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SUMMARY 

Mono1 i t h i c  r e f r a c t o r y  designs based on p r a c t i c e s  i n  the petrochemical i n -  
d u s t r y  have been used i n  many o f  t h e  non-sla'gging coal  g a s i f i e r  processes being 
developed o r  p a r t i a l l y  sponsored by t h e  Department o f  ,Energy. These l i n i n g s  are 
easy t o  i n s t a l  1, r e l a t i v e l y  inexpensive, and genera l l y  i n s u l a t e  vessel s h e l l s  
more e f f e c t i v e l y  than b r i c k  l i n i n g s .  They are  prone t o  crack and degrade thermo- 
mechanical ly ,  however, and i t  i s  t h i s  c h a r a c t e r i s t i c  t h a t  concerns those invo lved 
w i t h  the  opera t ion  and o v e r a l l  performance .-of coal 'co'nversion processes. 

I t '  

I t  i s  genera l l y  be l i eved  t h a t  the  c rack ing and associated thermomechanical 
degradat ion  o f  monol i t h i c  r e f r a c t o r y  1 i n i n g s  i s  most s i g n i f i , c a n t l y  a f f e c t e d  by 
t h e i r  performance du r ing  the  i n i t i a l  d ry -out  and heat-up. I t  was the  o b j e c t i v e  
of t h i s  work t o  improve t h e  thermomechanical r e l i a b i l i t y ,  i .e., reduce o r  e l i m i -  
nate the  cracking,  o f  monol i t h i c  r e f r a c t o r y  1 i n i n g s  o f  coal  g a s i f i c a t i o n  process 
vessels (opera t i ng  t o  2000°F) dur ing  t h e  i n i t i a l  d ry -out  and heat-up. 

The scope o f  work developed t o  achieve th i . s  o b j e c t i v e  i nvo lved  performing 
a systemat ic  eng ineer ing  study o f  standard and experimental monol i t h i c  r e f r a c t o r y  
l i n i n g s  t o  l e a r n  why they  c rack  and degrade and how t o  reduce o r  e l i m i n a t e  the  
causes. The expected ou tpu t  o f  the  program was t o  be recommendations and guide- 
1 i n e s  on m a t e r i a l  s, design con f igu ra t i ons ,  and ins . ta l1  a t i o n  and opera t iona l  pro-  
cedures f o r  mono1 i t h i  c r e f r a c t o r y  1 i n i  ngs t h a t  would improve t h e i r  performance 
and r e l i a b i l i t y . .  

To perform t h i s  work, a t e s t  f a c i l i t y  was designed and b u i l t ;  n ine  l i n i n g s ,  
o f  bo th  convent ional  and new o r  improved designs and mate r ia l s ,  were tested;  a inathe- 
ma t i ca l  model, h i g h  temperature s t r a i n  gage technique and nondest ruc t ive  examination 
technique, such as acoust ic  emi ss ion  moni tor ing,  were devel o ~ e d ;  .and mechanical p roper ty  
data were determined on t h e  m a t e r i a l s  o f  i n t e r e s t .  A seminar was g iven a t  t h e  end o f  
t h e  program t o  pre5ent  t h e  r e s u l t s  and f i n d i n g s  o f  the,  s t u d y : t o  t h e  coal  gas i f i . ca t i on  
and petrochemical i n d u s t r i e s  and o t h e r i n t e r e s t e d  groups. 

Th is  r e p o r t  summarizes t h e  t e s t  procedures used, t h e  f i n d i n g s  of t h e  work and 
t h e  recommendations developed. The s i g n i f i c a n t  r e s u l t s  o f  t h e  work are  o u t l i n e d  
below and discussed i n  d e t a i l  i n  t h e  r e p o r t :  

1. Eighteen heat-up t e s t s  were run on n ine  standard and experimental 
dual component monol i t h i c  r e f r a c t o r y  concrete 1 i nS ngs. These t e s t s  
were run w i t h  a ' f i v e  f o o t  d iameter  by fou r teen  foo t . .h igh  Pressure 
Vessel/Test Furnace designed t o  accomodate' a twe lve  (1 2) i n c h  t h i c k  
by f i v e  f o o t  h i g h  r e f r a c t o r y  l i n i n g ,  heat the  ho t  face t o  2000°F and 
expose t h e  l i n i n g  t o  a i r  o r  steam pressures up t o  150 ps ig .  

The r -esu l ts  obta ined from standard type l i n i n g s  i n  the t e s t  f a c i l i t y  
i n d i c a t e d  t h a t  l i n i n g  degradat ion dup l i ca ted  t h a t  observed i n  f i e l d  : 
i n s t a l l a t i o n s .  

2. The' 1 i n i n g  performance was s i g n i f i c a n t l y  improved due t o  i n fo rma t ion  
gained from a systemat ic  s tudy of t he  c rack ing  t h a t  occurred i n  the  



l i n i n g s ;  the  ana lys i s  o f  t h e  l i n i n g  s t r a i n s ,  s h e l l  s t resses and acoust ic  
emission r e s u l t s ;  and t h e  s t ress  analyses performed on the  standard and. 

. ' experimental  1 i n i n g  designs w i t h  - the  f i n i t e  element a n a l y s i s  computer 
programs, REFSAM and RESGAP, developed on t h i s  con t rac t .  

3. The ma te r ia l ,  design and ope ra t i ng  procedure guide1 ines  which l e d  t o  
t h i s  i,mproved performance inc luded the  use o f :  

A 50% A120 dense r e f r a c t o r y  concrete w i t h  a low cement content ,  it very low s r inkage,  good f rac tu re  toughness and super io r  creep r e s i s -  
tance compared t o  convent ional  50% A1203 dense r e f r a c t o r y  concretes. 
Th is  ma te r i a l  a l s o  has a lower c o e f f i c i e n t  o f  thermal expansion and a 
lower thermal c o n d u c t i v i t y  than 90+% A1203 dense r e f r a c t o r y  concretes 
which reduced t h e  thermal s t resses generated i n  the  l i n i n g  and s h e l l  
and i n s u l a t e d  t h e  she1 1 b e t t e r .  

e The use o f  4 w/o 310 s t a i n l e s s  s tee l  f i b e r s  i n  t h e  50% A1203 
dense component. 

. e . A weaker, lower thermal c o n d u c t i v i t y  i n s u l a t i n g  component 
than the  o r i g i n a l  m a t e r i a l  tes ted .  

e Wider anchor spacings--two t o  th ree  f e e t  r a t h e r  than s i x  inches 
t o  one f o o t .  

e Coated anchors us ing  an aspha l t  based tape which burns o u t  and 
leaves a 250 m i l  expansion gap around the  anchor'. 

e Bonding b a r r i e r s  be tween.  the  ' l i m i n g  components and between t h e ,  . 

l i n i n g  and the  s h e l l .  

A co r ros ion  r e s i s t a n t  m a t e r i a l  a t tached t o  the  s h e l l  which a l s o  
' a c t s  as a compl iant  l a y e r  between t h e  s h e l l  and t h e  l i n i n g . '  

e A slow (25 t o  50°F/hr) cont inuous i n i t i a l  heat-up r a t e  t o  top  
ope ra t i ng  temperature w i t h  no holds. 

4. These' improved m a t e r i a l ,  design and ope ra t i ng  procedure gu ide l i nes  were , . 

success fu l l y  f i e l d .  t e s t e d  on t h e  HYGAS g a s i f i e r  d u r i n g  a r e l i n e  of  t h e  
h igh  temperature r e a c t o r  p o r t i o n  o f  t h e  u n i t  i n  e a r l y  1980. ' ,They were 
a1 so reviewed d u r i n g  a seminar g iven a t  t h e  Lynchburg Resea,rch. Center 
o f  Babcoc'k &. W i  1 cox. 

5. A u s e r ' s  manual , "Mathematical Model For t h e  Thermo-Mechanical Ana lys is  . 
o f  Refractory-L ined Process Vessel s , " '  has been.. w r i t t e n '  on t h e  f i n i t e  
e l  ement ana lys i s  computer programs, - REFSAM and RESGAP, developed on . 

th i ,s con t rac t .  This  manual i s  a v a i l a b l e  from NTIS. '. 
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1 . INTRODUCTION 

1 1 Background - The Problem 

The use o f  coal t o  help solve our energy problems has generated numerous 
research and commercial ventures i n  the USA dur ing the 1970's. Many o f  these 
ventures invo lve  the g a s i f i c a t i o n  o f  coal , l i g n i t e  o r  peat t o  produce low, 
intermediate o r  h igh BTU gas (130, 350 and 1000, respect ive ly) .  Both non- 
s lagging and s lagging processes a t  ambient pressure t o  t h i r t y  atmospheres o r  more 
are being, o r  have been, evaluated. Non-slaggi ng processes general 1y operate a t  
temperatures below 2000°F, and slagging processes operate a t  temperatures above 
2000°F (usual l y  i n  the 2500-2800°F range). Mono1 i t h i c  r e f r a c t o r y  concretes have 
been used predominantly i n  the non-slagging gas i f i e r s ;  and b r i c k  1 in ings,  often 
backed up w i t h  monol i th ics,  have been used i n  the slagging gas i f i e r s .  

The monol i th ic  l i n i n g  designs used i n  the non-slagging gas i f i e rs  were 
based on standard p rac t i ces  i n  the petrochemical i ndus t ry  and t o  some extent ,  
the p rac t i ces  i n  the s tee l  indust ry .  These designs are usua l l y  dual o r  m u l t i -  
component and u t i l i z e  a low s i l i c a ,  low i ron ,  calcium aluminate bonded h igh 
a1 umina (50-95% A1 203) dense r e f r a c t o r y  concrete backed up w i t h  an intermediate 
a1 umi na (40-60%) i n s u l a t i n g  r e f r a c t o r y  concrete. Examples o f  such mono1 i t h i  c 
r e f r ac to r y  1 i nings i n  some non-sl aggi ng coal g a s i f i c a t i o n  p i  1 o t  p l an t s  are 1 i sted 

- below. 

P i l o t  P lant  Refractory L in ings 

HY GAS 
F--Y-:  - -  

- 12-1 6" dual component 1 i n i n g  
- ,  -, f L  . -, w/90+% A1203 dense hot  face 

' . I  
mater ia l  and 50% A1 203 insu- 

- - l a t i n g  mater ia l  

SY NTHANE 9" dual component 1 i n i n g  w/90+% 

- - 
A120 dense and 50% A1 203 
insu 7 a t i n g  castable 

Cop ACCEPTOR 17" mu1 ti-component 1 i n i  ng w/50% 
A1 203 dense ha t  face mater i  a1 , 45% 
A1 20 i n s u l a t i n g  component and 
i nsu  9 a t i n g  b lock a t  co l d  face 

Mona1 i t h i c  r e f r a c t o r y  concrete 1 i n i n g s  are genera l ly  easy t o  i n s t a l l  , 
re1 a t i v e l y  inexpensive compared t o  b r i c k  1 i n i ngs  and thermal ly  i nsu la te  the pro- 
cess vessel she l l .  However, they have a tendency t o  crack and degrade thermo- 
mechanically and, as a r e s u l t ,  are considered t o  be unre l iab le .  Examples o f  t h i s  
degradation are shown i n  Figure 1 and 2 respect ive ly ,  f o r  the C02 Acceptor g a s i f i e r  
and the  upper porti.on o f  the HYGAS Gas i f i e r .  

, , 

This degradation usual l y  causes t h i nn ing  o f  the  1 i n i n g  and paths through 
which ho t  cor ros ive gases can f low. The combined e f f e c t  i s  overheating and cor ros ion 
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FIGURE 1. Appearance of Mono1 i th  i c Refractory Lin.i ng i n  C02 
Acceptor Gasifier a f t e r  Approximately Five.Years of  
Intermittent Service. 



FIGURE 2. Appearance of  Mono1 i th ic  ~ e f r a c t o r ~  Lining i n  High 
Temperature Reactor Reg1 on o f  HYWS Gas if Jer . 



o f  the metal pressure vessel she l l  and shor t  r e f r ac to r y  1 i f e  ( s i x  months t o  two 
years) .  I n  a severe cond i t i on  the re f r ac to r y  l i n i n g s  can separate from the she l l  
and cause a blow-by cond i t i on  t o  occur which can lead t o  major damage t o  the vessel. 
S im i la r  problems can a lso occur w i t h  b r i c k  l i n i n g s .  

Much of the  mono l i th i c  r e f r ac to r y  l i n i n g  degradation i s  bel ieved t o  be 
r e l a t e d  t o  the cracking, spa l l ing,  e tc .  which occur on the i n i t i a l  dry-out, heat- 
up and cool-down o f  the mono l i th i c  r e f r a c t o r y  concrete l i n i n g .  It i s  dur ing 
t h i s  t ime t h a t  the  uncombined and hyd rau l i ca l l y  bonded water i s  removed from the 
concrete and shrinkage and other  changes i n  the mater ia l  occur. 

Since t h e  ma jo r i t y  o f  the coal g a s i f i c a t i o n  processes under development 
i n  the  e a r l y  t o  mid 1970's were o f  the  non-slagging type, DOE chose t o  sponsor an 
engineering study on mono l i th i c  r e f r a c t o r y  concrete l i n i n g s .  The experiments were 
t o  be performed on standard and improved 1 i n i n g  designs i n  a t e s t  f a c i l i t y  t h a t  
simulated t he  condi t ions which ex is ted  i n  p i l o t  p l a n t  and commerical s ized g a s i f i e r s .  
The l i n i n g s  were t o  be instrumented w i t h  s t r a i n  gages, acoust ic emission t rans- 
ducers and other  devices t o  generate t h e  t e s t  data wanted. The t e s t s  were t o  be 
run a t  temperatures t o  2000°F and a t  pressures t o  a t  l e a s t  100 ps i .  

A user o r ien ted  model was a l so  t o  be developed which would permit  scale-up 
s t ress  analysis p red ic t ions  re levan t  t o  r e f r a c t o r y  l i n e d  pressure vessels up t o  
30 feet i n  diameter. 

The u l t ima te  goal o f  the  program was t o  develop a b e t t e r  understanding 
of how monol i t h i c  r e f r a c t o r y  1 i n i ngs  degrade and how t o  improve t h e i r  re1 i a b i  1 i ty. 
The key de l  i ve rab l  es wanted were : guide1 ines on mater ia l  spec i f ica t ions,  1 i ning 
designs, i n s t a l l a t i o n  procedures and operat ing procedures t h a t  would minimize 
cracking and improve ove ra l l  l i n i n g  performance. 

The s p e c i f i c  de l i ve rab le  i tems requested by DOE were t o  include:  

1. Computer programs (Fortran Language) for math modeling and analysis.  

2. F u r ~ t d c e  designed and c ~ n s t r u c t e d  f b r  the program. 

3 .  Test procedures t o  measure stress, s t ra in ,  and pressure and 
acoust ic emissions (AE) i n  mono l i th i c  r e f r a c t o r y  l i n i n g s .  

4. Experimental data f o r  heat ing t es t s  and support ing data. 

5. ~ ~ e c i f i c a t i b n s  f o r  r e f r a c t o r i e s  t o  prevent cracking dur ing heat-up. 

6. Guidel ines f o r  the  design o f  monol i th ic  re f rac to ry  1 in ings  t o  
prevent cracking dur ing heat-up. 

7. Guide1 ines on operat ing procedures t o  minimi7e crack formation 
dur ing heat-up. 

8. Improved monol i t h i c  r e f r a c t o r y  1 i n i n g  designs t o  r e s i s t  cracking and 
o ther  forms o f  thermo-mechanical degradation. 

The repo r t  which fo l lows  summarizes the  r e s u l t s  o f  the work done dur ing the 
f o u r  (4 )  year 1 i f e  o f  t he  program. 

1.2. Object ive 

The ob jec t i ve  o f  t h i s  program was t o  improve t he  thermo-mechanical 
re1  i a b i  1 i ty o f  monol i t h i c  ca l  c i  um a.1 uminate bonded r e f r a c t o r y  concrete 1 in ings  



of coal. gasification process vessels by reducing or el iminating' the cracking 
and thermo-mechanical degradation.whi'ch occurs in them on the i n i t i a l  dry-out, 
heat-up and cool -down. . . 

, . .  1.3.  Scope of Program - .  . 

The scope of work planned t o  develop the guidelines for  the improved 
performance wanted and to  achieve the overall objective of the program was 
subdivided into nine tasks and i s  outlined below. 

Tasks 

I .  Crit ical  Literature Search. The l i t e r a t u r e  was t o  be searched for  
information on the volume s t a b i l i t y ,  mechanical properties and chemical chanqes . . 
of monol i t h i c  refractory 1 inings of - l a rge  process vessels as  they are  related to  
crack formation. The cracking which occurs during curing, dry-out, heat-up and . 

cool-down was of prime consideration. 

