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It is a pleasure to take part to this "SyMposiae on Group Theory and 
Its Applications in Physics" held in honor of Marcos Moshineky on the 
occasion of his W t h birthday. The subject of Ota synpositai ia one to 
which Harem, and many others of as hare, h a m devoted much effort and 
interest, and a subject not at well appreciated, shes w* began "any years 
ago, as it ia today. This change is due not only to these coahlned 
research efforts, but also to the excellent organizational talents of the 
UHAH group under Hereoa in arranging many successful colloqoia over the 
years to proselytise and augnent the group theoretic viewpoint. 

1 would like to discuss today the application of group theory ~~ 

and hence aysmetry technique! — to nuo.leax and hadrojiis collective 
motion. Much of what I will discuss will be * review, but not all, 
for I hope to present a few new results end special aspects. 

My introduction to ayoaetry techniques, like moat of us here in­
cluding Marcos, s tensed from the work of Wignar, beginning with angular 
ocfflentuffl theory and leading, through Racsh'a work, into general Lie 
groups. The fact that the (orbital) harmonic oscillator shell nodal is 
SUC 3) invariant became physically meaningful with the Elliott rotational 
model. One of the keys in elucidating this structure waa the Bargnann-
Hoshlnsky series 1» 2* 9 on the group theory of harmonic oscillators in the 

- early 60* a. These papers brilliantly exploited techniques that have been 
used repeatedly in the years following. 

There are precisely two such techniques and they nay be elegantly 
codified as (a) The Jonten-Sohwinper Hsp,'*** end (fa) Sfe Jfcfrac Jiap.6 
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ad(a)i Xfir J©rfan-Sfcl»wjji3*r ttkp takes ft • n tutrices and raps them 

into bilinear product* eve* ft boson operators. To be precise let Is^a^l 

denote baton operators (to terse*s eriaiftal notation) obeying? 

tijta-3 - Sji with all other cesutator* **ro. if (V**) are a set of 

nun Mtrieea with muaricai a lmnts A*4» define the napping J by: 

than one hat th* elementary (but extraordinarily useful!) result: 

Wis sip j pfwservaf eemutetJen relations: 

J([A.Bl) - CJ(A),J(B)] . (1.2) 

benaied i« versa t tat operators {*j*"0') obey the sane eoanutaclon 

relatione a» the niintrieai aatricefl {A { s"h Generalized to n 2 bosons 

(n Independent espies of » bosons), this result is definitive for all 

ixxmpi, ef tfte unitary proup V(n) and can be cut ended easily to compact 

form of the orthogonal group (as well as other Tile groups). 

ad(b)t To define the Slrac napping requires that In addition to 

the a-beson operator* (a 4 ,a , ) we construct the 1 »n matrix 
~ f ° ~K\ 

( s j . . . s n 4J4..S ) i ft, i t s trenepooe A, and the matrix $ i I - 1, 

«hae« 1 R 1* the a * ft wan aattis. 

the Oitac tupping of the 2n * Jn (nautical aatrix A 1* then defined 

1 5 *" <V * i j J j ^ ** *** Atf AJ * T** AA . (1.3) 

It IK restrict the tutrices A»Bt.«4 to 2n*2n numerical mstricas of 

tbo fora 0g, whet* H la aymttttict then OM finds: 



D{tA,83) - t&(A),DCB>] . (1.4) 

For matrices of the restricted form, tbe fifrac operator nipping prssexvm* 
caanutatian relations. The Dirsc operator napping thus baa ths s n e 
basic property as the Jorden-Echwinger boson operator mapping* but con­
stitutes a generalisation of the J-S map ia that the matrices Involved 
are larger (2n « 2n instead of n « n ) . Tha price M e pays for this 
generalization is that the admissible matrices oust have a restricted 
form. (For matrices not of the restricted form, the Sitae nip yields 
a c-number and not an operator•) 

The Dirac map la especially adapted to the non-c.jpact aynplectlc 
group Sp(2n,R) and to its double covering, the metaplastic group. Zt 
may also be adapted to graded Lie algebras.7 

These two map* underlie a huge amount of the current group theoretical 
applications In physics (and lately even in mathematics}; both maps are 

r 

now used routinely without much notice or concent. Daspite this famili­
arity, I thought the present audience, especially, would enjoy teeing the 
structure codified In this elegant and easily comprehended way. (It Is 
interesting to note that the maps have Inverses.8) 

Let me turn nov to my main theme, symmetry and collective motion. 
Following the literature, I will distinguish two ways of exploiting 
symmetry and discuss each separately in succeeding sections {Sections II 
and III). In the courae of doing so, 1 will review the currently 
Interesting interacting boson model and its relation to the earlier 
Bohr-Hottelnon models {Section IV). The direct approach to collective 
cation will be discussed In Section V, end the recent crltlcisas of Louck, 
concerning this construction, vlll be dlsoweed In tbte conclnding section. 
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XX. TH8 StflBUUD SMIBIfiX AfttftCMCH TO KUCLEAR COLLECTIVE MOTION 

By the standard ij—11 • j approach, we wean the construction of a 
•tfrtltacdan which la Invariant (or nearly so) under « group of eyaniBtry 
ttSBsferaatloos; group theory then Allows one to construct buit states 
reellxlae; the eyeaeuy, and explicit eatrlx elseeDts for physically 
lataiutJns transition operator!3 (tbeeseXvea classified by the synnetry). 
ly Seerl* iawaxiant" we seen there amy be seal! perturbations by non-

piaces of the Haelltoaisn, which pieces aro again classified 
axaUeated by the eyaeetry. This la certainly completely standard. 

