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Generalized Quasi-Variational Inequality

and Implicit Complementarity Problems

by
Jen-Chih Yao

Abstract

A new problem called the generalized quasi-variational inequality problem is introduced.
This new formulation extends all kinds of variational inequality problem formulations
that have been introduced and enlarges the class of problems that can be approached
by the variational inequality problem formulation. Existence results without convexity
assumptions are established and topological properties of the solution set are investi-
gated. A new problem called the generalized implicit complementarity problem is also
introduced which generalizes all the complementarity problem formulations that have
been introduced. Applications of generalized quasi-variational inequality and implicit
complementarity problems are given.
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Generalized Quasi-Variational Inequality
and Implicit Complementarity Problems

by Jen-Chih Yao

1. Introduction

The importance of the theory as well as the applications of the variational inequality and the
complementarity problem has been well documented in the literature. In recent years, various
extensions of these two problems have been proposed and analyzed. The most general extension
combining the variational inequality and complementarity problems is the one by Chan and Pang [5].
They introduced the quasi-variational inequality and implicit complementarity problems inspired
by the work of Mosco [33] who considered the dependence of the function domain on the variable
and the work of Fang and Peterson [16] who extended the single-valued function under consideration
to a point-to-set mapping.

Although the extensions mentioned above are general, they did not include the possible inter-
action between the function value and the variable. In this respect, Parida and Sen [37] perhaps
were the first ones to extend the variational inequality problem to the generalized variational-like
inequality problem for multifunctions taking this possible interaction into consideration.

The aim of this report is to introduce a further extension of the classical variational inequality
and complementarity problems from a theoretical standpoint. Our generalized problems which will
again be called the generalized quasi-variational inequality and generalized implicit complementar-
ity problems respectively include those problems introduced by Chan and Pang [5], Parida and Sen
[37], Fang and Peterson [16], Saigal [41], and Karamardian [25] as special cases. [t will also be seen
that our generalized problems have a broader range of applications.

In Section 2 we review some definitions of continuity of point-to-set mappings. We also review
some concepts on convex sets and convex functions. In particular, we note the fact that any compact
convex subset of R™ is an acyclic absolute neighborhood retract. We cite a fixed point theorem due
to Eilenberg and Montgomery [15] which plays an important role in establishing existence results
for generalized quasi-variational inequality problems. Finally we give some notations that will be
used throughout this report.

In Section 3 we first give a short introduction on variational inequality problems. Then in
Section 3.1 we introduce the formulation of the generalized quasi-variational inequality problem
which 1s a unification of all types of variational inequality problems in finite-dimensional spaces
that have previously been introduced and we obtain some general existence results for this general
problems. In Section 3.2 we introduce the general concepts of copositivity and monotonicity of
a point-to-set mapping with respect to another point-to-set mapping, and obtain some existence
results for this general problem under the assumption of coercivity, copositivity or monotonicity of



the point-to-set mappings. Finally, in Section 3.3, we investigate several properties of the solution
set of the GQVIP.

In Section 4 we introduce the formulation of the generalized implicit complementarity problem
and establish a relationship between the generalized quasi-variational inequality and the generalized
implicit complementarity problems. As a by-product of the results in Section 3, we obtain some
existence results for this general problem.

In Section 5 we consider some possible applications of the generalized quasi-variational inequal-
ity and implicit complementarity problems. The major areas of our applications are mathematical
nrogramming and equilibrium programming. The applications are: minimization problems involv-
ing “invex” functions, generalized dual problems and saddle point problems, equilibrium problems
involving markets with utility, equilibrium problems involving abstract economies, generalized Nash
equilibrium problems and quasi-variational inequality problems of obstacle type. In all these appli-
cations, we require relatively weak conditions to ensure the existence of solutions to the problems
under consideration.

2. Notations and Preliminaries

In this report, R™ denotes the n-dimensional Euclidean space with the usual inner product
(z,y) of z,y € R™ and norm [|z]| of ¢ € R™. The nonnegative orthant R} is the subset of R"
consisting of all vectors with nonnegative components. The set of positive integers will be denoted
by N. For K C R”, int(X) and K° denote the interior and complement of K, respectively. For
K,B C R, intg(B) and Jx(B) denote the relative interior and relative boundary of B in X,
respectively. For any z,y € R", @ > (>) y if and only if z; > (>) y; for all components of ¢ and
y. The field of complex numbers is denoted by C. Upper case letters (e.g., F) denote point-to-set
maps and lower case letters (e.g., f) denote single-valued functions.

There are four definitions of continuity for point-to-set maps that have been introduced in the
literature. We list two of them that are related to our discussion in this report. Let X and Y be
Hausdorff spaces and F' a point-to-set map from X into Y.

Definition 2.1 (Berge [3]) The map F is said to be upper semicontinuous (u.s.c.) at x € X if and
only if for any open neighborhood O of F(z), there is a neighborhood V of & such that F(u) C O
for each ue V.

Definition 2.2 (Hogan [22]) The map F is said to be upper continuous (closed) at x € X ¢f and
only if a sequence {x,} converging to z, and a sequence {yn} with y, € F(z,) converging to y,
implies y € F(z).

The relations of the above two definitions can be seen from the following two lemmas.

Lemma 2.3 (Delahaye and Denel [12]) Suppose F(x) is closed. If F' is upper semicontinuous at
z, then F' if upper continuous af x. O

A topological space is said to be first countable if it has a countable base.



Lemma 2.4 (Delahaye and Denel [12]) Suppose Y is first countable and there exists ¢ countable
neighborhood base at x € X. Also suppose the closure of Y \ F(z) is compact. If F' is upper
conlinuous at &, then F' s upper semicontinuous af . O

Definition 2.5 (Hogan [22]) The map F is said to be lower continuous (open) at ¢ € X if and
only if for any sequence {x,} converging to ¢ € X and y € F(x), there exists an ng such that the
sequence {y,} converging to y € Y and y, € F(zn) for all n > nyp.

It is clear that if ' is upper continuous at z, then F'(x) is closed. Indeed, suppose y, € F(z)
and y, — y. By considering the constant sequence z,, = z, it follows immediately that y € F(z).
Hence F'(z) is closed. F is said to be upper (lower) continuous if F' is upper (lower) continuous at
every point x € X and F is continuous if it is both upper and lower continuous. The map F is said
to be uniformly compact near x if there exists a neighborhood of z, V such that F(V) = U,y F(u)
is bounded. We say F' is uniformly compact on X if it is uniformly compact near z for all z € X.
The following lemma is a direct consequence of Lemma 2.4 and a result due to Berge {3 , Theorem

3, p.110].

Lemma 2.6 Suppose X CR™® andY CR™. Let F: X — Y be an upper conlinuous point-to-sel
map such that F is uniformly compact on X. If D is compact, then F(D) = U,ep F(z) is also
compact. U

Remark. If the condition of uniform compactness in Lemma 2.6 is replaced by the condition that
F is compact valued, then the result of Lemma 2.6 may fail to hold. To see this, consider the
following example. Let X = [0,1]. Let F' be a point-to-set mapping from X into R defined by

{0} ife=20
{0
{1/} f0<z<1

Then F' is upper continuous and F(z) is compact for all z € X. Clearly X is compact whereas
F(X) is unbounded. Note that F is not u.s.c., and if F is considered as a single-valued function,
then it is also not continuous.

A topological pair (X, A) consists of a topological space X and a subspace A C X. A map
J 1 (X, A) — (Y, B) between topological pairs is a continuous function from X to Y such that
f(A) € B. Given a topological pair (X, A), we let (X, A) x I denote the pair (X x I,A x I)
where I = [0,1]. Let X’ C X and suppose that fg, fi : (X, A) — (Y, B) agree on X’ (that is,
JfolX' = f1|X'). Then fo is homotopic to fi relative to X', denoted by fo ~ fi rel X', if there
exists a map g : (X, A) x I — (Y, B) such that g(z,0) = fo(z) and g(z,1) = fi(z),V ¢ € X and
g(z,t) = fo(2),V (z,t) € X' x I. If X' = §, we omit the phrase “relative to §#”. The following
examples are from Spanier [42, p.23, 24].

Example 2.7 Let X =Y =E’={2€C: |z/|<1}andlet A=B=S'={z€C: |z|=1}.

Define fy : (E?,S') — (E2,S!) to be the identity map and f; : (E?,S!) — (E?,S') to be

reflection in the origin. Then g : fo =~ fi rel 0 through the homotopy ¢ defined by g(re® t) =
i(0+1x)

re .



Example 2.8 Let X be an arbitrary space and let Y be a convex subset of R™. Let f5,f1 : X — Y
be maps which agree on some X’ C X. Then fo =~ f; rel X', because the map g : X x I — Y
defined by

glz,t)y =tfi(z) + (1 =) fo(x)

is a homotopy relative to X’ from fo to fi.

A topological space X is said to be contractible if the identity map of X is homotopic to some
constant map of X to itself. A homotopy from 1x (the identity map of X') to the constant map of
X to zp € X is called a contraction of X to zg. Example 2.8 shows that any convex subset of R"
is contractible. Any set that is starshaped at some point zg is also contractible. If A and B are
contractible, then both A x B and AN B are contractible (see e.g. Spanier [42, Corollary 8, p.25]).
The idea of a contractible space is that it can be deformed continuously into a one-point space. To
see that the class of contractible sets in R™ contains nonconvex sets, consider the following example
(Spanier {42, p.26]). Let

Y:{(x,y)ER?: 0<y<l, z=0,1/n; y=0,0<2 <1, neN}.

Let ¢ : Y x I — Y be defined by g((z,y),t) = (z,(1 — t)y). Then g is a homotopy from ly
to the projection of Y to the z-axis. Since the latter map is homotopic to a constant map, Y is
contractible, whereas Y is not convex.

A subset A of X is called a retract of X if the inclusion map ¢ : A — X has a left inverse
i the category of topological spaces and continuous maps. Hence A is a retract of X if and only
if there is a continuous map r : X — A such that r(z) = ¢,V 2 € A. Such a map 7 is called a
retraction of X to A. A space Y is said to be an absolute retract (or absolute neighborhood retract)
if , given a normal space X, closed subset A C X and a continuous map f: A — Y, then f can
be extended over X (or f can be extended to some neighborhood of A in X). The following lemma
will be useful.

Lemma 2.9 The product of arbitrarily many absolute retracts (or finitely many absolute neigh-
borhood retracts) is itself an absolute retract (or absolute neighborhood retract).

Proof. (i) Let A be index set and let Y, be an absolute retract for each o € A. The Cartesian
product of the sets Y, is the set

HYaz{x:A—é U Xo: w(a) € Xo,V a € A}
a€A aEA

We write z, instead of z(a). Let m, be the projection map of [T, ¢4 Yo on Y,. It is well known
that f : Y — [],ca Yo is continuous if and only if 7 o f is continuous for each o € A (see e.g.
Willard [43, Theorem 8.8]). Now given a normal space X , closed subset B C X, and a continuous
map f: B — [],ea Ya, the composite map 7, o f : B — Y, is continuous for each o € A. Since
Y, is an absolute retract, there is a continuous map fy : X — Y, such that f4|B = 7, 0 f, for
all « € A. Now define g : X — [Ioea Ya by (9(2))a = fa(2),Va € A. Since mq 09 = my 0 f is
continuous for all o € A, g is continuous. Also (9|B)a = fo|B = ma 0 f,¥V o € A. Hence g|B = f.
Therefore [],ca Yo is an absolute retract.

(ii) Let ¥1,...,Y, be absolute neighborhood retracts. Suppose we are given a normal space X,
closed subset B C X, and a continuous map f : B — [[;_; Yx. Then mz o f : B — Y} defined

4



by (m o f)() = fi(x) (f(z) = (fi(z),..., fnu(x))) is continuous for k = 1,...,n. Since Y} is an
absolute neighborhood retract for each k, there exists a neighborhood Ay of B and a continuous
map g : Ay — Yi such that gx|B = mp o f. Let C = ((i=1 Ak and g : C — []F-; Y3 defined
by ¢(x) = (q1(%), ..., 9n(2)). Then C is a neighborhood of B, and g is continuous. It is clear that
g|B = f. Therefore [];_, Y% is an absolute neighborhood retract. O

Corollary 2.10 For all positive integers n, R™ is an absolute refract.

Proof. That fact that R is an absolute retract follows from Tietze’s Extension Theorem (see e.g.
Willard [43, 15.8]). The result then follows directly from Lemma 2.9. O

Lemma 2.11 A retract of an absolute retract (absolute neighborhood retract) is an absolute retract
(absolute neighborhood retract).

Proof. Let Y be an absolute retract and B C Y be a retract. Suppose that we are given a normal
space X , a closed subset A of X, and a continuous map f: A — B. Let 1 : B — Y be the
inclusion map. Since B is a retract of Y, there exists a continuous function r : Y — B such that
roi=1p. Thenrotof: A — Y is continuous. Since Y is an absolute retract, there exists
a continuous map ¢ : X — Y such that g|A = roio f. Thenrog: X — B is continuous
and clearly (rog)|A = f. Hence B is an absolute retract. For the case where Y is an absolute
neighborhood retract, the proof is the similar. O

Lemma 2.12 Any closed convex subset of R™ is a retract.