11. Derivation of Mathematical Model. A mathematical model was t o  be 
developed using thermal and f i n i t e  element analysis computer programs to  determine 
the s t resses  and s t ra ins  occurring in 'twelve inch thick monol i t h i c  refractory 
1 inings of gas i f i e r  vessels of various s izes  (2-30 foot I . D . ) .  The model was to  
be developed for  single and multicomponent l inings b u t  would not consider the 
e f fec t  of anchors. This e f fec t  was to  be studied independently by, the Civil En- 
gineering Dept. a t  MIT under a separate DOE contract.  Materials properties avail-  
able in the l i t e ra tu re  or those being generated in Task I11 of t h i s  or other pro- 
grams on 50-95 percent alumina insulating or dense refractor ies  were t o  be u t i l ized .  
The model would cover the temperature range from room temperature to  2000°F, b u t  
'could be expanded t o  higher temperature i f  wanted. 

111. Determination of Relevant Mechanical Properties. The relevant.physica1 
and mechanical ~ r o ~ e r t i e s  of nine monolithic calcium aluminate and phosphate bonded 
refractor ies  ( f ive '  generic formulations and four commercial re f rac tor ies )  was to  
be determined. These properties were to  include density, porosity; pore s i ze  and 
s t ruc ture ,  hot and cold t ens i l e  and compressive s t rength,  thermal expansion, 
permanent l inear  and volume change, creep and other related mechanical properties. 
These properties were to  be used in the development of the math model and t o  support 
work in other tasks of t h i s  program. 

IV. ~evelopment of New or  Improved Refractories. New or improved monolithic 
refractor ies  tha t  have been developed to  r e s i s t  cracking during heat-up and cool- 
down will .be evaluated. The work done in Tasks I ,  I1 and VI was expected to  generate 
ideas for  t h i s  task: 

V .  Design and Construction of Test Furnace. A pressure vessel / tes t  furnace 
was to  be desianed and constructed. This t e s t  faci.1 i t y  would be c.ylindrically 
designed and have a three foot I.D. when lined with twelve inches of refractory. 
I t  would be seven fee t  high t o  give a four foot working height for  the l ining.  
The f a c i l i t y  would have a temperature capabil i t y  of 2PO0°F, heat-up r a t e  capabi 1 i t y  
to  300°F/hr., a temperature gradient of no more, than -20°F over the four foot 
height and pressure capabili ty of 250 psi.  I t  would a l so  be instrumented to  
measure temperature, s t r a ins ,  acoustical emissions, pressure and other pertinent 
experimental parameters. 



VI. Heat-up Tests With S t ress -S t ra in  -. -..-- and NDT Measurements. The pressure 
v e s s e l / t e s t  furnace was t o  be used t o  t e s t  n ine  l i n i n g s .  The twelve i nch  r e f r a c t o r y  
l i n i n g s  were t o  be inst rumented t o  measure the  s t ra in -deve lop ing  i n  them as a 
f u n c t i o n  o f  heat-up ra te ,  temperature, cool-down r a t e ,  gaseous atmosphere and 
pressure,  m a t e r i a l s  used, 1 i n i n g  design ( s i n g l e  and mu1 ticomponent and d i f f e r e n t  
anchor spacings)  and o t h e r  p r a c t i c a l  cons idera t ions .  The l i n i n g s  were t o  be 
mon i to red  w i t h  v i s u a l  and acoust ic  emission techniques f o r  evidence of c rack ing  
d u r i n g  these t e s t s .  High temperature s t r a i n  gage q u a l i f i c a t i o n  a c t i v i t i e s  were 
t o  be done under t h i s  task p r i o r  t o  the  s t a r t  o f  the  heat-up t e s t s .  This  work 
would be done t o  determine i f  and how the  s t r a i n  gages p r e s e n t l y  a v a i l a b l e  o r  under 
development cou ld  be used a t  h i g h  temperatures (1000°F and above) i n  monol i t h i c  re -  
f r a c t o r i e s .  Babcock & Wilcox e x p e r t i s e  on s t r a i n  gages was t o  be used i n  t h i s  a c t i v i t y .  

VII. Tes t i ng  o f  Re f rac to ry  L in ings  A f t e r  Heat-up Tests.  The l i n i n g s  were t o  
be inspected f o r  phys i ca l  damage a f t e r  t h e  heat-up t e s t s  were completed. The 
shr inkage and crack w id ths  were a l s o  t o  be determined. NDT and d e s t r u c t i v e  t e s t  
techniques were t o  be used d u r i n g  these i nspec t i ons .  Some phys ica l  an,d mechanical 
p r o p e r t y  t e s t i n g  was t o  be done on samples removed from t h e  l i n i n g .  

VIII .  C o r r e l a t i o n  and Ana lys is  o f  Data. T h e  data c o l l e c t e d  du r ing  t h i s  program 
were t o  be analyzed and c o r r e l a t e d  w i t h  t h e  mathematical model thermal and s t ress  pre- 
d i c t i o n s  generated b n  each l i n i n g .  Re la t ionsh ips  would be sought between t h e  phys ica l  
and mechanical p r o p e r t i e s  o f  t h e  r e f r a c t o r i e s ,  t h e  l i n i n g  design, operat ing,procedures 
(heat-up r a t e ,  atmospheric cond i t i ons ,  e t c .  ) '  and vessel s i z e  and t h e  probabi 1 i ty 
o f .  c rack  format ion.  These analyses and c o r r e l a t i o n s  .were t o  serve as a bas i s  f o r  , 

s p e c i f i c a t i o n s  on monol i t h i c  r e f r a c t o r y  1 i n i n g  m a t e r i a l s  f o r  var ious  si.ze vessel s. 

I X .  Seminar. A seminar was t o  be organized t o  present  t he  data generated 
and t h e  'conclus ions drawn from t h e  work. It would a l s o  serve t o  t r a n s f e r  t h e  technology 
developed on t h i s  program t o  t h e  , r e f r a c t o r i e s  i ndus t r y ,  a r c h i t e c t u r a l  engineer ing f i r m s  
and t o  o t h e r  i n t e r e s t e d  p a r t i e s .  



This sec t ion  o f  t he  r e p o r t  describes the' techn ica l  . . approaches and ,procedures 
used t o  perform the work. . . .  _ ' I  . 

2.1. C r i t i c a l  L i t e r a t u r e  Search 

The search was accomplished by us ing  a number o f  d i f f e r e n t  data bases. 
These inc luded a r e t r o s p e c t i v e  computer search on a number o f  data bases a v a i l a b l e  
through the  Company's Corporate In format ion  Center, a rev iew o f  t he  Chemical and 
Ceramic abs t rac ts ,  and a review o f  t he  l i t e r a t u r e  t h a t  had been c o l l e c t e d  pre-  
v i o u s l y  a t  Babcock & Wilcox on mono1 i t h i c  r e f r a c t o r i e s .  References were a l so  
sought on r e f r a c t o r y  s tud ies  t h a t  had been pub1 ished s ince November o r  December 
1975. 

Table 1 l i s t s  the  s p e c i f i c  data bases searched and the  p ropor t i on ing  , 

of  t he  850 references t h a t  were considered o f  i n t e r e s t  a f t e r  the t i t l e s  o f  t h e  
i n i t i a . 1  two thousand " h i t s "  were. reviewed. When, the  abs t rac ts  o f  these 850 
references were reviewed, 'about 100-1.25 were considered re1 evant. 

Since crack growth as we l l  as c rack  i n i t i a t i o n  a re  important  t o  the  proper 
understanding and'model i n g  o f  the'  performance o f  mono1 i t h i c  r e f r a c t o r i e s ,  r e f -  
erences which covered t h e  thermal. shock, crack growth, s t ress  ana lys i s  and 
acoust ic  emission c h a r a c t e r i s t i c s  o f  ceramics and r e f r a c t o r i e s  were sought and 
reviewed. References t h a t  had been i d e n t i f i e d  by the  DOE Technical Representat ive 
as p e r t i n e n t  t o  t h i s  program, i n c l u d i n g  work underway by o t h e r  DOE cont rac tors ,  
were covered du r ing  t h i s  a c t i v i t y .  

S ix  sets o f  key word combinations were used f o r  t h e  r e t r o s p e c t i v e  computer 
search. These sets are l i s t e d  i n  Table 2. 



TABLE 1. Datc Bases Searched and  umber o f  
References I d e n t i f i e d  f o r  Each 

-~ ~. 

Data Bases Per iod  covered - 

1 n i t i a . l  l y  
'1dent i ' f ie.d References 

Eng ineer ing  Index 
..... . . ... . , t :  

Conipu t e r  1970 - t o  p resent  . . .  , . .  446 

NTIS Computer 1964 - t o  p resent  . ' . 
.. . 

. . 
Smithsonian Science . , ,  

.. . . . 
I n f o .  Exchange no s p e c i f i c  search . . . . . . . . . . 

~ la ims(Chemi ,ca l  Pa ten ts  F i l e )  1970 - t o  present  - '  150 :. 

M i  sce l  1 aneous ... . , . . (Chemical Abs t rac t s  ,. e t c )  1969 - t o -  p resent '  . 150 

. . 
TOTAL . 850 , . , ... . 



. . 

TABLE 2. Sets 'f Key Words Used i n  Retrospect ive Computer L i t e r a t u r e  search 

. . . . 
. . 

s e t  '1 Set 2 Set 3 S e t 4  . Set 5 Set 6 

Ref rac tory  w i t h  Concrete w i t h  - Coal Castable and Castable and Castable and 

Thermal Analys is  Crack G a s i f i c a t i o n  w i t h  Mono1 i t h i  c  ' ' t qono l i th ic  . . ~ o n ' o l i t h i c  

Cyl i rider F i n i t e  Elements Castabl e ' ~ e f r a c t o r y  w i t h  , . Refractory w i t h  . Ref rac tory  w i t h  

Thermal Shock High T2mp. Mono1 i t h i c  Phosphate Creep Carbon Monoxide 

Heat Trans fer  Elevated Temp. Ref rac tory  Cal c i  um Dryou t Hydrogen 
A1 umi nate 

Trans ien t  Reaction Hydrat ion ' . Steam 
1 Cal c i  um . - 

. L i n i n g  Monoal umi nate Curing Atmosphere 

Anchor CD 
0 

Spa1 1 i ng 

Monol i t h i c  

Shrinkage 

Analys is  

Calcium : 

. Hexaal umi nate 
 herm ma? Heating Rate 

Expansi on 

Hot s t r e n g t h  . . 

Tens.i l e  s t rength.  
. . .. . 

Cracking ,. 
. ' 

. St ress 

1. Cracking 



2.2. A n a l y t i c a l  Procedure/Model Developnlent 

2.2.1. Overview o f  t h e  Model C a p a b i l i t i e s  

One o f  t h e  o b j e c t i v e s  o f  t h i s  c o n t r a c t  was t h e  development o f  a  mathe- 
m a t i c a l  model capable o f  c a l c u l a t i n g  the  s t r a i n s  and s t resses  i n  m o n o l i t h i c  re f rac-  
t o r y  1  i nings  r e s u l t i n g  f rom thermal and mechanical loads. The mathematical model was 
t o  be user  o r i e n t e d  and s u f f i c i e n t l y  documented t o  f a c i l i t a t e  i t s  use f o r  s t r u c t u r a l  
a n a l y s i s  of m o n o l i t h i c  l i n i n g s  used i n  a  c i r c u l a r  pressure vessel.  With t h i s  ob- 
j e c t i v e  i n  mind, two f i n i t e  element computer programs were developed. The f i r s t  
computer program developed t o  achieve t h i s  o b j e c t i v e  cons is ted  o f  a  s o p h i s t i c a t e d  
non-1 i near f i n i t e  element computer program capable o f  ana lyz ing  1  i n i n g s  fo r  the  
e f f e c t s  o f  creep, c rack ing ,  c rush ing ,  shr inkage, and thermal and mechanical loads.  
Th is  program conta ins  a  one-dimensional thermal ana lys i s  c a p a b i l i t y  which can be used 
t o  c a l c u l a t e  t h e  t r a n s i e n t  temperature d i s t r i b u t i o n  i n  t h e  r a d i a l  d i r e c t i o n  of the  
vesse I .  l nhe ren t  I n  t he  one-dimensional +eat  t r a n s t e r  capabi l i t y  i s  t h e  aSSulllptlOrl 
t h a t  t h e r e  i s  no c i r c u m f e r e n t i a l  o r  a x i a l  v a r i a t i o n  o f  temperature i n  t he  l i n i n g  o r  
s h e l l .  t h i s  temperature d i s t r i b u t i o n  can then be used i n  con junc t ion  w i t h  the  f i n i t e  
element program t o  c a l c u l a t e  the  mechanical, thermal , creep and shrinkage s t r a i n s  
i n  m o n o l i t h i c  l i n i n g s  as w e l l  as i n  t he  s h e l l .  The computer program conta ins  an 
ax isymmetr ic  genera l i zed p lane s t r a i n  f i n i t e  element. This  element i s  based on 
t h e  assumptions o f  un i fo rm s t r a i n  i n  the  a x i a l  d i r e c t i o n  o f  the  vessel and no va r ia -  
t i o n  i n  t he  r a d i a l  o r  hoop s t r a i n  i n  the  c i r c u m f e r e n t i a l  d i r e c t i o n  of t he  vessel.  
That  i s ,  o n l y  one a x i a l  s t r a i n  i s  computed f o r  t he  vessel;  whereas, r a d i a l  and hoop 
s t r a i n s  a r e  c a l c u l a t e d  a t  d i f f e r e n t  r a d i a l  l o c a t i o n s  through the  vessel w a l l  and 
these s t r a i n s  are n o t  a l lowed t o  vary i n  t he  c i r c u m f e r e n t i a l  d i r e c t i o n  o f  t h e  
vessel due t o  axisymmetry. I n  a d d i t i o n  t o  s t r a i n s ,  t he  t o t a l  s t r e s s  s t a t e  and r a d i a l  
displacements are  c a l c u l a t e d  a t  var ious l o c a t i o n s  through the  vessel w a l l .  This  
computer program i s  c a l  l e d  the  Re f rac to ry  Fai 1  u re  and St ress  Ana lys is  Model (REFSAM). 

The second f i  n i  t e  element computer program (RESGAP) i s  a  simp1 i f i e d  
v e r s i o n  o f  REFSAM which a l l ows  t h e  user  t o  d e f i n e  the  vessel c o n f i g u r a t i o n ,  rna ter ia l  s 
and l o a d i n g  w i t h  a  minimum o f  i n p u t .  It a l s o  a l l ows  t h e  user  t o  analyze the  e f f e c t s  
o f  gaps between var ious  l i n i n g s  o r  between t h e  l i n i n g s  and s h e l l .  The pr imary  
r e s t r i c t i o n  o f  t h i s  s i m p l i f i e d  model i s  t h a t  i t  does n o t  account f o r  the  temperature 
dependence o f  t he  m a t e r i a l  p r o p e r t i e s  o r  t h e  v a r i a t i o n  i n  response o f  t h e  vessel . 

i n  t he  hoop o r  a x i a l  d i r e c t i o n  o f  t h e  l i n i n g s  o r  s h e l l .  However, these s i m p l i f i c a t i o n s ,  
r e s u l t  i n  a  program which r e q u i r e s  l i t t l e  i n p u t  from the  user  t o  d e f i n e  the  a n a l y s i s  
and can be executed w i t h  l i m i t e d  computer f a c i l i t i e s .  It i s  env is ioned t h a t  t h i s  
computer program can be used t o  i n v e s t i g a t e  d i f f e r e n t  l i n i n g  con f i gu ra t i ons ,  t h e  
gross i n t e r a c t i o n  between the  l i n i n g s  and s h e l l ,  and t h e  e f f e c t  o f  var ious  heat-  
up r a t e s  f o r  t h e  vessel .  

These model s  a r e  thorough ly .  d iscussed i n  t h e  user manual which i s  being 
d e l  i vered t o  DOE under separate cover .l 

REFSAM and RESGAP Model Devel opments 

The w r i  teup which fo l lows.  summarizes b r i e f l y  the  computer systems and 
approach used t o  develop these models. Much o f  t h i s  i n f o r m a t i o n  i s  d e t a i l e d  i n  t he  
user  manual. 



Computers Used . 

The computer systems i n i t i a l l y  used inc luded a  D i g i t a l  ,Equipment 
Corporat ion PDP-11/70, s ta t i oned  a t  the  A l l i a n c e  Research Center, which served as a  
te rm ina l  t o  an. IBM 370/155 computer, l oca ted  st Barberton, Ohio, -and a  CD.C 7600 
c0mpute.r system, l oca ted  a t  Lynchburg, V i r g i n i a .  The CDC 7600 computer system ha's 
a  CDC 7614. c e n t r a l  computer which has. 65,000 word, h igh  speed, smal l  core memory . 
and. 256,000 word, slow speed, l a r g e  core  memory c a p a c i t i e s .  The CDC 7614 i s  t i e d  . 
t o  a  CDC 7638 d i sc  t h a t  has a  storage c a p a b i l i t y '  of 800 m i l  1  i o n  charact 'ers. The. 
CDC' 7614 i s  d r i v e n  by a  CYBER 73-16 computer which has a  98,000 word core memory 
capac i ty .  The system has mu1 t i p l e  1  i n e  p r i n t e r s ,  g raph ica l  p l o t t e r s  and magnetic 
tape d r i ves .  This  system was l a t e r  changed t o  i nc lude  a  VAX 11/780 computer i ns tead  
of the PDP 11/70 computer. Th is  computer i s  comparable i n  speed t o  the  IBM 370 
se r ies  computers a t  a b o u t ' l / l O t h  the  cos t .  .. . 

