respect to r on
K.

We associate with problem (17) the following variational inequality problem: find x E K such 
that

{Vf{x),T{u,x)) >0,Vue AC (18)
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It is easy to see that if x is a solution to problem (18), then x is a solution to problem (17). 
Consequently, we have

Theorem 5.1.1 Lei K be a nonempty convex subset ofW1 and let f be a continuously differentiable 
invex function with respect to a continuous function r on K, Suppose that

(i) t(x, x) = 0 for all x G K,

(ii) for each fixed x G K, (V/(x), r(u, x)) is convex in u G K,

(iii) there exists a vector xq G K such that

°°> xeK {V/(x), r(x0, x)) < 0.

Then there exists a solution to problem (11).

Proof. Let X be a constant point-to-set mapping from K into itself with X{x) = K for all 
x G K. Let 9 : K x K —>■ Rn be defined as 6{x, y) = V/(x). Then problem (17) is equivalent 
to GQVIP(X, X, 9, r, K, K). By Theorem 3.2.1, the latter problem has a solution. Hence there 
exists a solution to problem (17). □

Remarks.

(i) The function r in the above example satisfies r(x, x) = 0 for all x G K. Hence the condition
(i) of Theorem 6.1.1 is not restrictive.

(ii) There are some other conditions on / that will ensure the existence of solution to problem 
(17). For instance, if the condition (iii) of Theorem 5.1.1 is replaced by the condition that 
V/ is r-monotone on K, then the corresponding GQVIP(X,X,9,r,K,K) has a solution by 
Theorem 3.2.10. Consequently, there is a solution to problem (17).

5.2. Generalized Dual Problems and Saddle Point Problems

Our second application is to generalized dual problems and saddle point problems. A basic result 
in optimization theory is that under some conditions, a saddle point of the Lagrangian function 
is equivalent to an optimum of the associated convex programming problem satisfying a constrant 
qualification. This result has been significantly demonstrated in economic literature (see,e.g., Heal 
[21]). This is the impetus of our application in this section. First, let us introduce the formulation 
of the problems. Let K and C be nonempty subsets of Rn and RTO, respectively. Let y? be a real 
function on K x C. Let X and F be nonempty valued point-to-set mappings from K into K and 
C, respectively.

(5.2.1) Generalized Problem I (GPI): Find (x,y) G S such that

!p(x, y) = inf^gs <p(x,y)

where
S = {(x,y) : x G X(x),y G F(x),y?(x,y) = supugF(x) y?(x,u)}.
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(5.2.2) Generalized Problem II (GPU): Find (x,y) £ T such that

<p(x,y) = sup(Xty)€T <p(x,y)

where
T = {(*, y) : x £ X(x),y £ F{x), y?(x, y) = inf„gX(;c) <p(v, y)}.

(5.2.3) Generalized Saddle Point Problem (GSPP): Find x £ X(^) and y £ F(x) such that

^(®>y) < ^(*»y) < ^(«,y)
for all x £ X(x) and all y £ F{x).

We note that the above problems may not have any solution at all. Also if we let X(x) — K 
and F(x) = C for all x £ K, then the definitions of (GSPP), (GPI) and (GPU) reduce to the 
definitions of (SPP), (PI) and (PII) introduced by Mangasarian and Ponstein [27].

The following lemma points out the relationship between these problems.

Lemma 5.2.4 Let K and C be nonempty subsets of Rn and Rm, respectively. Let X and F be 
nonempty valued point-to-set mappings from K into K and C, respectively. Let ip be a real function 
on K x C. If (x,y) is a solution of the (GSPP), then (x, y) is also a solution of the (GPI) and 
(GPU), and conversely.

Proof. Assume (x, y) is a solution of (GSPP). Then clearly (x, y) £ S DT. Let (x,y) £ S. Then 
we have ip(x,y) > ip(x, y). But <p(x, y) > ip(x, y) since (x,y) £ T. Thus <p(x, y) > (p{x,y). Hence 
(x, y) is a solution of (GPI). Similarly, (x,y) is a solution of (GPU). The converse is clear since if 
(x,y) is a solution of both (GPI) and (GPU), then

<p(x,y) = supyeF(x)<p(x,y) = inf^x^v^x, y). □

We now associate with (GSPP) the following generalized quasi-variational inequality problem: 
Find x £ X(x) and y £ G(x) such that

{Vx<p(x,y),T(x,x)) > 0,V x £ X(x) (19)

where
G{x) = {y £ F(x) : ^(x,y) = supueF(a;)^(x, u)}.