Proof. Let S be a closed convex subset of R®. Define p: R® — S by p(z) = y where |jz — y|| =

minyes||z — u|[. Then p is a contraction (see, e.g., [38, p.340]). Consequently, S is a retract of R™,
O

A compact metric space X is said to be acyclic if (1) X # @, (2) the homology group H,(X)
vanishes for all n > 0, and (3) the reduced 0-th homology group Ho(X) vanishes. It is true that any
compact contractible space is acyclic but not conversely (see e.g. Spanier [42, p.163]). By Lemmas
2.11, 2.12 and Corollary 2.10 and, we have the following corollary. Note that it is clear that any
absolute retract is also an absolute neighborhood retract.

Corollary 2.13 Any nonemply compact conver subset of R™ is an acyclic absolute retract and
hence an acyclic absolute neighborhood retract. O

The following theorem by Eilenberg and Montgomery turns out to be very useful in our discus-
sion.

Theorem 2.14 (Eilenberg and Montgomery [15, Theorem 2]) Let M be an acyclic absolute neigh-
borhood retract, N a compact metric space, r : N — M a coniinuous single-valued mapping and
T:M — M a multi-valued upper conlinuous mapping such that the sets T(z) are acyclic for all
z € M. Then the combined (multi-valued) mapping roT : M — M has a fized point. O



If we take N = M and r(z) = 2,V ¢ € M, then we have the following theorem.

Theorem 2.15 Let M be an acyclic absolute neighborhood retract and T : M — M & mulii-
valued upper continuous mapping such that all the sets T(x) are acyclic for allz € M. Then T has
a fixed point. O

It is worth noting that Theorem 2.15 implies Kakutani’s Fixed Point Theorem, since every
nonempty compact convex subset is an acyclic absolute neighborhood retract by Corollary 2.13.

Let f: S5 — R, where S is a nonempty convex subset in R". The function f is said to be
quasiconvez if , for any =,y € S, the following inequality is true:

f()-x + (1 - )‘)y) < max{f(x),f(y)},v A€ [01 l]'

Clearly every convex function is also quasiconvex but not conversely.

Lemma 2.16 Let S be a nonempty conver set in R™ and f : § — R be quasiconver. Let
A={z €S f(z) = minges f(u)}. If A is nonempty, then A is convez.

Proof. Let z,y € A. We then have

max{f(z), f(y)} < f(u),Yu €S

Since [ is quasiconvex, for any A,0 < A <1 we have

fz+ (1= A)y) <max{f(z), f(y)} < f(u),YueS.
Sodx+(1-Xye A V0<A<1. Hence A is convex. O

For a nonempty subset K C R", the convez hull of K, denoted by Co(X), is a convex set
spanned by K. That is,

Co(K) = { Z)\ixi >0, 2 e K,V i,ZAi =1}.

i=1 =1

A nonempty subset K of R" is a cone if Az € K,V 2z € K,A > 0. A cone K is pointed if
KnN(—K) = {0}. Let K be a closed convex cone in R"®. Then K* = {y e R" : (y,z) > 0,V z € K}
is called the polar cone of K. It is easy to see that if int(K) # 0, then K* is also a solid cone. A
set K C R" is said to be solid if it has a nonempty interior with respect to some topology in R”.

Let K be a convex set in R™ and f : K —> [—00,+00] be a convex function. A vector z* is
said to be a subgradient (see, e.g. Rockafaller [38]) of f at a point z if

f(2)> fle)+ (=", z2—2),Vz€ K.

The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by 0f(z).
When f(z) = §(z|K), that is, f is the indicator function of K, then z* € 06(z|K) if and only if
z € K and (2*,2 —z) <0 for all z € K. Thus 86(z|K) is the normal cone to K at z (empty if
z ¢ K).



3. The Generalized Quasi-Variational Inequality Problem

We begin this section by giving a short introduction on variational inequality problems. Given
a subset K of R" and a function f from R” into itself, the variational inequality problem, denoted
by VIP(f,K) is to find a vector Z € K such that

(z—2z,f(&8)) >0,Vz K.

This original problem has been extensively studied in the past years. For example, see Eaves [14],
Moré [30], and Pang [36]. Basically, the task of the above problem is to find a vector £ € K such
that the image of # under the function f will form an angle less than or equal to 90° with any
vector with taill # and head z € K.

The variational inequality problem is found to be important in many applications. For instance,
let K be a closed convex subset of R™ and let f be differentiable on a neighborhood of K. It is
well known that f is convex on C if and only if

f@)> fy) +(VIiy),z -y

for all ¢ and y in K, where Vf is the gradient of f. If y solves VIP(V f, K), then from the above
gradient inequalily, we see that y solves the following mathematical programming problem

mingex f(z).

Therefore, the variational inequality problem encompasses the minimization problem.

The theory of variational inequalities was initially proposed for the study of partial differential
equations (see, e.g., Hartman and Stampacchia [20]). Much of this early work concentrated on
the study of free boundary value problems, which were usually formulated as variational inequality
problems over infinite dimentional spaces.

Given aset K in R™ and a point-to-set mapping F' from R™ into itself, the generalized variational
inequality problem introduced by Fang and Peterson [16], denoted by GVIP(F, K) is to find a vector
Z € K and a vector y € F(Z) such that

(z—-2,9) >0,Vz e K.

We note that the GVIP(F, K) is a different generalization of the VIP(f, K).

Inspired by the work of Mosco [33] and the work of Fang and Peterson [16], Chan and Pang
[6] considered the following generalized variational inequality problem. Given two point-to-set
mappings X and F from R” into itself, the generalized quasi-vartational inequality problem, denoted

by GQVIP(X,F) is to find a vector Z and a vector § € F(z) such that
(x—2,0) >0,VzeX(x)

Recently Parida and Sen [37] introduced the following generalized variational-like inequality
problem for point to set mapping. Let K and C be subsets of R® and R™ respectively. Given
twomaps  : K x C — R" and 7 : K x K — R”, and a point-to-set mapping F : X — C,
the generalized variational-like inequality problem, denoted by GVIP(F,8,7,K,C) is to find z €
K,y € F(&) such that

(0(z,9),7(2,2)) > 0,Vz € K.



Using this problem formulation, Parida and Sen [37] were able to establish some existence results
for dual problems and saddle point problems. We note that such progress can not be made by
using other problem formulations directly.

3.1. Problem Formulation and Some Existence Theorems

Inspired by the work that has been done in the area of variational inequality problems, it is nat-
ural for us to consider the following generalized quasi-variational inequality problem which extends
all the above variational inequality, generalized variational inequality, quasi-variational inequality,
generalized quasi-variational inequality, and generalized variational-like inequality problems. Given
K and C subsets of R™ and R™ respectively, X a point-to-set mapping from A into itself and F'
a point-to-set mapping from K into C, 8 a single-valued function from X x C into R™ and 7 a
single-valued function from K x K into R", the generalized quasi-variational inequality problem,

denoted by GQVIP(X,F,0,7,K,C) is to find £ € X(z),y € F(&) such that
(0(2,9),7(x,2)) > 0,V z € X(z).

If 7(z,y) = # — y, then GQVIP(X,F,8,7,K,C) reduces to the problem of finding z € X(%),7 €
F(&) such that
0(z,9),c —x) >0,V z € X(2),

which we denote by GQVIP(X,F,8,K,C).

We note that GQVIP(X,F,0,7,K,C) reduces to GVIP(F,0,7,K,C) if X(z) = K for all
¢ € K. The GQVIP(X,F,0,7,K,C) reduces to QVIP(X ,F) if we set K = C = R",0(z,y) =
v, 7(z,y) =z —y. By letting K = C = R",8(z,y) = y,7(x,y) = * — y and F a single-valued func-
tion, the GQVIP(X, F, 8,7, K,C) reduces to QVIP(X, f). Finally, if we set X(2) = K for all z €
K,0(z,y) = y and 7(z,y) = ¢ —y, and F a single-valued function f, then GQVIP(X, F,0,7,K,C)
reduces to VIP(f, K). Therefore, it can be seen that our formulation of the generalized quasi-
variational inequality problem extends all kinds of variational inequality problem formulations.

The following is important in establishing existence results for GQVIP(X,F,8,r, K, C).

Theorem 3.1.1 Let K C R"™ be a compact contractible absolule neighborhood retract and C C R™
be a closed contractible absolute neighborhood retract. Let X be a nonempiy-valued continuous
poini-to-set mapping from K into tiself and F' a contractible-valued upper continuous and uniformly
compact poini-to-set mapping from K into C. Let ¢ be a continuous single-valued function from
K x C x K into R. suppose that

(i) there exists a compact contractible absolute neighborhood retract H such that F(K) C H C C,
(i) ¢(z,y,2) >0,V 2z € K,
(ii1) for each fized (z,y) € K x C, the set
Vizg,y) ={u e X(2): ¢(z,y,u) = min,ex () (2, ¥, 5)}

1s contractible.



Then there exist & € X (%),y € F (&) such that

o(z,y,2) >0,V z € X(2).

Proof. It follows from Lemma 2.9 and Corollary 2.13 that K x H is an acyclic absolute neighbor-
hood retract. Now let G be a point-to-set mapping from K x H into itself defined by

G(z,y) = (V(z,y), F(2)).

Then G(z,y) is contractible for all (z,y) € K x H. We claim that G is upper continuous. Suppose
(zn,Yn) converges to (z,y) and (v,, w,) € G(zn,yn) converges to (v, w). Then for each n,

@(Zn,Yn,8) > (&0, Yn, va), ¥ § € X (2). (1)

For each z in X (&), since X is continuous, there exist ng such that z, converges to z with z, €
X(zn),V n > ng. From (1), we have

P(Zn,Un,2n) > @(Tn,Yn,vn), ¥V n > no.

By passing to the limit, we then have

oz, y,2) > o(x,y,v).

Also it is clear that v € X (z) and w € F(z). Therefore (v, w) € G(z, y) and consequently G is upper
continuous. Therefore by Theorem 2.14, there exists (#,y) € G(Z,y). Hence 2 € X(2),7 € F(z)
and

#(2,5,2) > ¢(5,5,8) > 0,V 2 € X(&). O

Remarks.

(i) If C is compact, then the condition that F' is uniformly compact is unnecessary. Because in
this case, H C C is clearly compact.

(i) If C is compact, then condition (i) of Theorem 3.1.1 is unnecessary. Because in this case, we
merely let H = C in the above proof and proceed with the same argument.

(iii) If the set Co(F(K))NC is a retract of C, then we can let H = Co(F(K))NC. Since K is
compact and F' is upper continuous and uniformly compact, H is compact and contractible
by Lemma 2.6. Also by Lemma 2.11, H is an absolute neighborhood retract.

(iv) If C is convex, then condition (i) of Theorem 3.1.1 holds automatically. Because in this case,
the projection PCO(F(K))(') establishes that Co(F(K)) is a retract of C.

(v) If F is not uniformly compact, then the conclusion of Theorem 3.1.1 may fail to hold. For
example, let K =1,2],C = R, Let X be the constant point-to-set mapping K and let F be

defined as . . " .
F(x):{ {/(z-1)} ifl<e<
{-1} fz=1



Finally, let ¢(z,y,¢) = {y,u — z). Then all conditions in Theorem 3.1.1 except that F is
uniformly compact are satisfied. But it is easy to see that there is no € K such that

oz, F(z),z) >0, Vz € K.

We now have the first existence result for the GQVIP(X, F,8,7, K, C).

Theorem 3.1.2 Let K C R™ be a compact contractible absolute neighborhood retract and let C C
R™ be a closed contractible absolute neighborhood retract. Let X be a nonempty-valued continuous
point-to-set mapping from K into itself and F' a contractible-valued upper continuous and uniformly
compact point-to-set mapping from K into C. Let 0 : K xC — R" and 7 : K x K — R"™ be
continuous single-valued functions. Suppose that

(i) there exists a compact contractible absolute neighborhood retract H such that F(K) C H C C,
(i) (6(=z,y),7(x,2)) >0,V (z,y) € K x C,
(iil) for each fized (z,y) € K x C, the set
Vie,y) = {u€ X(z): (0(z,y), 7(u, 2)) = minsex () (0(2,9), 7(s,2))}
s conlractible.

Then there exists a solution to the GRQVIP(X, F,0,7,K,C).
Proof. By letting ¢(z,y,u) = (8(z,y), 7(u, z)}, the result follows directly from Theorem 3.1.1. O

Remarks.
(i) Condition (ii) will be satisfied if, for example, r(z,2) =0V z € K.

(ii) Condition (iii) will be satisfied if, for example, ((z,y), 7(u, z)) is quasiconvex in u € X (z)
for each fixed (z,y) € K x C and X is convex-valued.

(iii) The condition that ¥ is uniformly compact is unnecessary if C is compact.

The following corollaries are immediate.

