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6l3a--—1 1. INTRODUCTION ARD STIMARY

It is a pleasure to take part in this “Symposium on Group Theory and
Its Applicetions in Physics™ held in honor of Marcos Moshingky on the
occasion of his 60th birthday. The subject of the symposizm 15 one to
vhich Marcoa, and weny others of us hare, have devoted much effort amnd
interest, and a stubject not as well sppraciated, wvhen we begsn many ymars
ago, as it is today. This chsnge iz dus not only to these conbined
research efforts, but aleo to the excellent organizational talents of the
UNAM group ynder Marcos in arranging many successful colloquia over the
years to proselytize and augment the group theoretic viewpoint.

I would like to discuss today the applications of group theory ~-
and hence symsetry techniques == ko nuelsar and hadronic collective
motion. Much of what I will discuss will ba & review, but not all,
for I hope to preseat & few new results and spacial aspacts.

My introduction to symmetry tachniquas, like most of us here in-
cluding Marcos, stemsed from the work of Wignar, beginning with angular
momentun theory and lesding, through Racah'a work, ineo general Lie
groupa, The fact that the (orbital) harmonic oscillator shell wodel 1s
SU(3) invarisnt became physically meaningful wirh che Elliott rotational
model. One of the keys in elucidating this structure was the Bargmann-
Moshinsky eeriesleZed on the group theory of harmonic oscillators in the
early 60's. Thepe papers brilliantly exploitad techniquas that have been
used repeatedly in the years following.

Theve are precisely two such techniques and they may be elegantly
codified as (2) The Jordan-Schwinger Hap,“*% and (b) The Dirac Kap.5
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adfay: 7he Jordan-Schwingsr Nap takes o *n mactrices and wrps them
ines Bilinesr prukuetl OVeE 1 boson operators. To be precise let (a ‘.E’)
danote Loson opstators (in Dirac's originsl notation) chbeying:
ﬁ*.ljJ = 8,y with all other comutators 2ero. 1f (5‘“)1 are a set of

n X0 patriess vith auserical elements A:S’ define the mapping J by:
1: P s %: My iy o (t.3;

Then ona has the elewantary (but extraordinarily useful!) result:

The map J preserves cpemutation rolations:
J(IABD = [3{A),J(B)] . (1.2)

Exprassad In words, the operators {d"',} oshey the same commutscion
ralatioms sy the numerica] matricey {Ac“} ). Ceneralized to n° boscns
{u indapendunt coplas of m boscns), this Tesult is definitive for all
izraps of the unitary grovp U(n) and aan be extended easily vo compact
forms of the orchogonal group {as well a4 other Lie groupz).

ad(b): To defins the Dirac mapping requires that In addition to
ths n-hoson operators {a, ,E‘I we construet the 1xn datrix . 4
(8y4008, il...in} % 4, {ts tronspose R, and the matvix g = ( “).

i, 0

The Dirac mupping of the 2nx In quearical maerix A is then defioed

vhars ‘n is the nxp unic Dateis,
byt

B: A=A + % B AL A THaM . 0D
Ay %1.1.h,l"u TRTI B

If we vestrict the antrices A,B,... £o 2n%n runerical mstrices of

thu form BN, whore N 18 symmetsic, theo one finds:

4 mmsm g
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B{A,BD) = Ip(A),D(B] . (1.4

For matrices of the restricred form, the Dirac operator mapping Dressrves
comewtation relations. Ths Dirac operator mapping thus has tha same

basie property as the Jordan-Schwinger boson operator mapping, but come

stitutes a generamlizatiorn of the J-5 map in that the matrices involvad

are larger (2nx2n fostead of nxn). The price one pays Zor this

generalizarion ia that the admissible matrices must have a Testrictad

form. (Por matrices not of the restricted form, the Dirac map yields :
& c-number and not an operator,) |

The Dirac map is especially adapted to the non-ctspact wymplectic
group 5p(2n,R) and to its double cavering, the metaplectic group. It
may also be adapt2d to graded Lie algebras.”

These two maps underlie a huge amount of the currsnt group thaoratical
applications in phyt;ics (and lately even in mathematics); both zaps &re
now used routinely without much notiece or 'comnz. Daspita this famili-
arity, I thought the present audience, espacially, would snjoy seeing the
structure codified in thir elegant and easily comprehended way. (It is
interesting to noté that the maps havs {nverses.®)

Let me turn nov to my main theme, symmecry and ¢ollactivs motiem.
Following the lizersture, I will distingoish twoe ways of exploiting
symmetry and discuss ssch separately in succeeding secticne {Sactions II
and IIT). In the course of doing so, 1 will veview the cycrrantly
interegting interseting boson model and its velation to the eariier
Bohr-Mottelson models {Soction IV). The divect spproach to collactive
wotion will be discussed in Section V, and the recent criticisas of Louck,
concerning thic comstyuctiom, will be discuseed in this concluding section.
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IE. THR STANDARD SYMMETRY APPROACH TO NUCLEAR COLLECTIVE MOTION

By the standaxrd symmetry approsch, we mean the comstruction of a
Nesiltonisa which is invarisnt (or sesrly so) uader a group of symmetry
trsmaformations; group theory then sllows one to construct basis states
renlizing tha syamatry, and explicit matrix elemects for physically
interusting trausition operators? (themselves classified by the symetry).
By "“saarly invariant™ ue mean there may be smal! perturbations by non-
disvarisat pleces of the Hamiltcnien, which pieces axs again claspified
and explicated by the symmstry. This is cartadnly complabely arandard.

4, fhe Bobr Nodel

One of tha first such nuclear models (for N and 2, even) is the Bohr
traatment?1® of the nucleus as a liguid drop. The radius of tha drep is
azpanded as & lagendre saries in 'rm and the expansion truncated te L=O
aad 2 only, (L=) is eliminated by the center-of-asss constraint.) Thus:

reaed q Y6 (2.1)
[7]
€ = a_, » (reality condition) . (2.2)

The model focusses on the five quadrupolar varisbles, { qul. and
their conjugates, {Ilql, and takee the Hmniltonian to be approximately
thnt of a five-dimensional harmonic oseillator with a common fraquency.