The following lemma establishes the relationship between (GSPP) and problem (19).

Lemma 5.2.5 Suppose tp{x,y) is invex in x £ K with respect to r for each fixed y £ C. If (x, y) 
is a solution of (19), then (x,y) is a solution of (GSPP).

Proof. Assume (x,y) solves (19). By the invexity of tp, we have for any x £ X(x)

<p(x, y) - <p(x,y) > ( Vx(p{x, y), r(x, x)) >0.
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Therefore <p(z, y) > <p{x, y) for all x G X(x). On the other hand, since y G G{x), we have for all 
y e F(x)

<p(z,y) < <p(x, y).

Hence (x, y) solves (GSPP). □

Thus the question of existence of solution to (GPI), (GPU) and (GSPP) can be investigated 
via (19). Consequently, we have the following existence result for (GSPP).

Theorem 5.2.6 Let K and C be nonempty subsets o/R" and Rm, respectively. Let X and F be 
nonempty valued point-to-set mappings from K into K and C, respectively, and r be a continuous 
function from K x K into Rn. Suppose that

(i) r{x,x) = 0,^ xe K,

(ii) for each fixed (x,y) (E K x C, (Vx<p(x, y), t(u, x)) is convex in u G X(x),

(iii) F is convex valued, continuous and uniformly compact on K,

(iv) <p(x, y) is invex with respect to r on K for each fixed y & C, and concave in y £ C for each 
fixed x G K,

(v) there exists a vector xq G C\x^k X{x) such that

lim||xj|—.oo, x€X(t) maxyeF(r) (Vx<p(x,y),T(x0,x)) < 0,

(vi) there exists a po > 0 such that X{x)f\Bp is a nonempty convex valued continuous point-to-set 
mapping for all p > po.

Then there exists a solution to the (GSPP).

Proof. For each x G K, let

G{x) — {y G F{x) : (p(x,y) = supu€F(x)^(a;, r()}-

It is easy to see that G{x) is upper continuous and uniformly compact. Since (f{x,y) is concave in 
y G C, by (ii) G{x) is compact and convex for all x G K. All the conditions of Theorem 3.2.1 are 
satisfied. Therefore, there exists a solution to (19) by Theorem 3.2.1, Hence there exists a solution 
to (GSPP) by Lemma 5.2.5. □

The following corollary is immediate.

Corollary 5.2.7 Under the conditions of Theorem 5.2.6, there exists a solution to (GPI) and 
(GPU). □

Remarks.

(i) It is worth noting that the Generalized Saddle Point Problem can not be approached by any 
other variational inequality problem that has been introduced.
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(ii) The other existence results in Section 3.2 can also be employed to ensure the existence of 
solutions of (GSPP) and (GPI) and (GPU).

(iii) Recently, Jeyakumar [24] has extended the saddle point theorems to hold for a more general 
class of functions, called the p-invex functions which is an extension of the class of invex 
functions.

5.3. Equilibrium Problems Involving Markets with Utility

In this section, we shall apply Theorem 3.1.2 to obtain an existence result for equilibrium of a 
market with utility. Let us first introduce the notion of a market with utility.

Let I — {1,..., m) and for each i G 1, let Xi C Rn be a closed set that is bounded from below. 
Let a,i be a specified element of Xi. We call 1 the set of agents, Xi the commodity set of ith agent 
and ai the initial allocation of the ith agent. For each i, there is a continuous function Ui from Xi 
into R which is the utility function of the fth agent. Let X = (Xi)i^i, U = (u,-);gj, A = (at),g/. 
Then the 4-tuple (I, X, U, A) is said to be a market with utility. Let

m m
V = {x ■. x = (xi)iei,xi G Xi,V i,J2 a*}

i=l

be the allocation set and
-Bp = (x; G Xi : (p, xi) < {p, «{)}

be the budget set for the fth agent where p € Pn = {p £ R4. : J2j-i Pj — 1), the price set. A 
point (p*, x*) £ Pn x V is said to be an equilibrium for a market with utility (I, X, U, A) if, for 
i = 1,... ,m

Ui(x*) - max{ui(a;t) : Xi G 5*.}.