Corollary 3.1.3 Let K C R"™ be a compact contractible absolute neighborhood retract and C C
R™ be a closed contractible absolute neighborhood retract. Let X be a nonemply conver-valued
continuous point-fo-sel mapping from K into itself and F a contractible-valued upper conlinuous
and uniformly compact point-to-set mapping from K into C. Let § . K x C — R"™ be continuous.
Suppose that there exists a compact contractible absolute neighborhood retract H such that F{K) C
H c C. Then there ezists a solution to the GQVIP(X,F,0,K,C). O

Corollary 3.1.4 Let K C R™ be a compact contractible absolute neighborhood retract and C' C
R™ be a closed contractible absolute neighborhood retract. Let F' be a contractible-valued upper

continuous and uniformly compact point-to-set mapping from K into C. Let 8 : K xC — R™ and
7: K x K — R"™ be continuous. Suppose that
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(i) there exisis a compact contractible absolute neighborhood retract H such that F(K) C H C C,
(ii) (B(z,y), 7(z,2)) >0,V (z,y) € K x C,
(i) for each fized (z,y) € K x C, the set
Viz,y) ={ue K : {0(z,y),7(u,z)) = minsex (8(z,y), (s, z))}
is contractible.
Then there exists & € K that solves GVIP(F,8,7,K,C). O

Corollary 3.1.5 Let K C R™ be a compact contractible absolute neighborhood retract and C C
R™ be a contractible absolute neighborhood retract. Let F' be a closed contractible-valued upper
continuous and uniformly compact point-to-set mapping from K into C. Let 6 : K x C — R” be
continuous. Suppose that the set Co(F(K))NC is a retract of C. Then there exists ¥ € K that
solves GVIP(F,0,K,C). O

In the case that K is unbounded, we have the following existence result for GQVIP.

Theorem 3.1.6 Let K a be nonemply subset of R™ and C' a nonemply closed conver subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
0: KxC —R"and7: K x K — R" be continuous single-valued functions. Suppose that there
exists a nonemply compact conver subset B of K such that the following conditions hold:

(i) 7(z,2) =0,V z € B,

(ii) F is contractible-valued upper continuous and uniformly compact on B,
(iii) Y(2) = X(2) N B is a nonempty convez-valued continuous point-to-set mapping on B,
(iv) for each fized (x,y) € K x C, (8(z,y), 7(u,z)) is conver in u € Y (z),

(v) for all z € B, intx(;)(Y(x)) is nonempty and for every x € Ox(y)(Y(2)), there exists a
u € inty () (Y () such that

O(z,y), 7(u,z)) <0,V y € F(x).
Then there exists a solution to the GQVIP(X,F,0,7,K,C).

Proof. By Theorem 3.1.2 there exists £ € Y (#) and § € F(Z) such that
0(z,y),m(x,2)) > 0,V 2 € Y (). (2)
Let x € X(Z). There are two possibilities.

(i) Z € inty(z) (Y (Z)). Then there exists 0 < A < 1 such that Az +(1—-2)Z € Y(Z). Then by (2)
and (iv), we have

o
IN

0(z,y), 7(Aze + (1 = Az, &))
A0(z,9),7(x,2)) + (1 = A)(0(z,9), 7(z, 7))
Moz, y), (2, 7))

IN

Thus (6(,7), 7(z,z)) > 0.

11



(i) € 9x(z)(Y(Z)). By (v), there exists u € intx (5 (Y ()) such that
(0(2,9),7(v, %)) <0,V y € F(%).

In particular for y = g, we have by (2) (6(%,7), 7(u,Z)) = 0. Now choose 0 < A < 1 such that
Az + (1 = X)u € Y(Z). Then we have

0 < (0(2,9), 7(Az + (1 = A)u, T))
S A(B(:Z',g),r(x,:é)) + (1 - A)(g(ﬁ’g)’ T(u, 2))
A6(z,9), (=, T)).

1l

So again {8(&,7),7(x,%)) > 0. Hence (6(z,y),7(z,%)) > 0,V z € X(&). Therefore (2,7) is a
solution to the GQVIP(X,F,0,7,K,C). O

We note that Theorem 3.1.6 extends a result due to Chan and Pang [5, Theorem 3.2]. By
letting X (z) = K for all z € K, we have the following existence result for the GVIP.

Corollary 3.1.7 Let K be nonempty subset of R™ and C be nonempty closed convexr subset of
R™. Let F : K — C be a point-to-set mapping. Let 6 . K xC — R" and 7: K x K — R" be
continuous. Suppose that

(1) r(z,z)=0,VzreK,

(i) there exists a compact conver subset B C K with intg (B) # 0 such that F is upper continuous
on B with F(z) contractible and uniformly compact near z for all x € B, and for each
z € Ok (B), there exists u € intgx(B) such that (#(z,y),7(u,z)) < 0,V y € F(z). Also
(0(z,y), 7(u,z)) is convez in u € B for each fized (z,y) € K x C.

Then there exists & € B which solves GVIP(F,6,7,K,C). O

It is worth noting that we do not require F' to be upper continuous, uniformly compact and
contractible on K, and K need not be closed or bounded. The following corollary is immediate.

Corollary 3.1.8 Assume that

(i) K is a nonempty (possibly unbounded and nonclosed) convex subset in R",

(ii) F is a (possibly non-upper continuous) mapping from K into the family of subsets of R,
(iii) there is a solid convez sel £ in R", such that

(a) KNE is nonempty and compact,

(b) F restricted to K N E is upper continuous,

(c) F(z) is contractible and uniformly compact near x for eachx € KN E,
(d) for each x € K NO(E), there is an T € K Nint(E), such that

0<(z~2,y),Vye€ F(z).
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Then there is a solution (z,y) to GVIP(K,F) withz € E.

Proof. Let B = KN E. Then B is a nonempty compact convex subset of K. First we claim that
K Nint(E) C intg (B) and Ox(B) C K NI(E). Suppose ¢ € K Nint(E). Then there exists an
open set O such that t € O C F and x € K. Then A = KN QO is open in A and z € A. Since
A C B. We have A C intg(B). Therefore z € intg(B). Hence K Nint(E) C intg(B). Next,
suppose & € Ok (B). Let A be any neighborhood of z in K. Then ANB # 0 and AN(K\B) # 0.
Then ) ZANKNECANE. Also

AN(K\B) = An(KN(E°UK®))
= AN((KNES)U(K NK®))
ANKNE.

So AN E® # §. If A is any neighborhood of z, then A is also a neighborhood of # in K. Thus by
what we have shown, ANE # 0 and ANE® # §. Therefore x € KNJ(E). Hence dx(B) C KNI(E).
Now, let € Ok (B). By (2) z € KNG(E). Then by (ii1)(d), there is an z € K Nint(E) C intx (B)
such that

0<{e—2z,y),VyeF(x).
By letting 6(z,y) = y and 7(z,y) = z — y, the condition (iii) of Corollary 3.1.7 is satisfied.
Consequently, the result follows directly from Corollary 3.1.7. O

At first glance, it seems that the condition (iii) of Corollary 3.1.7 and those of Corollary 3.1.8
are the same. But in fact, the condition (iii) of Corollary 3.1.7 is actually weaker than those in
Corollary 3.1.8. To see this, let us consider the following example. Let K = {(z,y) : y > 0} and
E={(z,y): 2> +4y* <1, y>0; -1 <z<1, y=0}. Then E is solid in R? and we have

KnoE) = {(zyy): 2+ =1y>0,-1<z<1,y=0}
Ik(ENE) = {(z,y):2°+¢* =1Ly >0},
K Nint(E) {(z,y): 2 +* <1,y > 0},

mtg(KNE) = {(z,y): 2%+ <Ly>0-1<z<1,y=0}.

Il

It is easy to see that Ox (K N E) is strictly contained in K N G(E) and K Nint(£) is also strictly
contained in intg (K N E).

Forr>0,let B, = {z € K :{|z|]|<r}and C; = {& € K : ||z]| = r}. The next corollary follows
directly from Theorem 3.1.6.

Corollary 3.1.9 Let K a be nonemply subset of R™ and C a nonempty closed conver subset of
R™. Let X and F be point-to-sel mappings from K into K and from K into C respectively. Let
§: K xC — R" be continuous single-valued function. Suppose that there exists an r > 0 such
that the following conditions hold:

(i) F is contractible-valued upper continuous and uniformly compact on B,

(it) Y(z) = X(2) N B, is a nonemply convez-valued continuous point-to-set mapping on B,,
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(iil) for each x € X(z)NC;, there is a u € X(z) Nintg (B;) such that
maXxyeF(r) (3(&7, y)u—z) <0.
Then there exists a solution to the GQVIP(X,F,6,K,C). O

By following the same reasoning as in Theorem 3.1.6, we have the following existence result for
GQVIP(X,F,0,K,C).

Theorem 3.1.10 Let K a be nonemply subset of R™ and C a nonempty closed conver subset of
R™. Let X and F be poini-to-set mappings from K into K and from K into C respectively, Let
§: K xC — R" be continuous single-valued functions. Suppose that there exists a compact subset
B of K such that the following conditions hold:

(1) F is contractible-valued upper continuous and uniformly compact on B,
(i1) Y{(z) = X(2) N B is a nonemply convez-valued continuous poini-to-set mapping on B,

(i) for each x € B and for each z € X (x)\B, there exists a vector u € Y (&) such that
maXyeF(r) (9(;{;’ y)y U — z) <0

Then there exists a solution to the GQVIP(X,F,0,K,C).

Proof. By Corollary 3.1.3, there exist Z € Y(z) and y € F(Z) such that {(6(z,9),z —z) > 0
for all x € Y(z). Now for z € X(2)\B, by condition (iii), there exists a u € Y(Z) such that
(8(z,9),2 — u) > 0. On the other hand, we have (8(%,7),v — ) > 0. By adding the last two
inequalities , we have (6(Z, y),z — Z) > 0. Hence (Z, g) solves GQVIP(X,F,0,K,C). O

Remark. We note that the assertions due to Saigal [41, Lemma 4.1], Parida and Sen [37, Theorem
2], and Fang and Peterson [16, Theorem 3.2], respectively, may not be true in general by considering
the example from Remark (iv) following Theorem 3.1.1.

3.2. Coercivity, Copositivity and Monotonicity

Normally, it is not easy to identify the compact set B in Theorem 3.1.6 or Corollary 3.1.9. We
therefore consider some coercivity conditions on X and F that can be easily checked in some cases.

Theorem 3.2.1 Let K be a nonemply subset of R* and C a nonempty closed convex subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respeclively. Let
0. KxC— R" and 7: K x K — R"™ be continuous single-valued functions. Suppose that

(1) r(z,z) =0,V €K,
(ii) for each fized (x,y) € K x C,(0(x,y),7(u,z)) is convez in u € X(z),

(iii) F is contractible-valued upper continuous and uniformly compact on K,
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(iv) there exists a vector xo € [\yex X () such that
hmyp)— o0, zeX (2) MaXyer(z) (0(2,y), T(%0, %)) <0,
(v) there exists a po > 0 such that X(x)N B, is a nonempty convez-valued continuous point-to-set
mapping for all p > pgy.
Then there exists a solution to the GQVIP(X,F,0,7,K,C).

Proof. By condition (iv), there exists an ro > 0 such that for all » > rg, if 2 € X(2) N C,, then
maxyep(z) (0(2,y), 7(x0,2)) < 0. Now let r > max{ro, [|zo||, po} and B = B;. Then the condition
(vi) of Theorem 3.1.6 is satisfied. Therefore the result follows from Theorem 3.1.6. O

The following corollary is immediate.

Corollary 3.2.2 Let K be a nonemply subset of R* and C a nonemply closed conver subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
f: K x C — R" be continuous single-valued function. Suppose that

(i) F is contractible-valued upper continuous and uniformly compact on K,
(if) there exists a vector xo € (pex X (&) such that
limjjy || oo e X (z) MaXyeF(z) (0(2,Y), 20 — z) <0,
(iii) there exists a pp > 0 such that X(2)N B, is a nonempty convez-valued continuous point-to-set
mapping for all p > po.
Then there exists a solution to the GQVIP(X,F,0,K,C). O

The following corollary is a direct consequence of Corollary 3.2.2.

Corollary 3.2.3 Let K be a nonempty subset in R"® and F : K — R™ a point-to-set mapping
which s upper continuous, uniformly compact and contractible on K. Suppose there exists z € K
such that

Mmoo, zex (Ifyer(z){z — 2,3)) = co.

Then GVIP(F,K) has a solution. O
Next, we have the following existence result for GQVIP(X, F,8,K,C).

Theorem 3.2.4 Let K be a nonempty subset of R™ and C a nonempty closed conver subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
f: K x C — R" be continuous single-valued function. Suppose that there exisits an r > 0 and
zg € K such that

(1) 2o € (Npec, X(2))Nintx (Br) and

infze X (2)nc, infyer(z) (#(z,y),z —z0) > 0,
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(i) F s contractible-valued upper continuous and uniformly compact on B,,
(i) Y(z) = X(2) N B, is a nonempty convez-valued continuous point-to-set mapping on B,.
Then there exists a solution to the GQVIP(X, F,0,K,C).