The VAX 11/780 c'omputer was used f o r  the  development of the  s imp le r  
user o r i e n t e d  model and was t i e d  t o  a  CALCOMP p l o t t e r  o r  l i n e  p r i n t e r  t o  generate' .  
p l o t s  from the  analyses. This  computer has a  32 b i t  word core memory, a  two m i l  l i o n  
by tes .s to rage  c a p a b i l i t y ,  CRT d i sp lay ,  and a  l i n e  p r i n t e r .  

Model Development 

The f a i l u r e  a n a l y s i s  o f  r e f r a c t o r y  1  i n i n g s  i s  .a ' fo rmidab le  task  
i n v o l v i n g  a  thermal ana lys i s  w i t h  v a r i a b l e  p r o p e r t i e s  through the  r e f r a c ' t o r y  w a l l ;  
a  s t r e s s  a n a l y s i s  t a k i n g  account o f  such e f f e c t s  as s t r a i n s  due t o  thermal expansion, 
i r r e v e r s i b l e  shrinkage, n o n l i n e a r i t y  o f  s t r e s s - s t r a i n  r e l a t i o n s  and creep; and, 
most impor tan t l y ,  a  f a i l u r e  c r i t e r i a  t h a t  de f i nes  the  combinat ions o f  s t r e s s  and 
s t r a i n  which w i l l  r e s u l t  i n  c rack ing  o r  c rush ing  o'f t he  m a t e r i a l .  

The bas ic  t o o l  i n i t i a l l y  planned i n  the.development of  a  mathe- . 
ma t i ca l  model was the  non l i nea r  program ADINA. The program, ADINA, i s  a  3D f i n i t e  
element s t r e s s  a n a l y s i s  program which has ex tens ive  capabi 1  i t i e s  t o  analyze thermal 
s t resses due t o  p rescr ibed temperature d i s t r i b u t i o n s  when the  m a t e r i a l  p r o p e r t i e s  
vary w i  t h  temperature. 

. D i f f i c u l t y  was expected w i t h  the  program ADINA, s ince  none o'f . 
t h e  i n d i v i d u a l  op t i ons  , c u r r e n t l y  a v a i l a b l e  i n  i t  cou ld  model a l l  o f  t he  impor tan t  
aspects o f  t h e  r e f r a c t o r y  ana lys i s .  For example, t he  creep model d i d  n o t  take  
i n t o  account  t he  v a r i a t i o n  o f  thermal expansion w i t h  temperature, o r  simultaneous . 
shr inkage, creep and c rack ing .  Thus, t h e  o v e r a l l  goal o f  t h e  i n i t i a l  model develop- 
ment was t o  f i r s t  i d e n t i f y  appropr ia te  models f o r  t he  i n d i v i d u a l  aspects of creep, 
expansion, shr inkage, and c rack ing ;  and i nco rpo ra te  a  new m a t e r i a l  model i n t o  
ADINA which cou ld  i nc lude  a l l  o f  these e , f f ec t s .  

. . 

The program ADINA was acqui red.  from MIT w i t h  Company funds and 
implemented on the  Company computer system. Ten t e s t  cases suppl i e d  w i t h  t h e  
program were successfu l  l y  executed. The p r o j e c t  engineer  at tended a  one-week course 
a t  MIT on t h e  use and t h e o r e t i c a l  bas i s  o f  the  program ADINA. I n q u i r i e s  were made 
t o  D r .  Bathe?'3, t he  program o r i g i n a t o r ,  concerning the  f e a s i b i  1  i ty  o f  mod i fy ing  
mathematical model s  i n  ADINA so' t h a t  they  would be a p p l i c a b l e  t o  r e f r a c t o r y  m a t e r i a l s .  
The s p e c i f i c  m o d i f i c a t i o n s  d i  scussed were the  combinat ion o f  Models 5  (concrete 
m a t e r i a l  model ) and 11 ( t h e r m o - e l a s t i c - p l a s t i c - c r e e p  model )' f o r  the  two-dimensional 



and axisymmetr ic  continuum elements (see Reference 1  ) .  D r .  Bathe saw no major d i f f i  - - 

c u l t i e s  i n  t h e  proposed changes; he suggested t h a t  the  coding would be s i m p l i f i e d  
by add ing  t h e  concrete c rack ing  o p t i o n  t o  Model 11 r a t h e r  than v ice-versa.  I n  
response t o  quest ions  about t h e  phys ica l  v a l i d i t y  o f  Model 5, D r .  Bathe s ta ted  
t h a t  t h e  f a i l u r e  c r i t e r i a  i n  the  c rack ing  model was purposely kept  r e l a t i v e l y  sim- . 
p l e ,  b u t  was thought  t o  be general enough f o r  p r a c t i c a l  a p p l i c a t i o n .  He mentioned 
t h a t  bo th  Pro fessor  Connors a t  MIT and Professor Argyrus a t  the  U n i v e r s i t y  o f  
S t u t t g a r t  i n  West Germany have done a  s i g n i f i c a n t  amount o f  work i n  t h i s  area us ing  
more s o p h i s t i c a t e d  model s. According t o  h i s  phi losophy, the' ma te r i a l  model s  i n  
ADINA should be used i n  con junc t i on  w i t h  t e s t s  i n  the  l a b o r a t o r y  t o  i nsu re  t h a t  
phys i ca l  l y  meaningful  r e s u l t s  a r e  being obta ined w i t h  the  model. 

The program ADINA d i d  n o t  have a  heat  t r a n s f e r  ana lys i s  c a p a b i l i t y ;  
and s ince  t h e  e x i s t i n g  B&W heat  t r a n s f e r  codes a re  p r o p r i e t a r y ,  an a u x i l i a r y  pro-  
gram was developed f o r  use i n  t he  r e f r a c t o r y  ana lys is .  The code i s  f o r  one-dimen- 
s i o n a l  t r a n s i e n t  ana lys i s  of  c y l i n d r i c a l  qeometries, I t  i s  a  f i n i t e  element program 
based on quadra t i c  temperature i n t e r p o l a t i o n s  over  each element. The bas ic  equat ion 
i n  m a t r i x  form i s  

{Cl f + IKI T = Q ( 1  

where C i s  t h e  s p e c i f i c  heat  m a t r i x  
K i s  t h e  thermal c o n d u c t i v i t y  m a t r i x  
T i s  a  vec to r  o f  nodal temperatures 
Q i s  a  vec to r  o f  nodal heat  f lows 

and a  d o t  i n d i c a t e s  d i f f e r e n t i a t i o n  w i t h  respect  t o  t ime. 

The element s p e c i f i c  heat  and c o n d u c t i v l t y  mat r ices  are  formed 
by numer ica l  i n t e g r a t i o n  over  i n d i v i d u a l  elements. The necessary m a t e r i a l  pro-  
p e r t i e s  a t  each i n t e g r a t i o n  p o i n t  a r e  found by i n t e r p o l a t i n g  from user  i n p u t  t ab les  
of  s p e c i f i c  heat  and c o n d u c t i v i t y  versus temperature. As many as f i v e  d i f f e r e n t '  , 

m a t e r i a l s  can be used through t h e  w a l l ,  each hav ing  i t s  own va r ia ' t i on  o f  p rope r t i es  
w l t h  temperature. Since r e l a t i v e l y  smal l  systems o f  equat ions a re  envisioned, 
an i n - c o r e  equat ion  s o l v e r  based on Gaussian e l i m i n a t i o n  i s  used. The program c u r r e n t l y  
uses a  cons tant  t ime s tep  and a  s imple i m p l i c i t  i n t e g r a t i o n  operator  which, as proven 
. i n  re fe rence 2, i s  u n c o n d i t i o n a l l y  stab1 e. The heat  t r a n s f e r  program a l so  inc ludes  
p l o t t i n g  capabi- ' l i . t ies which a l l o w  t h e  tempe'rature p r o f i l e  through the  w a l l  t o  be 
p l o t t e d  a t  user -se lec ted  t h e  steps.  I n  add i t i on ,  the  temperatures are  w r i t t e n  Qn 
tape and ca ta loged i n  a  format which i s  compat ib le w i t h  the  requ i red  i n p u t  data f o r  
the  ADINA s t r e s s  ana lys i s  proqram, 

An at tempt was made t o  use t h e  ADINA c rack ing  model w i t h  a  re -  
f r a c t o r y  con f i gu ra t i on  as shown i n  F igure  3 b u t  t h e  r e s u l t s  were n o t  s a t i s f a c t o r y .  
It appeared t h a t  t h e  f i n i t e  element g r i d  was n o t  r e f i n e d  enough t o  perform a  
successfu l  c r a c k i n g  ana lys i s .  

It became apparent a t  t h i s  p o i i i t  . that t h e  program ADINA was too  
general and incomplete t o  be a  v i a b l e  user, o r i e n t e d  model . A s impler ,  design 
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o r i e n t e d ,  spec ia l  purpose program was thendeveloped which had genera l i zed plane 
s t r a i n  s t r e s s  ana lys i s  capabi 1  i t y  f o r  mu1 ticomponent c y l  i n d r i c a l  r e f r a c t o r y  1  ined 
vessels and had uncoupled thermal and s t ress  ana lys i s  models i n  i t .  This meant 
t h a t  t he  t r a n s i e n t  temperature d i s t r i b u t i o n  was obta ined independently o f  the 
s t r e s s  analyses. 

This  model which became REFSAM inc luded t h e  e f fec ts  o f  shrinkage, 
creep and temperature-dependent ma te r i a l  p rope r t i es .  The' shr inkage and creep models 
were developed f rom experimental  data c o l l e c t e d  on the  r e f r a c t o r y  concretes o f  i n -  
t e r e s t .  The d e t a i l s  o f  t h e  experi.menta1 techniques .and data generated on shrinkage 
and creep t o  develop these models a re  summarized i n  o the r  sec t ions  of t h i s  r e p o r t  
and i n  t he  u s e r ' s  manual . .. a 

The n v e r a l l  program f l a w  o f  REFSAM i s  shown i n  F igure  4 and 
i n d i c a t e s  t h e  m a t e r i a l  t ype p r o p e r t i e s  requ i red  "over t h e  range 0 t o  2000°F. These 
p r o p e r t y  da ta  are: 

Time-Dependent 
Thermal P rope r t i es  Mechanical Proper t ies  . : P roper t ies  

Thermal c o n d u c t i v i t y  Tens i l e  s t reng th  Creep data 
S p e c i f i c  heat  Compressive s t r e n g t h  Shrinkage data 
Convect ive f i l m  c o e f f i c i e n t s  B i a x i a l  compressive s t reng th  

Propor t iona l  1  i m i  t i n  
tens ion  and compression 

Modulus o f  e l a s t i c i t y  
Poisson's  r a t i o  
Thermal expansion c o e f f i c i e n t  

The thermal p r o p e r t i e s  a r e  used i n  t h e  heat  t r a n s f e r  a n a l y s i s  w h i c h  a t  each stage of  
t h e  ana lys i s ,  p r e d i c t s  t h e  temperature d i s t r i b u t i o n  through the  r e f r a c t o r y .  . The 
mechanical p r o p e r t i e s  a r e  used i n  t h e  c o n s t i t u t i v e  law which general izes the  
r e s u l t s  o f  u n i a x i a l  t e s t s  t o  m u l t i a x i a l  s t r e s s  s t a t e s  and accounts f o r  changes i n  
t he  s t r e s s - s t r a i n  response due t o  l o c a l  c rack ing  o r  crushing.  The creep law 
c o n s i s t s  of  an a n a l y t i c a l  expression f o r  creep s t r a i n , ' a n d  a l s o  inc ludes  the  
t r a n s i t i o n  from u n i a x i a l  t o  m u l t i a x i a l  creep p r e d i c t i o n s .  F i n a l l y ,  t h e  r e s u l t s  o f  
t h e  thermal ana lys i s  a r e  used a long w i t h .  t he  creep"and c o n s t i t u t i v e  laws t o  perform 
a  f i n i t e  element s t r e s s  a n a l y s i s .  

The geometr ic i d e a l i z a t i o n  i s  shown i n  F igure  5. The r e f r a c t o r y  i s  
d i v i d e d  i n t o  a  number o f  f i n i t e  elements. Each element c o n s i s t s  o f  t h ree  nodes and 
has i t s  own temperature-dependent m a t e r i a l  p rope r t i es .  The unknowns a t  each node 
a r e  t h e  r a d i a l  and axia.1 displacements and t h e  nodal temperature. The main assump- 
t i o n s  i n  t h e  ana lys i s  a re  a x i a l  symmetry and genera l i zed plane s t r a i n ,  which 
i n d i c a t e  . tha t  o n l y  . rad ia l  v a r i a t i o n s  o f  s t r e s s  and s t r a i n  a re  considered. The 
a x i a l  f o r c e  o r  corresponding a x i a l  s t r a i n  wh ich 'a re  cons tant  over t h e  l e n g t h  a re  
p resc r ibed  as a  f u n c t i o n  .'of . t ime  as i n p u t  data. 
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When t h i s  model was used t o  p r e d i c t  l i n i n g  and s h e l l  s t r a i n s  and 
compared t o  the  experimental  , r e s u l t s  o f  the  f i , r s t  two 1  i n i n g  t e s t s ,  i t  was found'. 
tha,t  the  experimental  s t ra ins .were  h igher  than those p red i c ted .  'The main explan- 
a t i o n  proposed f o r  t h i s  d i f feren-ce was - t h e  p o s s i b i l j t y  t h a t  t he  model assumption . 

, 

o f  genera l i zed plane s t r a i n  (G. P.S.  ) was n o t  very  ri.gor,ous , f o r  t he  pi-esent vessel 
con f i gu ra t i on .  To inves t ' iga te  t h i s  aspect 'of t h e  ana lys i s ,  an e l a s t i c  steady s t a t e  
ana lys i s  was c a r r i e d  o u t  us ing  an in-house a x i  symmetric f i n i t e  element program 
FESAP. The r e f r a c t o r y  cons is ted  o f  a  two compone'nt 1  i n e r  .and was subjected t o  a' . . 

'.;.. r a d i a l  temperature p r o f i l e  s i m i l a r  t o  t h a t  a f t e r  t he  h o l d  a t  1000°F i n  the  L i n i n g  
. '  #2 experiment. The e f f e c t  o f  i n t e r e s t  was pr imari1.y .a geometr ic e f f e c t  and was 

n o t  expected t o  be dependent on t h e  p a r t i c u l a r  l oad ing  o r  on m a t e r i a l  n o n l i n e a r i t i e s .  
Hence, t he  use o f  an e l . as t i c  ana lys i s  was considered t o  be s u f f i c i e n t .  'The p r o p e r t i e s  
chosen f o r  t h e  modulus o f  e l  a s t i c i t y  and thermal ex'pansion c o e f f i c i e n t . , w e r e  average 
values over  t h e  temperature range and t h e  expansion c o e f f i c i e n t  . .. . was reduced t o  s ' imulate 
t h e  e f f e c t  o f  shr inkage. 

4 ' 

I t  was learned f rom t h i s  i n v e s t i g a t i o n  t h a t  end e f f e c t s  d i d  e x i s t  
a t  t he  t o p  and bottom o f  t h e  t e s t  vessel used i n  t h i s  c o n t r a c t .  . Furthermore, i t  ' 

was r e a l i z e d  t h a t  t h e  end e f f e c t s  were n o t  adequately modeled by  genera l i zed p lane 
s t r a i n  p r e d i c t i o n s  i n  t h e  REFSAM. This model ' d i d  appear t o  be adequate f o r  pre-  
d i c t i n g  s t r a i n s  and st resses i n  t h e  r e f r a c t o r y  1  i n i n g  and ' poss ib l y  the  she1 1  fo'r . .  

l a r g e r  vessels ( > I 0  ft. h igh )  away f rom the  ends o f  t he  vessel .; 
. . 

The conclus ions drawn. from t h i s  i n v e s t i g a t i o n  were: 

1  ) An axisymmetr ic ana lys i s  of  r e f r a c t o r y  1  i ned  vessels con- 
s i d e r i n g  end e f f e c t s ,  i s  d e s i r a b l e  t o  p r e d i c t  peak s h e l l  s t resses.  

2)  .Membrane s h e l l  s t resses due t o  the  thermal expansion o f  the  
r e f , r a c t o r y  1, ining can be s u b s t a n t i a l .  