Intuitively, an equilibrium is characterized by the property that given a price vector, there is a 
reallocation of goods, such that every agent maximizes his utility function within the limit of his 
budget. We have the following existence result for the equilibrium of a market with utility.

Theorem 5.3.1 Let (I, X, U, A) be a market with utility. Suppose that

(i) Xi is convex and there exists Xi G Xi with ii < ai, for all i,

(ii) ui(xi) quasiconcave in x ■= (x;);g/ G (Rn)m.

Then there exists an equilibrium to the market with utility (I,X, U, A).

Proof. Let Y be a point-to-set mapping from Pn x V into itself be defined as Y(p, x) = {p} x 
YYiL\ Pp- Let F be a constant point-to-set mapping from Pn x V into itself. Clearly, Y is nonempty 
convex valued and upper continuous. Furthermore, by Lemma 1.6 of [39, Chapter 5], Bl : Pn —► Xi 
is lower continuous for each i under the condition (i). Therefore Y is continuous. Next, let 9 and r 
single-valued functions from {Pn x F) x {Pn x V) into Rm be defined as 9((p, x), (q, y)) = e, where
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e is the unity vector in Rm and r((p,x),(q,y)) = (ui(y,) — ts;(£i));e/. Then all the conditions of 
Theorem 3.1.2 are satisfied. Thus by Theorem 3.1.2, there exists (p*,x*) £ Y{p*, x*) such that

m m

EM*?) - <*(*)) > 0, V (Xi) 6 n Bv- ■
i=l i-l

It is easy to see that (p*,x*) is an equilibrium for the market with utility (I, X, U, A). □

Remark. In Theorem 1.11 of [39, Chapter 5], it is assumed that u; is monotone and concave 
for each i. Therefore it can be seen that the condition (ii) of Theorem 5.3.1 is weaker than that in 
Theorem 1.11 of [39, Chapter 5].

5.4. Equilibrium Problems Involving Abstract Economies

The notion of abstract economies, which is a generalization of Nash equilibrium problems, was 
introduced by Debreu [11]. In a Nash equilibrium problem the strategy choices of agents are made 
independently, whereas, in an abstract economy, the set of strategies available to each agent depends 
on strategy choices of the other agents. To be more precise, we recall the definition of an equilibrium 
of an abstract economy. Suppose there are m agents characterized by a subscript i = 1,..., m. 
The ith agent chooses an action Xi from his strategy set Vi C Rn*. Let V = Flti Q Rn with 
n = YaLi ni- The payoff to the ith agent is a function fi(x) from V into the completed real line.

Let X{ be the (m — l)-tuple (aq,..,, , Zi+i,xm) and similarly let Vi be the product
Vi x •••x Vi-i x V+i x ••• x Kn. We can interpret x, the actions of all the others. Given xi, 
the choice of the fth agent is restricted to a nonempty set Ai(xi) C Vi. The ith agent chooses 
Xi £ Ai(xi) so as to maximize fi(xi,Xi). The 3m-tuple [Vi, fi, Ai(xi)]^Ll is said to be an abstract 
economy. The point x* is said to be an equilibrium of an abstract economy [Vi,/j-,.A2-(x,-)]'T1, if for 
all f = 1,..., m,

x* £ Ai(x*) and fi(x*) = max^g^,.^*) fi(x*,Xi).

Thus an equilibrium point is characterized by the property that given the actions of the other 
agents, each agent is maximizing his own payoff function over the set of his feasible actions in view 
of the other agents’ actions.

We now associate with the equilibrium problem of an abstract economy the following generalized 
quasi-variational inequality problem: Find x* £ X(x*) such that

(e,T(x,y))>Q,V x£X(x*) (20)

where X(x) - Ai(xi) for all x £V, r(x,y) = (fi(y) - /8(yi, a:*))fci and e is the unity vector 
in Rm.