Proof. By letting B = B,, it suffices to verify that the condition (iii} of Corollary 3.1.9 is satisfied.
If there is no vector # such that ¢ € Ox(;)(Y(z)), then clearly the condition (iii) of Corollary
3.1.9 is satisfied. On the other hand, for each z € 9x(;)(Y (z)), we have 2o € X(z) Nintx(B,) C
intx () (Y(2)) and maxyer(z) (0(x,y), 2o — z) < 0. Therefore the condition (iii) of Corollary 3.1.9
is satisfied. Hence the result follows from Corollary 3.1.9. O

Now we derive some existence results under certain monotonicity and copositivity conditions.
First, let us introduce the following definitions.

Definition 3.2.5 Let X and F' be two point-to-set mappings on a set A.

(1) Fis said to be monotone with respect to X on K, if for any z; € X(21) and z2 € X(x2), we
have
(i —y2, 21 —22) 2 0,V 11 € Fa1), 32 € F(x2).

(i1) F is said to be strictly monotone with respect to X on K, if for any z1 € X(21) and 22 € X(z2)
with 21 # z2, we have

(n —y2, 21— 22) > 0,V 1n € F1), 12 € Fx2).

(i1} F is said to be strongly monotone with respect to X on K if there exists a scalar o > 0 such
that for any z1 € X(z1) and z2 € X(&2), we have

(y1 — 2, %1 — &2) > allzr — @2,V 1 € Fz1), v2 € F(z2).

(iv) F is said to be b-monotone with respect to X on K if there exists an increasing function
b:[0,00) — [0,00) with b(0) = 0 and b(r) —> 0o as r — oo such that for any z1 € X(z1)
and zg € X(z2), we have

(y1 — w2, 21 — 22) > ||21 — z2||b(]|21 — 220}, ¥V n1 € F(21), 32 € F(x2).

(v) F is said to be copositive with respect to X at the point g on K if g € X (xo) and there
exists a yo € F(xo) such that for all z € K with z € X (&), we have

(Y~ yo,z —20) 2 0,V y € F().

(vi) F is said to be strictly copositive with respect to X at the point zg on K if 2o € X(&¢) and
there exists a yo € F(2o) such that for all z € K with z € X(z), z # zo, we have

(y — yo, & — xo) > 0,V y € F(x).

16



(vil) F is said to be strongly copositive with respect to X at the point 2o on K if xp € X(20) and
there exists a scalar & > 0 and a yo € F(2) such that for all z € K with z € X (&), we have

(v — w0,z — z0) > of|z — xo|*,V v € F(2).

(viii) F is said to be b-copositive with respect to X at the point zo on K if there exists an increasing
function b : [0,00) — [0, 00) with 5(0) = 0 and b(r) — o0 as r — o0, and if zg € X(zo)
and there exists a yo € F'(zo) such that for all z € K with z € X(z), we have

(¥ — Yo, — o) > ||z — xol|b(]|z — 20l),V y € F(=).

Remark. If X(z) = K for all ® € K and zg = 0, then (i), (ii), (ii1), (v}, (vi), (vii) of Definition
3.2.5 reduce to the usual definitions ([41, Definition 3.1, 3.2]) of monotonicity and copositivity for
point-to-set mappings. If K = R", then the above definitions of strong copositivity and strong
monotonicity reduce to the ones introduced by Chan and Pang [5]. Clearly, if F'(zg) is nonempty
and if zg € X(2g), then monotonicity, strict monotonicity, strong monotonicity and b-monotonicity
imply copositivity, strict copositivity, strong copositivity and b-copositivity respectively.

The following gives an existence result for the GQVIP(X, F, 8, K, C) under the strong coposi-
tivity condition.

Theorem 3.2.6 Let K be a nonempty subset of R® and C a nonemply closed conver subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
8. K x C— R" be continuous single-valued function. Suppose that

(1) there exists xg € [\exr X () such that the poini-to-set mapping
V(2) = {6(z,y) : y € F()}
1s etther b-copositive or strongly coposiiive with respect to X at xp on K,
(i1) F s coniractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > 0 such that X(z)N B, is a nonemply convez-valued continuous poini-to-set
mapping for all p > po.

Then there exists a solutlion to the GQVIP(X, F,8,K,C).

Proof. Since strong copositivity implies b-copositivity, it suffices to prove this theorem under the
assumption that V is b-copositive with respect to X at the point o. Then there exist an increasing
function b : [0, 00) — [0, 00) with b(0) = 0 and b(r) — oo as r — oo and a yo € F(xg) such that
for all z € K with ¢ € X(&), we have

(v — 10,2 — z0) > ||z — zo[lb(llz — o),V ¥ € F(z).
Then we have for all y € F(2),
6z, 9),30 —2) < |z — zolIb(llx — 2oll) + (6(20, t0), 20 — )
~Ilzo — ll(b(llzo ~ zII) — [16(zo, w)]])-

AN

17



Since b(r) — 00 as r — 0o, we then have

]im“x”_,oo’mex(x) maXye F(z) (0(z,y), 20 — z) = —o0.

Thus the condition (ii) of Corollary 3.2.2 is satisfied. Hence the result follows from Corollary 3.2.2.
[

The following corollary is immediate.

Corollary 3.2.7 Let K be a nonempty subset of R"® and C a nonempiy closed conver subset of
R™. Let X and F be point-to-sel mappings from K into K and from K into C, respectively. Let
f:K xC — R" be a continuous single-valued function. Suppose that

(i) the set Nyex X(z) is not empty and the point-to-set mapping
V(z) ={0(z,y) :y € F(2)}
i8 either b-monotone or strongly monotone with respect to X on K,
(i1} F is contractible-valued upper continuous and uniformly compact on K,

(iii) there exists a po > 0 such that X(z)NB, is a nonemply convez-valued continuous point-to-set
mapping for all p > po.

Then there exists a solution to the GQVIP(X,F,6,K,C). O

Remark. In general, solutions in Theorem 3.2.6 and Corollary 3.2.7 are not unique. To see this,
consider the following example. Let K = C = R"™. For any z € R", let X(z) = {az : 0 < « < 1}
and F'(z) = {2z}. Let 8(z,y) = y — =. Thus condition (iii} of Theorem 3.2.6 is satisfied. We claim
that X is continuous. To see this, assume that the sequence {x,} converges to z and the sequence
{yn} converges to y with y, € X (=) for all n. Then for each n, y, = a2, for some 0 < o, < 1. It
is clear that {ay} has a convergent subsequence. Without loss of generality, we may assume that
{an} is convergent with limit . Clear 0 < o < 1. Then by letting n approach oo, we get y = ax.
Thus y € X(z). Hence X is upper continuous. On the other hand, suppose that y € X(z) and
z, converges to z. Then y = az for some 0 < o < 1. Let {a,} be a sequence in [0, 1] such that
a, converges to a and let y, = anz, for all n. Then y, € X(&,) for all n and y, converges to y.
Hence X is also lower continuous. Consequently, X is continuous as claimed. It is clear that X|B,
1s also continuous for all p > 0. Also it is easy to see that F' is b-copositive, strongly copositive
(at the point 0), b-monotone and strongly monotone with respect to X on R™. But it is clear that
every vector in R™ is a solution to the GQVIP(X, F,0,R*, R"). Hence solutions are not unique
in this case. However, as the following two corollaries show, the solutions are unique if we assume
that X is a constant point-to-set mapping with X(z) = K for all z € K.

Corollary 3.2.8 Let K be a nonempty subset of R™ and C a nonempty closed conver subsel

of R™. Let F be a point-to-set mapping from K into C. Let 6 : K x C — R™ be continuous
single-valued function. Suppose that
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(1) there exists xo € e X (&) such that the point-to-set mapping
V(z) = {6(z,y) : v € F(a)}
ts etther b-copositive or strongly copositive with respect to xg on K,
(i) F s contractible-valued upper continuous and untformly compact on K.
Then the problem GVIP(F,8,K,C) has a unigue solution.

Proof. It suffices to prove this corollary under the assumption that V is b-copositive with respect
to the point #9 on K. Suppose that #; and z; are both solutions to the GVIP(F, 8, K,C). Then
there exist y; € F'(2;),7 = 1,2 such that

Oz, v),u—z) >0 Vue K,i=1,2 (3)
From (3), we have
(01, 1) — O(22, 1), 21 — 22) < 0. (4)

On the other hand, since V is b-copositive, there exist an increasing function b : [0, 00) — [0, 00)
with b(0) = 0 and b(r) — o0 as r — o0 and a yg € F(zo) such that for all i = 1,2, we have

(6, vi) — 6(%0, Yo), xi — xo) > |jx: — @ol|b(]|2: — 2ol]). (5)
From (5), we have
(B(z1,1n) — 6(=2, y2), &1 — 22) > Z llz: — zo|[b(||2: — zol]}- (6

Combining (4} and {(6), we then have 3 = z2 = zo. Hence the GVIP(F,8, K,C) has a unique
solution. O

The following corollary is a direct consequence of Corollaries 3.2.7 and 3.2.8.

Corollary 3.2.9 Let K be a nonemply subset of R™ and C a nonempty closed conver subset
of R™. Let F be a point-to-set mapping from K into C. Let 8 : K x C — R"™ be continuous
single-valued function. Suppose that

(i) the set Noex X(x) is not empty and the point-to-set mapping
V(z)={0(z,y) 1y € F(x)}
1s etther b-monotone or strongly monotone with respect to xg on K,

(i) F s contractible-valued upper continuous and uniformly compact on K.
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Then the problem GVIP(F,0,K,C) has a unique solution. O

We note that by letting #(z,y) = y and C = R", Corollary 3.2.9 extends a similar result
due to Saigal ({41, Theorem 3.1}} where he did not consider the uniqueness of the solution of the
GVIP(F, K).

Let 7: K x K — R"™ be a single-valued function such that 7(z,z) = 0 for all x € K. F is said
to be T-monotone with respect to X on K if for any 21 € X (1) and z3 € X(z2), we have

(v, 7(%2, 21)) + (v, 7(21,22)} SOV 11 € F(z1),12 € F(z2).
An example of r—monotone point-to-set mapping is the following. Let K = C' = R and
r{z,y) = €° —e¥
X(x) = {ax:0<a<1}

F(z) = {2z}.

Then F is —monotone with respect to X on R. If X(z) = K for all # € K, then this definition
reduces to the definition of 7-monotone point-to-set mappings introduced by Parida and Sen [37].

Theorem 3.2.10 Let K be a nonempty subset of R™ and C a nonempty closed conver subset of
R™. Let X and F be poini-to-sel mappings from K into K and from K into C, respectively. Let
0:KxC—R" and 7: K x K — R"™ be continuous single-valued functions. Suppose that

(1) (x,z) =0,V €K,
(i1) for each fized (x,y) € K x C,{0(z,y), 7(u, z)) is convez in u € X(z),
(iit) F is contractible-valued upper continuous and uniformly compact on K,
(iv) the point-to-set mapping V(x) = {f(z,y) : y € F(z)} is T-monotone with respect to X on K,
(v) there exist vectors xg € (Lex X () and yo € F(xo) such that

hm”m”—»oo, rz€X{x) (5(:80, y0)7 T‘(Z?, 7“0)) >0,

(vi) there exists a pp > 0 such that X(x)N B, is a nonempty convez-valued continuous point-to-set
mapping for all p > pg.
Then there exists a solution to the GQVIP(X,F,0,7,K,C).

Proof. By condition (v), there exists an rg > 0 such that for all r > ro, if £ € X(x) N C;, then
{(0(zo,v0), T(z, zo)) > 0. Thus for such z, since 29 € X(20),z € X(z) and V is r-monotone with
respect to X on K, we have

(0(x,y), 7(x0,2)) < —(0(x0, %), 7(x,20)) <0, VyeE F(x).

Let » > max{ro,||zo]|, 0} and B = B,. Then the condition (vi) of Theorem 3.1.6 is satisfied.
Hence the result follows from Theorem 3.1.6. &
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Given two point-to-set mappings F and X on K, F is said to be pseudo-monotone with respect
to X on K if for any z; € X(21),22 € X(22) and 11 € F(x1),y2 € F(x2), (z1 — #2,y2) > 0 implies
(z1 — 22,31) > 0.

Theorem 3.2.11 Let K be a nonempty subset of R™ and C be a nonempty closed conver subsel
of R™. Let X and F' be poini-to-set mappings from K into K and from K into C respectively. Let
f: K x C — R™ be continuous single-valued function. Suppose that

(1) F is contractible-valued upper continuous and uniformly compact on K,

(i) the point-to-set mapping V() = {6(x,y) : y € F(x)} is pseudo-monotone with respect to X
on K,

(iii) there exist vectors xo € [Npex X(z) and yo € F(xo) such that 6(xo, vo) € int(U,ex X(2))",

(iv) there exists a pp > 0 such that X(x)NB, is a nonemply convezr-valued continuous point-to-set
mapping for all p > po.

Then there exists a solution {o the GQVIP(X,F,8,K,C).

Proof. Let S = {& € X(z) : {#(xo,y0),2 — 2o} < 0}. We claim that S is compact. Clearly

S is closed. Suppose that S is unbounded. Then there exists a sequence {z,} C S such that

l|lzn]] — oo. Let 2™ = z,/||zx||. Then the sequence {2"} is bounded and thus has a convergent

subsequence. Without loss of generality, we may assume that the entire sequence {z™} converges
to a vector e. Clearly ||le]| = 1. For each n, we have

0 < {(0(xo, w0),2™) < {0(x0, %0), xo/||zn|l).