3.) When s t r e s s  analyses of pressure vessels a re  performed, 
these membrane s h e l l  s t resses  and end e f f e c t  s h e l l  s t resses  should be fac to red  i n t o  
the  ana lys is ,  and' 

4)  S t r a i n  measurements should be taken a t  t he  ' c e n t e r  o f ' t h e  
r e f r a c t o r y  l i n e d  t e s t  vessel t o  reduce erroneous r e s u l t s  due t o  end e f f e c t s .  

pore Pressure/Mass Trans fer  E f fec ts  
. , 

Dur ing  t h e  i n i t i a l  l i n i n g  t e s t s  experiments, i t  was found t h a t  
t h e  temperatures o f  t h e  i n s u l a t i n g  component near  t h e  shei 1  d i f f e r e d  s i g n i f i c a n t l y  

" 

from t h e  temperatures pred5cte'd w i t h  t h e  REFSAM. ' T h e  l i n i n g  was found t o  be h o t t e r  
than pred ic ted ,  rose t o  a. temperature of  21Z°F very  q u i c k l y  du r ing  the  i n i t i a l  
temperature ramp, and mainta ined t h a t  temperature. f o r  an extended p e r i o d  ( u n t i l  ' t h e  
water  had 'been d r i v e n  away). The 1  i n i n g  temperature then rose q u i c k l y .  This '  e f f e c t  
o f  mo is tu re  m i g r a t i o n  i n  p o r t l a n d  cement based concre te  was shown by England 
t o  be due t o  t h e  g r a d i e n t  i n  temperature and, vapor pressure; Bazant and Thougul hu 5 . 

expanded on t h i s  concept and developed bo th  1  and 2D models t o  p r e d i c t ' i t s  e f f e c t  
on shrinkage, pe rmeab i l i t y ,  pore pressure and exp los i ve  s p a l l i n g  i n  heated con- 
c r e  t e s  . . . 



Both these models were acqui red f rom D r .  Bazant under a subcon- 
t r a c t  and the  I D  pore pressure program was modi f ied and incorpora ted  i n t o  t h e  B&W 
CDC computer system. Some o f  t h e  m o d i f i c a t i o n s  inc luded a new equat ion sol  v e r y  a 
change o f  u n i t s  f o r  da ta  i n p u t  and a gr id .  generator  t o  minimize data i n p u t .  This  
program was t o  be used t o  s e l e c t  an app rop r ia te  p e r m e a b i l i t y  va lue f o r  the re f rac -  
t o r y  concre te  t o  bes t  match t h e  weight l o s s  data generated from spec ia l  tests ' .  
Since mu1 t i p l e  computer runs were requ i red ,  t he  one dimensional program was the  most 
e f f i c i e n t  program f o r  t h a t  purpose. 

An i n i t i a l  t e s t  case was run ,  t o  . v e r i f y  t he  opera t ion  o f  the  pro-  
gram. The program executed; however, t h e  computed temperatures and pressures were 
e r r a t i c ,  p a r t i c u l a r l y  near  t h e  heated sur face.  Subsequent runs. w i t h  a more re f i ned  
g r i d  i n d i c a t e d  t h a t  t h e  program was very  s e n s i t i v e  t o  g r i d  ref inement  near t he  -,' 

su r face  and would r e q u i r e  numerous elements through the th ickness  fo r  accurate 
. 

p r e d i c t i o n  o f  pore pressures. The d i f f i c u l t y  was thought  t o  be due t o  the  low order  
i n t e r p o l a t i o n  used f o r  pressure and temperature i n  t he  program. It 'appeared t h a t  
i t  would be d e s i r a b l e  t o  rep lace  the  s imple t r i a n g u l a r  elements used i n  t h e  program 
w i t h  a h i g h e r  o rder  element such as t h e  Isoparamet r ic  Quadr i ' l a te ra l  . This would be 
compat ib le w i t h  the  s t r e s s  a n a l y s i s  program which used the  h igher  o r d e r  i n t e r p o l a t i o n  
scheme, s ince  no i n t e r p o l a t i o n  would be requ i red  t o  o b t a i n  nodal p o i n t .  temperatures 
and pressures used i n  t h e  s t r e s s  ana lys i s .  

As an i n d i c a t i o n  o f  t he  type o f  r e s u l t s  t h a t  a re  p ied iE ted  by t h e  
' 

one dimensional pore pressure model, some t y p i c a l  ou tpu t  i s  inc luded i n  Table 3. 
The a n a l y s i s  i s  f o r  a 3 i n c h  O.D. c y l  i n d r i c a l  specimen, which i s  sealed a t  the ends 
and heated f rom the  o u t e r  sur face a t  100°F/hr. The coord ina te  X ( 1 )  i s  t he  propor-  
t i o n  o f  the  d i s tance  f rom t h e  cen te r  t o  t h e  ou ts ide  sur face.  A t ime step o f  15 
minutes was used i n  t h i s  a n a l y s i s  and the  r e s u l t s  shown a r e  a t  a p a r t i c u l a r  t ime 
(T  = 3 hours) .  Note t h a t  t h e  program prov ides  t h e  s p a t i a l  v a r i a t i o n  o f  pore pressure, 
temperature, and humidi ty ,  H. The humid i t y  value i n d i c a t e s  the. r a t e  o f  d r y i n g  and 
w i l l  be used t o  es t ima te  shrinks e. Although t h e  accuracy o f  t h e  abso lu te  values 
shown i n  Table 3 were quest ionab 7 e, i t  i s  i n t e r e s t i n g  t o  no te  the  sharp g r a d i e n t  
i n  m0.i s t u r e  content  near t h e  heated sur face.  I f  these. resul t s  a re  qua1 i t a t i v e l y  
c o r r e c t ,  shr inkage s t resses  very  near t he  surface are  1 i k e l y  t o  be . important . . 
cons ide ra t i ons .  

However,. s ince  problems s t i l l  e x i s t e d  i n  t he  pore pressure program, 
and t h e  complet ion o f  t h e  bas ic  model was the  pr imary  o b j e c t i v e ,  no. f u r t h e r  e f f o r t  
was expended on it. 

Parameter Study 

The parameter s tudy was t o  be done w i t h  REFSAM and was t o  i nvol  ve 
a systemat ic  s tudy o f  t h e  f o l l o w i n g  var . iab les:  

1. Geometrical v a r i a b l e s  - 1 i n i n g  th icknesses 
: s h e l l  th icknesses 

' - vessel d iameter  
. -  expans.ion a1 lowances 

' - anchor con f i gu ra t i ons .  



TABLE 3. 
. . 

Typ i ca l  Output o f  One ~ i m e n s i o n a l  Pdre pressure ~ r o g r a m *  

Pore Pressure(ps i  . . ) 

62.91 78 

Temperature ( F O )  

299.99 . 

299.99 

299.99 

299;99 

299.99 

299.99 . ' 

299.99 . . 

299.99 

  el ati 've 
Humid i t y  

0.93901 

*- 3,00 Hol.rr-s r ime 
Time Increment  , 15.00 Minu tes  . . 

No. o f  I t e r a t i o n s  2 
No. o f  Steps 2 1. 

. . 
. . 

. . 



2. M a t e r i a l  va r i ab les  - creep c h a r a c t e r i s t i c s  
- e l a s t i c  moduli 
- shrinkage and expansion p rope r t i es  
- p o r o s i t y  and permeabi 1 i t y .  

3. App l ied  loads - hea t i ng  and c o o l i n g  r a t e s  
- e f f e c t s  o f  holds a t  temperature 

. . - i n te rna ' l  pressure . ' 

- l ong  term o r  steady s t a t e '  response. 

I n  o r d e r  t o  l i m i t  the  number o f  computer 'runs, a t t e n t i o n  was - to  be 
focused on f o u r  p a r t i c u l a r  m a t e r i a l  c o n f i g u r a t i o n s  as l i s t e d  below: 

Con f igu ra t i on  Dense I n s u l a t o r  

1 90 percent  a1 urrri nd L i  tecas t 75-28 
2 Phosphate bondcd L i  t e c a s t  75-28 
3 50 percent  alumina L i  t e c a s t  75-28 
4 50 percerl L a1 u111.i r ~ a  L l  t ecas t  75-28 

w/4% SS F ibers  

The m a t e r i a l  p rope r t i es ,  creep, and expansion c h a r a c t e r i s t i c s  
determined p r e v i o u s l y  i n  t h i s  program were . t o  be used. 

The remain ing va r iab les  were t o  be subjected t o  a wide range o f  
va lues.  Some t y p i c a l  ranges t o  be i n v e s t i g a t e d  are  l i s t e d  below: 

Thickness of dense component ( 2  t o  6 inches)  . . . 
To ta l  l i n i n g  th ickness  ( 9  t o  15 inches)  
S h ~ l l  thickmess (1 /2  t o  4 inches)  
H ~ a t i n g  r a t e s  (5(3 t o  500°F per  hour)  
Maximum temperature (1 000 t o  2000°F) 
I n t e r n a l  pressures (0  t o  1000 p s i )  

For each p a r t i c u l a r  ana lys i s ,  some o f  t h e  ke.y c r i , t e r i a  t o  be 
i n v e s t i g a t e d  were: 

Maximum t e n s i  1 e s t r e s s  ( i n  each component) 
Maximum compressive s t r e s s  - ( i n  each component) 
Maximum s h e l l  s t ress  . 
Time, l o c a t i o n ,  and e x t e n t  of  p r e d i c t e d  c rack ing  i f  

s t r e n g t h  p r o p e r t i e s  a r e  exceeded 

I n  a d d i t i o n ,  severa l  key comparisons t o  be made ie;e: 

T rans ien t  versus steady s t a t c  r e s u l t s  (assuming t h a t  l ong  term creep data 
were avai  1 ab le)  

Const ra i  ned (anchored) ver'sus unconstra ined 1 i nings 
S i  ng'l e versus dual component 1 i nings 



Analyses i n v o l v i n g  hypo the t i ca l  ma te r i a l  p roper ty  v a r i a t i o n s  were 
a l s o  o f  i n t e r e s t  t o  determine which improvements i n  ma te r i a l  p r o p e r t i e s  are most 
des i rab le .  . . 

fin all,^, sonie spec ia l  con f i gu ra t i ons  were t o  be analyzed, such as 
mu1 t i p l e  1  i n i n g s  ( t h r e e  o r  more). o r  p o s s i b l y  spec ia l  purpose cement conlpounds which 

.harden a t  h i g h e r  temperatures a f t e r  some of t h e  shr inkage has occurred. 

I n  o rde r  t o  per fd i -m t h i s  stddy q b i c k l y  and e f f i c i e n t l y ,  REFSAM 
was simp1 i f i e d  and p laced on a  VAX 11./780 computer. The ' r a t i ona le '  behind t h i s .  
a c t i v i t y  was t h a t  analyses o f  gross e f f e c t s  cou ld  ,be done q u i c k l y  and o p t i m i z a t i o n  
o f  t h e  l i n i n g  design cou ld  be developed r a p i d l y .  Th i s  new program used average 
p r o p e r t i e s  over  t h e  temperature range o f  i n t e r e s t  i ns tead  o f  temperature dependent 
p rope r t i es ,  and e l im ina ted  t h e  compl icated c rack ing  and c rush ing  models. I t  a l s o  
ope ra ted 'w i  t h  t h e  minimum o f  temperature i n p u t  o r  experimental  data.. This  simp1 i- 
f i e d  model was designated RESGAP. 

C a p a b i l i t i e s  o f  Models -- -- ---------. 

Table, 4 summarizes the  c a p a b i l i t i e s . o f  REFSAM and the  RESGAP s t r e s s  
ana lys i s  model. 'An'alyses can be performed w i t h  a1 1  o r  p a r t s  of these models.. F l a t  
wal.1, c o n f i g u r a t i o n s  can be r u n  as spec ia l  cases w i t h  e i t h e r  o f  these models. 

. . 

' The ope ra t i on  o f .  t h e  .RESGAP fiodel can be learned i n  'about on'e ha1 f 
day whereas the  ope ra t i on  of REFSAM wi.11 take  about two. days. A r e l a t i v e l y  s imple . . 

computer such as the  IBM 5100 se r ies  o r  t he  PDP 11 se r ies  can be used f o r  the  RESGAP. 
model whereas more s o p h i s t i c a t e d  computers a r e  needed f o r  REFSAM. These would 
i n c l u d e  the  PDP 11/70, VAX,11/780, IBM 370 o r  CDC 7600 systems. 



TABLE 4. Mathematical. Model Capabilities 
,. . , . . ,  . .  . 

. . 
. . . . 

. . 

Capability RESGAP* REFSAN , ,  . ' 

. . . . 

Heat Transfer X . . X . .  

I ~ ~ c ~ I ~ I I  icd 1 LudCls 
. . 

Pressure 
Teri~perature Dependent 

Properties 

Shrinkage 

Creep 

cracking, 

crushing 

Gaps 

Mon-Linear Stress-Strain - X 

* 
Uses average material properties over temperature ra.nge of interest 



2.3. Ma te r i a l  Prop.erty Determinat ions 

2.3.1. M a t e r i a l s  Tested 

A t o t a l  o f  eleven gener ic  o r  coninercial m o n o l i t h i c  r e f r a c t o r y  
. .  m a t e r i a l s  were tes ted .  They i nc luded  dense and i n s u l a t i n g  r e f r a c t o r y  concretes 

and phosphate bonded ramming mixes. Table 5 l i s t s  these e leven m a t e r i a l s  and 
Tables 6 and 7 show mix formulat ions of  t h e  gener ic  m a t e r i a l s .  KAOLITE*2300 L I  
was subs t i t u ted '  f o r  t h e  KAOLITE 2500 HS commercial p roduct  a f t e r  f i e l d  r e s u l t s  
on p i l o t  p l a n t  g a s i f i e r s  i n d i c a t e d  lower s e r v i c e  temperature i n s u l a t i n g  components 

I 

. would be adequate f o r  non-slagging coal  g a s i f i e r s .  KAOCRETE*XDSQ. (Mix 36C) 
mater i .a l  was added t o  t h e  l i s t  o f  m a t e r i a l s  t o  t e s t  a f t e r  'two years' i n t o  the  p r o - '  
gram. Th is  ma te r i a l  i ' s  a h igh  dens i ty ,  h i g h  s t rength ,  low cement content  r e f r a c t o r y  
concrete t h a t  e x h i b i t s  low shr inkage and good s t reng th .  . A f o u r  percent  310 s t a i n -  
l e s s  s t e e l  f i b e r  a d d i t i o n  t o  Mix 36C was a l s o  t e s t e d ' d u r i n g  t h i s  work. 

' 

The meta'l f i  bers ( R I  BTEC**) were purchased from ~i bbon ~ e c h n o l o ~ ~  1n- 
corporated and were one i n c h  long. Thesf: f i b e r s  were r e l a t i v e l y  easy t o  i nco rpo ra te  . 
i n t o  Mix 36C a t  t h e  same'water l e v e l s  used w i t h o u t  t h e  f i b e r s .  

'2.3.2. Sampl e Prepara t ion  

T h i r t y  t o  f i f t y  1 " x 1 " x e  ba rs ,  and two t o  f i v e  2-1/Z1'x4-1/2"x9" b r i c k  
of each r e f r a c t o r y  concrete ma te r ia l  were' made from f o r t y  t o  one hundred pound 
batches. These batches were made i n  e i t h e r  a T-200 model Hobert mixer  o r  a two 
hundred pound capac i t y  M u l l e r  mor ta r  mixer .  The optimum water  l e v e l  used was 
based on the  l e v e l  which gave t h e  b e s t  ba l l - i n -hand  consis tency.  Once t h i s  was 
es tab l  ished, .batches o f  each m a t e r i a l .  wer.e made w i t h  water  amounts above, below, 
.arid a t  t h i s  l e v e l  so t h e  e f f e c t  o f  water  content  on phys i ca l  and mechanical' proper-  
t i e s  cou ld  be ,determined. 

' A f t e r  t he  bars and b r i c k  were. removed f rom t h e  molds, t h e  m a j o r i t y  
o f  them were d r i e d  f o r  e igh teen t o  twenty f o u r  hours a t  250°F. The remaining 
samples were s to red  i n  a water f i  1 l e d  .des i cca to r .  f o r  t e s t i n g  i n  t h e  as-cured 
s t a t e .  

A s i m i l a r  n-umber o f  l ' ' ~ 2 ~ ~ ~ 6 "  bars and 2-1/2"x4-1/2"x9" b r i c k  of 
t h e  phosphate bonded ramming mixes were made f rom f i f t y  t o  s i x t y  pound batches. '. 

The gener ic  batches were made i n  a Lancaster  M u l l e r  mixer  and had w o r k a b i l i t i e s  
i n  t h e  25-30 range. The 90 RAM HS*** had a s i m i l a r  w o r k a b i l i t y .  

. . 

The bars and b r i c k .  were made by ramming t h e  gener ic  and commercial 
phosphate bonded ramming mixes i n t o  t h e  bar  and b r i c k  molds' w i t h  a pneumatic 
r a m i n g  hammer. I n  cases where laminat ions  were found i n  t h e  samples, t h e  
ramming mixes were a i r  d r i e d  ove rn igh t  t o  make them l e s s  p l a s t i c .  This  u s u a l l y  
prevented lanlinaticsns ,fr.orn o c c u r r i  ng du r ing  subsequent ramming. 