The spectrmm, in lowest cvyder, thus sgrees with the frequently
obsarved pearly barmonic spectrun, pear closed shells, vhich typify the
abarecnic five-dimensicnsl vibrator.
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This model i heuristfe and caken to be a realization, approximately,
of incompressible guadrupolar f']ﬂl' defined by quudrupolar surface vibra-
tionms.

Group theoretically the mndel is that of brokan SU(S) symmetry, and,
in accord with this view, the dynmmice were greatly extended by Greiner,!!
among others,'? vho used as the madel Bamiltonian all possible S0(3)
Invarimnt interactions constructible with four or fewer bosons.

The group theoretic classification of the states via the chain:

S5u(5) > S0(5) 2 5003} > 50(2) was discussed hy many, notable contribu-
ticos!?»!% baing made by Moshinsky and his group, ospacially to the
tranaformation coafficfents defined by this subgroup decowmpositicn.

{(The explicit guantunm numbers defined by this chain are given below in
Saction Il=-g.)

b. The Bohr-Nottelson Unified Model

The liquid drop model of collective nuclear totion is characterized
by irrotationsal flow and {as discussed below) small moments of inertia
(!uq). At the opposite axtreme for collective nuclear motion is rigid
Body motion, vhich in che Bohr-Mottelsom approach!® is maodeled by a fixed
nuclear vave function defined in the intrinsic frame of -he rigid

rotator., Thus one has a wave function of the fonu:

v e ni:;(“l]) Yintrineic * @3

vhich implies an sdiabatic splitting of the internal motions (x!.ntr:l.ns:l.c)
and the rotational rigid body moLiom (D;‘;) with a K-quantum oumber defined
in the intrinsic frame. The adiabatic condikion, on which the splitting
18 based, azssumes that the rotational motion is very slow compared to the

internal motions,
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Bacause of the quantization of angular momentum an arbitrarily small
rotational frequency cannot be assumed. It follows that the adiabatic
aplitt.og orf the wave fimction cannot be & general property.’s An alter-
aative way to view the physice of this situation is to uore that the
adiabatic splitting implies chat the relation between the body-fixed
frame (the frame in which Xype 18 defined) and the laboratory frame is
well defined. But to define precisely the angular variables relating to
the twe (classical) frames implies by the uncertainty principle that
unlimitedly large angular momenta are involved, That {5 to say, the
intrinsic wvave function is required to be essentially unchanged even for
large rotational excitatfons. Using still other words, the adiabatic
aplitting necessarily implies that the rotational bands (effectively)
do not terminaste.

ilimitedly large (rotationsi) bands are characteristic of non-
coapart groups (and, accordingly, infinite~dimensional unitary repre-
sentations). .

The group-thesoretic stracture that cor:eaponds to the adiabatic
Bohr-Mottelscn unified model is the woncompact group n5@50(3} as found
by U1,18 or more properly, the covering group BS@SU(ZJ as found by
Veaver et al.!? This group has a rather elementary algebra consisting
of a gensral angular momentum operator J (with JxJ = 1J} and a quadrupole

operator ( with commuting componects, (Qu.Qu.] = {J, which transforms as

212
M

grovp include all koown examples (of both integer and of half-integer)

a guadrupole ynder J, 1i.e., [Jm'Qu] = 1C "y Qu" The irreps of this

quadrupolar rotaticnal .anda, and these irreps automatically obey the

discrete cymmerry atructure [Dz) found earlier by Landau {molecular) and
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by Bohr (nuclei). The X guantum numbe-, as one might expect, is well-
dafinad,

A group-theoretic model for terminating band structure was found
conaiderably earlier by Elliott:'® this 18 the compact group generated
by the orbital angular momentum L and & quadrupole operator {, oheying

the SU{3) algebra:

X o 202
LxL = 1iL H [Lm.Qu] 1Cump, Q\l'
and (2.4)
221
[QU.QU'] - ic“u.m Lm .

Let us remark :hg: these group—theoretie atate classification problems
are by no means always straightforward! The labeling induced by
SU(3) O 80(3) is a classic example of the difficulties that can occur,
This problem was given a definitive discussion a few years ago by the
combined efforts of the Montreal and Moshinsky UNAM groups in a poper?®
fittingly entitled "Everything You Always Wanted to Know About
SU(3) > so(3."

Racah showed very early that an (orthonormal) labeling by a polynomial
operator in the SU(3) generatore was not posoible. WNevertheless Elliott
gave a (non—orthogonal and approximate labeling in terms of a "K-quantum

number," equivalent to the heuristic basis:

0 < K 5 oic(p,p~q)} , K = even integer
ipqol O K 5 L s max(p,p-q) , (2.5)

If K=Q , then L = even integer only .

The bands in the Elliott model must terminate, since the group is compact

{and hence the unirreps are finite dimensional). Accordingly the values

e e D
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of the svailsdle spgular moments are limited in size; it follows that the
K-guantun mumber is necessarily ill-defined physically.

This is the physical reasonl+2l pehind the difficulty of the labeling
problem for the subgroup chain: 5U(3) D £0(3).

c. Zhe Interscting Boson Nodel??

The Interacting Boson !b:lel’ {IR) for even-even nuclei hes a com—
plataly diffarent physical motivation. The underlyitg physical atructure
is tha shell modal, and attamtion iz focussed on the (2N) nucleona outside
closed shells. (For shells more than half=f41led, one uses nucleon holes.)
Thase nucleons are than ussitmed to form pairs (NN or PP pairs of unit
isospin) having either L= 0 ("g-bosons™) or.l.-2 ("d-bosons). These
"posoma" « N in mmber and of six types (ll-s.s-d's) == are agsumed to
intaract as true bosond forgetting their origin as fermion pairs.