By passing to the limit, we obtain {#(zo,y0),e) = 0. By (iii), there exists an ¢ > 0 such that
B(zo,v0) — €e € (Uzex X(2))*. Then for each n, we have

(0(20,%0) — ce,z") 2 0

By passing to the limit, we have
0 < (0(wo,y0) —€e,e) = —e < 0

which is a contradiction. Hence § is bounded and thus S is compact as claimed. Now choose
p > po such that S C intg(B,). All the conditions of Corollary 3.1.9, except (iii) are satisfied.
To show that the condition (iii) is also satisfied, let * € X(2) N B,. Then = ¢ S which implies
{(#(z0, 1),z — zo) > 0. By the pseudo-monotonicity of V', we have

(O(z,y),x —xo) >0,V y € F(x).
Therefore, the GQVIP(X,F,8,K,C) has a solution by Corollary 3.1.9. O

The following corollaries are imnmediate.

Corollary 3.2.12 Let K be a nonempty subset of R™ and C a nonempty closed convex subset of
R™. Let X and F be point-to-set mappings from K into K and from K into C respectively. Let
f: K x C — R” be a continuous single-valued function. Suppose that
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(i) F is contractible-valued upper continuous and uniformly compact on K,
(ii) the poini-to-set mapping V{(z) = {6(z,y) : y € F(z)} is monotone with respect to X on K,

(iii) there exist vectors xo € [yei X(2) and yo € F(xo) such that

9(zo,w) € int( | ] X(2))",
zeK

(iv) there exists a po > 0 such that X(z)NB, is a nonemply convezr-valued continuous poini-to-set
mapping for all p > po.

Then there exists a solution to the GQVIP(X,F,6,K,C). O

Corollary 3.2.13 Let K be a nonempty subset of R™ and C be a nonempty closed convex subset
of R™. Let F be a point-to-set mapping from K into C and let § : K x C — R™ be a continuous
single-valued function. Suppose that

(1) F ts nonemply contractible valued upper continuous and uniformly compact on K,

(11) the point to-set-mapping V() = {0(z,y) : y € F(x)} ¢s monotone or pseudo-monotone on
K,

(iii) there exist veclors xo € K and yo € F(zo) such that 0(zo,y0) € int(K™).
Then there exists a solution to the GVIP(F,0,K,C). O

Next, we present an existence result for the GQV IP which does not employ Theorem 3.1.6.

Theorem 3.2.14 Let K and C be nonemply closed convex subsels of R® and R™, respectively.
Let X and F be poini-to-set mappings from K into K and from K into C, vespectively. Let
8:KxC—R"andr: K x K — R" be continuous single-valued functions. Suppose thal

(i) 7(z,2) =0,V2z € K,
(i1) for each fized (z,y) € K x C,(6(=,y), 7(u,z)) is quasiconvezr in u € X(z),
(ii1) F s contractible-valued upper continuvous and uniformly compact on K,

(iv) there exisis a po > 0 such that X () = X(x) N B, is a nonemply conver-valued confinuous
point-to-set mapping for all p > po.

Then
(v} there exists x, € X,(x,) that solves the GQVIP(X,,F,0,7,B,,C) for each p > po,
(vi) if the set {z,} has a convergent subsequence, then GQVIP(X,F,0,7,K,C) has a solution.

22



Proof. The result (v) follows directly from Theorem 3.1.2. Suppose that the set {z,} has a
convergent subsequence {z,} with limit z¢ and z, € X,,(«,) for all n. Then for each n, there
exists y, € F(&,) such that

(O(zn,yn), 7(z,25)) > 0,V 2 € X,, (2n).

Clearly zp € X(»o0) and {y,} has a convergent subsequence. Without loss of generality, we may
assume that the entire sequence {y, } converges to a limit yo. Then yo € F(zg). For each # € X(#o),
there is an m such that z € B,,,. Then z € X, (x0) for all p, > pm. Since X is continuous, there
exist k£ and z, such that 2, — x and 2, € X(z,) for all n > k. Also there exists an £ such that
Zn € By, for all n > £ since we can choose pn, large enough such that z € int(B,,,). Then for all
n > max{m,k, £}, we have z, € X,,(z,) and

(0(zn, yn), T(2n,2s)) = 0.

By passing to the limit, we obtain the inequality (8(zo, o), 7(2,%0)) > 0. Therefore (xo,yo) is a
solution to GQVIP(X,F,6,7,K,C). O

The following corollary is immediate.

Corollary 3.2.15 Under the assumpiions of Theorem 3.2.14, it follows that
(i) there exists z, € X,(x,) that solves the GQVIP(X,, F,0,7,B,,C) for each p > po,
(i1) if the set {x,} is bounded, then the GQVIP(X,F,0,7,K,C) has a solution. O

3.3. Analysis of the Solution Set of GQVIP

In this subsection we shall discuss various properties of solution sets of generalized quasi-
variational inequality problems., Though such results are important in sensitivity analysis, very
few results have been seen in the literature. See Hartman and Stampacchia [20], McLinden [28,
29] and Fang and Peterson [16]. As a matter of fact, to determine whether the solution set of a
GQVIP possesses some interesting properties, such as compactness and convexity, is a fairly dif-
ficult task. Our first result is that the solution set of any GQVIP is always closed under fairly
general conditions.

Theorem 3.3.1 Let K and C be nonemply subsets of R™ and R™, respectively. Let X . K — K
and F : K — C be point-to-set mappings. Also let 0 : K x C — R" and 7: K x K — R" be
continuous single-valued functions. Suppose X s continuous on K and that F is upper conlinuous
and uniformly compact on K. Then the solution set S of GQVIP{(X,F,8,7,K,C) is closed.

Proof. The result is clearly true if 5 is empty. So let us suppose that S is not empty. Let z be a
limit point of S. Then there exists a sequence {z,} C S such that z, converges to x. For each n,
since &, € S, &, € X(z,) and there exists y, € F(z,) such that

(O(zn, yn),y T(u, )y > 0,V u € X(2n). (7)
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Clearly z € X(&). Since F' is upper continuous and uniformly compact, {y,} has a convergent
subsequence. Without loss of generality, we may assume that {y,} converges to y. Then y € F'(z)
by the upper continuity of F'. Now for any u € X(&), since X is continuous, there exist ng and z,
such that z, € X(z,) for all n > ng and z, converges to u. By (7}, we have

(0(2n,Un), 7(2n,2n)) > 0,¥ n > ng.
Passing to the limit, we have, since § and 7 are continuous,

(0(z,y), T(u,z)) > 0.

Consequently, z € S. Since S contains all of its limit points, it is closed. O

Under some conditions, the solution set of a GQVIP can be shown to be compact as the
following theorem illustrates.

Theorem 3.3.2 Let K and C be nonemply subsets of R*® and R™, respectively. Let X . K — K
and F' : K — C be point-to-set mappings. Also let 8 : K xC — R and 7: K x K — R"” be
continuous single-valued functions. Suppose X is continuous on K and that F is upper continuous
and uniformly compact on K. Suppose there exists a vector xo € (Vyex X () such that

limjjo)|—co, seX(s) MaXyeF(z) (0(2,¥), T(%0,2)}) = —00.
Then the solution set S of GQVIP(X,F,8,7,K,C) is compact.
Proof. The result is clearly true if S is empty. Suppose that S is not empty. The closedness of 5

follows from Theorem 3.3.1. By assumption, there exists an r > 0 such that for all ||z]] > r with
z € X(z) we have

ma*xyGF{x) (9(1:, y)) T(x(): 12)} <0
It then follows that S C B,. Consequently S is bounded and hence compact. O

As we indicated in the remark following Corollary 3.2.7, even the point-to-set mapping V(z) =
{0(z,y) : y € F(z)} is strongly monotone with respect to the point-to-set mapping X on K, the
GQVIP(X, F,0,K,C) does not necessarily have a unique solution. Nevertheless, the solution set
is necessarily compact as the following corollary shows.

Corollary 3.3.3 Let K and C be nonempty subsets of R™® and R™, respectively. Let X and F
be point-to-set mappings from K into K and C, respectively. Also let § : K x C — R™ and
7 K x K — R" be continuous single-valued funciions. Suppose X is confinuous on K and F is
upper continuous and uniformly compact on K. Then the solution set S of GQVIP(X,F,0,K,C)
1s compact if one of the following conditions holds:

(1) there exists o € (Vper X () such that the point-to-set mapping
V(z)={8(z,y) :y € F(z)}

is either b-copositive or strongly copositive with respect to xg on K,
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(i) the set (Npex X (=) is not emply and the poini-to-set mapping V(x) is either b-monotone or
strongly monotone with respect to X on K.

Proof. It is clear that it suffices to prove this corollary under the assumption that V is b-copositive
with respect to X at 2o on K. Then there exist an increasing function b : [0,00) — [0, 00) with
b(0) = 0 and b(r) — oo as r — 00, and a yo € F(xgp) such that for all € K with z € X(z), we
have

(9(=,y) — 8(x0,%0), & — x0) > [[z — zo|[b(|{z — =ol[),V ¥ € F(x).

Consequently, we have

maXyer(z) (0(2,9), %0 — @) —minger() (6(2,Y), * — Zo)

< {0(%o, %0), zo — &) — ||z — 2o||b(||x — wol|)
< =z = wol|(d(llx — @oll) — {|6(x0, vol])-
Therefore, we have
Himgfl— c0,ceX (z) MaXyeF(z) (0(%,Y), o — 2} = —00.

Hence by Theorem 3.3.2, S is compact. O

In the case that X is the constant mapping A, we can further strengthen the result of Corollary
3.3.3.

Theorem 3.3.4 Let K be a nonempty subset of R" and C a nonemply closed convex subset of
R™. Let F be a point-to-set mapping from K into C and 8 : K x C — R"™ be a continuous
single-valued function. Then the solution set S of GVIP(F,8,K,C) is either emply or a singleton
if one of the following conditions holds:

(i) there exists xo € (e X () such that the point-to-sel mapping
V(z) ={b(z,y) :y € F(x)}
15 strictly copositive, b-coposttive or strongly copositive with respect to xg on K,
(i) the set (i X(z) is not empty and the point-to-set mapping V(z) is strictly monotone,

b-monotone, or strongly monotone on K.

Proof. It suffices to prove this theorem under the condition that V is strictly copositive with respect
to zo on K. If S is empty, then we have nothing to prove. Otherwise suppose that z1,z; € S with
21 # z2. There are two cases to be discussed:

(a): Both 2; and #; are not equal to zg. Then as in the proof of Corollary 3.2.8, there exist
vi € F(x;),7=1,2 such that

(0(z1, 1) = 0(x2,12), 21 — 22) < 0. (8)
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On the other hand, since V' is strictly copositive, there exists yo € F(zo) such that
(9(271" ye) - 9(%);90); Ly — .'L'D) > 07 i = 1; 2. (9)
From (9), we have
(621, 11) — O(x2,42), 1 — 22) > 0

which contradicts (8).
(b): Either &7 or z3 equals zo, say z2 = xp. Then there exists y1 € F(z1) and y) € F(z) such
that

(0(z1,11),20 — 21) 2 0 (10)
and
(0(z0,8h), 21 — 20) > 0. (11)
From (10) and (11), we have
{0(z1,91) — 0(z0, %), 21 — 20) < 0. (12)

On the other hand, there exists yo € F'(2o) such that
(a(xlsyl)_g(xoayo)yxl —130> > 0 (13)

Note that yo is not necessarily equal to yj. Since (8(zo,yy) — 8(20, w0),0) = 0, combining this with
(13), we have
(B(leyl) - 8(170, yg))! r — 3’0) > 0

which again contradicts (12).
Consequently, we conclude that § is a singleton. O

The following characterizes the boundedness of the solution set of GVIP(F, 8, K,C).

Theorem 3.3.5 Let K be a closed convex cone in R™ and C a nonempty subset of R™. Let F
be a potnt-to-set mapping from K into C and 6 a continuous single-valued function from K x C
into R™. Suppose that the point-to-set mapping V(z) = {0(x,y) : y € F(x)} ts copositive on K
and V(0) C int(K*). Then the solution set S of GVIP(F,0,K,C) is bounded. If, in addition, F
s upper continuous and uniformly compact on K, then S ts compact.

Proof. The result is clearly true if S is empty. So let us suppose that S is not empty. If S is
unbounded, then there exists a sequence {z,} C S such that |jz,|| — o0 as n — oo. For each n,
there exists y, € F(x,) such that

(B(xn>yn))u—xn) >0,Vue K. (14)
Since V is copositive, there exists z € F'(0) such that

(8(z,y) —6(0,2),z) >0,Vz e K,ye F(z).
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Thus we have, for each n

(9(1777,;971):1'71) > (9(0,2),.’12,,,). (15)

Since {xy, } is unbounded, there exists £ such that z; # 0. For this particular £, since V(0) C int(K™),
we have from (15)

(g(xfa ?JE), xf) > 0.
On the other hand, since 0 € K, by (14) we have
(0(xe,ye),2e) <0
which is a contradiction. Therefore S is bounded. The second assertion follows from Theorem

3.3.1. 0

Recall that a point-to-set mapping F is pseudo-monotone on a nonempty set K if for any
pair of vectors #1,z2 in K and every y1 € F(z1) and every y2 € F(x2), {#1 — z2,y2) > 0 implies
{z1—22,11) > 0. As pointed out in Karamardian [26], if F' is pseudo-monotone and y; € F(z1), y2 €
F(z2), then (z1 — 22, v2) > 0 implies (&1 — 2, 1) > 0. With this observation, we have the following
characterization of compactness of the solution set of GVIP(F,8, K,C).