«. tte aohr WodeJ 
Oae, of the flrat auch nuclear nodels (for K and 2, even) Is the Bohr 

traatBaat , i l D of the nucleus te a liquid drop. The radius of tha drop is 
expanded as a Utsndra series in Ty, and the expansion truncated to L B 0 
mi. 2 oaly. (t"l U eliminated by the eenter-of-aass constraint.) Thus: 

qj • a^, » (teality condition) . <2^) 

The model foeussea on the five quadrupolar variables, (q ). and 
their conjugate*, 1U }, and takes the Raadltonlan to be approximately 
that off e slve-dlmeuional hermonle oscillator with a cowan frequency. 

The spectrum, In lowest truer, thus agrees with the frequently 
oeaxly harmonic apectrua, near eloaed shells, which typify the 
1c five-diaeosional vibrator. 
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Thls model Is heuristic and taken to he a realisation, approximately, 
of incompressible gtiadruooJar /Jaw defined by quadrupolar surface vibra­
tions. 

Group theoretically tfaa nodal ie that of hrofcew SU(S) sgmmstzy, and, 
In accord with this view, the dynamics were greatly extended by Grelner,11 

among otbere, 1 2 who used aa the modal Hamlltonian all possible S0(3) 
Invariant Interactions constructlble with four or fewer bosons. 

The group theoretic classification of the States via the chain: 
SU(5) 3 S0(» 3 SD(3) 3 S0(2) was discussed by any, notable contribu­
tions 1 3» l t t being wade by Hoshlasfcy and his group* especially to the 
transformation coefficients defined by this subgroup decomposition. 
(The explicit quantum numbers defined by this chain are given below In 
Section 11-c.) 

b. Ttm BalifH0tt92son Unified Model 

The liquid drop model of collective nuclear Motion Is characterized 
by Irrotationsl flow and (as discussed below) amali momenta of Inertia 
( I l i ) . At the opposite extreme for collective nuclear notion la rigid 

body motion, which in the Bohr-Mottelson approach10 la modeled by a fixed 
nuclear wave function defined In the Intrinsic frame of -he rigid 
rotator. Thus one has a wave function of the forms 

* n •£<<•,>> "intrinsic • < 2 ' 3 ) 

which Implies an adlabotlc splitting of the Internal motions ( X l a t r l n s l e ) 
and the rotational rigid body motion O w ; with a K-quantum number defined 
in the intrinsic frame* The edlabatlc condition, on which the splitting 
Is based, assumes that the rotational motion is very slow compared to the 
Internal motions. 
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Because of the quantization of angular momentum an arbitrarily small 

rotational frequency cannot be assumed. It follows that the adiabacic 

splitting o£ the wave function cannot be e general property.15 An alter­

native way to view the phyaics of this situation is to note that the 

adiabetlc splitting ivplies Chat the relation between the body-fixed 

franc (the franc in which Xj_ t 1B defined) and the laboratory frame is 

well defineJ. But to define precisely the angular variables relating to 

the CUD (classical) frames tapLies by the uncertainty principle that 

wlimitedly large angular oonenta are involved. That is to say, the 

intrinsic wave function is required to be essentially unchanged even for 

large rotational excitations. Using still other words, the adlabatic 

splitting necessarily implies that the rotational bands (effectively) 

do not terminate. 

Unlimltedly large (rotational) bands are characteristic of aon-

coapact groups (and, accordingly, infinite-dimensional unitary repre­

sentations) . 

The group-theoretic structure that corresponds to the auiabatic 

Bohr-Hoteelson unified model is the noncompact group E ® S O ( 3 ) BB found 

by Ui, 1 6 or more properly, the covering group K ©SU(2) as found by 

Weaver et al. 1 7 This group has a rather elementary algebra consisting 

of a general angular momentum operator J (with J * J - U ) and a quadrupole 

operator Q with commuting components, [Q ,0 ,] - 0, which transforms as 
212 • quadrupole under .J, i.e., [J_,Q„] - iC „ , Q ,. The Irreps of this D u ynu it 

group include all known examples (of both integer and of half-integer) 

quadrupolar rotational >enda, and these irrepB automatically obey the 

discrete eyanetry structure (D,) found earlier by Landau (molecular) and 
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by Bohr (nuclei). The K quantum number, as one night expect, Is wcll~ 

defined, 

A group-theoretic model for terminating band structure was found 

considerably earlier by Elliott!18 this is the compact group generated 

by the orbital angular momentum L and a qu&drupole operator Q, obeying 

the SU<3) algebra: 

L « L « il 5 [L ,Q, ] - iC 2' 2, 0 , 

and (2.6) 

Let us remark that these group-theoretic state classification problems 

are by no means always straightforwardt The labeling induced by 

5U(3) 3 SOU) is a classic example of the difficulties that can occur, 

This problem was given a definitive discussion a few years ago by the 

combined efforts of the Montreal and Moshinaky UNAM groups is a paper1 s 

fittingly entitled "Everything You Always Wanted to Know About 

SUP) 3 S0(3)." 

Recall showed very early that an (orthonormal) labeling by a polynomial 

operator in the SV(3) generators was not posolble. Nevertheless Elliott 

gave a (non-orthogonal and approximate labeling in terras of a "K-quantum 

number," equivalent to the heuristic basis: 

!