The Emniltenian is taken to be rotationally invariane and to have
all possible terms conptrustible from fanr‘ aor fewer bosons. There are

nine possible terms and thim genersl Hamiltonian reads:24

B =c, ad+e,dd

a
ad)* x (dxdl
* %-4 afgnatx @'

+3 [ G n +ne]’
. 0
+ 82[(3 xd) x (d a) + h.c.]
+ co[(?n)z (3)2] + cz[cds) »d 3]0 . (2.8)

$ Actuslly therc are two sodels: IBM-1 and IEM-2, 1In the former’? no
distinction is made hatween proton an? neutren paire whereas in IEM-2
the two types of pair are distinguished. Only IEM-1 enters in the
sequal, but it is easy to extend the considerations to IBM-Z.
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Group theoretically the interacting boson model i1g a realization of
broken SU{6} symmetry. Accordingly we must selecr a subgroup chnln for
the breaking pattern, and then use standard methods to lebel atates and
consiruct matrix elements.

S5U{6) symmetry is vnusually rich in subgroup chains and there are
threr. chaine of important physical interest:

(a) Anharmonic vibrator:

5U(6) 3 Su(5) 2 50(5) > 50(3) D s(2) ,

(b) Axisymwetric rotor:

BU{S) O Su(3) 2 s0(3} O s0(2)

(c) y-unstable m_tﬁ{gz-"

SU(E) 2 BU(4) = SO(6) D 80(5) D SO(3) D 50(2) .

For each of these chains, the general Hamiltonian of Bj. (2.6) may
be specialized, such that a closed form results in terus of the linear
and quadratic (Casimir) invariants of the subgroups in the chain,2™

The labeling of the states in sach chain may be given axplicitly,
but thu most convenient labeling yields non~orthogomal states!d auch as
encountered firat in the Elliott model. (The group theoretic technique
of “"rraceless bosons" is useful here.26)

It is important to note that not only is a closed form availsble far
the energies, and a complete labeling of the atates, buf analytie
expressions can be given for matrix elements of transition opera.:ora.”
This wakes it posnible to survey large quantities of datas extensively
for trends in the parameters of the Hamiltanian (which depend on N and 2).

The labeling of all states defined by the three subgroup chaing

above are given in the following diagram:
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SU(R)
irrep: (N 6]6
Su(5) SU(&) sSu(d)
1rnp- In, 6]5 1!'!01" [eo00) [p g ¥1% [p-r g-r O]
.ntu. vesesl .II-Z."..D orl »g,v aTe all parti-
tions of 2N inro
lexical rriples of
even integers.
50(5)
irrep: (v,0)
v = nd’nd-2'1|-|0 or 1
veguo-l,...,0
50(3)
irrep: (L)
$0(5) Chain SU(3) Chatn

partition v = 3a+) € < K £ mladq.p-q}

For each possible & « gven integer.

partition,

L ® 20,20-2,24=3,... 3 K s L 2 uax(q.p-q)

(L = 2)-1 does not occur) If K=0, only

L = even integer.
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d. Howmthﬂrlde;ﬂgﬂgh“tﬂ_ﬂghsmmm
Thie question is hath interesting and topical — a sesaion of the

APS weeting in Baltimore (April 20-24, 1981) vas devoted to answering it. ‘
(Iachello and Arima in nating the existence of the anhsrmonic vibrator

chain ook the spwential equivalence of the sodels as & truism from the
beginning.) The analyses at the APS mesting shoued no clear conpensus.

Klein, 11 and Vallierés, for exsuple, asaart2® that the two modela are
“completely eguivalent” wheress, by contrast, Gfimora and Feng insist?d I
that “"the two models are demonstzably not eguivaleant."
The existence of auch'contradictory poaitions reflects the fact that
there is no commen view as to precissly what constitutes each .I the two
models. Klein et al. (disavowing totally the liquid drop origins of the
Bohr model) define their "Bohr model” to allow arbitrary non-polynomial
boson interactions and, mors importantly, restrist the Hilbert space to
a frinite basis (fixed for a givan nuclaus). The ralacion betwean this
"Bohr model" and a "generalizod IEM" (sleo allowing arbitrary interactions)
is shown by an aquivalance of bases, resiized by means of a nonlinear
(Holstein-Primakoff) boson mapping (sea Balow).
By contrast the Gilacve-Femg sssertion is hased an the fact that
the Bohtr model has an unbounded spectrum, in cleat contrast to that of
the IBM, This viev points to s valid physical dietinction: ths quadru-
polar quants of the original Bohr wodel are unlimiced, vherese the SU(6)
quanta of the IEM are fixed for a given nucleue by the mumbar of valenca
pairs.
But mathemstically, the twe wodele show very close Telatiomaldps.
Cilmore and Feng point out that the snests, Bq. (1.1), does not in fact
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consarve volumse, so that to consdtva voluse & dymamical L= 0 term must
(in thin view) be sdjoinad as a phyxical varisbls [equivalent to adjoining
an s~boson; this chen lesde (non-linearly) to the IWM]. Techmically this
is correct Ctaking Bq. €2.1) se exact] but <« s¢ we show in Section IIX
== 18 a adsresding of the physice! dctually the anwatz given by Eq. {2.1)
is sisply a poor spproximation for incosprassible irvotstiomsl flow with
2arge daformations; the s~boson in fact enters — av we show later — to
allow the possibility of volumeschanging monapole deformaciens!