Theorem 3.3.6 Let K be a closed conver cone in R™ and C be a nonempty closed convex subset
of R™. Let F be a point-to-set mapping from K into C and 8 : K x C — R"™ be a continuous
single-valued function. Suppose that

(i) F' is contractible-valued upper continuous and uniformly compact on K,

(ii) the point-to-set mapping V(z) = {0(x,y) : y € F(z)} is pseudo-monotone on K,
(iii) there exist vectors o € K and yo € F(xo) such that 8(xo, vo) € int(K™).
Then the solution set S of GVIP(F,0,K,C) is nonempty and compact.

Proof. The fact that S is nonempty and closed follows directly from Theorem 3.2.11 and Theorem
3.3.1. To see that S is also bounded, let

D={xeK:{8(xo,w),z—zo) <0}
Then since #(xo, yo) € int(K™*), D is compact. Now for z € K\ D, we have
{0(x0, 10), & — o) > 0.
Thus by the pseudo-monotonicity of V', we have
(0(z,y), & — 20} >0,V y € F(z).

Then z can not be a solution to the GVIP(F,0, K,C). Consequently, we have S C D and the
result follows. O

The condition (iii) in Theorem 3.3.6 can be looked upon as a Slater-type constraint qualification.
We next turn to the question on the convexity of the solution set.
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Theorem 3.3.7 Let K be a nonempty convex subset of R* and C a nonempty subset of R™. Let
F be a convex point-to-set mapping from K into C and 8 : K x C — R™ be an affine function.
Suppose that the point-to-set mapping V(z) = {6(=z,y) : y € F(z)} is monotone on K. Then the
solution set S of GVIP(F,8,K,C) is convez.

Proof. The result is clearly true if S is empty. So let us suppose that S is nonempty. Let 21,29 € S
and & = a2y + fzy with o+ 8 =1 and «,F > 0. Then there exist y; € F(=;),7 = 1,2 such that for
1=1,2

(0(zi, y),u— ;) >0,Vue K. (16)
Let § = ay1 + Byo. Then § € F(&) since F is convex. Now for any u € K, we have

0@ 9),u—2) = (ab(z,y1)+ B0(z2,12), (v — 1) + B(u — z2))
= az(ﬁ(zl,yl),u—x1)+52(9($2,92)y“‘"x2) +
afB[(0(z1, ), u — z2) + 02, y2), u — 21)]

> af[{f(x1, 1), u — x2) + (B(z2,y2), u — 21)] (by (16))
> of[(6(z1, 1), 21 — z2) +0(22,32),22 — 21)]  (by (16))
= af(f(a1, 1) — O(x2,32), &1 — 22)

> 0.

The last inequality follows from the monotonicity of V. Therefore Z € 5. Consequently, S is
convex. O

The following corollary is immediate.

Corollary 3.3.8 Let K be a nonemptly convexr subset of R™. Suppose that F' is a convexr and
monotone point-to-set mapping from K into R". Then the solution set § of the GVIP(F,K) is
convez.

Remark. A point-to-set mapping F from a nonempty subset X of R™ into R" is said to be mazimal
monotone over K if it is monotone on K and it is not properly contained in any other monotone
mapping over K. In [16, Theorem 4.4], Fang and Peterson required F' to be maximal monotone
over K and deduced the same result as that in Corollary 3.3.8. We note that our conditions on
F in Corollary 3.3.8 is different from the maximality condition. To see this, consider the following
examples. Let K = [0,1] and F : K — R” be defined as F(z) = {x} for all z € K. Then it is
clear that 7 is both convex and monotone on KA. But it is not maximal monotone over K because
F is properly contained in the monotone point-to-set mapping G on K defined as

{z} fo<z<1

Gle) :{ [1,00) fz=1

On the other hand, let K = R? and F(z) = 86(z|B) for all x € R? where B is the closed unit disk
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in R%. That is, F(z) is the subdifferential of the indicator function of B. Then is easy to see that

{0} if z € int(B)
Flgy=< {ax:a>0} ifzed(B)

i else

It is true that F is maximal monotone over R? (see, e.g. Rockafellar [38, Corollary 31.5.2, p.340]).
But it is clear that F' is not convex.

Since any monotone point-to-set mapping is also pseudo-monotone, the following corollary is a
direct consequence of Theorem 3.3.6 and Theorem 3.3.7.

Corollary 3.3.9 Let K be a closed convexr cone in R™ and C be a nonemply closed convex subset
of R™, Let F be a point-to-set mapping from K into C and § : K xC — R be an affine function.
Suppose that

(i) F is nonempty contractible valued upper continuous and uniformly compact on K,
(ii) the poini-to-set mapping V() = {0(z,y) : y € F(z)} is monotone on K,
(ii1) there exist vectors zg € K and yp € F(xo) such that 8(zo, yo) € int(K*).

Then the solution set S of GVIP(F,6, K,C) is nonempty, compact and convex. O
4. The Generalized Implicit Complementarity Problem

We begin this section by giving a short introduction on complementarity problems and some
possible applications. Let f be a mapping of R™ into itself. The original complementarity problem,
denoted by CP(f), is to find a vector z € R™ such that

220, fl) 20, (z,f(2)) =0

where z > 0 means all the components of z are nonnegative and (-, -) is the usual scalar product
in R®. The task of the above problem is to find a nonnegative z such that its image under f is
also nonnegative and perpendicular to itself. When f is nonlinear, CP(f) is called a nonlinear
complementarity problem. In the case where f is an affine mapping of the form f:z — ¢+ M2
for some ¢ € R"® and M € R"*", the complementarity problem CP(f) is said to be linear and is
denoted by the pair (¢, M). The complementarity problems have many applications, for example, in
control and optimization, economics and transportation equilibrium, contact problems in elasticity,
fluid flow through porous media, game theory, and mathematical programming. The nonlinear
complementarity problem was first introduced and studied by Cottle [6] and Cottle and Dantzig
[8] where the notion of positively bounded Jacobians was introduced and the proof was constructive
in the sense that an algorithm was employed to compute the unique solution. Also see Moré 30,
31, 32].

Given a closed convex cone K of R™ and a mapping f from R” into itself, the generalized
complementarity problem, denoted by GCP(f, K), is to find a vector 2 € K such that

Fle) € K*, {z, f()) = 0.
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The idea of generalized complementarity problem was first introduced by Habetler and Price [17]
and latter refined by Karamardian [25].

To extend the GCP(f, K), Saigal [41] introduced the following generalized complementarity
problem where he considered f to be a point-to-set mapping. Given a closed convex cone K of R"
and a point-to-set mapping F' from K into R™, the generalized complementarity problem, denoted
by GCP(F,K), is to find a vector x € K and a vector y € F(z) such that

y€e K*, (z,y) =0.

It is worth noting that if F' is a single-valued function, then the GCP(F, K) reduces to the
GCP([,K).

Motivated by the quasi-variational inequality problem introduced by Mosco [33], Chan and Pang
[5] defined a new complementarity problem as follows. Let m and F be respectively, point-to-point
and point-to-set mappings of R™ into itself. Let L be a cone-valued point-to-set mapping on R".
The generalized itmplicit complementarily problem, denoted by GICP(F, m, L}, is to find a vector
x € m(z) + L(z) and a vector y € F(z) such that

ye L(.’L‘)*, (iL - m(x)’y) =0.

They established some existence results under the assumption that L(x) is a constant closed solid
cone for all x.

Recently Parida and Sen [37] introduced the following generalized complementarity problem.
Given K a closed convex cone of R™, C a closed convex subset of R™, # : K —s R" single-valued
function, F : K — C a point-to-set mapping, the generalized complementarity problem, denoted
by GCP(F,8,K,C), is to find a vector ¢ € K and a vector y € F(z) such that

6(z,y) € K, (6(z,y),z) =0.

It is interesting to observe that Parida and Sen’s problem formulation generalizes that of Saigal.

In this section, we consider the following generalized implicit complementarity problem which
unifies the above complementarity problems. Let K be a closed convex cone of R and C a
nonempty closed convex subset of R™. Let m be a point-to-point mapping from K into itself
and F' be a point-to-set mapping of K into C. Let L be a cone valued point-to-set mapping
from K into itself and # a point-to-point mapping from K x C into R™. The generalized implicit
complementarity problem, denoted by GICP(F,6,m, L, K, C) is to find a vector z € m{z) + L(z)
and a vector y € F(z) such that

6(z,y) € L(z)", {6(x,y),z — m(z)) = 0.

We note that GICP(F,8,m,L,K,C) reduces to GICP(F,m,L) if 8(z,y) = y and K =
C = R" If m(z) = 0 and L(z) = K for all # € K, then GICP(F,6,m,L, K,C) reduces to
GCP(F,0,K,C). Since GCP(F,8,K,C) extends GCP(F,K), GCP(f, K) and CP(f), our formu-
lation of the generalized implicit complementarity problem generalizes and unifies the others.

Remark. Throughout the rest of this section, it ts assumed that

(1) K is a closed convexr cone in R™ and C is a nonempty closed convez subset of R™,
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(i1) m is a single-valued function from K into itself,

(1i1) L is a cone-valued point-to-set mapping from K into itself,
(iv) F is a point-to-set mapping from K inot C,

(v) X(z) =m(z)+ L(z) for allz € K,

(vi) 8 is a continuous single-valued function from K x C into R".

The relationship between a variational inequality problem and a generalized complementarity
problem was first investigated by Karamardian [25]. Karamardian showed that if the set involved
in a variational inequality problem is a closed convex cone, then both the variational inequality
problem VI(f, K') and the generalized complementarity problem GCP(f, K') have the same solution
set. Later Saigal [41], Chan and Pang [5], Noor [35] and Parida and Sen [37] also established the
same result on the relationship between the generalized variational inequality problem and the
generalized complementarity problem they introduced. Following this direction, we have

Lemma 4.1 The GQVIP(X,F,6,K,C) and the GICP(F,6,m,L, K,C) have the same solution
set.

Proof. Let z be a vector in K that solves GQVIP(X, F,0,K,C). Then z € X (z), and there exists
y € F'(z) such that
(9(.7!?,y),2 - éL‘) 2 O,V z e X(x)

Since x — m(x) € L(x) and L{z) is a cone, we have 2(z — m(z)) € L(X). Thus 2z — m(z) €
X(z), and we have (8(z,y),z — m(z)) > 0. On the other hand, since m(x) € X(z), we have
(0(x,y), m(z) — &) < 0. Consequently, (8(x,y),z — m(z)) = 0. Now for each z € L(z), we have
m(z)+ z € X(z). Accordingly,

(0(2,y),2) = (0(z,y), m(x) + 2 —a) > 0

Therefore 8(x,y) € L{x)*. Hence (z,y) solves the GICP(F,8,m, L, K,C). Conversely, suppose x
solves the GICP(F,0,m,L,K,C). Then z € m(«) + L(z), and there exists y € F(z) such that

g(xxy) € L(Z’)*, (Q(w)y)u$ - m(x» = 0.
For any z € m(z) + L(z), there exists v € L(z) such that z = m(z) + v. Thus we have
(6(z,y), 7z —z) = (8(z,y),v) 2 0.
Therefore (z,y) solves GQVIP(X,F,0,K,C). G
Corollary 4.2

(i) GCP(F,6,K,C) and GVIP(F,0,K,C) have the same solution set.
(i) GCP(F,K) and GVIP(F,K) have the same solution set. O
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The following gives an existence result for the GCP.

Lemma 4.3 Let B C K with intg(B) # 0. If ¢ solves GVIP(F,0,B,C) and z € intx(B), then
@ solves GCP(F,0,K,C).

Proof. Since z solves GVIP(F, 0, B,C), there exists y € F'(z) such that
(6(z,y),u—z) >0,YueB,
For each z € K, since « € intx (B), there exists 0 < A < 1 such that Az + (1 — A)z € B. Then
Bz, y), Az + (1 =Xz —2z) = X{0(z,y),z—z) > 0.

Thus (8(z,y),z — ) > 0. Hence z solves GVIP(F,8,K,C) and the result follows from Corollary
42 (i). O

With the aid of Lemma 4.1 and the existence results for GV IP in Section 3, we obtain the
following existence results for the GICP(F,8,m,L,K,C).

Theorem 4.4 Suppose that there exists an r > 0 such that the following conditions hold:
(i) F is contractible-valued upper continuous and uniformly compact on B;,
(ii) Y(z) = X(2) N B, is a nonemply convez-valued continuous poini-to-set mapping on B,,
(iii) for each z € X(z) NC;, there is a v € X(z) Nintx (B,) such that

maxyer(z) {0(2,y),u—z) <0.