0 s K s mln(p.p-q) , K • even integer 

K s L s max(p,p-q) , (2.5) 

If K-0 , then L. - even Integer only . 

The bands in the Elliott model must terminate, since the group is compact 

(and hence the unirrepa are finite dimensional). Accordingly the values 
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of the available angular cwoenta are limited in size; it follows that the 
Xrauantum number U Meeaaarily Ill-defined physically. 

Tbia la the physical reason 2 0' 2 1 behind the difficulty of the labeling 
problem for the subgroup chain: SU(3) 3 S0(3). 

c. W Jntmettoa Boson /totfel" 
The Interacting Boson Model* (ISM) for even-evea nuclei has a com-

plstaly different physical motivation. The underlying physical structure 
fa the ahall aedal, and attention is focussed on the (ZN) nudeons outside 
oloaad stalls. (For shells more Chan half-filled, one uses nucleon holes.) 
Tbaat nueleona axa than assisted to foim pairs (NN or PP pairs of unit 
ismtplm) having Cither L • 0 ("s-basons") or L - 2 ("d-bosons"). These 
"bosoms" — R in Busbar and of six types (l-B,5-d's) ~ are assumed to 
interact « true DOlOftS forgetting their origin BB fenaion pairs. 

The lanlltooian is taken to be rotatlonally invariant and to have 
all poaslbls terms wnstructlble Iron four or fever bosons. There are 
nine possible terms and this general Hanlltanlan readp:2M 

B • £. S*S + t. d-d 
S Qa.ni 

+ B0[(d, «id.>0 (i 5) + h . c ] 
+ *Ji<& * # * <3 s) + h.e.] 
+ C„[(s>2 Is)2] + C2[<de) * d a] (2.6) 

• Actually there are two models; IBN-1 and IBM-2, in the former23 no 
distinction la made between proton and neutron pairs whereas In IBM-2 
the two types of pair are distinguished. Only I B M enters in the 
sequel, but it is easy to extend the considerations to IBH-2. 

http://Qa.ni
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Group theoretically the Interacting boson model 1B a realisation of 
brakm sti(6) symmcry. Accordingly ve must select a subgroup chain for 
the breaking pattern, and then use standard methods to label states and 
construct matrix elements. 

SU(6) Byimetry is unusually rich In subgroup chains and there are 
threr. chains of Important physical Interest: 

(a) Anha manic vibrator r 

SU(6) D SU(S) D SO(5) 3 G0(3) D S0<2) , 
Cb) Axlstjmntzlc rotor? 

SU(S) 3 SH(3) D SO(3> D S0<2) 

(c) T-ungtabie rotort 3 * 

SU(fc) 3 SOW) * S0(6) D SD(5> 3 S0(3) D 80(2) . 

For each of these chains, the general Kamiltonlan of Eq> (2,6) nay 
be specialized, such that a closed form results in terns of the linear 
and quadratic (Casimlr) invariants of the subgroups In the chain.*"* 

The labeling of the states in each chain nay be given explicitly, 
but thu most convenient labeling yields non-orthogonal states 1 3 such as 
encountered first In the Elliott model. (The group theoretic technique 
of "craceless bosons" Is useful here. 2 6) 

It is important to note that not only is a closed farm available far 
the energies, and a complete labeling of the states, but analytic 
expressions can be given for matrix elements of transition operators. 
This makes it possible to survey large quantities of data extensively 
for trends In the parameters of the Hamllcanian (vhich depend an N and 2)< 

The labeling of all states defined by the three subgroup chains 
above are given in the following diagram) 
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Imp: CM h>\ 

SU(5) 
imp: I'd fl35 

n d •H,N-!,...,0 

SOW 
imp: lv o 0 03 

o - N,K-2,..,,D or 1 

Y / 
SO (5) 

i m p ; (v,0) 
v • n.(n.-2,,..,0 or 1 

a,o-l,. 

90(3} 
irrep: (L) 

SU(3) 
[p q rJ • tp-r q-r o] 
pF«),r ore all parti­tions of 2N into 
lexical triples of 
even integers. 

80(5) Chain 
partition v • 3a+A 
for each poasible 
partition, 
I - 2A,2X-2,2JL-3,...,* 
(L - 2*-l doea not occvr) 

SUP) Chain 
0 * K S nin(e,«p-q} 
K <• even integer, 
K i L S ttax(q,p-qj 
If K « 0 , only 
1 • even integer. 
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d. Mow arm the Bohr Model and the meeraetifw Boson Model Belated? 

This question l« hath Interesting aad topical — a session of the 
APS anting In Baltimore (gprU 20-24, 1M1) warn devoted Co answering It. 
(Iachcllo and Arise In luting the existence of the inharmonic vibrator 
chain cook the eoeontlel equivalence of the models aa a truism from cha 
beginning.) The analysee at the APS •eating showed no clear consensus. 
Klein. LI and Vallleres, for example, assart 1 8 that the two modelo axe 
"completely equivalent" whereas, by eontraat, ftilmore and Feng Insist*9 

that "the two nedels err demonstrably not equivalent.1* 

The existence of auch 'contradictory position* reflects the fact that 
there la no common vlev ds to precisely what constitutes each A the two 
oodela. Klein et al. (disavowing totally the liquid drop origins of the 
Bohr model) define their "Bohr model" to Allow arbitrary non-polynomial 
boson interaction* and, mora importantly, restrict the Hilbert space to 
a finite basis (fixed for a given nucleus). The relation between this 
"Bohr model" and a "generallted IBH" (also allowing arbitrary interactions) 
is shown by an equivalence of baaea, realized by means of a nonlinear 
(HolBtcin-?rimakoff) boson mapping <see below). 