.. . . 

. . 
Once the bars were s t r i p p e d  f rom t h e  mold, they were heated a t  a 

50°F r a t e  t o  450-500°F and h e l d  f o r  twenty f o u r  hours and then cooled s lowly .  

* KAOLITE and KAOCRETE a r e  r e g i s t e r e d  t rade  names o f  t h e  Babcock & ~i l c o x  Co., 
** Regi s te red  . t r ade  name. 

*** Kegistered t r a d e  name o f  Combustion Engineer ing R e f r a c t o r i e s ' ,  



TABLE' 5. - Ref rac tory  Ma te r ia l s  ' ~ e s t e d  

Generic Ma te r ia l  s  

L!~B! Bond 

9O+%.Al2O3 (Castable)  CA-25 

90+% A1 203 (Cas tab1 e)  SECAR 250 
I 

50% A1203 (Castable)  CA-25 

90+% A1 203 (Ramming Mix)  Phosphate 

45% A1203 (Ramming Mix)  Phosphate 

Commercial M a t e r i a l s  

IYl?E Brand Suppl i e r  

L igh twe igh t  55%A1203 
(Castable)  

L igh twe igh t  42% A1203 
(Castabl e )  

L igh twe igh t  42% A120> 
. (Castable)  

L I TECAST* ' 

KAOLITE . 
2300 L I  

KAOL I TE 
2500 HS 

90% A1 0  Phosphate Bond . ' 90 RAM HS 
( ~at%rn?n ) 

Dense 50% A1 O3 
( ~ d s l d b l a q  

KAOCRETE 
XD50 (3GC) 

General Re f rac to r ies  

Babcock . &  Wilcox 

.. . 
Babcock & Wilcox 

* Registered t rade  name. 



TABLE 6. 
, 

.. . 

M a t e r i a l s  

. Tabular  Alumina 
6+10 Mesh 

10+20 Mesh 
-20 Mesh * 

-48 Mesh 

Cal c i ned A1 umi na . 
A-2, -325 Mesh . .  

Calc ined Kao l i n  
-6+10 Mesh 
10+20 Mesh 
-20 Mesh 

' B a l l    ill Fines 
(-100 Mesh) 

Ben ton i t e  (Wyoming) 

Hydrated A1 umi na 

Phosphoric Acid 
(85% St rength)  

. % 

. . , . . 
~ , .  . . . 

. . . . .  

Ramming Mix Formulat ions, w/o 



TABLE 7. Mix Formulat ions and C h a r a c t e r i s t i c s  
o f  Dense Generic Castables 

Mix Formulat ions; w/o 

50% A1 0 d - 3  90+% A1 2(13 
M a t e r i a l  s  Standard Mod i f i ed  Standard Mod i f ied  

Tabular  A1 O3 
6+10 ~ e s 6  - - - - 2 5 - - 
-10+20 Mesh - - - - 2 0 -- 
-20 Mesh - - - - 2 0 - - 
-6 Mesh + Fines - - - - - - 7 0 

Calc ined K a o l i n  
-6+10 Mesh 25 27.5 . -- .. . .  - - 

' 20 .22.5 -10+20 Mesh - - - - 
-20  Mesh 15 2 0 - - - - 
B a l l  M i l l e d  Fines 15 5. - - , . ~ - -  

(50% < 325 Mesh) 

A-2 Calc ined A1 *03 
-325 Mesh 

CA-25 Cement Cast ing Grade 25 2 5 2 5 25 

Water Added 

M i  x i  ng ,Character a .  . . 
(12 Cu. F t .  M u l l e r  M ixe r )  F a i r  Good F a i r  Good 

B a l l  -In-Hand Good Good Good . . Good 

Cast ing  C h a r a c t e r i s t i c s  S t i f f ,  Good S t i f f ,  Good 
Poor Flow Flow Poor Flow F1 ow 

Set Time, Minutes 10  3 O+ 10 2 5 



2.3.3. Mix Modifications . , .  , . . 

After performing prel iminary experiments .with the generic 50 and 
90+% A1 203 dense castable formulations proposed by DOE,  i t  'became apparent tha t  
they were d i f f i c u l t  t o  mix and place without. adding extra water. This was expected 
to  ,cause problems with the twelve cubic foot mortar/concrete mixer planned for  
use in the l ining t e s t  work. As a r e su l t ,  some experiments were performed t o  , 

. 

. coarsen both mixes by reducing the minus 325 mesh fract ions .by from, f ive  to ten 
percent and increasing the intermediate and coarse fract ions 'by an equal amount. 

I The modifications made are summarized in Table 7 .  Since there'was a def in i te  
improvement in the mixing, casting and working time, charac ter i s t ics  of the 0ri ginal 
generic mixes, the.modified mixes were used to .  prepare the material s needed , fo r  
the lin'ing t e s t s .  

2.3.4. properties De,termined 
-. The following physical properties were determined. for  eval uati.on o f ,  

the qua1 i ty and uniformity of the refractory materials tested.: 

Bulk Density 
Apparent Porosi ty  
Mean Pore. Size 
Microstructure . . 

Loss on Ignit'ion (LOI) 

Standard ASTM and Babcock & Wilcox t e s t  procedures were used to  
determine these properties. All the properties were determined a t  room 
temperature on as-cured, dried and f i red  samples. 

To perform thermal and s t r e s s  analyses on the re f rac tor ies  and 
refractory lined vessels,  the following thermal and mechanical properties 
were requi red: 

.3. 

Tensile Strength 
Compressive Strength 
Fracture Strain : (Strain a t  Fai 1 ure) 
Modulus of Elas t ic i ty  
Poisson' s Ratio 
Thermal Expansion Coefficient 
Linear and Vol ume Shrinkage 
Creep 
Thermal Conductivity 

Since the analyses were to  be run on l inings heated in the room tem- 
perature to  2000°F range, the properties required were determined in t h i s  same 

, range. In addition, since the objective of the work was to reduce o r  eliminate 
degradation on the i n i t i a l  dry-out and heat-up of the monolithic refractory l inings,  
the majority of the test ing was done on as-cured and/or 250°F dried samples. Some 
tes t ing  was done on prefired refractory samples. High temperature, intermediate 
pressure (150 ps i )  steam exposed samples were tested a t  room temperature so com- 
parisons could be made with samples removed from the tested l inings.  



2.3.5. Physical ,  Thermal and Mechanical P rope r t i es  Test Procedures -- 

Physical  P rope r t i es  

Th is  was determined on one t h i r d  of t he  as-cured samples and 
a l l  o f  t he  d r i e d  and f i r e d  samples.. A minimum o f  f i v e  samples was normal ly  
used. 

Apparent P o r o s i t y  

This  was determined on a 1 eas t  t h ree  samp'les o'f each ma te r ia l  I 

us ing  e i t h e r  t he  'ASTM b o i l e d  p o r o s i t y  procedure .(C-20-20) o r  the  mercury poro- 
s ime t ry  technique which employedan Aminco-Winslow porosimeter  (5-7107). Samples 
were u s u a l l y  prepared f rom modulus o f  r u p t u r e  t e s t e d  specimens. 

Mean Pore Size -- - 
Thl s was.de.l;era~ined w i t h  the  Aminco-Winslow .Porosimeter (5-7107) 

us ing  t h e  work sheets supp l i ed  by Aminco. These sheets are  i d e n t i f i e d  Cat. No. 
5-7133, 5-7134 and 5-7135. A t  l e a s t  t h r e e  samples were tes ted  t o  determine an 
average " e f f e c t i v e "  mean pore s i z e  f o r  pores i n  t he  40 t o  120 urn range. The 
" e f f e c t i v e "  mean pore  s ize .was determined from the  pore s i z e  d i s t r i b u t i o n  curve  f o r  
each sample a t  f i f t y  (50)  percent  of  t o t a l  mercury volume pene t ra t i on .  

Loss On I .gni t i  on . i. 

This  was done on samples t h a t  were e i t h e r  d r i e d  ' f o r  twenty f o u r  
hours o r  f i r e d  f o r  f i v e  hours. The samples were u s u a l l y  e i t h e r  f u l l  s i z e  bars 
o r  h a l f  bars and were t e s t e d  a t  temperatures o f  250°F . t o  183Z°F. 

Mcchani c a l  P rope r t i es  

Tens i l e  S t r cny th  (Modulus o f  Rupture) 

The ASTM Hot Modulus o f  Rupture t e s t  procedure LC-583-67 (1972) l  
w i t h  l " x l " x 6 "  o r  l " x2 "x6 "  bars and a th ree  p o i n t  bending arrangement was used 
f o r  t h i s  t e s t i n g .  A t en  thousand pound c a p a c i t y  I n s t r o n  t e s t e r  w i t h  a 3000°F 
furnace and ceramic rarris and. pedestal  were t h e  equipment used f o r  t h i  s work. A 
photograph o f  t h i s  u n i t  i s  shown i n  F igure  6:. The samples were loaded a t  a r a t e  
o f  .02 in /minute  t o  f a i  l u re .  A'I 1 the  samples of  one or- rriur-e ~ ~ a ' l e r - i a l  s were loadcd 
i n  t h e  furnace and then heated t o  var ious  t e s t  temperatures a t  250°F/hr, h e l d  f o r  
a t  l e a s t  one h a l f  hour  and then  tes ted .  A t  l e a s t  f i v e  samples o f  each r e f r a c t o r y  
were t e s t e d  a t  cach temperature. The dense mono1 i t h i c  r e f r a c t o r i e s  w e r e  t e s t e d  
a t  toom' temperature, 500, 1000, 1500, 1750 and 2000°F w h i l e  t h e .  i n s u l a t i n g  r e f r a c t o r i e s  
were tes- ted a t  ro'om temperature, 500, 1000, 1250 and. 1500°F. . , :  

7 ,  

. . 



FIGURE 6. I n s t r o n  Test  Equipment With Furnace 



During the t e n s i l e  t e s t  work, a number o f  dense r e f r a c t o r y  
concretes were tes ted  w i t h  the modi f ied modulus o f  rupture technique described 
by Ainsworth and   err on^. This was done t o  determine i f  the technique could 
be used t o  d i  s t i  ngui sh the d i f ferences i n  toughness between the r e f r a c t o r y  
concretes o f  i n t e r e s t .  The procedure used involved machining the t e s t  bars 
w i t h  a 0.25 inch deep by 0.030 inch wide s l o t  a t  the midpoint  o f  the bars and 
t e s t i n g  the bars i n  the modulus o f  rupture t e s t  arrangement. The bars were tested 
w i t h  the s l o t  pointed down. 

Since the  compliance of the Ins t ron  t e s t e r  and ceramic t o o l i n g  
was too la rge  t o  accurate ly  measure the s t r a i n  of the samples dur ing t h i s  modif ied 
modulus o f  rup tu re  tes t ,  a l i n e a r  va r iab le  d i f f e ren t i a l  transducer s t r a i n  measuring 
system was incorporated onto the t e s t  equipment. It involved a t tach ing an alumina 
sensing rod  d i r e c t l y  t o  the  upper ceramic loading ram so i t  would make contact  w i t h  
t he  top surface o f  the  pedestal on which the t e s t  specimens were placed. The movement 
o f  t h i s  sensing rod was monitored by an LVDT attached t o  a rixed p o i n t  on the  t e s t  
equipment. This s t r a i n  waq used i n  the f o l l ow ing  equation t o  ~ ~ 1 1 ~ u l d t . e  f r ac tu re  
energy: 

Fracture Energy Equation 

31 x A  Y =  2bd2 

Where y = Fracture Energy i n  in.-1 b / in2  

1 = Span o f  lower bearing edges i n  inches 

b = Width o f  specimen i n  inches 

d = Height o f  specimen i n  inches 

A = Area under load/displacement curve 



Compressive Strength 

A un iax ia l  compressive t e s t  technique was developed f o r  use 
w i t h  the Ins t ron  t e s t e r  and furnace equipment. The technique involved f i v e  steps. 
They i nc 1 uded : 

1 . Preparing 1/2"xl "XI" specimens o f  the dense mono1 i t h i c  
- * re f ractor ies  and one inch cubes o f  the  i nsu la t i ng  re f rac to ry  concretes from 

4 2 2 0 0 ~  d r i ed  bar samples. Enough samples o f  each re f rac to ry  were prepared t o  
! tes t  a t  l eas t  f i ve  a t  the same t e s t  temperatures used f o r  the modulus o f  rupture 
:,testing. The cross sect ion o f  the dense r e f r a c t o r i e s  had t o  be reduced below 

" 

one inch square a f t e r  i t  was found t h a t  they could not  be tested t o  f a i l u r e  w i t h  
t he  t en  thousand pound capacity Ins t ron  tes te r .  The top and bottom surfaces o f  
each sample were t rued up t o  assure para l le l ism,  

-? 
2. Loading the  samples i n  the Ins t ron  t e s t  furnace and heat ing 

-<them a t  a ra te  o f  250°F/hr t o  the  various t e s t  temperatures indicated, 

3.  Applying the  load u n i a x i a l l y  a t  a .020 in/min s t r a i n  ra te ,  

4. Monitoring the s t r a i n  w i t h  the same LVDT s t r a i n  measuring 
system used f o r  the  f r ac tu re  energy determinations, and 

5. Using a computer program developed f o r  an Hewlett-Packard 9830 
computer t o  calculate,  tabu la te  and p l o t  the compressive strength and s t ress /s t ra in  resu l t s .  

Modulus o f  El  a s t i c i  ty  

Young' s modulus was determined f r o m  the un i  ax i  a1 compressive 
strength t e s t  data by ca l cu la t i ng  the  slope o f  the s t ress /s t ra in  curves f o r  
each sample i n  the  most l i n e a r  p a r t  o f  the  curve. The same computer program 
used t o  generate the s t r e s s i s t r a i n  curve was used f o r  t h i s  work. 

Fracture S t r a i n  

This property was determined from the same above mentioned stress/  
s t r a i n  curves. Corrections were made t o  the curves f o r  compliance o f  the t e s t  
equipment by extending the l inear  po r t i on  o f  the  curve back t o  the X axis.  The 
f r ac tu re  s t r a i n  o f  the specimen was determined by subt ract ing the X i n te r cep t  
value from the  maximum s t r a i h  value measured. This was the same method used by 
P. 3.  Pike, e t  a1 .7 .  

Poisson's Rat io 

This proper ty  was no t  determined. Instead the value o f  0.20 
was acquired from the  l i t e r a t u r e  on conventional concretes and used f o r  both tke 
dense and i nsu la t ing  mono1 i t h i c  r e f r a c t o r i e s  over the  e n t i r e  temperature range 
tested. 

t - .  
n 

-* , # *  . 

1 - 



Thermal Ex~ans ion  Coef f i c ien t  

A fused s i l i c a  di latometer ( A .  F. Molkin & Co., Ltd.) was used 
t o  determine the thermal expansion curve and coef f ic ient  o f  each mater ia l .  The 
t e s t s  were run  from room temperature t o  1875°F o r  higher a t  ra tes  ranging from 
1 OO°F/hr t o  400°F/hr on two inch  long  by ha1 f inch  square specimens. The change 
i n  l eng th  of the specimen was monitored con t i nua l l y  and was recorded manually i n  
three t o  ten minute i n t e r va l s ,  depending upon the amount of chanqe occurr ing i n  the 
specimen. A co r rec t ion  was made f o r  the expansion o f  the fused s i l i c a  se-nsing rod 
used w i t h  the equipment. 

To most accurate ly  simulate the thermal expansion cha rac te r i s t j c s  
o f  the  1 i n i  ng mater i  a1 , the samples o f  mater ia l  t o  be tes ted were stored i n  a high 
humidi ty environment fo r  two t o  twenty days p r i o r  t o  tes t ing .  Other samples of 
some of the mate r ia l s  were d r i e d  a t  250°F overnight  o r  stored f o r  two t o  twenty 
days i n  a i r  and tes ted  f o r  comparison wi th the samples qtnrpd in the h igh humidi ty 
environment , 

The c o e f f i c i e n t  o f  thermal expansion was determined i n  two 
d i f f e r e n t  temperature ranges. One was the room temperature t o  top t e s t  temper- 
a ture  which was 1500°F f o r  the i n s u l a t i n g  mater ia ls  and 1875°F f o r  the dense mater ia ls .  
The second range was from 700-1875OF, i.e., the  l i n e a r  po r t i on  o f  the curve. 
I n  some cases, the mater ia l  s were -run on a second cyc le  t o  determine haw the thermal 
expansion character  changed and t o  r e l a t e  i t  t o  the subsequent cycles o f  a l i n i n g .  
I n  t h i s  case the coe f f i c ien t  o f  thermal expansion was determined from room temperature 
t o  the top t e s t  temperature. 

L inear and Volume Shrinkage 

The l i n e a r  and volume shrinkage was determined by two methods. 
One invo lved determining the change i n  leng th  and volume o f  the t h e h a l  expansion 
specimens a f t e r  the t e s t .  The second invo lved using ASTM procedure C269-70 on 
e i t h e r  bars, b r i ck ,  o r  both of the  mate r ia l s  o f  i n t e r e s t .  The change i n  length  
o r  volume was d iv ided  by the o r i g i n a l  l eng th  o r  volume and m u l t i p l i e d  by 100 t o  
ca l cu la te  the shrinkage. 