Then there exists a solution to the GICP(F,0,m,L, K,C).

Proof. This follows directly from Corollary 3.1.9 and Lemma 4.1. O

Theorem 4.5 Suppose that there exists a compact subset B of K such that the following conditions
hold:

(it} F is contractible-valued upper continuous and uniformly compact on B,
(i1) Y(z) = X(2) N B is a nonempty convez-valued continuous poini-to-set mapping on B,
(iii) for each x € B and for each z € X(x)\B, there ezisls a vector u € Y(x) such that
masyer(s) (0(z,v),u—2) 0.
Then there exists a solution to the GICP(F,0,m,L,K,C).

Proof. This follows directly from Theorem 3.1.10 and Lemma 4.1. O
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Theorem 4.6 Suppose that
(1) F s contractible-valued upper continuous and uniformly compact on K,

(ii) there exists a vector xo € (\yex X () such that
hm[lxll—*oo, zeX (z) MAXyeF(z) (9(:1:, Y}, xo — .’E) <0,

(iii) there exists a po > 0 such that X(z)N B, is a nonempty convez-valued continuous poini-to-set
mapping for all p > po.

Then there exists a solution 1o the GICP(F,6, m,L,K,C). O
The following corollary is immediate.

Corollary 4.7 Let F : K — R” be g point-to-sef mapping which ts upper continuous, untformly
compact and contractible-valued on K. Suppose there exists z € K such that

Mg o, cex (Infyer@){ 2 — 2,y )) = co.

Then GCP(F,K) has a solution. O
The following theorem is a direct consequence of Theorem 3.2.4 and Lemma 4.1.

Theorem 4.8 Suppose that there exists an r > 0 and xg € K such that
(i) 20 € (Meec, X (2)) Nintx(B,) and

infoe x()ne, infyer(e) (0(%,y),2 —20) >0,

(i1) F is contractible-valued upper continuous and uniformly compact on B,,
(i) Y(x) = X(x) N B, is a nonemply convez-valued continuous point-to-set mapping on B,.

Then there exists a solution to the GICP(F,6,m,L,K,C).
The following gives an existence result for the GICP under the strong copositivity condition.

Theorem 4.9 Suppose that

(i) there exists xo € [pex X (&) such that the point to set mapping V(z) = {0(z,y) : y € F(x)}
s strongly copositive with respect to X at xp on K,

(ii) F is coniractible-valued upper continuous and uniformly compact on K,

(iil) there exists a po > 0 such that X(2)N B, is a nonemply convez-valued continuous point-to-sel
mapping for all p > po.
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Then there exists a solution to the GICP(F,0,m,L, K,C).

Proof. This follows directly from Theorem 3.2.6 and Lemma 4.1. O

We note that the remark following Theorem 3.2.6 is also valid for Theorem 4.9. The following
corollary is immediate.

Corollary 4.10 Suppose that

(i) there exists zo € (yep X () such that the point to set mapping V(z) = {6(x,y) : y € F(z)}
is strongly monotone with respect to X on K,

(il) F is contractible-valued upper continuous and uniformly compact on K,

(iil) there exists a po > 0 such that X(x)N B, is a nonemply conver-valued continuous point-to-set
mapping for all p > po.

Then there exists a solution to the GICP(F,8,m,L,K,C). O
The following gives an existence result for the GIC P under the pseudo-monotonicity condition.

Theorem 4.11 Suppose that
(i) F s contractible-valued upper continuous and uniformly compact on K,

(i) the point to set mapping V{(z) = {8(z,y) : y € F(z)} is monotone or pseudo-monotone with
respect to X on K,

(iii) there exist vectors zo € yex X () and yo € F(xo) such that

8(zo0,y0) € int( | X(2))",
€K

(iv) there exists a po > 0 such that X(z)N B, is a nonemply convezr-valued continuous point-to-sel
mapping for all p > po.

Then there exists a solution to the GICP(F,8,m,L, K,C).

Proof. This follows directly from Theorem 3.2.11 and Lemma 4.1. OO

In the case where the point-to-set mapping L is constant, the condition that X (z) N B, is
continuous on B, for large p is automatically true if the function m is continuous. We then have

Theorem 4.12 Suppose that
(i) F is contractible-valued upper continuous and uniformly compact on K,

(ii) there exists a vector xo € (pex X () such that

HMmyjz||— 00,06 X (¢) MaXyeF(z) {0(%,Y), %0 — &) <0,
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(iii) there exists a wector ug € K such that up — m(z) € L,V z € K.

Then there exists a solution to the GICP(F,6,m,L,K,C). O

- Theorem 4.12 can be proved by a standard argument as in [5, Theorem 4.2]. We close this
chapter by remarking that most of the existence results for GICP rely very heavily on the existence
results for GQVIP. This suggests that we should exploit other approach rather than GQVIP.

5. Applications

In this section we shall give several applications of our general problems. Mathematical pro-
gramming and equilibrium programming are the two major areas of the applications. The applica-
tions are: minimization problems involving “invex” functions, generalized dual problems and saddle
point problems, equilibrium problems involving markets with utility, equilibrium problems involv-
ing abstract economies, generalized Nash equilibrium problems, and quasi-variational inequality
problems of obstacle type. In all these applications, we require relatively weak conditions to ensure
the existence of solutions to the problems under consideration.

5.1. Minimization Problems Involving “Invex” Functions

Recently Hanson [18] introduced into optimization theory a broad generalization of convexity
for differentiable functions on R™ which was called invex by Craven [10]. Let K be a nonempty
subset of R™. A differentiable function f on K is inver if there exists a vector function 7 from
K x K into R™ such that

f(2) = f(y) 2 Vi), (z,9)),V 2,y € K.

Hanson showed that both weak duality and Kuhn-Tucker sufficient results, in constrained opti-
mization, hold with the invex conditions.

We note that if 7(z, y) = ¢ —y, then the invexity condition for f reduces to convexity condition.
An example of invex function is the following (Hanson [18]). Let K = {(z,y) € R3 : 2? +y* < 3/2}
and let function f be defined as f(x,y) = & — siny for all (z,y) € K. Then f is invex with respect
to 7, where

(e, 3), (7, 6)) = ((sina — sin7y)/cosy, (sinf — sind)/cosé).
For more details on the concept of invexity, see Rueda and Hanson [40], Craven [10] and Jeyakumar
[24].
Consider the following minimization problem:

minger f(z) (17)

where K is a nonempty subset of R™ and f is a differentiable invex function with respect to r on
K.

We associate with problem (17) the following variational inequality problem: find z € K such
that

(Vf(z), m(u,2)) >0,Vue K. (18)
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It is easy to see that if z is a solution to problem (18), then z is a solution to problem (17).
Consequently, we have

Theorem 5.1.1 Let K be a nonempty convex subset of R™ and let f be a continuously differentiable
inver function with respect to a continuous function v on K. Suppose that

(i) 7(z,2) =0 forallz € K,
(i) for each fized z € K, (Vf(%),7(u, )} is convez in u € K,

(iii) there exists a vector zo € K such that
limyjy|— o0, cex {VF(2), T(20, %)) < 0.
Then there exists a solution to problem (17).

Proof. Let X be a constant point-to-set mapping from K into itself with X(z) = K for all
r € K. Let 8 : K x K — R" be defined as 8(x,y) = Vf(x). Then problem (17) is equivalent
to GQVIP(X,X,0,7,K,K). By Theorem 3.2.1, the latter problem has a solution. Hence there
exists a solution to problem (17). O

Remarks.

(i) The function 7 in the above example satisfies 7(2,z) = 0 for all # € K. Hence the condition
(i) of Theorem 6.1.1 is not restrictive.

(i1) There are some other conditions on f that will ensure the existence of solution to problem
(17). For instance, if the condition (iii) of Theorem 5.1.1 is replaced by the condition that
V£ is T-monotone on I, then the corresponding GQVIP(X, X, 0,7, K, K) has a solution by
Theorem 3.2.10. Consequently, there is a solution to problem (17).

5.2. Generalized Dual Problems and Saddle Point Problems

Our second application is to generalized dual problems and saddle point problems. A basic result
in optimization theory is that under some conditions, a saddle point of the Lagrangian function
is equivalent to an optimum of the associated convex programming problem satisfying a constrant
qualification. This result has been significantly demonstrated in economic literature (see,e.g., Heal
[21]). This is the impetus of our application in this section. First, let us introduce the formulation
of the problems. Let K and C be nonempty subsets of R™ and R™, respectively. Let ¢ be a real
function on K x C. Let X and F be nonempty valued point-to-set mappings from K into K and
C, respectively.

(5.2.1) Generalized Problem I (GPI): Find (Z,y) € S such that

30(5', g) = inf(x,y)ES {p(xy y)

where
S ={(r,y) : = € X(2),y € (=), p(2,4) = subyer(z) 2(2,u)}.
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(5.2.2) Generalized Problem II (GPII): Find (z,y) € T such that

30(11—3, g) = SUP(zy)eT (P(xa y)

where
T={(z,y):z € X(x),y € F(z),p(x,y) = infyex() ¥(v,y)}

(5.2.3) Generalized Saddle Point Problem (GSPP): Find z € X(z) and § € F/(Z) such that

p(2,y) < (2,9) < p(2,9)
for all z € X(Z) and all y € F(z).

We note that the above problems may not have any solution at all. Also if we let X(2) = K
and F(z) = C for all z € K, then the definitions of (GSPP), (GPI) and (GPII) reduce to the
definitions of (SPP), (PI) and (PII) introduced by Mangasarian and Ponstein [27].

The following lemma points out the relationship between these problems.

Lemma 5.2.4 Let K and C be nonempty subsets of R™ and R™, respectively. Let X and F be
nonempty valued poini-to-set mappings from K into K and C, respectively. Let ¢ be a real function
on K x C. If (z,y) is a solution of the (GSPP), then (Z,y) is also a solution of the (GPI) and
(GPII), and conversely.

Proof. Assume (z,7y) is a solution of (GSPP). Then clearly (z,5) € SNT. Let (z,y) € S. Then
we have ¢(z,y) > ¢(z, 7). But o(z,9) > ¢(Z,7) since (#,y) € T. Thus ¢(z,y) > ¢(,7). Hence

(%,7) is a solution of (GPI). Similarly, (Z,7) is a solution of (GPII). The converse is clear since if
(z,y) is a solution of both (GPI) and (GPII), then

(p(j’ g) = SupyeF(a—:}{p(ia y) = inf:L'GX(i:) g&((L’, g) o
We now associate with (GSPP) the following generalized quasi-variational inequality problem:
Find Z € X(Z) and gy € G(Z) such that
(Voo(z,y), m(x,2)) > 0,V 2z € X(7) (19)

where
G(Z’) = {y € F(CE) : cp(x, y) = SupuEF(xﬂp(xa U)}
The following lemma establishes the relationship between (GSPP) and problem (19).

Lemma 5.2.5 Suppose ¢(z,y) is tnvex in & € K with respect to 7 for each fized y € C. If (Z,7)
is a solution of (19), then (Z,y) is a solution of (GSPP).

Proof. Assume (Z,¥) solves (19). By the invexity of ¢, we have for any € X(Z)

zp(a:,g}) - ‘P('i':g) Z ( thp(;i:,g),r(x,a‘c) ) Z 0.
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Therefore ¢(z,y) > ¢(Z,y) for all ¢ € X(&). On the other hand, since y € G(&), we have for all
y € F(Z)

v(Z,y) < 9%, ).
Hence (2, y) solves (GSPP). O

Thus the question of existence of solution to (GPI), (GPII) and (GSPP) can be investigated
via (19). Consequently, we have the following existence result for (GSPP).

Theorem 5.2.6 Let K and C be nonempty subsets of R™ and R™, respectively. Let X and F be
nonemply valued point-to-set mappings from K into K and C, respectively, and 7 be a continuous
Sfunction from K x K into R™. Suppose that

(i) r(z,z)=0,Vz e K,
(i1) for each fized (x,y) € K x C,(Vgp(z,y), 7(u,x)) is convez in u € X(x),
(i1} F is convez valued, continuous and uniformly compact on K,

(iv) ¢(z,y) is invex with respect to 7 on K for each fized y € C, and concave in y € C for each
fized z € K,

(v) there exists a vector xo € (yex X(x) such that
Mgl — 00, veX(z) MAXyer(z) (Vap(2, ), 7(20,2)) <O,

(vi) there exists a po > 0 such that X(x)N B, is a nonemply convez valued continuous point-to-set
mapping for all p > po.

Then there exists a solution to the (GSPP).
Proof, For each z € K, let
G(z) ={y € F(2) : ¢(2,y) = suPuer(z)P(z, u)}.

It is easy to see that G(z) is upper continuous and uniformly compact. Since p{z,y) is concave in
y € C, by (ii) G(z) is compact and convex for all £ € K. All the conditions of Theorem 3.2.1 are
satisfied. Therefore, there exists a solution to (19) by Theorem 3.2.1. Hence there exists a solution
to (GSPP) by Lemma 5.2.5. O

The following corollary is immediate.