1f cou eisply adjoins an L=0 dynsmicel veriable, s, and imposes a
sonservation coudition en tha {total) mumbar of bosoms {this is a bamis
(or wave function) comatraint) then we ara lad at once to a nonlinear
tenlization of U(6) symmatry (snd the 1MM) involving explicitly only the
five d-bosons:

U{3) generators! “u avl i Ba¥ ® 1)uesd (2.74)

adZieionnl U(E) genmerators:

5 1/2
‘ua“u["‘fl-:‘uzu] T VR T P {2.7b)
i 172
’ ';u win- . uniu] 'a’n boB® LS (2. 7c)
3
s ;

- (ll - dn 3”] {conatraint on basis) . {2.1d}

Osa seem in zhia procedure tius origins of (and the vessons for) the
assumptions underlying the Klein et al. sualysis. The existence of this
roalinesr mapping relating the two wodsls has been woted by mamy.¥0™33
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It ie vot surprising that thig extunsion of the Bohr model yields
the IBM; in fact, Janesen, Jolos and Donau’® used preciecly this peth to
develop the “IEM® in 1974, prior to the Isciwllo-ATims introduction of
thelir wodell

The relationchip batwtdn thecs owe madels was sasiyzed by aevevsl
authorn® =36 by the mothod of cuherent gtates to yiald the clagsicsl limit
of the IBM In the form of & potentidl evsrgy surface {involving the
intrineic mhape varisblea): coupavison with the Bohr modsl potantial
enorgy can then be made directly, including all gymmetry limits of the
iB¥. The method of cohersnt states is an importaat group-thscratic
technique?? for analyeing symmtry structures but it would CEETY us too
far affeld to discuss it hare.

In the final sualysis the aquivalanca or not af the two aodele is
a matter of definition (and pavyonsl taste)., Suffics it to say, both

models are usafyl and reflect quite differsnt physical visuwpolints.
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1IX. TAY KINEMATIC SYMETRY AFPROACH TO COLLECTIVE MOTION

The Bohr Mudel and the Interacting Boson Modal have both been
diccuseed as instunces of the standard symmetyry approach to collective
motion in the precading ssction. Thers is, bowever, an entirvely different
spproach for exploiting symmetry. One begins by focusaing attention on
certain phyaically dmportant operators {observading) which generate the
symmtry. The Haniltonian i assumed to be & furction of these operators,
but it need not be an invarisnr. This sssumption alone suffices to ensure
thar sny multiplet, characterietic of the symmerry, will at worst be
split by the Namiltonian, but not mized with othor pultiplets.

One thus starts with s set of oparatcers that cbey (eyunl time)
covwutation rclations characteristic of scme algebra. These operators
are identified with physical :ransition aperators shich, acting on a
siven state, uce up most of their strength in transitions to & few nearby
statas. The algebra may de such that (bacsuse of dynamics) the statjonmary,
or quasi=atationary, srates £3ll into a fev {unicary) irzreducible reapre-
santations of the group. This approach, which is lavgely attributed now
to Gell-Mann bed been partly davelopal earlier by Lipkin and Coshen,??
and aven earliar by Towonags.?®

The focus upan transitive operators o8 generstors of the oymmetry
has one espact that deserves emphasis: commutstion relstions are
kingmatical statemsnta, mo that the algebraic structure ia preservad
indspendantly of the dynamics of symmetry breaking.

Following the model by which the wesk snd elsctTonagnatic eurrsntp
wars sxploited, Dothan, Gell-Mann, and KHe'snan conpidered the (aymmetric)

EneIgy-momentus tensor, which couplas to gravity, and showed that,¥® in
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“he quarh nadel, the time-derivative of the quadrupole moment of the
zero-zere component 3f this tensor and the orbiral sngular momentum close
on the algebra of sf(3,Ry . This is the grovp of volume preasrving
deformarions and rotations of thres-space.

Tor nuclear and hadronic collactive swotion it is intuitively clear
that the quadrupol. motients ars inmportant cperators, and & crucial point
is how t> tyest properly thase deformatiomal degress of frsedom. The way
to proceed has slready bast faade clear in condensed marter phyeics vhere
quantal teeatments of collective phenomena such as sound waves, plasms
oscillations, and the like are importanc. 4nme Identifies the apprapriate
flow pattern of the desired collective motion and constrzucta the corres-
panding generator M9l

Congider for the asmant twe dimanaions. Using the velocity potential
¢ - % (xz- yz) one obtains & voluma prassrving irrotational flow. (The
flow changes a region bounded by & eirele into an elliptie boundery,)

The generator tor this flow is the operator: N & [(T4)+V & h.c.] which
bac the form: NI = xp, - yp’-

To apply this to auciear collective m0tion (in three dimensions) we
obperve that ¢ is wooe other than a quadrupole oparator, so we comsider
the tozal quadrupole moment genarated by the nuclecns (relative to the

center—of-nass):

-
Q" - u;q:n) » {3.1’

ad construct the correpponding flow gensrator:

N
B, 2 [(v}"’ )i n..c.] . Q.2

nel
ie1,..3

-
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The five cperators Ru Senefate, under comutation, the Lie algebra
o2{3,R), ubich containa, in addition to the five R, the three angular
oEentun operators L. The eotresponding nop-couwpact Lie group ia the
stoup of volumeepreseyving rotations and shesring deformations of three-
spaca: pracisely the collective motions one would sssociste with nucled
or hadrons if composed of ireompressible fluid marter.

Lat us make & paries of remarks in place of an extended discussion:??

Memazk 1: Tomonaga showed that in 8 Taylor teries spproach to a general

collactive Ramiltonien it was alwayy poswible to ensure that

[‘ = Teollective’ Q“] «0 (3.3

wvhern T is tha collactive kinetic energy and Qu the collestive

collective
coordinate.

This is lqu.l\'l.llllt” to tha Gall-Mann “anti-contraction” postulate:
: &
LA [a.q"] . (3.6)

which defivas the deformation generators as time derivatives of guadrupole
collestive coordinates.

Aemark 2: Tha Gell-Mann -- Tomonags result [Eqe. (3.2), (3.3) and (3.4)]
1s ot an arbitrary choles but is in fact essentiel for a physically
meaningful pepult! This can bx geen group theoretically in thie way:
cons’dar tha quadrupole operators Qu and rotstion cperators L &8 genere-
tors of a group having the algebrs Ay

If the grouwp is compact [S0())]) then L'L 4 Q:Q {e an invariant, ao
that the satrix alemsnts of Q secessarily decrease, snd finslly cutoff,

4a sy given irvep, as L incresasea.
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1f the grcup is non-compact, them LeL ~ Q:Q {5 invariant and the
matrix elements of Q increase without limit es L increcses! BSince the
(mass) quadrupole G is proportional to the chargs quadrupole, such an
incresse [in BE(Z) ualuea with L} would be in flat contradietion to
experiment.