By contrast the Gllmore-Veag aaaertlon la baaed on the fact that 
the Bohr model bat an unbounded spectrum^ la cleat contrast to that of 
the IBM. thl* view points to a valid physical distinction: the quadru-
polar quanta of the original Bohr model are unlimited, vhereae the SU{6) 
quanta of the IBM are fixed for a given nucLeue by the avatar of valence 
pairs. 

But —thematically, the two models show very cloae reLatlonships. 
Cllmore and Feng point out that the meets, Eq. (2.1), does not in fact 
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li ao that CO coftMrva tohmt • tfsmamteaJ L«0 tera anst 
(Is tWn «tea) be adjolnad aa a physical variable (equivalent to adjoining 
an a-baaonj thl* chaa leada (noa-Uaearly) to the IPU. Technically this 
la correct Cteklag Bq. < 1A ) aa exact] but —• aa *e etww la Section i l l 
— la a alanadiat of the ofayalcel actually to* anatz given by Eq. (z.i) 
1* aiaply a poor appsoxlaatlon for iaooansassible irrotatlonnl flow with 
lazga dtfozaatiottsi toe a-boaon la fact aatorf — « we show later — to 
allow tba poealblllty of voJtuw«eAaagiatf neoascle defon«tlc«»l 

If CM etnply adjoins an 1"0 dynaclcal variable, s, and isooses a 
AOaaervatioa condition on tha {total} atabar of bosons [this Is a h«"is 
(or vara function) constraint] thin we ata lad at once to a nonlinear 
realisation of 0(6) syaswtry (and the 1M) involving explicitly only the 
five d-boaonsi * 

n(5> intntorat (du â J ; u,v • 1 5 (2.7«) 

additional i)(e) eansratorsi 

r £ T / 2 

V * dU " " «f* -M M ! U " ' 5 ( 2 , 7 b ) 

•3U * ÎS - £ by ij 3 U { v l 5 (2.7c) 

.8 *-[.-£.;.;] (conatraiftt on baste) , (2.7d> 

in toi* procedure tiie origin* of (and the n u o w (or) the 
underlying tha Main et el. analyaie. The existence of this 

relating tha two laodela baa been noted by asmy.' 0 -" 
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It la not Murprlsing thai: title B M u t a i of tin Mhr nodal yields 

the IBH; to £»ct, Janoaea* Jolo* and Oenwi30 «Md pradMLy till* path to 

develop the "IBH" 1B « « , prior to tha XaetMUo-jdriBa iaenxfaKtion o* 

their aodeli 

The relationship faatWMft «ta*fl two «»d*U w aoalyMo' by aavaral 

mthom 3'*- 3 6 by the aweaoa a/ oafwwnt ««acc* Co ylaM tha claf•leal l iMt 

of the IBH In thu forts of a potential aoarfy iurfaci (involving tin 

intrinsic nhnp- variables); ooanarioon vlth tha Bohr nodal poUntlal 

onorgy can then be aide directly, Including all t ywtry Hait i of tha 

IBM. thu wthoii of coherent atktoi is an inporttaC group-tluoratic 

technique29 for aoalysing syrattry itructura* fetst i t would c«ry at too 

far afield to discuss i t htt«. 

In the final analysis the oquivalaaca ot not of tht two oodtle ia 

a. matter of definition (and pattonal tatte). Suffice i t to lay, both 

models are useful and reflect quit* different phyeical viewpoint!. 
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xxx. r*r KWE«TIC SOHBOX JUV&OACH TO coucara HOMOK 

The Bohr Mtdel and the Interacting Boaon Model have both bam 

discussed as Instance* of the standard ayanetiy approach to collective 

Motion In the preceding, section. There i s , however, an entirely different 

approach for exploiting eyiaaptry. One begin* by focussing attention on 

certain physically iaoortant operator* Cobservahloa) which generate the 

ayaaattry. The fEsadltonlan i s assumed to be e function of these operators, 

but i t Med not be an invariant. This assumption alone suffice* to ensure 

that any nultlplet, characteristic of the syasetry, will at worst be 

split Su th» tfaitiiltonian, but nat mixtd vJth other nultipJats. 

One thus starts with a set of operators thit obey (equal tine) 

conutation relations characteristic of scan algesia. Thase operators 

are identified with physical transition operators which, acting on a 

liven state* use up nest of their strength In transitions to « Few nearby 

states. The algebra nay be auch that (because of dynsnlca) the stationery, 

or quael*atationary, abates fall Into a few (unitary) Irreducible repre­

sentations of the group. Thie approach* which ia largely attributed now 

to Gell-Maun had bean partly davelopeC eaTlior by LiftMn and Coehen,'7 

and aven earlier by Toaonaga." 

The focus upon tnneltiwi operators as generator* of the eyemetry 

baa an* aspect that deserves eaphaelsi ma—itaticw relatione ane 

HnsswticeJ steteaanta. aa that ate aJewbraic structure i» preserved 

independeneip erf tte dywasfca of ayanrtry breafcifio. 