It is easy to see that x* is an equilibrium of an abstract economy [Vi, fi, Aifa)]^ if and only 
if x* is a solution to (20). We then have the following existence result for the equilibrium of an 
abstract economy.

Theorem 5.4.1 Given an abstract economy [Vi, fi, Ai(xi)]iL1 which satisfies the following condi­
tions: for each i = 1,...,m (i)

(i) V is nonempty compact and convex,
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(ii) Ai(x;) is a convex-valued continuous point-to-set mapping on Vi,

(iii) fi is continuous,

(iv) for each x € V, (e,r(u,x)) is quasiconvex in u <= X(x) where r and X are as in (20).

Then there exists an equilibrium point for [Vi, fi, Ai(xi)]iL1.

Proof. Let C = K = V and F a constant point-to-set mapping on K. Let 9, T\ : K x K —> Rn 
be defined as 6{x,y) = (e, 0) and t\{x, y) = (r(x, y), 0) respectively, where n = YaLi ni and 0 is 
understood to be a zero vector in Rn-m. Then the equilibrium problem involving the abstract 
economy [Vi, fi, Ai(xi)]fL1 is equivalent to GQVIP(X, F, 6, t\ , V, V). By Theorem 3.1.2, the latter 
problem has a solution. Hence the result follows. □

Remarks.

(i) Condition (ii) of Theorem 5.4.1 is equivalent to the condition that the function YILi ui) 
is quasiconcave in u G X(x).

(ii) Our definition of an abstract economy is slightly different from the one in [5] where fi is 
defined on V x Vi. Also in [5], Chan and Pang did not use the approach of variational 
inequality problem to obtain the result of Theorem 5.4.1.

For the case that Vi is not necessarily compact, we have the following existence result.

Theorem 5.4.2 Given an abstract economy [Vi, fi, A^zij-)]^ which satisfies the following condi­
tions: for each i — 1,..., m

(i) fi is continuous,

(ii) for each x € V, (e, r(u, x)) is convex in u £ X(x) where r and X are as in (38),

(iii) there exists a vector x° £ X(x) such that

m
lim||a;||—kx>, x£X(a;) 1 fi (^i t a'« ) -> 0)

t'=l

(iv) there exists a po > 0 such that X(x)nBp is a nonempty convex valued continuous point-to-set 
mapping for all p > po-

Then there exists an equilibrium point.

Proof. This follows from Theorem 3.2.1 and the note after (20). □

For more details on abstract economy, we refer interested readers to Debreu [11].
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5.5. Generalized Nash Equilibrium Problems

The concept of Nash equilibrium (Nash [34]) was extended by Ichiishi [23] to include additional 
joint constraints on agents’ actions which cut across all agents simultaneously. The formal definition 
of generalized Nash equilibrium is as follows.

Suppose there are m agents in a noncooperative game characterized by a subscript i = 1,..., m. 
The ith agent is represented by a strategy vector X{ £ Vi C Rn* (m being a positive integer), a 
point-to-set mapping Xi : V —► Vi, and a utility function u,- : V —► R where V = HELi Vi Q Rn 
with n = YllLi ni,X = Xi, and U = (ui,..., um). A generalized Nash equilibrium z* £ F of 
the game GNE(V, X, U) is defined as a point at which no agent can unilaterally increase his utility 
function given the constraints imposed on him by the other agents:

Ui(x*)>Ui(xi,Xi), v Zi £ Xi(x*)

where z,- is the (m — l)-tuple (zi,..., z;_i, Zi+i,..., xm).
We note that if Xi(x) = Vi for all i and z, then the above definition of generalized Nash 

equilibrium reduces to the definition of Nash equilibrium. Let e £ Rm be the unity vector and 
r :V xV —► Rm be defined as r(z, y) = (u,(y) — yi))^!. We associate with the generalized
Nash equilibrium problem the following generalized quasi- variation al inequality problem: Find 
x* £ X(x*) such that

(e> t(x, y)) > 0, V z £ X(x*). (21)

It is easy to see that x* is a generalized Nash equilibirum of the game GNE{V, X, U) if and only 
if x* is a solution of (21). We then have the following existence result for the generalized Nash 
equilibrium problem. The proof is exactly the same as that in Theorem 5.4.1.