Rote how the Gell-Mann -- Tomenaga prescription neatly avoids the
dilemma: the guadrupole group gensrator N is not Q but rathar %[II.Q:I

and hence has for matrix elemanta!
N> = (&B) <Q> (3.5}

Thus the rise in <T) with L is opposed by the increase in AE wich L, and
the resulting comperition can conform to experimsat. (Tha rigid body

limit can be obtained precicely for example.)

Repark 3: It would be reasonable to sdd to the algabra of at{3,R)

generated by {L,0} the operators Qu also, but this wen’t work! {Group

theoretically one sees this from the fact that st(3,R} hes ao (non-

unitary) five dimensional irrep.] One pust adjsin the slament

QO - % r?;i {xf“))z, {the trace of Q), to obtain a closed algebra.

This yields the collective motion proup, CM(3), introduced by Cusaon, 2
Since Q; is a scalar under rotations, we ses that ve are fore. !

purely group theoretically to generalize?? from "d-bosons” (Qu) by adding

noncpolar (QD) Ys-bosons.”

Remark 4: The collsctive flow correspunding ke QD 15 radial; the
associsted generator is the dilation operator:

n - 12:2 3(:&1“) 91“) + h.c.) . {3.6)
i=1,2,
=1
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Thus, step-by-step, symmetry techniques force one to consider a
15-parameter ciilective motion group, @ 6L, R), as sketched in the
following diagram:

quadrupole Gell-Mann shearing st{3,R)

(mntn ) pnr——— | generators: mm algebra

Tempnaga
% My

dilacion
— Gell-Hann ,
action on (QO Tomonaga (Slﬂe;ator.)
qQ, s

The oparatora {qo.qy.nu.no} generate r® © GL{}.K).

Remark 5: Llet us omit the dilations and consider tha 4 generators of
oM(3) = ®° @ SL(3,R). There are two invariants of CM{3): a
(w::llme)2 £ A gnd a vortex-spin v. [These invariants are analogs of
the (mase)? end intrinsic spin s of the Poincare group.)

Vhat is the physical mesning of tho vortex-spin?

To answer this,” let us note that the S5L{3,R) group is realized by
the set of all 3x3 rea)l unimodulsy matrices under matrix muliiplicztion.

A peneric element M of the group may be written as:

H « R&aS . (3-?)

1 3asY) undn

shere R and S are roal 3« 3 rotation matrices (R = R
1s 3+ 3, diagonn] and unimodular. (Thie form impties that M 1s unimodular.)}
Space-fixcd rotatfons, ganerated by the angular momentum operators L,
correapond ta eulciplication of M on the left by the matrices R. Body-
fixed votations correspond to multiplication on the right by §; the vortax-

§pin overators X aro thwe qenerators of these rotations.
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r«early the transformations generated by L, and by & , commute;
moreover each cbeys the comtsutation relations of an mgular momentum
{preBibly with veversed sign).

Oparaticnally the vortex-spin eigenvalue v is generated (in anelogy
with the intrinsic spin of the Peincare group) by rotaring to the intrinsic
frame, deforming to sphericity, and measuring the angular tomentum (v) in

the resulting analog to the rest frame.

Remarkx 6: The smallest simple group containing the graup n‘ @ GL{i.R)
is the syuplectic group $P(6,R) (or barter its covering, the metaplectic
group) of canonical transformationa“3 in threa-space. Thim ia the group
studied in the collective motion context by Rowe and Ronenntul."" by

Sternbers,"S and by Gulshani and Volkow."6

L
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IV. RELATIONSHIP BETWEEN THE TWO STMMETRY AFPROACHES

At firat glance, it might appeas thet the twe symsetry spproaches
are completely smrelatsd, for the symetry group in the standerd approach
4s compact vheress in the kinamatic epprosch the group ie non-compact.
Yot on closar malysis, thare srve somg rvelstionships.

‘The zalstion dbstween the Bohr Modol and the Collective motion group
C4(3) has been discussed by Tomonaga® (gn two dimensfons) and by
Hoavar ot al.?0 gore ganerally. This velatlcaship is thst of group
contraction, In the limit io which the slisar gemeraters become large,
and the opsrator Qo as well, one findr thats (1) Qo comoutes with
everything; and (2) the opsrators nu and Qulqo becema conjigates. Thus
wu have Tecovazed the knov. rasult! a cantragtion limit of CH(3) yiclds
quadrupole besons (“debosons®), and thely conjugetes, which ere the basis
of the Bohr model.

What ia the relatien to the Interacting Bomon Model? Here we must
cbtain some naw rTesults,

lat us recall that in CM(}) we wore forced to adjoin Qq to the five
quadrupsle opsrators, Qu‘ Correspondingly the flow apsoclated with the
operator Qo fozesd the adjunction of the genorator no, the dilation
oparator (volume changes) oo that ono obtaingd the algebro R‘@ GLE2LR).

1t s ot quit - stradgatforward to find the controction limic now.
Pirst us mudt take R, to be large (...,"’), Secondly, (taking 0 hint from
the non-relagivistic limit of Py in the Poincaré rlgebre) we sust take
the limir of Qq in the form: Qo-c-lﬁo-l-u,vbuucounc-nmr.

& i» an opevacor, and £ + 0 in tha limjit.
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The operator N, commmutes with the at(3,B) algebrs, so thess
commtation relations arée unchangéd in the limit. Thus only the com-
mtaticn relations with the Qu. qo ata at issue. For these we have:

[Ror 0] = 588, + m=0,,.8 . (e.)