Following the aodel by which the weak and electsoaagnetic currents 

war* exploited. Dothsn, Gell-Mann, and Ha'anaa considered the (symmetric) 

energy-aomentua tensor, which couplna to gravity, and showed that , 3 9 in 
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•the qoaxft. mdel, the tine-derivative of Che qtiedrupole nonent of cha 

zcrc-zere component af tnle tensor and the orhieai angular mnmiinriiw dose 

on tte algebra of st(3,H) . Ibla la the group of volume preserving 

deformations and rotations of three-space. 

?or nuclear and hadronlc collective notion i t fa intuitively clear 

that the quadrupol*, mooents are important operators* and a crocial point 

Is how t» exeat properly these deformational degress of freedom. The way 

to proceed has already been made clear in condensed natter physics where 

quantal treatments of collective phtnomana such as sound waves, plasna 

oscillations, and the like are important. Ohe identifies the appropriate 

flow patten of the desired collective motion and constructs tm corres­

ponding evnent-or<l,0»'l, 

Consider for the sonant two dimensions, using the velocity potential 
1 2 2 i • j U - y ) one obtains a voluae prsssrving irrotatlonal flow, (the 

flow changes « region bounded by a circle into an el l iptic boundery,) 

The generator tor this flow la the operator* n s [<?»)•» +• h . c ] which 

her the form: Jt • np x - yp . 

To apply this to nuclear collective motion (in three dimensions) ve 

observe that f le none other than a qoadrapole operator, so we coaatder 

tin total onedrnpole anssmt generated by the nucleons (relative to toe 

ceacex-of-naes)t 

%•£*• (3.1> 

end construct the corresponding flow generator: 
II 

'-• S B**W •»*] • M 

i-l.,.3 
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The five operatore R generate, muter eranitatlen, the Lie algebra 

et(3»at), which cmtaitta. In addition to the five H the three angular 

aoaratuB operator* £• Ike corresponding non-eoopact Lie group in the 

group e* VDluav^preaerviflg rotation* and sheering deformations of three-

•putt precisely tht collective actions one would associate with nuclei 

« hadrona If coapottd of iceoasreseible fluid narter. 

Lit us sake * aerlta of rewrite In piece of an extended diecussion:2 0 

£•££&_£) Toaonaga ahoved that In I Taylor esriee approach tc a general 

collective Hamlltonlan It v u always possible to ensure chat 

[ H - T « U e c t i v t ' * u ] " ° • < 3 * 3 ) 

when Teoll«etlTC l f l t h a e o l l t e t i v « kinetic energy and Q the collective 
coordinate. 

Tht« 1» equivalent" to the Gall-Mann "anti-contraction" postulate: 

which defines tht deformation generators a* tine derivatives of quadrupole 

collective coordinates. 

woirt ai Tha Oeli-Mann — Tononage result [Eqs. <3.2>, (3.3) and (3.4)] 

It not aa arbitrary choice hut l i In fact »»»ntiei for a physically 

•aaB.laa.ful remit I This can ha teen group theoretically in this way: 

COnVdtr the quldnipole operators Q end rotation operators L as Benera-

tort of a group having the algebra Ag> 

XI the group la cdftBtet t&M) ) then L'l 4 <};Q la en invariant, ao 

that tha aatrla alaaente of 4) fleceirsarJiv <tecrea««. «nd finally cutoff, 

la any given lrrep, at 1 increases. 

http://�aaB.laa.ful
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If the grcup ia non-compact, then L»L - QsQ Is invariant and th* 

matrix elements of Q inczeose without U n i t *S L toCrftftSBftt SlBCft the 

(mass) quBdrupole Q i s proportional to the charge- quadrupole, such an 

increase [in BE{2) values with Ll would be in flat contradiction to 

experiment. 

Note haw the Gell-Mann — Tooonsaa prescription neatly avoids tha 

dlleoma: the quadrupole group generator H la not Q but rathai •afCH.Q] 

and hence has far matrix elemental 

<H> a (AM <Q> . (3.5) 

Thus the rise in <n> with L la opposed by Che Increase In a with L, and 

the resulting competition can conform to experiaaat. (The rigid body 

limit can be obtained precisely for exanpleO 

BwarA 3: It would be reasonable to add to the algebra of at(3,*) 

generated by {L,n} the operator* 0 also, but this won't wort/ [Group 

theoretically one sees this from the'fact Chat at(3«B) has ao (nou-

unitary) five dimensional irrep.] One mist adjoin tha alanajit 

Q„ : 7 I I xj^) , (the trace of Q), to obttin a eloied sjoa&ra. v * n , i * i ' 
This yields the collective motion eroup, CM(3), introduced by Cuaaon.'*2 

Since Q0 is a scalar under rotations, we sea that we a n fare/, I 

purely group theoceticallg to generalise 2' from "d-bosons" (Q )̂ by adding 

nonopolar (Q.) "s-bosDns." 

Remark «: The collective flow correspundinj to QQ i t radiali tha 

associated generator la the dilation operator.' 

% - 12 ( ^ F J * •».€.) . <w> 
1 1 1-1,2.3* * * ' 

n-1 
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Thua, step-by-step, symmetry techniques force one to consider a 

arjuacror ctllec 

following dlagraat 

15-paraner.cr collective motion group, R (jh GL(3,I0. as sketched in the 

\ Q I TemonagJ* \ TI / conmucoticm \ / 

l a \ G«ll-Hann_ / 2 i " i ! 2 r . ^ 
action on' {%} Tcmonae* I generator: 

The operators <Q„,01J,n. ,UQ} generate B ©GLO. l t ) . 