Theorem 5.5.1 Given a generalized m-person noncooperative game (V, X, U) which satisfies the 
following conditions: for each i — 1,..., m

(i) Vi is nonempty compact and convex,

(ii) Xi(x) is a convex valued continuous point-to-set mapping on V,

(iii) Ui is continuous,

(iv) for each x £ V, (e,r(ii,z)) is quasiconvex in u £ X(x) where r is as in (21).

Then there exists a generalized Nash equilibrium for (V,X, U). □

For the case that Vi is not necessarily compact, we have the following existence result. The 
proof is the same as that in Theorem 5.4.2.

Theorem 5.5.2 Given a generalized m-person noncooperative game (V,X,U) which satisfies the 
following conditions: for each i = 1,..., m

(i) Ui is continuous,

(ii) for each x £ V, (e, r(u, z)) ts convex in u £ X(x) where r and X are as in (21),
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(iii) there exists a vector x° 6 f)xev X(x) such that

m
limjN1__+00i xeX{x) (^(ui(x) - ®0)) < 0,

t'=i

(iv) there exists a po > 0 such that X(x)r\Bp is a nonempty convex-valued continuous point-to-set 
mapping for all p> po-

Then there exists a generalized Nash equilibrium for the game {V,X,U).

Remark. There is no differentiability requirement on the utility function iq for all i in Theorem 
5.5.1 and 5.5.2. The reason is that we deal with each agent’s utility maximizing problem directly 
without using the first-order optimality conditions.

We refer interested readers to a survey paper by Harker and Pang [19] where there is a thorough 
discussion on the Nash equilibrium and generalized Nash equilibrium problems.

5.6. Quasi-Variational Inequality Problems of Obstacle Type

In this section we shall be concerned with the quasi-variational inequality problems of obstacle 
type formulated as follows. Let K be a closed convex cone in Rn and <x the partial order induced 
by K, that is, x <k y if and only ii x — y £ K for all x,y £ Rn. Let /, m be functions from Rn 
into itself. The quasi-variational inequality problem of obstacle type is to find x* 6 Rn such that

x* <k m(x*), {f(x), x — x*) > 0, V x <k m(x*). (22)

It is interesting to note that if K = R^ and m(x) = 0 for all x £ Rn, then problem (22) 
is equivalent to a nonlinear complementarity problem. We now associate with problem (22) the 
following generalized implicit complementarity problem. Let X be a point-to-set mapping from R" 
into itself defined as X(x) = m(x) + K for all x £ Rn. Find x* £ m(x*) + K such that

/(x*) £ /r,{/(x*),x* - m(x*)) = 0. (23)

It is easy to see that problem (22) is equivalent to problem (23) by Lemma 4.1. We have the 
following existence result for problem (22).

Theorem 5.6.1 Let K be a closed solid convex cone in Rn. Let f and m be continuous functions 
from Rn into itself and X(x) = m(x) -f K be a point-to-set mapping from R” into itself. Suppose 
that

(i) there exists a vector xq £ PUelt” ^(x) suc^ ^(it

lim||x||—.oo, x£X(x) (/(•*')) *o x) < 0,

(ii) there exists a vector uq £ Rn such that «o — m(x) £ X,V x £ Rn.
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Then there exists a solution to problem (22).

Proof. This result follows from Theorem 3.12 and the note above. □

We note that the condition (i) of Theorem 5.6.1 can be replaced by the condition that f is 
strongly copositive or strongly monotone on Iin. For the quasi-variational inequality problems of 
obstacle type in a reflexive Banach lattice, we refer readers to the paper by Dolcetta and Matzeu 
[13] and the references therein.

There are other areas of applications of the theory of complementarity problems, for exam­
ple, problems involving fluid flow through porous media (Cottle [7]), journal bearing lubrication 
problems (Cottle [7], Crank [9]), elastic-plastic torsion problems and maximizing oil production 
problems ( Bershchanskii and Meerov [4]). We note that solutions for the above problems obtained 
by the approach of the theory of complementarity problem are in fact approximate solutions using 
finite difference method.
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