. Huleiplylng by € (for m=l,.,.,9) and by 1 (for m=Q)} wa abtain in the
Limit:

[ngq,] = © , (4.2)
[Rpes] = shsy (5.3)

{It is cruciel to note tha [no,s'lzoi = 0 for {4 o c-numbar.)

Thus we obtain, ia the limit, six bosons and thair conjugates.
(rru and Qulﬁo) -- d-bosons ead (N, asd sf{o) == the e~boson.

We conclude: a contragtdon limit of the rollsctive motion group
with dilations {116 () GL"'(S.:I!) ylelds precisely the » and & bosen
operators of the IBM.

This is an interesting == aven if not unewpacted! == vaault fop it
shows that the inte:zacting boson medel simply relaxss the Incompressi-
bility copdition in the original Bohr-Mottelson traatment of collective
nuclear flow.

Let vs conclude thir section with two remmks:

Remack 1: The aymmetry group of the Bohr-Mottelscn unifisd model ‘rigid
rot tiox, sdisbhatic model) 1s a subgroup of the collective motiom groip
oi(3) - n"@ SL{3,B), chat ga, to say, tha group x’@ 8U(2) 1s con-
talued 89 a subgroup. (The adjunetion or not of dilarions is of no
concern for the rigid body limie.)
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Aemark 2: There is a quite different way to find & relationship batwean
the two syametry approaches, this time in rerms of the spectrnim. Tha
condicton thst (im th= kinematic approach) the Hamiltomism split Dut not
mix the states sesns, in affect, thar both approaches deal with the same
set of states but organice the spectrum Jiffersntly. Coneider SU(3)
symmtry va the kinematic SL(3,R) symmetry. Both symmetries deal with
the same abptiract ict of angular momentyn states: in the harnonic

15120 3U(3) shell modal thess are the familiar SU(3) D S0(3) etates
for [n 0 0). SL(3.R) acting cn these sexs ytates, orgmizes them
"wartically”: all Le0 states are made into coherant states, similsrly
for L=2, Lwd,.s. - This y.:1ds an SL(3,R) frvep: the band 0,2,4,..
with a contizuous quadrupole {invariant labeling) parsmeter. The odd
angulsr mcmenta bucasy the irrep: 1,3,5,... . This relationshlp batwesn
Elliatt SU(5) end kinewstic SL(3.B) shous how the interacting boson model
iz to be related zo the kinemstic sysmetry approach of Sp(6,K): both
Approathas srw Daved op the haracnic oscillator shell model states, the
IN using compact BU(6) symmetry, while the kinsmetic approach ezmbeds
8pl6,R) as a subgroup in the non-ceapact 5U(3,3) group. Nota that the
covaring group ie spinorial in the latter approsch 8¢ that half-integer
axcitstions sre cbtainable as well.
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V. THE DIRECT APPROACH TO COLLRCTIVE MOTION

Tha digect spproach to wuclear collactive motion attempts to intro-
duce collactive doordimates into the muclear Hamileonisn vis a (possidly
fmplicit) coordinate transformetion, The prototype for this fa the
transformation to center-of-mags coordinates.

A very slegant realization of this approach was developed by Brian
Buck {n the aarly 70's, but was oot published® until 1979, We will
sketch these developments in order to show, first, bow nicely they accord
vith the symmetry spprcaches of Ssctione I1 and IIX and, second, how the
copcept of vortex-spin clavrifies the problem of the moment of inertia,

Tha key to Suck's development i{s to regard the coordinates of N
particles iIn three-svace ag 4 rectanyular I xN matrix: M= (Hm) - (ri"))
that ds, the mateix elenent (My ) fe the 1th coordinate of the particle .
Such a matrix atlows one to define tws “guadrupoles”: (a) Q =MH ond
W =i .

The I x 3 matrix Q ip precisely the uaual guadrupole array (vhose
elsmaris are Bums over the N particles) with tr Q = Qp s defined earlter.

“he NN matrix @ is & "quadrupole” marrix in "particle labsl space,”
({The matrix elsneats of & ara aums over the three spatial ccordinates.)

Ay Teal, aymmerric, matrices both § and & can be brought to diagomal
fora by a real similarity transformation. The three sigenvalues of  are
just the thres quadrupole moments (A} defined in the intrinsic frane.
The eigeovalues of 2 ave surprisingly simple! Thay are just the three

eigenvalues of ¢ with all othar sigenvalues zero, WUa orient particle-

§ The vorcex=gapin coucept vas daveloped and added fn tha imcerim.
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ladbel space o0 that the chrés nemezere sigsnvalue sxbs coincide with the
three intrinsic sxes of Q.

The nev coor inates &re OOW sasn to be:
{a) The chree aigen-moments, II‘I. It is convenient to use

+) 112 8y, a the actual varisbles.

(b) The chres Euler angles defined by the rotacion inte the body=fined

(istrinstc) frame of (. The gencrators for this rotation sve L.
{c) The 3(M~2) angles that spscify the coordinstes of particle label

spacs telative to the intrinsic frame.

Tha six coordivates, (s) and (b), are collective; the former explicit,
the latter (Eular annles) impliefc,

At this paint, wa note that ve have neglacted the three center-of-~
mass collective coordinates. Thess are easily taken into aceount by
using relative vectors (;"") -,!m) in the satrix M. This replaces (c)
by 3(N-1) anples,

The 3(N-3) ingernsl angular coord.nates correspond to rotation of
the §~1 dimensional label space (one dimension is remcvad by the center
of-mass collective coordinstes} relative to tha thres orthonormal vecruzr
dafining the intrinaic frame. Thus we have ,(R-1){R-2)1/2 angles
specifying a genersl orientation of 1sbel space from which we subtract
(=4} (H-5) /2 angles correwponding to the Arrelevant orientstion of the
(M-4) dimennions defined by null sigowvaluea of #. This yields 3(W-3)
sngles.