Remark Si Let ua omit the dilations and consider tha 14 generators of 

CMC3) = B @ SLC3.R). There arc two Invariants of CH<3): a 

(volume) £ A and a vortex-spin v. [These Invariants are analogs of 

the (mass) and Intrinsic spin s of the Poincarc group.] 

Uhat i s the physical meaning of tho vortex-spin? 

To answer this , ' le t ua note that the SL<3,E) group Is realized by 

the set of a l l 3*3 real unlmodular matrices under matrix nuKipllcetion. 

A generic element M of the group may be written as: 

M «• X o S , (3.7) 

~ -J — -1 

wnctv ft nnd S arc real 3 * 3 rotation matrices (ft • R , S - S ) and a 

la 3 * 1, diagonal and unloodular. (Thle form implies that M i s unlmodular.) 

Spacc-flxcd rotations^ gmwrnted by the angular momentum operators L, 

correspond to multiplication of M on the l e f t by the matrices R. Body-

fixed rotations correspond to multiplication on the right by S; tho vortex-

epln operators % are tKe ^oeraton of these rotations. 

i I 

http://�GLO.lt
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rnearly the transformations generated by t, and by 2* » commute; 
moreover each obeys the commutation relations of an angular monentia 
(poBBlblj with reversed sign). 

Operationally the vortex-apln eigenvalue v is generated (In analogy 
with the Intrinsic spin of the Foincare group) by rotating to the Intrinsic 
frame, deforming tu sphericity, and measuring the angular momentum (v) in 
the resulting analog to the rest frame. 

Remark 6? The smallest simple group containing the group R © GL(3,X) 
Is the syraplectic group SP(6,l!) (or better its covering, the metaplectic 
group) of canonical transformations'*3 In three-space. This la the group 
studied in the collective motion context by Rove and Rosensteel,1*'1 by 
Sternberg,"*5 and by Gulshaai and Volkow.1*5 
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IV. HELATIONSHXP KIBEER THE TWO TOMETA! APPROACHES 

At f lrat glance* i t might appeas that the twv ayaaastry approaches 

a*a coaplataly aunlatad, tar cha ayawtry group lit the standard approach 

la eoapact wharaaa In tha kinematic approach the group i s acm-coapact. 

t a t an eleear aaalysla, t h a n ata aaaa rslattonfnlpe-

Tha relation aaewaea tha Bohr Model and cha Collective notion group 

CK(3) has baao dlaeuiead fay Teaonag*16 ( in two distensions) and by 

Heaver at a l . a o nora generally. This relationship la that of group 

contraction! In tha H a l t la vhleh the ahaar generators become large, 

and tha operator Q0 as v e i l , on* flndr thoci (1) Q. co^utes with 

everything! and (2) tha op i n t e r s II and Q„/Q0 beeona conjigates. ThuB 

vv hava recovered tha knot a rasulci a contraction limit of c»(3) yields 

qutArupol* boson* ("d-boaoni*/, and tJieir conjugates, which are the basis 

of tha Bohr nodal. 

What la tha ralatien to the Interacting Boson Model? Here we must 

obtain SOON new results. 

Lat us recall that in CM(3) va vara forced to adjoin QQ to the five 

quadrupole operator** Q , Correspondingly the flew associated with the 

operator QQ toned tha adjunction of tha generator H-, tha dilation 

operator (velune chengee) DO that one obtained tha algebra R & @ f;M5.»>-

Xt i s not q»»it • atreigatforvard to find the contraction limit new. 

9i»at wa eatat take P̂  te be large ("»e"V Secondly, (taking a hint from 

tha non-ralativiatlc Halt of PQ la the Poincnre rlgebre) we oust take 

tha l la i t of HQ in tha t o n : Qg - a" CQ + ca, where * Q ie a c-nwater, 

i l i a operator, and c + 0 In the Unit. 
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Tbe operator I 0 masm-os with the si(3,B) algebra, ao these 

commutation relations are uncnangad la the Unit , Urns «nly the coa-

•utation relations with the O , fy a n at t i m . Foe these *a havat 

[ V ^o] " ^^n * »-0,t....,3 . (4.1) 

Multiplying by c (for « - 1 , . , , 4 3 ) sad by 1 (fox n«0) wa obtain la the 

Limit-. 

(It i s crucial CD note tha ClU»s 5Q3 • 0 for (* R c-nuabar.) 

Thus we obtain> in the limit, aix DQIOM and their conjugates• 

(IT and (L/£ 0) — d-bosons and (nQ aad S/CQ) — the s-boson. 

We conclude: a contraction limit of tha noJlairtiva notion group 

with dilations (* 6 © GL+(3,K) yields pneiMmly tfte a and d boaan 

operattirs of lAe IBM. 

This is an interesting ~ avan if not unexpectedI ~ remit far i t 

shows that the interacting boson model simply reJaxea Vm iJKompnsai-

biiiti/ condition in the original Bohr-Motteleon treatment of collective 

nuclear flow. 