Creep 

A un iax i a l  creep t e s t  procedure was developed using a combination 
of techniques reported i n  the r e f r a c t o r i e s  and concrete l i te ra tu re  899, l o  t h a t  
were modi f ied f o r  t h i s  program. 

Creep Test - . . Furnace , 

The t e s t  f a c i  l i ty used was a Pereney Model MRLT-3000-102 com- 
b i na t i on  hot  modulus o f  rupture/hot  bond t e s t  furnace capable o f  temperatures 
t o  2900°F. The u n i t  had a 5000 1 b. capac i ty  pneumatic/hydraul i c  load ing system 
on the ho t  modulus o f  rupture s ide n f  the furnace which was modi f icd  so t h a t  a 
f l a t  ram could be used and a constant load appl ied on a sample f o r  periods up t o  
48 hours o r  longer. This u n i t  i s  shown i n  Figure 7. 



FIGURE 7. Pereny Furnace Used for  Creep Testing 



Sample Conf igurat ion 

S ix  inch  long samples were used for  the creep work. Since pre- 
l i m i n a r y  s t ress analyses on the re f rac to ry  l i n i n g s  ind icated t h a t  very high ( 500 p s i )  
stresses could be induced i n  the  re f rac to ry  components, each mater ia l  was tested 
a t  three o r  more s t ress l e v e l s  w i t h i n  the range 500 t o  3300 ps i  t o  develop adequate 
creep data f o r  the model. The samples were c u t  from 250°F d r i ed  b r i ck .  The cross 
sect ion was maintained a t  2 "x l "  f o r  s t ress l eve l s  o f  2000 psi  and lower, but  was 
reduced t o  1 " x l "  f o r  s t ress l e v e l s  above 2000 ps i .  

Measuring Technique 

The samples were instrumented w i t h  an LVDT arrangement as shown 
i n  Figure 8 t o  continuously monitor the s t r a i n  occurr ing i n  the  t e s t  specimen 
when i t  was loaded dur ing a t es t .  The two 99.9% A1203 p u r i t y  sensing rods were 
instrumented so t h a t  s t r a i n  was no t  sensed by the LVDT as a sample was heated t o  
a s p e c i f i c  t e s t  temperature p r i o r  t o  loading. This arrangement produced f l a t  r e -  
gions i n  the s t r a i n  versus the curve generated dur ing a creep tes t .  

Test Procedure 
- -  - " . .n f st.*, .=.=fa a .& * 

Since the t o t a l  t ime invo lved i n  the i n i t i a l  dry-out, heat-up, 
and cool-down o f  a monol i th ic  r e f rac to ry  normally does not take more than one 
hundred hours, a t e s t  procedure was wanted t h s t  would measure the creep a t  periods 
o f  from ten t o  f i f t y  hours and have the f l e x i b i l i t y  t o  be run f o r  shorter  o r  
longer periods. A methodlo was found i n  the  1 i t e r a t u r e  f o r  determining long and 
sho r t  term creep w i t h  a shor t  term t e s t  which appeared t o  be appl icable t o  re f rac to ry  
concretes. It involved loading a sample u n i a x i a l l y  t o  75%, o r  less,  o f  i t s  u l t imate 
strength,  moni tor ing the  s t r a i n  which occurred instantaneously and over a spec i f i c  
per iod  o f  time, unloading the sample, and cont inuing t o  monitor the s t ra in .  Three 
t o  t en  hour t e s t s  were found t o  be adequate t o  generate the data wanted. These 
data were then transformed i n t o  u n i t  creep . ( s t r a i n  /psi  stress) vcrsus l o g  time p l o t s  
and equations were w r i t t e n  f o r  t he  s t ra i gh t  l i n e  curves which dcvcloped. The stress 
l e v e l  was kept below 75% of the  u l t ima te  compressive s t rcngth t o  assure completiotl 
o f  t he  t es t .  Stresses greater than t h i s  l e v e l  general ly  caused stress rupture 
t o  occur which completely destroyed the  sample and o f t en  damaged the s t r a i n  moni tor ing 
system. 

Figlrres 9 and 10 respect ively,  arc representations o f  the  locldirlg 
scheme used and o f  the u n i t  creep p l o t s  developed w i t h  t h i s  t e s t  procedure. 

During the i n i t i a l  creep t e s t s  run, one sample was tested a t  
one s t ress  l e v e l  and temperature. Figure 11 i s  an example o f  the t yp i ca l  type o f  
r e s u l t s  obtained. These t e s t s  were found t n  take  a considerable amount o f  t imc 
and were expected t o  be expensive. As an a1 ternate scheme, the procedure was modi - 
f i e d  so t h a t  one sample was tes ted  a t  one s t ress l eve l  from room temperature t o  tem- 
peratures up t o  2000°F i n  a stepwise manner as shown i n  Figure 12. The sample was 
loaded a t  room temperature f o r  one hour and then unloaded before the furnace was 
heated. , This was done t o  check t he  q u a l i t y  o f  the sample and t o  assure t h a t  i t  could 
take the s t ress leve l  o f  i n t e r e s t .  The sample was then heated t o  the f i r s t  t e s t  
temperature a t  250°F/hr,. he ld  a t  temperature f o r  one hour, loaded as qu i ck l y  as 
poss ib le  t o  the stress wanted and held f o r  three hours, unloaded as qu i ck l y  as 
possible, heated t o  the  next  t e s t  temperature, and the  cyc le  repeated. A ten  hour 
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FIGURE 10. U n i t  Creep P l o t  
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hold was used a t  t he  top t e s t  temperature. The following t e s t  temperatures were, 
generally used f o r  the  dense and insula t ing r e f r ac to r i e s :  

Temperature ( O F )  Dense Insulating 

Room Temperature 
500 
1000 
1250 
1500 
1800 
2000 

The s t r a i n s  were recorded a f t e r  .05, 0.1, 0.2, 0.25, 0.5, 0.85, 
1 .0 ,  2.0, and 3.0 hours f o r  the  shor t  hold; and then every hour fro111 3 t o  10 hours 
f o r  the longer holds. These data were then fed t o  a computer program, reduced 
t o  the un i t  creep curves wanted and equations writ ten f o r  the curves obtained. 

I f  a sample creeped more than 5.0%, the  t e s t  was stopped to  prevent 
f a i l u r e  of the  sample and damage t o  t h e  s t r a i n  monitoring system. All samples t es ted  
were measured a f t e r  the  t e s t  t o  determine the  t o t a l  percent deformation. 

. . 

: Hot, Load ~ e s t i n g  .. 

The two hot 1oad.stat ion.s of the  Pereny   urn ace were used during 
the  creep test.t .0. measure t he  hot 'load deformation of selected materials  a t - e i t h e r  
100 and/or 200 p s i .  . The' specimens were loaded a t  room temperature, heated t o  the top 
t e s t  temperature, and .cooledv t o  room temperature. The change in length of the  
specimen was calcula ted a s  percent deformation. 

This t e s t i n g  was done t o  develop some d a t a  on the r e i a t i  vely low 
s t r e s s  creep res is tance of. t'he mater ia ls  of i n t e r e s t .  



2.4. Eva luat ion  and V e r i f i c a t i o n  Tests 

To a i d  i n  the  eval ua t i on  , o f '  t h e  r e f r a c t o r y  ma te r ia l  s t o  be used i n  
the  l i n i n g  . t es ts ,  a ser ies  o f  heat-up ' t e s t s  was run on panels, h o l l o w ~ c y l i n d e r s  
and o the r  types of cas t  samples. I n  a d d i t i o n ,  these , t e s t s  were used t o  .develop 
emp i r i ca l  .data t o  v e r i f y  thermal analyses being' done w i t h  REFSAM, and t o  c o l l e c t  
data on t h e  c rack ing tendency o f  mono1 i t h i c  r e f r a c t o r i e s  due t o  e i t h e r  shrinkage 
o r  t r a n s i e n t  thermal s t resses.  

o ther  small scale spec ia l  t e s t s  were . . run  t o  deve1.0~ pore pressure re -  
1 ated data o r  measuring techniques. 

The procedures used durin'g these t e s t s  are described below: 

2.4.1. Panel ~ e s t s  

S ing le  and dual component panels o f  t he  designs and m a t e r i a l s  of. 
. . 

, i n t e r e s t  were made and run  on t h e  numerous heat ing  schedules . . .  These panels 
were 12" t h i c k  x 15" x 18", weighed approximately 300 l b s .  and were designed t o  f it 
i n t o  t h e  door o f  a gas f i r e d  catenary k i l n .  F igure 13 i s  a schematic o f  t he  t e s t  
panel c o n f i g u r a t i o n  a'nd Figure 14 i s  a photograph o f  a t e s t  panel i n s t a l l e d  i n  the 
catenary door. 

As can be 'seen from these f i gu res ,  t he  metal p l a t e  o f  t he  panel i s  
the  base o f  t h e  pa,nel mold used du r ing  c a s t i n g  and s imulates t h e  vessel s h e l l  d u r i n g  
t h e  t e s t .  Handles were i n s t a l l e d  on t h e  p l a t e  t o  a i d  i n  t h e  movement and handl ing 
o f  t h e  panel.  Metal.  anchors were welded t o  t h e  base p l a t e  p r i o r  t o  c a s t i n g  
of t h e  panel as shown i n  Figure 15. Dual component panels were c a s t  on two 
separate days and t h e  s i n g l e  component panels were cas t  i n  one day. Both 4 and 

.12 cu. ft. mor tar  mixers and. concrete penc i l  v i .brafors were used t o  mix and p l  ace 
the  m a t e r i a l s  tested.  A f t e r  t he  .panels were cas t ,  they were sealed i n  p l a s t i c  
bags and s tored i n  a temperature c o n t r o l l e d  l a b o r a t o r y  f o r  t h ree  days t o  one month 
o r  more. The panels were . inst rumented w i t h  Type K thermocouples (TC's)  a t  var ious  
p o s i t i o n s  through t h e  twelve i n c h  panel thickne'ss. Th is ,  was done by d r i l l  i n g  
1/8" holes through t h e  metal p l a t e  t o  pe rm i t  placement o f  the  TC's t o  the des i red  
p o s i t i o n ,  o r  g l u i n g  the  TC's t o . t h e  metal p l a t e  and ho t  face w i t h  a h igh  alumina 
sodium s i l i c a t e  bonded mortar .  The temperature p r o f i l e  through t h e  panel was con- 
t i n u o u s l y  recorded w i t h  an Leeds & Northrup m u l t i p o i n t  recorder .  

. . 
Table 8 l i s t s  t h e  ma te r ia l s ,  m ix ing  and c a s t i n g  procedures, and 

designs o f  t h e  t e n  panels made. It a l s o  l i s t s  t h e  heat-up schedules used du r ing  
the  t e s t s .  Four panels were moni tored w i t h  acoust ic  emission (AE) equipment 
t o  evaluate an' AE technique being developed f o r  t h e  J i n i n g  t e s t s .  

Most o f  t h e  panels were r u n  p r i o r  t o  the  s t a r t  o f  t h e  l i n i n g  t e s t s .  

2.4.2. Hollow Cy l inder  Tests 

As a means o f  eva lua t ing  . the r e l a t i v e  thermal shock res i s tance  and 
thermal s t r e s s  damage o f  the  i n i t i a l  m a t e r i a l s  t o  be tes ted,  any new mater ia ls .  
i d e n t i f i e d  o r  developed du r ing  the  program and new systems o f  i n t e r e s t ;  a spec ia l  
t e s t  was developed. Th is  t e s t  i nvo lved  heat ing  ( i n t e r n a l l y )  .nu1 t i  - layered ho l low 
c y l  i nde rs  nf each mate r ia l ,  o r  a combinat ion o f  ma te r ia l  s, a t  var ious  heat ing  r a t e s  

. . 



Carbon P l a  

FIGURE 13. schematic. o f  ~ e s t  panel. 
. . 



FIGURE 14. Test Panel Equipped With Temperature and 
Acoustic Emission Monitoring System 





TABLE 8. - Panel Cast ing and Tes t ing  Summary 

Comments on Mixing and 
Panel # Composition Anchors Casting Procedure F i r ing  Schedule Crack Pa t t e rn  

I 

L i t e c a s t  75-28 
7" 26% 820 

9WI A-203 gener ic  
.5" 10.3% H20 
w1C.G. CA-25 . . .  

. . .  

L i t e c a s t  75-28 

9WX A1203 gener ic  
5" 10.3% 820 

L i t e c a s t  75-28 
7" 26% Hz0 

Lightweight Dense 
?fixer ' - 4 cu. f t .  4 cu. f t .  
Batch s i z e  - 75 l b .  ' 175 
H20/pour temp.- - 1 - - 1 -  
Ball-in-hand - -- s t i c k y  
Vibra t ion  - t a b l e  concrete vib.  

Other - LC 75-28 covered wlp la s t i c  and 
cured 60 hrs .  Dense troweled 
l i g h t l y  and covered wlp la s t i c  
overnight.  S ix  day (@ 70°F) 
cu re  outs ide  of mold. 4 cu. 
f t .  mortar mixer s t a l l e d  on 
both cqmponents. Some s e t t l i n g  
i n  LC 75-28 from t a b l e  v ibra t ion .  

. 

(Date) 

None 

. . 

. 

16 hrs .  @ 600°, 1 0 0 ~ l h r  t o  
100O0, 3 h r s .  @ 1000°, 
100°/hr t o  1 8 0 0 ~ ~ ~ ~ .  
Cool @ 100~1hr .  I r r egu la r  

(12-1-76) 

Many smll in t e r -  
connected cracks  
on hot face.  
Propagated from 
1 t o  5 . inches  i n t o  
dense component. 

.. . . 
. .. 

. . . . . . .  . . 
. . 

. . . - 
. . .., - - . .. 

Standard Y 
uncoated 
6" spacicg 

v ib ra to r  worked we l l  aga ins t  I - 

mold. 3 day cure  i n  mold with 
o l a s t i c  rove r  a t  * 70'~. 

. . 

Other cracka a t  
i n t e r f a c e  and i n  I i neu la to r .  

Mixer - 4 cu. f t .  4 cu. f t ,  
' Batch e i z e  - 100 lb s .  175 lb s .  

H Z O / ~ O U ~  temp.- - 1 - - 1 -  
Ball-In-hand - good wet, s t i c k y  

'V ib ra t ion  - concre te  vib.  i n  6 out- 
s i d e  mold. 

Other - Motor hp. increased on mixer. 
OK f o r  LC 75-28 but  mixer s t a l -  
led  with dense. Concrete 

when placed aga ins t  noid, Six .. . 
day cure  i n  mold with p l a s t i c  
cover @ 70'~. 

.16 hrs .  @ 40OU. 10OU/hr t o  
1 0 0 0 ~ .  3 h r s  . @ 1000~ .  
1 0 0 ~ I h r  t o  2 0 0 0 ~  T-. 
Cool @ 1 0 0 ~ l h r .  I r r egu la r  

(12-13-76) 

Standard Y 
wax cciated 

6 "  spacing 

Many small  i n t e r -  
connected c r a c k  
on hot face.  
Propagated from 1 
t o  5 inches i n t o  
dense component. 

.- 
Mixer - 4 cu. f t .  4 cu. f t .  
Batch s i z e  . - 75 1bs.-  2-75 lb s .  
H2OIpour temp.- - / - - 1 -  

' Bail-in-hand - good, wet t o  good 
Vibration - concre te  v ib .  i n  and 

ou t s ide  mold. 
Other - Dense c a s t  i n  2 pazts .  Mixer 

OK. Concrete v ib .  only good 

18 hra.  @ 300°, 100"lhr t o  
1 8 0 0 ~ .  12 hrs .  @ 1800' 
T-. cool  @ 100~1hr .  : 

. . 
. . 

. * .  

. . .  . 

Separation between 
panel and base. 
p l a t e .  Almost no 
v i s i b l e  cracks i n  
hot face .  Few 
cracks  i n  in- 
s u l a t o r  perpendi- 
cu l a r  t o  base 



TABLE 8. Panel Cas t i ng  and Tes t i ng  Summary (Con t ' d )  

Comments on Mixing and . 
Panel # Compositicn Anchors Casting Procedure ~ i r i n ~ '  Schedule Crack Pat tern  

(15 Li tecaa t  75-28 
74" 21% B20 I '  

(Date: 

54 

I 9OtX A1203 generic 
-44'  9.3% H2O 

I I Lightveight 1 (Date) 1 .  
Li tecas t  75-28 
7" 20% A20 

9OcX A1203 gener ic  
5" 9.3% 820 

90+% A1203 generic 
44" 9.3% Hz0 

6-V type with 
' l e g  ends bent 

inward 
6" spacing 
uncoe ted 

. 