Group~theorstically this structure is that of a coset space of the
Totation group S50(K-1) with Tespect to the subgroup S0(H=4), that i,
S0(m-1)/S0(N-4), Motfon in this space 1s genevated by the 3(N-3)
oparators:
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LBy =8y, »  lebyy = 1,2,3 and cyclic) (s.1)
Q“ - -glﬂ . (“ =1,2,3j ke ‘pS.-u,ll-H. (5.2)

[Acting on che coset space the remaining operators .'i’“. of S0(N-1)
vanish.)

The three oparators Evmdhwmwm
rotations of the thres dimencions singled out by noo-vanishing eizen-
values of &.

A surprising, and important, sesult®? ig that the three operators
.Ti." are precisely the vortex-spin operators found in the Xinesstic
symmtry approach to collective motion in Section III.

In order to fas the {mportance of this result let us Tecord the
form of the clessical Hapiltenian expressed in terms of tha new variables:

2 2 22
B "%ﬁ"';%"’z'ﬁgf

A+ ) A+
E et hth g

amc - &8) a<B zu(;.a - k’)
]
+ % —igj Top !’” +wE . (5.3
o<k MO -2g)

[Rere P 18 mc.u.mmrmr.gnthemnjmuwuoruuu
and V(£) denotes the potentisl expressed Iv texms of the new coordinstes.]
The quantal Hamiltonian corrésponding to Eq. (5.3) is given in Ref. 47.
One notes that only the vortex-spin operators [.Q'T} ave coupled via
the Hamiltonian to the angular momentum, [l.Yl. Thiz fact (and the vortex-
spin itself) are erueiai*? go the "moment of imartia problems it L 0
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{this is a condition of the zpace of states) than the memonts of lnertia
take on the "ligquid® value:

2
Mx_ -2}
- (aBy cyclic)

4 . =, . 5.4
(] ]

This condition is responsible for the liquld woments of insrtis that
neceasarfly crise in tha Robr moadel.

By contrast the rigid body moments arise? 1f cthe velocitias con-
jugate to che {2 ) ars set to sara: (5 2 0) => Lo 1;"“ - N A
{aby eyelfe). Setting welocities to zero fs s dynamical condition, and
cus saes that the momont of inertis problem cannot be resolved without
an understanding of the nuclear potential. (Indeed it is an smpirical
fact that atoms do not posaess rotational spectra wvharaas many nuclel do:
the long-range charactsr of the Coulomb interaction sccounts for this
diffsrence.)

Tia explicit introduction of collective coordinates, in cowms of
wbich the work of Buck ot al. ia juat the beginning, is an important
taak to which the UMAM group is now meking contributions.'?

The angular momentum operators, “’1}' and the vortex-spin operators,
{.Q"}. are common both to the kinematic —ym-ctry spprosch and the direct
appreach, and, as mentioned, are the key to the probler of momants of
inertia. LAt up discuss these operators further, especislly sinee the
vortex-spin operator has rocently been re-investigated eritically by

Louck.*?

The commutation relations cbeyed by thase operatots ate!
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[1g1g] " ~tege Ly loBy « 123 cyedie) (3.9)

[l‘a "’ﬂ] =0 d (3.8)
[ 4]=tey, 2, + (aby=12cyclia) . (.7

(The aious aign results from the facr that these operators are
referved to the intrinaic frame, by profection with the S unit vectars
of the i{ntrinafc frame.)

A local definition of the angular momencum can be given in the foxm:

b3 02 29) - 5,29, 1) 0

A rathet similar appesaring form for the vortex-apin operators can

also be piven:

“):[(55)(5.‘2‘“’)(5 2™ - (_)(s -£2)(i, -2

(3.9)

This form for the vortax-spin shows °wo importamt features:

(1) The vortax-spin i & non-jocal gquentity {(eince the ‘u"‘ depend
on the instantansons pasitions of all particles).

(2) For » systam claesitally constrained to have v, = Vg the vortax=spin
.V“ betoses numeriuvally 'l‘ns‘ The existence of a distinct vortex-
spin oparator is thus intimately connected with defcrmations.
Quantuz-mechanically, becasuse of fluctuations, b, never aquals Mot
vortox~spin is alwvays distinct from angular momentum,

Louck“? has recently criticized the commutation relstien, Bq. (5.7),
for vortex=sping he finds tho right hand side tc be muledplied byt
faf‘n,‘. vhare £, = (3 .+ a‘)mﬁu,‘.
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One can verily, howevsr, from the SL(3,R} realization of the
vortex-2pin == ga given by Eq, (3.7) — that Bg. (5.7) is correct. What
goea wreng is apparently that tha internsl angular momentum calculated
by Louck 1¢ 8ot the vortax-spin; the interasl spgular wosentus defined
“in the intrinefc frame™ (48 opposed ta “referved to" the intrineic
frame) has cosplicaced commitation velations, mnd no relation to the
worcex-spin.

Let ua make one remark on the mopent of inertis probien. The
difficulty, as discussed by Buck, is mot only dynamical, but closely
telated to implementing the Pauld principle. Racently RebsonS? has shed
pav light on tha problem, for nuclei, by awplicitly incrcducing quark
degrees of fresdom, which make the nucleus look far more 1ike a rigid
body rotationally. It is interesting to nots that oot only does the bag
sodel of individual hadrons clearly involva SL(3,R) degrees of freedom,
but the bag model applied to nuclei suggasts s eort of "pomegranate”
structura (of many d-efomd bags with domain-like walls) which might
warify Robsan's concept of & tetrzhedrally deforwed alpha particle sub-

structurs as important in nuolei!

ACKXROVLEDCEMENTB

e would like ro thank Professor Sidney Drell and the SLAC Theory
Svowp for their kimd hospitality during our visit, Fall, 1981,



10!

11,
12'

13

14,

15.

17.

=30-
REFERENCES

V. Bargmann and M. Moshinsky, Nucl. Phys. 18, 697 {1950).

V. Bargmans and M. Moshinoky, Nucl. Phys. 21, 177 (1961).

M. Moshinnky, Group Theory sad the Hany Body Problen. Gordoa and
Breach, Bew York (1967).

P. Jordan, Z. Phys. 94, 531 (1935),

J. Schwinger, 1.8.A.E.C. Report NY0-3071 (1952); published in
Quantum Theory of Angular MNowsntum, L. C. Bedenharn acd H. van Dam,
edr., Academic Prass, New Tork (1965).