Let ii» conclude tM» section with two resmlcst 

BCIM-A j . - The synnetry group of Che Bohr-tfotteleoa unified modal {rigid 

rot xioa, adlobatic model) la a subgroup of the collective aotion grovp 

CM(3) - «\ 6 @ SL(3,K), that la, to aay, tha group R 5 ® SU(2) la con­

tained as a subgroup, (the adjunetloa or not of dilations la of no 

concern for the rigid body limit..) 
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flsner*. it There is a quite different way to find a relationship between 
the two symmetry Approaches, thla time 1B terns of the spectrum. Tha 
condition Chat (in tb» kinematic approach) the tUnUtonljin split *ot not 

mix the states mesne, In effect, that, both approaches deal with the aaaa 
let of states but organize the spectrum differently. Consider SU(3) 
symmetry vs the kinematic SL(3 tK) symmetry. Both aysmetries deal with 
the aame abstract get of angular momentum atataai in the haroenic 
oacil'.'^r s»(3) shell sndal these are the familiar SB(3> D S0<3) atataa 
far Cn 0 0]. 5L(3»at) acting on these •an* states, organizes them 
"vertically": all L « 0 states are made Into coherent states, similarly 
for t > 2 , t»4,.«. • Thta y. tide an SL(3,K) i m p : the bend 0»2,4,itl 

with a continuous quadripole (invariant labeling) parancteT. The add 
angular momenta bucama tha i m p ! 1,3,$,.., . Thli relationship between 
Elliott SD(3) end kinematic SL(3.ft) ahows now the interacting boson model 
Is to be related to the kinematic symmetry approach of Sp(6,K): both 
approaches are based on the harmonic oscSUator shell model srate»t the 
U H using compact SU(6) eyanetry, while the klntastlc approach embeds 
flp(6,l0 aa e subgroup In the non-eenpact SU(3<3) group. Hats, that eh* 
covering group ia spiaoritl in the latter approach to that half-integer 
excitation* are obtainable am veil. 
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V. THE DIRECT APPROACH TO COLLECTIVE MOTION 

The direct epproacfc to ̂ oclaar collective notion attempt* to intro-
doe* collective Coordinates into the endear Haadltonlen via a (possibly 
Implicit) coordinate transformation• The prototype for this ie the 
transformation to center-of-tsaaa coordinate*. 

A vary elegant realization of this approach was davaloped by Brian 
Suck In tha early 7D'», but «a« not published5 until 1939„ Ha will 
sketch Cheat development* in order to show, fine, how nicely they accord 
with* the ayemetry approach** of Sections II and III and, eecond, haw the 
concept of vort*x-apln clerifiea the problem of the moment of inertia. 

Tha key to Such'a developaant la to regard the coordinates of K 
partielaa in thrte-aoace a* • reoeaneular 3*s matrixt M • (M, ) " ( r ^ ) 
that la, the matrix element <H. ) la the 1 t h coordinate of the particle n. 
Such • matrix allow* one to define tmo "QmadnRxtlm*"* (a) Q a H 5 and 
(b) * » DM. 

The 3*3 matrix Q to precisely the usual ettedrupolt srrey (vnoae 
element* are BUSS over the N particles) with tr Q » Q 0 aa defined earlier, 

7he H M K matrix 3 Is e "quadruple" matrix in "particle label apace." 
(The matrix element* of § era anas over the three epetlal CL ordinate*. > 

A* seel* eyamerric, metrleea both Q and 9 can he beooeht to diagonal 
form by • coal similarity transformation. The three eigenvalue* of q are 
Jutt tha three quadrupole moments (Xft) defined In the intrinsic frame. 
Tha eltrnvoluta of 3 ere surprisingly simple! Shau ere }v»t the three 
eigenvalues of 0 "itt> «Ji other eigenvalue* zero. He orient psrtlele-

I The vo»tex-*pl« concept vae developed end added In the interim. 

f 



label apace M that the three non-zero eigenvalue axe* coincide with tlw 
three lacxlftaie. tut of Q. 

Tbo new coon tnatea axe now urn to he; 
(a) Tbe three algin ininti) C* BK It la convenient to w < 

+(* I 1 ' 2 s u_ « ">• Actual variables. 
(b> The three Euler angle* defined by the rotation Into the body-fixed 

(intrinsic) frane of Q» The generators (or thin rotation ore £• 
fc) ike 3(11-2) aagla* that specify the coordinates of particle label 

space relative to the intrinsic franc. 
the six coordinate*, (a) and <b). are collective) the toner explicit, 

the latter (Euler inglta) lapllclt. 
At thl» point* wa est* that we have neglected the three centet-of-

•aaa collective coordinates! Thtat are easily taken into account by 
using relative vector* (jrB' - J f f l) In the aatrlx M. Thli replaces (c) 
by 3(«-3) angles. 

The 3(N-3) internal angular coord '.nates correspond to rotation of 
the M-l dfaanaional label apace (one dlnsnslon la renoved by the eenter-
of-wass collective coordinates) relative to the three orthftnoxmal vectoir 
defining the fntrlsaic frane. The* w have t(H-I)<K-*)3/2 angles 
asvclfylng e general orientation of label space troa which we subtract 
(<a>4M*>5>l/2 angles corresponding to the Irrelevant orientation of the 
Q M ) diewnioRs defined by null eigenvalues of #. this yields 3(8-3) 
anglea. 

Group-theoretically thla structure la that of a coaet apace of the 
rotation group SO(H-l) with reapart to the subgroup 50(11-4), mat la, 
IO(nVl)/SO(N-4). Motion in thla apace la generated by the 3(U-3> 
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^ • &<& - - i ^ . fa,$ p T - 1,2,3 «Bd cyclic) (5.1) 

*o* " ~*W ' ( B ' l » 2 » 3 • * * *» 5 B - l > * ( S' 2> 
[Acting on the eoaet spate the remaining operetora jp , of 80(11-1} 
vanish.) 