3-Y tripe 
1-V t n e  s e t  i n  
Lnsulator 

8yx8?$'~12"spacing t 

6-V type with 
s t r a i g h t  l e g s  
,6" s ~ a c i n g  
uncoeted 

. - 4 cu. f t .  ' 4 cu. f t .  
Batch s i z e  - 100 1b. 2-100 lb .  
H ~ O / ~ O U ~  temp. - - / - . - 1 -  
Ball-in-hand - good . . good 
Vibration - ' concrete vib.  i n  6 out- 

s i d e  mold. ' 

Other - D e ~ e  surface  troweled smooth 
t o  Ldentify cracks. c a s t  sur- 

. f a c e  covered w/wet b l o t t e r  
pap.er 6 p l a s t i c .  Cured 4 days 
a t  Q5OP. 

h e r  - 4 cu. f t .  4 cu. ft: 
Batc i  s i z e  - 100 lb .  2-100 lb .  

. 820/,,our temp. - 84O/78' 860/7,g0 
Ball-in-hand - . good good 
Vfbr.stion - concrete vib.  i n  6 out- 

s i d e  mold. 
Ocher - Warm R20 caused f a s t  s e t  i n  both 

com?oneeta. Surface wire brushed 
whencast. Wrapped i n  Kaovool 
t o  ne in ta in  hydration temp. . 
panel vt. - 284 lbs.  

n ixer  - 4 cu. f t .  4 cu. f t .  
W c t .  s i z e  - 100 1b. 2-100 lb .  
H ~ ~ / F o u ~  teap. - /70° /70° 
Ball-in-hand - good good 
Vibration - concrete vib.  i n  6 out- 

s i d e  mold. 
other' - Surface wire brushed when cas t .  

Cool R20 temp. gave b e t t e r  mixing 
6 b i k i n g  time. Wrapped i n  
p l a s t i c  6 Kaowool. Panel wt. - 

I 284 l b s .  

16 hrs.  @ 200°, 100°/hr t o  
700@, 2iOo/hr t o  770' when 
explosively spalled. ,  Case 
# I ,  T,,.- 770°. Panel blovn 
ou t  of furnace door. Uany 
small  pieces from f ron t  2 
in.  of dense. Fi rebr ick  
ba f f l e  used to  d i s t r i b u t e  
heat .  ; 

(1-5-77) 

1 13  h r s  d ~ O O ~ P ,  480°/hr to  - .  
: 1 0 0 0 ~ ~  vhen explosively 

spal led .  Controller -1- 
function. Bot f ace  spal led  
i n t o  4 l a r g e  pieces v/ 
anchors imbedded and threads 
s t r ipped.  AE antenna welded 
t o  base p l a t e  over an anchor. 

Explosively 
apalled a t  
7 7 0 ~ ~ .  

Explosively apalled a t  , 

1oooOP 

22 hrs.  @ 170°, 26 h r s  @ 
450°, lCOO/hr t o  1000°, 14 
h r s  @ 1 ~ 0 0 ~ .  125O/hr t o  
2 0 0 0 ~ ~  3 h r s  @ 2 0 0 0 ~ ~ .  cool 

, @ 100 /hr. AE monitored 
w / l  antenna. 10% H20 
l o s s  a f t e r  f i r i n g .  

(2-1-77) 

Random and in t e r -  
comected netwart 
of shal lou era-b 
on hot face with 
some extanding . 
from anchorlre- 
f rac  tory in t e r -  
face. 



TABLE 8. Panel Casting and Testing Summary (Cont'd) " 

Comments on Mixing and 
Crack Pa t t e rn  

Very feu'  c racks  
on hot face.  
Those found a r e  
shallow and not  
interconnected.  

S ingle  crack acroes  
hot face.  Several  
cracks p a r a l l e l  to 
and approximately 
5" from hot face; 

Panel I? Composition Anchors Casting Procedure Fi r ing  Schedule 

(Date) 

r? 

(2-18-77) 

68 

(2-24-77) 

- 

89 

(3-2-77) 

Kaowool. Stored  wet sponge.' 
panel w t .  = 285 lb s .  

. 3-Y type 
1-V type s e t  i n  
i n s u l a w r  

&4"x84"~12" spacing 

Y .  . , 

3-V anchors 
v i t h  l e g s  bent 
outwards . 

84"xw'x12" spacing 

t: 
3 anchors . 
s t r a i g h t  l e g s  
7" long 

8+"x8Y'xP" spacing 

L i t ecas t  75-28 
74" 21% Hz0 
Modified 9Ot% A1203 
gener ic  
44" 8.5% H20 

50% U2O3 gener ic  
s ing le  component 
12" 11% 820 . 

Modified 50% A1203 
gener ic  
s i n g l e  component 
12" 10% H20 

I 

Lightweight Dense i 
Mixer , - 4 cu. f t .  12 cu. f t .  ' 
Batch s i z e  - 100 l b s .  600 lbs .  
H20/poui- temp. - 1 1 0 ~ / 7 8 ~  /73O 
Ba1l;in-hand - poor .crumbly exce l l en t  
Vibration - concre te  vib.  i n  6 out- 

s i d e  mold. ' 

Other - Li t ecas t  mat'l. temp. = 58O. Hot 
H20 resul ted  i n  15  min. s e t  time. Light- 
weight 6 dense wrapped i n  p l a s t i c  6 
Kaowool. Excellent mixing ac t ion  d t h  
l a r g e  mixer. 

U h e r  - 12 cu. f t .  
Batch s i z e  - 600 lbs .  
H20/pour temp. - 83O/78O 
Ball- in-hand - exce l l en t . ,  
Vibration - concre te  vib.  i n  6 out- 

s i d e  mold. 
Other - I n i t i a l l y  ba l led  up ~ 1 1 0 %  1120. 

. Fina l  '11% H20 a f t e r  e x t r a  7 min. 
mixing. Poor flow 6 s e t  up i n  
mixer. Sealed i n  p l a s t i c .  
Panel v t .  - 324 lb s .  

Uixer - 12 cu. f t .  . ' 

. . 
Batch s i z e  - 550 lbs .  
~ ~ o / p o u r  temp. - 70°/700. 
Ball-in-hand, - fai'r 
Vibration - concre te  v ib .  i n  6 out- 

side.mold. 
Other - Used 5% b a l l  m i l l  f i n e s  p lus  

, 0.1% bor i c  a c i d ' a s  hydration re-  
ta rder .  (Trapped i n  p l a s t i c  6 

(Date) 

14 hrs: @ l loO,  AE breakdovn . 
12 h r s  @ 1 7 0 ~ .  26 h r s  @ 
4j0°. 1 0 0 ~ l h r  t o  1000°. 3 
h r s  @ 1000°. 10oO/hr t o  
2000; 4 h r s  @' 2 0 0 0 ~ ~ .  cool  
10oO/hr to  900. 50°/hr t o  . 
500'. AE monitored using 
4 vave guides. 

(3-22-77) 

, . 
Stored fo r  fu tu re  t e s t i n g  

. . 
. . 

16 hrs.  @ 1 8 0 ~ .  16 h r s  @ 450° . 
10oO/hr t o  1000°, 3 h r s  @ 
1 0 0 0 ~ .  100°/hr t o  2 0 0 ~ ~ .  5 
h r  @ 2000°F, cool 3 0 0 ~ l h r  t o  
1 6 0 0 ~ .  100°/hr t o  1000, 50°/ . 

hr  to  R.T. AE monitored 
using 4 vave guides. 

(3-29-77) 



TABLE 8. Panel Cast ing and Tes t i ng  Sumnary(Cont1d) 

Commenrs on  inn and 
Panel # . Composition .Anchc.rs . Casting procedure- F i r ing  Schedule Crack Pat tern  

(Date) 

110 

(4-13-77). Vibration - concre te  vib.  i n  6 out- 
. s i d e  mold. 

Other - Mat'l. temp. - 66'. Excellent 
- mixing. and working time. New 

ma te r l a l  ordered f o r  use i n  
l i n i n g  t e s t s .  

. . I . . 

L i t e c a s t  75-26 
s ing le  component 
74", 12" 21% B20 . 

M d i f i e d  panel 
2-V anchors 
fmm e t d e  
2-St. Xegs down 

- Lightweight Dense 
Mixer - 12 cu. f t ,  
Batch s i r e  - 350 lbs .  
~ , ~ O i p o = r  temp. - 72°/860 ' 
%ll-in-hand - very good 

(Date) 
:Stored fo r  fu tu re  tes t ing .  



u n t i l  they  cracked. .Small (7-115" d i d .  x  24" long)  s i l i c o n  ca.rbide heat ing  
elements were arranged, as shown schemat ica l l y  i n  F igure 16., t o  heat the c j l l  inders .  
The i n i t i a l  work 'was done w i t h  we l l  i n s u l a t e d  6 i n c h  h igt i  x  5 i n c h  OD x 3  i n c h  ., 
I D  c y l i n d e r s  and inst rumented w i t h  Type K TC's cemented t o  the  I D  and OD surface 
t o  moni t o r  thermal h i  s to ry .  Th is  set-up i s  .shown i n  .F igure 17. This  c y l i n d e r  
c o n f i g u r a t i o n  was found t o  be, very  d i f f i c u l t  t o  crack regardless o f  the  m a t e r i a l  
t e s t e d  unless unreal  i s t i c a l  l y  h i g h  heat ing  r a t e s  o f  600 t o  1  OOO°F/hr were used. 
I n  a d d i t i o n ,  t he  t e s t s  were t ime consuming. As a  r e s u l t ,  t h e  c y l i n d e r  c o n f i g u r a t i o n  
was changed t o  3  i nch  h igh  x  6  i n c h  OD ana 2  i n c h  .ID. This  change pe rm i t t ed  the. 
t e s t i n g  o f  two cy l ' inders  ,at one t ime and increased' t h e i r  tendency t o  crack a't 
hea t i ng  r a t e s  t h a t  more reasonably approximated safe heat ing  r a t e s  f o r  r e f r a c t o r y  
1  i ned vessel s. 

~ u r t h e r  changes t h a t  were made i n  the: o r i g i n a l  t e s t  scheme invo l ved  
. ' 1 )  prepar ing.  holl'ow c y l i n d e r s  w i t h  metal ' r e s t r a i n i n g  r i n g s .  around them t o  s imu la te  

.:the vessel she1 1  / r e f r a c t o r y  i n t e r a c t i o n s  expected o r  observed i n  the  1  i n i  ng t e s t s ,  
2 )  water c o o l i n g  t h e  metal r e s t r a i n i n g  r i n g s  and 3)  exper iment ing w i t h  the  use o f  
compl iant  l a y e r s  between t h e  r e f r a c t o r y  and t h e  r e s t r a i n i n g  r i n g . o r  w i t h  a  thermal 
b a r r i e r  coat ings  on the  I D  o f  t he  c y l i n d e r .  

The cy l i 'nders  were t e s t e d  i n  t he  as-cast  and cured s t a t e  t o  s imulate 
the  c o n d i t i o n  o f  an as c a s t  m o n o l i t h i c  r e f r a c t o r y  l i n i n g .  The c y l i n d e r s  were 
cas t  a t  the  opti,mum wate'r 1  eve1 s  and .s tored i n  p l a s t i c  bags a t  ambient cond i t i ons  
u n t i l  tes ted .  -A James E l e c t r o n i c  V-meter'was used t o  non ' -des t ruc t ive ly  t e s t  the  
c y l  i nde rs  be fore  and a f t e r  each t e s t .  

The exper imenta l '  m a t e r i a l s  evaluated w i t h  t h i s  t e s t  a re  summarized 
be1 ow: . . 

ERDA 90 (Generic go+.% A1203) w/10 w/o Raw ~ ~ a n i  t e  added 

. . . . 

. .  . . . . . . ERDA 9 0  (Generic 90+% A1 203) w/1/4" t h i c k ,  HES* mor tar  1  ayer  
on I D  o f  r e s t r a i n i n g  rings 

LITECAST 75-28 w/ 4 w/o 1  -3/8!' 304 s ta in1  e s s ' s t e e l  f i b e r s  

LITECAST 75-28 w/ RX-14 High E m i s s i v i t y  Coating on ID  

KAOLITE 2300 L I '  w/ 1 2/n 1" 310 s t a i n l e s s  s t e e l  f i b e r s  

KAOLITE 2300 L I  (Same as above w i t h  318" t h i c k  HES* mor ta r  l a y e r  
on I D  o f  r e s t r a i n i n g .  r i n g  and. 4 mi 1 .  p l a s t i c  sheet 

" ' between HES ' and r e f r a c t o r y )  

Mix 36C w/ 1 0  w/o Raw Kyani t e  added 

Mix 36C w/ 1.0 w/o P y r o p h y l l i t e  

Mix 36C w/ RX-14 High E m i s s i v i t y  Coating on I D  

Mix 36C w/ 114" t h i c k  HES.mortar l a y e r  on ID  o f  . res t ra in ing '  r i n g  
. . 

. .  . * HES i s  a  r e g i  ster6:d;. trademark o f .  Pennwal t ~ o r p  .. 



FIGURE 16. Schematic o f  Cyl i n d e r  Cross Sect ion With Thermocoup.le. . .  
? !  

Placements f o r  Thermal Anaqysi s V e r i f i c a t i o n  Tests 



FIGURE 17. Test Set-Up For Hollow Cylinder Heat-Up Tests 



2.4.3, Pore Pressure 

To support the  incorporat ion of Z. Bazant's5 pore pressure model 
i n t o  the 1 and 2 OD f i n i t e  element analysis models and t o  expand on an i n te rna l  
pore pressure technique developed by ~ i s t l e r l l  for use i n  the 1 i n i ng  tests ,  a 
ser ies  o f  experiments was performed. 

. . 
Pore Pressure Model Inpu t  , . 

The support data fo r  the  model involved determining moisture loss  
r e l a t i v e  t o  temperature. TK&e data could be fed d i r e c t l y  i n t o  the pore pressure/ 
moisture migrat ion model acquired from Z. ~ a z a n t ~  t o  determine the permeabi l i ty  o f  
the mater ia l .  Permeabi l i ty  was then re l a ted  t o  pore pressure and explosive 
spa11 ing.  

Test specimens were prepared by cast ing the mater ia ls  of i n te res t  
i n t o  sol  i d  c y l  inders (3" OD x 6" high). D i f f e ren t  amounts o f  mix water were used 
i n  t he  castable so t h a t  permeabi l i ty  cn~t ld  be expectcd t o  vary from specimen t o  
specimen. l o  d i r e c t  the migrat ion o f  water i n  a r a d i a l  path, the ends of the cy l  inders 
were sealed w i t h  aluminum f o i l .  The as-cured specimens were heated t o  d i f f e r e n t  
temperatures i n  the I ns t ron  t e s t  f a c i l i t y ;  and weight l oss  was monitored by way 
of a 10 pound load c e l l .  A schematic o f  the t e s t  set-up i s  shown i n  Figure 18. 

Pore Pressure Measuring Technique 

C. K i s t l e r l 1  reported t h a t  i n te rna l  pressure due t o  steam i n  a 
re f rac to ry  concrete being heated can be measured by a pressure gage which i s  con- 
nected t o  one end o f  a metal tube, the o ther  end being open and embedded i n  the 
concrete. Since the  technique appeared t o  be a p rac t i ca l  method o f  determining 
pore pressure i n  a monol i th ic  l i n i n g  dur ing d r y  out  and heat up, i t  was fur ther  
invest igated.  v 

The i n i t i a l  technique development work was donc w i t h  b r i cks  
and sol  i d  cy l inders .  r h i s  work involved embedding 1/4" and 118" dia.  s ta in less  
s tee l  tubes a t  varSous distances from the hot face and measuring pressure changes 
w i t h  leaperature and time. To prevent the escape o f  moisture from the surfacc o f  
the  specimen, i t was wrapped i n  aluminum f o i l .  One face o f  the specimen was heated 
a t  a r a t e  fas t  enough t o  cause the moisture t o  migrate a t  a r a t e  s u f f i c i e n t  t o  
generate i n t e r n a l  pore pressure. Pressures up t o  20 p s i g  were measured two inches 
from a b r i c k  surface heated 'to lQOO°F: Figure 19 i l l u s t r a t e s  the cur l f igurat ion 
o f  some of the  b r i c k  shapes tested.  Macrostructural examination o f  sectioned 
specimens ind ica ted  tha t  an exce l l en t  bond was at ta. i r~ed between ox id ized s ta jn less  
s tee l  tub ing and the refractory.  No evidence was found o f  any pressure leakage 
along t he  tub ing due t o  poor bonding. Figure 20 ind ica tes  some o f  the pressures 
measured a t  var ious distances from the  hot  face and the associated temperatures dur-illy 
one o f  the  b r i c k  les ts .  Hot face heat ing ra tes  were general ly  ?2000°F/hr a1 though 
i n t e r n a l  heat ing ra tes a t  the pressure tube loca t ions  were about 400°F/hr. These 
ra tes  are considered h igh for  the i n i t i a l  f i r i n g  o f  r e f r a c t o r y  concretes; however, the 
pressures recorded were somewhat lower than had been ant ic ipated.  