Corollary 5.2.7 Under the conditions of Theorem 5.2.6, there exists « solution to (GPI) and
(GPII). O

Remarks.

(i) It is worth noting that the Generalized Saddle Point Problem can not be approached by any
other variational inequality problem that has been introduced.
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(i) The other existence results in Section 3.2 can also be employed to ensure the existence of
solutions of (GSPP) and (GPI) and (GPLI).

(iii) Recently, Jeyakumar [24] has extended the saddle point theorems to hold for a more general
class of functions, called the p-invex functions which is an extension of the class of invex
functions.

5.3. Equilibrium Problems Involving Markets with Utility

In this section, we shall apply Theorem 3.1.2 to obtain an existence result for equilibrium of a
market with utility. Let us first introduce the notion of a market with utility.

Let I = {1,...,m} and for each ¢ € I, let X; C R™ be a closed set that is bounded from below.
Let a; be a specified element of X;. We call I the set of agents, X; the commodity set of ith agent
and a; the initial allocation of the ith agent. For each i, there is a continuous function w; from X;
into R which is the utility function of the ith agent. Let X = (X;)ier, U = (wiier, A = (ai)ier.
Then the 4-tuple (1, X, U, A) is said to be a market with utility. Let

V={x:2=(2)ier,z € Xi,¥ i,z ;= Z a;}
=1

1=1

be the allocation set and ’

B, ={xi € X; : (p,z:) < (p, i)}
be the budget set for the ith agent where p € P" = {p € R} : Y 7y p; = 1}, the price set. A
point (p*,z*) € P™ x V is said to be an egquilibrium for a market with utility (I, X, U, A) if, for
t=1,...,m '

ui(z7) = max{u;(z;) 1 2; € By« }.

Intuitively, an equilibrium is characterized by the property that given a price vector, there is a

reallocation of goods, such that every agent maximizes his utility function within the limit of his
budget. We have the following existence result for the equilibrium of a market with utility.

Theorem 5.3.1 Let (I, X,U, A) be a market with utility. Suppose that
(i) Xi is convex and there exists &; € X; with &; < a;, for all i,
(1) Yoy ui(xs) is quasiconcave in x = (z;)ier € (R™)™.

Then there exists an equilibrium to the market with utility (I, X,U, A).

Proof. Let Y be a point-to-set mapping from P" X V into itself be defined as Y (p,2) = {p} x
=, Bz’;. Let F' be a constant point-to-set mapping from P” x V into itself. Clearly, Y is nonempty
convex valued and upper continuous. Furthermore, by Lemma 1.6 of [39, Chapter 5], B* : P* — X;
is lower continuous for each 7 under the condition {i). Therefore Y is continuous. Next, let # and 7
single-valued functions from (P" x V) x (P™ x V') into R™ be defined as 6((p, ), (¢,y)) = e, where

39



e is the unity vector in R™ and 7((p,z),(q,v)) = (ui(yi) — vi{@i))ier- Then all the conditions of
Theorem 3.1.2 are satisfied. Thus by Theorem 3.1.2, there exists (p*,z*) € Y (p*, *) such that

m m
> (ui(ef) — ui(2:)) 2 0, V (z:) € ][] Bje.
i=1 t=1

It is easy to see that (p*,z*) is an equilibrium for the market with utility (Z,X,U, A). O

Remark. In Theorem 1.11 of [39, Chapter 5], it is assumed that u; is monotone and concave
for each i. Therefore it can be seen that the condition (ii) of Theorem 5.3.1 is weaker than that in
Theorem 1.11 of [39, Chapter 5].

5.4. Equilibrium Problems Involving Abstract Economies

The notion of abstract economies, which is a generalization of Nash equilibrium problems, was
introduced by Debreu {11]. In a Nash equilibrium problem the strategy choices of agents are made
independently, whereas, in an abstract economy, the set of strategies available to each agent depends
on strategy choices of the other agents. To be more precise, we recall the definition of an equilibrium
of an abstract economy. Suppose there are m agents characterized by a subscript 1 = 1,...,m.
The ith agent chooses an action x; from his strategy set V; C R™. Let V =[]i~; V; C R" with
n =Y ie; n;. The payoff to the ith agent is a function f;(z) from V into the completed real line.

Let Z; be the (m — 1)-tuple (x1,...,&-1,%i41,...,%m) and similarly let V; be the product
Vi x oo x Vier X Vigr X -+ x V. We can interpret Z; the actions of all the others. Given &;,
the choice of the ith agent is restricted to a nonempty set A;(%;) C V;. The ith agent chooses
x; € Ai(%;) so as to maximize f;(Zi,z;). The 3m-tuple [V;, fi, Ai(%:)]2, is said to be an abstract
economy. The point z* is said to be an eguilibrium of an abstract economy [V;, fi, Ai(Z;)]72,, if for
ali=1,...,m,

z; € A;(z]) and fi(2™) = MaXy, cA(z?) fi(Z z).

Thus an equilibrium point is characterized by the property that given the actions of the other
agents, each agent is maximizing his own payoff function over the set of his feasible actions in view
of the other agents’ actions.

We now associate with the equilibrium problem of an abstract economy the following generalized
quasi-variational inequality problem: Find z* € X (z*) such that

(e,7(z,y)) 20, VzeX() (20)
where X (z) =[x, 4i(%;) for all 2 € V, 7(2,y) = (fily) — fi(#%, =:))7%; and e is the unity vector
in R™,

It is easy to see that z* is an equilibrium of an abstract economy [V, fi, 4:(Z;)]2, if and only

if * is a solution to (20). We then have the following existence result for the equilibrium of an
abstract economy.

Theorem 5.4.1 Given an absiract economy [Vi, fi, Ai(%:)]7%, which satisfies the following condi-
tions: foreachi=1,...,m

(i) Vi is nonempty compact and convez,

40



(1) Ai(2i) s @ convez-valued continuous point-to-set mapping on Vi,

(1i1) f; s continuous,

(iv) for each z € V, (e,7(u,z)) is quasiconvez in u € X (2) where 7 and X are as in (20).
Then there exists an equilibrium point for [V;, fi, Ai(Z:)]7%,.

Proof. Let C = K =V and F a constant point-to-set mapping on K. Let 8,77 : K x K — R”
be defined as 8(z,y) = (e,0) and n(«z,y) = (r(z,y),0) respectively, where n = 3 7=, n; and 0 is
understood to be a zero vector in R®™™. Then the equilibrium problem involving the abstract
economy [V;, fi, Ai(%:)]™, is equivalent to GQVIP(X, F,0,m,V,V). By Theorem 3.1.2, the latter
problem has a solution. Hence the result follows. O

Remarks.

(i) Condition (ii) of Theorem 5.4.1 is equivalent to the condition that the function Y v fi(#;, w)
is quasiconcave in u € X(z).

(i1) Our definition of an abstract economy is slightly different from the one in [5] where f; is
defined on V x V;. Also in [5], Chan and Pang did not use the approach of variational
inequality problem to obtain the result of Theorem 5.4.1.

For the case that V; is not necessarily compact, we have the following existence result.

Theorem 5.4.2 Given an abstract economy [V;, fi, Ai(%:)]72y which satisfies the following condi-
tions: foreachi=1,...,m

(i) fi s conlinuous,
(ii) for each x € V, {e,7(u,z)) is conver in u € X(&) where 7 and X are as in (38),

(iii) there exists a vector % € N ey X (2) such that
m
limy|z)|—sc0, z€X(2) (Z fi(&,2:) > 0,
=1

(iv) there exists a po > 0 such that X (2)N B, is a nonempty convex valued continvous point-to-set
mapping for all p > po.

Then there exists an equilibrium point.

Proof. This follows from Theorem 3.2.1 and the note after (20). O

For more details on abstract economy, we refer interested readers to Debreu [11].
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5.5. Generalized Nash Equilibrium Problems

The concept of Nash equilibrium (Nash [34]) was extended by Ichiishi [23] to include additional
joint constraints on agents’ actions which cut across all agents simultaneously. The formal definition
of generalized Nash equilibrium is as follows.

Suppose there are m agents in a noncooperative game characterized by a subscript 1 = 1,...,m.
The ith agent is represented by a sirategy vector x; € V; C R™ (n; being a positive integer), a
point-to-set mapping X; : V — V;, and a utility function u; : V — R where V =[]z, Vi CR"
withn =37 ,n,X =T]2; X;,and U = (u1,...,um). A generalized Nash equilibrium &* € V of
the game GNE(V, X, U) is defined as a point at which no agent can unilaterally increase his utility
function given the constraints imposed on him by the other agents:

ui(x*) Z Ui(xi,f;f), Ve € Xi(-’l?*)

where Z; is the (m — 1)-tuple (z1,..., -1, %41, .. ., Zm ).

We note that if X;(z) = V; for all ¢ and #, then the above definition of generalized Nash
equilibrium reduces to the definition of Nash equilibrium. Let e € R™ be the unity vector and
7:V XV — R™ be defined as 7(x,y) = (wi(y) — ui(zi, ;). We associate with the generalized
Nash equilibrium problem the following generalized quasi-variational inequality problem: Find
z* € X(z*) such that

(e, 7(z,y)) >0, ¥V z € X(z%). (21)

It is easy to see that z* is a generalized Nash equilibirum of the game GNE(V, X,U) if and only
if £* is a solution of (21). We then have the following existence result for the generalized Nash
equilibrium problem. The proof is exactly the same as that in Theorem 5.4.1.

Theorem 5.5.1 Given a generalized m-person noncooperative game (V, X,U) which satisfies the
following conditions: for eachi=1,...,m

(i) V; is nonempty compact and convez,
(i1) Xi(z) is a convez valued continuous poini-to-sel mapping on V,
(iii) u; ¢s continuous,
(iv) for each x € V, (e, 7(u,x)) is quasiconvez in u € X(z) where 7 is as in (21).

Then there exists a generalized Nash equilibrium for (V,X,U). O

For the case that V; is not necessarily compact, we have the following existence result. The
proof is the same as that in Theorem 5.4.2.

Theorem 5.5.2 Given a generalized m-person noncooperative game (V, X,U) which satisfies the
following conditions: for eachi=1,...,m

(i) u; is continuous,

(ii) for each z €V, (e,7(u,)) is conver in u € X(x) where v and X are as in (21),
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(iii) there exists a vector 2° € ey X () such that

My —co, sex(e) (O (wil2) — u(af, 2:))) <0,

i=1
(iv) there exists a po > 0 such that X(z)N B, is a nonemply convez-valued continuous point-to-set
mapping for all p > po.
Then there exists a generalized Nash equilibrium for the game (V, X, U).
Remark. There is no differentiability requirement on the utility function u; for all 7 in Theorem
5.5.1 and 5.5.2. The reason is that we deal with each agent’s utility maximizing problem directly
without using the first-order optimality conditions.

We refer interested readers to a survey paper by Harker and Pang [19] where there is a thorough
discussion on the Nash equilibrium and generalized Nash equilibrium problems,

5.6. Quasi-Variational Inequality Problems of Obstacle Type

In this section we shall be concerned with the quasi-variational inequality problems of obstacle
type formulated as follows. Let K be a closed convex cone in R* and <g the partial order induced
by K, that is, x <y y if and only if 2 — y € K for all z,y € R*. Let f,m be functions from R"
into itself. The quast-variational inequality problem of obstacle type is to find * € R™ such that

" <g m(z"), {(f(z),z—-2*) >0, Vz <xg m{z*). (22)

It is interesting to note that if X' = R} and m(z) = 0 for all # € R", then problem (22)
is equivalent to a nonlinear complementarity problem. We now associate with problem (22) the
following generalized implicit complementarity problem. Let X be a point-to-set mapping from R"
into itself defined as X(z) = m(z) + K for all 2 € R". Find z* € m(z*) + K such that

f(@") € K7, (f(z"),&" — m(27)) = 0. (23)

It is easy to see that problem (22) is equivalent to problem (23) by Lemma 4.1. We have the
following existence result for problem (22).

Theorem 5.6.1 Let K be a closed solid convex cone in R™. Let f and m be continvous functions

from R™ into itself and X(z) = m(z) + K be a point-to-set mapping from R™ into itself. Suppose
that

(i) there exists a vector 2o € yern X (&) such that
hm”z”-——-roo, reX(z) (f(é!?), Lo — .’E) <0,

(i1} there exists a vector ugp € R™ such that up — m(z) € K,V z € R™.
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Then there ezists a solution to problem (22).

Proof. This result follows from Theorem 3.12 and the note above. O

We note that the condition (i) of Theorem 5.6.1 can be replaced by the condition that f is
strongly copositive or strongly monotone on R™. For the quasi-variational inequality problems of
obstacle type in a reflexive Banach lattice, we refer readers to the paper by Dolcetta and Matzeu
[13] and the references therein.

There are other areas of applications of the theory of complementarity problems, for exam-
ple, problems involving fluid flow through porous media (Cottle [7]), journal bearing lubrication
problems (Cottle [7], Crank [9]}, elastic-plastic torsion problems and maximizing oil production
problems ( Bershchanskii and Meerov [4]). We note that solutions for the above problems obtained
by the approach of the theory of complementarity problem are in fact approximate solutions using
finite difference method.
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