The three operators & ere distinguished since they generate 
rotations of the three dtMnelone alogled out by ttOo>vaatehlng eigen­
values of tf. 

* surprising, mat important, result*7 is tnat toe three operator* 
St ere pr«eia»ly the vortex-spin operators .found ia the Jtinumtlc 

Sifanetry approach to collective action in Section III. 
In oroat to ate ths importance of thit result let us record the 

form of the classical Hamiltonian expressed In terms of ths new variables: 

H - jd. + y Sa + T fs< 
SMS 4* 2H + f"i 2HX_ 

o<» 2H(* B-X 6> / a B «<B 2M(X 0-X 6) i £ "* 

[Here J is the CM. aonentum operator, p^ the conjugate operator to * a 

and V(C) denotes the potential expressed In terms of the new coordinates.] 
The quanta! Baviltonlan corresponding to Eq, (5.3) Is given In Ref. 47. 

One notes that only the vortex-spin operators (£? ) ave coupled via 
the Rsmlltonlan to the angular momentum, (L )* This fact (and the vortex-
spin Itself) axe troda!* 7 to the "moment of inertia problem"; zt S+O 
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(thla la a condition of the apace of states) then the momenta of inertia 
taka en the "Jiouitf" vaiuej 

it- M<*« * V * 

Ikta condition la Tcaponalble for the liquid oooent* of Inertia that 

nccesearlly erlan In tha mote nodal. 

•y contrast tJM rlfidi body noneata arise* 7 11 Cite velocittea con-

Jotata to the | ^ y l ore act to can: (i^ » 0) - » I • I**** - - H(*o + X0;„ 

{tttY eyclie). Sotting velocities to zero la a rfsfiwwtfwi condition, and 

oaa eaee that tha waent of l&crtia piobltm cannot be rasolvtd without 

an uAdaratAndiJio ot th» naelmar potential. (Indeed it la an anplrlcal 

fact that atons do not poaaees rotational spectra vhiraaa many nuclal do: 

tbe loa(*ran|a charactar of the Couloab interaction account* for tni» 

Afferent*.) 

The explicit introduction of collective coordinates, in earn* of 

MUCB the work ot Buck at al . la joat the beginning. Is on inportattt 

talk to which tha HUH group Is now Making contribution*.''0 

Ilia angular snentun operators, (L ) , and the vortex-opln operators, 

lSfy}t ax* fn—ria both to the klneoatic ~jmsetTj approach and the direct 

approach, and, n Mentioned, are the key to the probleo or no&ents of 

Inertia. Lot u» dlacusa thaae operators further, especially since the 

vortex-apln operator has recently been re-tnvcatlgated critically by 

louck.*9 

The conmutatlcn relations obeyed by these operator* arci 
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[ L a , L e ] - - l t a f l y L Y , <aBy - 123 cyclic) (3.S) 

[ i £ i<S&] - -1 « a ( l t « , . tefir - 123 cyclic) , (3.7) 

(The adawt alga raeult* f«oa the fact that those operator* sra 

referred to the Intrinsic franc, by projection with tite 5 unit vectors 

of the Intrinsic fnae.) 

A local definition of the angular M K O I » can he given In tha tormi 

L - L . y as g [(V*w)(v-'w) -(v*w)(viw)]- M 
A nithtr i lni l i t appearing forn for the vortex-spin operators can 

also be given: 

* • * - £ fi^x*- -n(K •*») - g ^ •*<•>)(*. -* i . 
(3.9) 

Tbia form for the vortex-opin shorn ino inportant features: 

(1) The vortejt-spta It • non-local ^neaticy (olnce (be v n '» depend 

on the toatantanaouft positions of a l l particles). 

(2) For • ey t tn clMSieally constrained to have v a - n_ the vorttx-spto 

Jf - becctats nunarlttnlly -L Q 0 . The exietence of a distinct vortex-

tpin operator i t thus intimately connected with defonutioitt, 

Qgantun-Mchanlcally, because of fluctuations, v a never equals ti.i 

vortex-spin la always distinct from angular noEentun< 

Lovck*1* has recently criticised the coamitation relation, 8q. (S.7), 

for vortex-splw ha finds the right hand aide tc be aulelplled byt 
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O M can verify, hovevsr, from the SL(3,S) realization of the 
i»rter-apia — aa gives ay Eq. (3.7) — that En* (5.7) la correct. Whet 
goea wrong la apparently that the internal angular momentum calculated 
by Louck la not Che wortaK-aplnj tiie Internal angular woawutuai. defined 
"is tbe lflCrlnalc frame" (aa opposed to Vsf*xr#d to" the Jatriaelc 
fraac) lias complicated commutation relatione, sad no relation to the 
vnrtex-apln. 

let oa ante one remark oa the moment of Inertia problem The 
difficulty* as discussed by Buck, la not only dynamical, but closely 
related to Immloentlng the Pauli principle! Recently Robson 5 0 has shed 
new light on the problem, fox nuclei, by explicitly Introducing quark 
degrees of freedom, vhlch Oak* the nucleus look far nore like a rigid 
body rotaiionally. It Is intonating to note that not only does the bag 
•odel of Individual hadrone clearly involve SLO.IO degrees of freedom> 
but the bag model applied to nuclei suggesta a sort of "pomegranate" 
structure (of away deformed bags with domain-like mils) Which night 
verify Robeon'a concept of • tetrahedrally deformed alpha particle sub-
atructure aa important in nuclei! 
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