P. A. M. birac, Proc. R. Boe. Lond, A1D3, 284 (1943),

L. C. Biedenharn spd J. D, Louck, Lett. Math. Phys. 1, 233 (1976).
N. Mukunda, #, van Dam and L. C. Biedenharn, to b published.

A. Bohr, K. Ban., Vidensk. Sulsk, Mat.-Fya. Madd. 26, 14 {1982).
A. Bohr and B, R. Mottelson, Nuglesr Structurs, Vol. IIL, W. H,
Benjamin, Reading, Masa. (1975).

G. Gneuss and W. Greiner, Nusl. Phye. Al71, 449 (1971).

J. #, Eisenberg and ¥W. Greiner, Ruclear Models, North Holland,
Amgterdam (1970),

E. Chacon, M. Moshinsky aud R. T. Sherp, J. Math. Phys. 17, 668
{1976) -

E. Chacon and M. Mophinsky, J. Math. Phys. 18, 870 (1577).

A. Bohr, in Symweery Properties of Nuclei, Procesdings of the 15th
Solvay Conference on Physics, Gordon and Breach, New Yoxk (1974).
H. Ui. Prog. Theor. Phys. 44, 133 (1970).

0. L. Weaver, L. C. Bicdecharn and R. Y. Cusson, Ann, Phys. {H.Y.)
12, 250 (1973).



18,

19.

21.

9.

w3l

d. F. Elljort, Proc. R, Soc. Lond, A248, 128 (1958); ibid. 562
(1958).

M. Moskiusky, J. Paters, R. T. Sharp and P. Winvernits, Aon. Phys.
08.Y.) 95, 139 (1975). See also: F. del Aguila, J. Msth. Phys.
21, 2327 (19%0).

0. L. Ueaver, B. Y. Cusson and L. ¢, Bledenhsmm, Am. Phys. (N.Y.)
102, 493 (1976).

G. Eosasteel and D. J, Fowe, Ann. Phys. (8.Y.) 126, 343 (1980).
This saction owes much to the Teview of Moshinsky in Symmatries in
Science, B. Gruber and R. 5. Millman, eds., Plemun Press, New York
(1980); cf. pp. 247-264.

A. Arimg and F. Tachello, Ann. Phys. (N.¥.) 99, 253 (1976)3 111, 201
(1978); 123, 46% (1979).

P, Iaciullo, Interacting Bosons in Nuclesr Physics, Plenum Press,
Rew York (1979); cf. pp. 1-16.

J. Meyar-ter-Vehn, Interacting Boscns ip Nuclasr Phygice, Plemm
Press, Wew York (1979); ef. pp. 157-162. See also Hucl. Phys. A249,
111 975},

M. A. Lobe., Theais, Untversity of Adelaide, South Augtralia (1074).
Hote, however, the criticisms by V. K. B, Kota, Ann, Phys. (N.Y.)
134, 221 (1981) and by A. Bahr and B, R. Mottalson, Hordita-Bl/40
(Septewber 1981), to be published.

A. Klefpn, C.-T. 11 and M. Vsllieres, University of Pemnsylvania
preprint UPR-01745 (April 1981), to be published.

R. Cilmore and D. H. Feng, to he published in Contemporary Research
in Muclesr Physics, Plemum Press, New York.




40,
41,
42,
43.

&b,

45.

&.

48.

=32=

P. Junsszen, R. V. Jolos and F. Donau, Ruel. Phys. A224, 93 {1975).
Y. Paar, JInteracting Bogons dn Nuclear gl_\zsics. Plenus Presa, Rew
Yoxk (1979), ef. pp. 163=-111.

K. Moshineky, Bucl. Flwys. A3, 156 (1980).

A. Klein and M, Vallieres, Phyn. Rev. Lett. 46, 486 (1981).

J. H. Ginocchio and M. W. Eirson, Phys. Rav. Lett. &4, 12744 (1980).
A. Dieperink, 0. Scholten and F. Iachello, Phys. Rev, Lect. &4,
1747 (1980).

D, H. Feng, R, Gilmore and 8. R. Daans, Phys. Rev. €23, 1254 (1981).
8. Goshen and B. J. Lipkin, A0, Phys. (8.Y.) §, 301 {1959).

S. Tomonwga, Prog. Theor. Phys. 13, 467 (1955); 1bad. 13, 496 (1955),

¥. Dothan, M. Gell-Mann and Y. Me'eman, Phys. Lece. 17, 148 (1965).
F. Bloch, Helv. Fhys. Acta 7, 385 (1934).

$. Tomonsgs, Frog. Theor. Phys. 5, 544 (19:.9).

R. Y. Cusson, Nucl. Phys. ALl4, 289 (1966).

¥. Hoshivaky, Cantwical Transforpstions amd guawtunm Machanics,
Lectures st the Latin Amarican School of Physics, UNAM, Mexico,
p.B. Q1971).

G. Rosenptee] and D. J. Rows, Phya. Rav, letr. &6, 1119 (1981).
V. Cuillemin snd S. Sternberg, Ana. Phya. (N.T.) 127, 220 {1980).
P. Gulshani snd A, B. Volkov, to he published.

B. Buck, L. C. Biedenharn #nd R. Y, Cusson, Rucl. Fhys. A7, 205
(1979).

0. Castakios, A. Prank, E, Chacén, P. Hess and M. Moshineky,

Centro Est, Kucl. UNAM preprint (June 1981}, to be published.



49,

.33

J. B, Lovek, Los Alawos Scientific Laboratory preprint (April 1881},

D. Rabson, Kucl., Phys. A30B, 381 {1978); Florida State Univeramity

preprine, A Test of Tetrahedral Symmecry Iin the 160 Hucleud, to be

published,