Further inves t iga t ions  o f  t he  technique were invest igated t o  
determine t he  effect of #system e r r o r  on the  experimental resu l t s .  Both open and 
closed end tubes were embedded i n  c y l i n d r i c a l  specimens; some f i l l e d  w i t h  water, 
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FIGURE 18. Schematic o f  Test Unit  Used t o  Determine Water Loss Vs. Time 
and Temperature o f  Refractory Concrete Lining Materials . 



FIGURE 19. Refractory Specimen Equipped W'th Embedded Tutes and Thermocoupl as 
f o r  Determinat ion of Pore Pressure Vs. Temperature. 
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F1G.URE 20. Pore Pressure Vs .  Temperature and Distance 
f rom Hot-Face o f  R e f r a c t o r y  (go+% A1 203). 



and o t h e r s  w i t h  a i r .  It was found t h a t  t h e  increase i n  pressure due t o  t he  increase 
i n  temperature a long  the  tube l e n g t h  amounted t o  1-2  p s i  , regard less  of whether t h e  
tube was f i l l e d  w i t h  a i r  o r  w i t h  water .  Pressures were a l s o  measured us ing  two 
d i f f e r e n t  s izes  of  tubes (114" and 1/16"  d i a .  ) ; however, no s i g n i f i c a n t  d i f f e r e n c e s  
between t h e  two were noted. 

I t was concluded from t h e  i n v e s t i g a t i o n  t h a t , a n  embedded, open 
ended, a i r . f i l l e d . t u b e  connected t o  a  pressure gage'can be used t o  measure i n t e r n a l  
p ressure  i n  a  r e f r a c t o r y  concrete.  



2.5. Acoustic Emission (AE) Development Procedures and Results 

2.5.1 . Procedures 

The i n t e n t  o f  apply ing acoustic emi ssidn (AE) monitoring i n  t h i s  
study was t o  detect  the occurrence o f  re f rac to ry  degradation due t o  cracking. 
By determining the t ime and r e l a t i v e  sever i t y  o f  cracking, AE techniques can 
provide rea l t ime feedback o f  a given l i n i n g ' s  response t o  stresses developed 
dur ing thermal cyc l ing.  This in format ion may be used t o  con t ro l  the f i r i n g  
schedule dur ing the i n i t i a l  heat-up and cure o f  r e f r ac to r y  l i n e d  vessels t o  
improve 1 i n i  ng performance and re1 i a b i l  i ty .  

The i n i t i a l  stages o f  the AE development program were designed t o  
demonstrate the feas i  b i  1 i ty  o f  r e f r ac to r y  crack detect ion using AE methods. 
The spec i f i c  ob jec t ives o f  the i n i t i a l  stages were: 

Define AE moni tor ing parameters, system gain, and sensor 
conf igurat jons t o  be used on the f i r s t  ser ies o f  l i n i n g  
tes ts .  

, . 
Determine pre l iminary  technique f e a s i b i l i t y  and the e f f e c t  o f  
scale-up t o  f u l l  s ize  1 i n i n g  t e s t s  on detect ion sensi t i v i . t y .  

e Analyze features ,from AE data which ' a 1 l . o ~  d i f f e r e n t i a t i n g  
s ignals r e l a ted  t o  cracking from less  s i g n i f i c a n t  sources 
such as mo,i stu,re release .and noise in ter ference.  

These ob ject ives were accomplished by performing t es t s  on a ser ies  o f  . .  . '  

b r i c k  and panel re ' f ractory specimens. . A l l  -specimens were cast  using a v i b ra t i ng  .... 

t ab l e  ass i s t  and common cast ing pract ices.  Figure 21 shows the con f igu ra t ion  
o f  the b r i c k  and panel spec4mens used i n  these p.rel iminary.  experiments. As shown 
i n  the Figure, each b r i c k  had a fused s i l i c a  rod (waveguide) embedded approximately 
318" i n t o  the re f r ac to r y  mater ia l  .. The fused s i l i c a  provided a smooth surface t o  
which. AE sensors could be attached. The .exce l len t  i n s u l a t i n g '  and acoustic pro- 
pe r t i es  o f  the s i  1 i 'ca rods a1 so provided a means t o  ' p ro tec t  the .AE sensors from 
heat damage w i t h  no loss  i n  detect ion s e n s i t i v i t y .  

Table 9- contains a summary o f  t h e  b r i c k  t es t s  performed. basic 
re f rac to ry  compositions (ERDA. 90 and LITECAST) were used w i t h  small. va r ia t ions  
i n  water content t o  produce the nine specimens.' Each b r i c k  specimen was heated . 

i n  a programmable Harrop e l e c t r i c  furnace. The b r i cks  were. placed. v e r t i c a l  l y .  i n  
the furnace door and' packed around the edges w i t h  f i b rous  i nsu la t i ng  mater ia l  
(KAOWOOL*) t o  form a secure fit. One face o f  each b r i ck .  was exposed t o  the f u r -  
nace heat; the opposite face,remained exposed t o  the surrounding laboratory  en- 
v i  runnient. When heated, according to..  the.  f i r i n g  schedules shown i n  Table 9, t h i s  
conf igurat ion produced a thermal s t ress gradient  from the ho t  face ,.( inside furnace) 
t o  the co ld  face (room temperature). This thermal stress gradient ,  a l so  present i n  
r e f r a c t o r y  1 ined vessels, had a tendency t o  induce cracking.. . . 

---------------- 
*KAOWOOL i s  a reg is tered .trade. name:of the Babcock. and. W i  l cox  Co. 
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TABLE 9.  Sumniary .of:  B r i c k  Tests Performed During . . . , . x a .  - 
I niti a1 AE ::fFea $i bi'l i.$$j;.Stu'dy " 1. . .  . . . , .  

. .  .! . .  . ' 
. .... 

, : , . . ' : .  , . '  . .. , . ,., 
, * ' ,  . : .  . 

. . .  . . 
. . . .: :.<'. , , - .  _ . . .  , 

, . . . . 

B r i c k #  ' Composit ion, - . ~ e a t i i ~  Schedule 'V i sua l  CrackTng . ' 

1 LITECAST 75-28 400-600°F/Hr .-to l40O0F; . . 5.. 
26% H20 Furnace Cool (Specimen, ; 

. . r un  tw ice ) .  . .. 

2 90+% A1 0 Generic 700-600°F/Hr t o  500°F; 3 
9.32 ?128 Furnace cool  . . 

3 LITECAST 75-28- 
26% H20 

4 '  . . 
. 90+% A1 203 Generic 

. . .  9.3% H20 
,, . . 

. .  . j .  . 

5 LITECAST. 75-28 

4 , ;  

21% H20 
+: 

.. . 
6 90+% A1 203 Generic 

9.3% H20 

20O0F/Hr t o  1800°F;, , .  . 

Furnace cool  

200°F/Hr t o  2850°F; 
Furnace coo l  

100°F/Hr Case #1 
heatup and cooldown 

1 0 0 " ~ / ~ r '  Case # l  , 

heatup and cooldown . 
. 

7 50% A1 203 Generic 100°F/Hr Case #1 
10% H20 heatup and cooldown 

8 LITECAST 75-28 50°F/Hr w i ' th  same 2 
24% H ~ O  holds as Case #1 . . 

9 LITECAST 75-28 . . 1 OO°F/Hr Case #1 1 
24% H20 8-hour' h o l d  du r ing  

.. . . 
cooldown a t  1 500°F , 

f 

* Rat ing  o f  1 i s  l e a s t  severe; 5 i s  most severe 



Panel t e s t s  were performed i n  a  s i m i l a r  fashion as the b r i c k  t e s t s ;  
however, a  1  arger  gas- f  i r e d  programmable furnace was used t o  accommodate the  
l a r g e r  specimens. AE mon i to r i ng  of panel t e s t s  was concurrent  w i t h  the  m a t e r i a l s  
eva lua t i on .  The i r  i n v e s t i g a t i o n s  s t a r t e d  e a r l i e r  than AE inves t ic ja t ions ,  so no t  
a l l  panel t e s t s  were a c o u s t i c a l l y  monitored. Table 10 conta ins  a  summary o f  t he  
panel t e s t s  which were moni tored f o r  AE. These t e s t s  served as an in te rmed ia te  
s tep  i n  t h e  scale-up t o  f u l l  s i zed  l i n e r ' m ~ n i t o r i ' n ~  us ing  AE techniques. Whereas 
b r i c k  specimens cons i s ted  of s i n g l e  components, t he  panels were c a s t  as dual com- 
ponent samples (LITECAST backing ERDA 90) t o  more c l o s e l y  s imu la te  a  p o r t i o n  o f  a  . 

l i n e d  vessel .  Y-anchors were used t o  f i x  t he  two components t o  t h e  s t e e l  support 
backing, a1 so s imu la t i ng  standard mono1 i t h i c  1 i n i n g  i n s t a l  l a t i o n  p rac t i ces .  

F igure 22(a)  i s  a  photogra'ph o f  some o f  the  AE equipment used d u r i n g  
t h e  b r i c k  and panel t e s t s .  F igure  22(b) i s  a  photograph o f  a  b r i c k  sample pos i t i oned  
i n  t h e  furnace w i t h  KAOWOOL as a  packing m a t e r i a l .  A s i n g l e  AE sensor was at tached 
t o  t h e  l e f t  s i l i c a  waveguide us ing  a  C-clamp. A l l  o f  the  b r i c k  and p r e l i m i n a r y  
panel t e s t s  were moni tored w i t h  a s i n g l e  channel Dunegan/Endevco 3000 AE system. 
F igure  23 conta ins  a  b lock  diagram o f . t h a t  system. A broad-band d i f f e r e n t i a l  AE 
sensor (D9202) was a t tached t o  t h e  3-1/2" s i l i c a  waveguides usin'g h igh  temper.at;ur.e 
s i l i c o n e  grease as a  couplant .  The ou tpu t  of  t he  sensor was p reamp l i f i ed  40 dB, 
then f u r t h e r  a m p l i f i e d  f o r  a  t o t a l  ga in  o f  85 dB. E l e c t r i c a l  and mechanical no ise  
i n t e r f e r e n c e  was reduced by passing t h e  s i g n a l s  through a  'high pass f i l t e r  w i t h  a  
lower c u t - o f f  frequency o f  100 KHz. Tota l  r ingdown and envelope (event )  counts 
were accumulated us ing  two 301 t o t a l i z e r s  and a  905 d i g i t a l  envelope processor.  
Outputs were d isp layed on s t r i p  c h a r t  and x-y recorders.  

La ter  panel t e s t s  were a c o u s t i c a l l y  moni tored us ing  a  mu1 ti -channel 
' AE source l o c a t i o n  system. The.system was manufactured by Acoust ic Emission 

Technology Corporat ion (AETC), Model RTM024. The AETC system process6d AE s i g n a l s  
i n  t h e  same bas ic  manner as t h e  Dunegan system (ringdown and event counts) ;  however, 
i t  prov ided a d d i t i o n a l  i n f o r m a t i o n  about t h e  AE s i g n a l s  such as two-dimensional 
source l o c a t i o n  and pu lse  he igh t  ana lys is .  I t  a1 so prov ided increased no ise  
d i  s c r i m i n a t i o n  us ing sof tware implemented accep t i re  j e c t  c r i  t .er ia.  

I he  AETC sensors used f o r  these t e s t s  had a  center  frequency o f  357 
KHz (Model AC-375). The preamp1 i f i e r s  incorpora ted  250-500 KHz band-pass f i  1  t e r s  
t o  reduce no i se  i n te r fe rence  w h i l e  a m p l i f y i n g  the  sensor ou tpu ts  40 dB. Add i t i ona l  
a m p l i f i c a t i o n  was i n t roduced  w i t h  t h e  main system s igna l  processors whose ga in  was 
con t i nuous l y  v a r i a b l e  over  t h e  range o f  0-60 dR. The ga in  f o r  the  panel t e s t s  
was f i x e d  a t  88 dB t o t a l .  F igure  24 conta ins  a  b lock  diagram o f  t h e  AETC system 
as used f o r  t h e  l a t e r  panel t e s t s .  

The AE s i g n a l s  f rom the  f i r s t  few b r i c k  and panel t e s t s  were recorded 
on a  m o d i f i e d  Sony v ideo tape recorder .  The v ideo recorder  enabled " f reez ing"  
t h e  t r a n s i e n t  AE waveforms d u r i n g  playback so t h a t  s e l e c t i v e  frequency ana lys i s  
cou ld  be performed. Frequency a n a l y s i s  , however, d i d  n o t '  pr,oduce s i  gnal,,features 
which cou ld  d i s c r i m i n a t e  between t h e  var ious  source mechanisms ( i n c l  ud:ing no i se )  , 
so i t  was abandoned i n  f u r t h e r  i n v e s t i g a t i o n s .  i, 
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TABLE 10. Sumnary o f  Panel Tests Performed During 
I n i t i a l  AE F e a s i b i l i t y  Study 

-*. -7 ; *Re1 a t i  ve 
Composi ti on . ,  , ,  + - :  xr ' L  F i r i n g  Schedule (OF) . - -  A Crack Pattern Visual 

Psncl Cracking 

. #5 LITECAST 75-28 7%" 21% H20 13 hgs @ 200°, 480°/hr t o  Explosively (Fai led )  
90+% A1 0 Generic 1000 : when exp los ive ly  spal led a t  
4+It 9.3f d20 , . : 8 8 ~ =  , spalled. Cont ro l ler  mal- 1 OOoO 

. I , I I  function. Hot face spal led 

I .I- C .  i n t o  4 large pieces w/ 
1;: - :3 

' anchors imbedded and threads 
I 8 ,  

I -  - stripped. AE waveguides we1 ded 
,: 1 1  

r t o  base p la te  over an anchor. 
- 

3 '.A' - n I - ..C 
I ' 8 ,  8 ,  

- . AE monitored. 
; - i= - -  . 

' LITECAST 75-28 7%" 21% ~ ~ 0 '  -22 Brs @ 170°, 26 hrs @ 450°, Random and 

90+% A1 203 Generic 100 /hr  t o  1800°, 14 hrs interconnected 
@ l OOO", 12!iO/hr t o  2 0 0 0 ~ , ~  network of 

4%" 9.3% H20 3 hm 8 2000 , cool @ 100 /h r  shallow cracks on 
AE monitored w / l  waveguide hot  face w i t h  some 

- I .. 10% ti20 loss a f t e r  f i r i n g .  extendi ng from 
- 

i L -  anchor/refractory 
' L " G I . .  . - in ter face. 

# Ft 

_ I  , . w: 
LITEWT 75-28 p$ 21% ~~0 14 hrs @ 1 lo0, AE breakdown Very few cracks on 3 p-y-$a +-*L :(# 

90+% A1203 Generic 22 hrs @ 170°, 86 hrs B 450°, ho t  face. Those 
100°/hr t o  1000 , 3 hrs 8 found are shallow &a 

&I 8.5% H20 100oO, 1 OoO/hr t o  2000; and not  i n te r -  
4 hrs  @ 2000' cool aOoO/hr connected. 

7 - 
t o  900, 50°/hr t o  500 . 

. .  AE monitored using 4 wave 
; L 1  guides. 

y '  , 
- l a +  Modified 50% A1 O3 Generic 16 hrs @ 180°, A6 hrs @ 450' Single crack across 5 

S i  ngle compone$t 100°6hr t o  1000 , 3 hra @ hot  face. Several 
12" 10% H20 1000 , 100°/hr t o  2000 , 5 cracks para1 l e l  t o  
' - .  -7 # I  - ' i  ! c 8  h r  @ 2000' ' cool 30001 h r  t o  and approxjmately **,, ' -1: #/,*-% , . -' r l  ,c - I ;- 1600~, 100°/hr t o  1000, 50°/ 5" from hot face. 

I . , *L I . - # '  h r  t o  R.T. AE monitored using 
AT - .% - v : 4 wave guides. 

* Rat ing o f '  1 i s  l e a s t  severe; 5 i s  most severe 
- ,&.r 

. - 
. - - - L . L L - M l ,  - 3, -1- 1. 

7- '7 



Furnace 

Sony v ideo 
tape  recorder  

( a )  Instrumentat ion f o r  Br ick  and Panel Tests.  

I 
Dunegan/Endevco 

3000 AE system 

x-y recorder  

Fused S i  1 i c a  Waveguide 

(b) Br ick  Sample Posit ioned i n  Furnace f o r  Evaluat ion.  

FIGURE 22. Photographs of Set-Up f o r  AE Evaluation. 
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.2.5.2. B r i c k  and Panel ~ e s t  ~ e s u l t s  
. . . . 

Figure 25 i s  a p l o t  o f  AE data genereted d u i i n g  t h e  i n i t i a l  t e s t s  
of two LITECAST.brick samples. ' This data i s  t y p i c a l  , o f  a l l  e a r l y  LITECAST 
b r i c k  t e s t s  performed. One sample was heated t o  1400°F (hot  face temperature) 
a t  a r a t e  o f  400-600°F/hour. The .other was heated t o  1800°F (hot  face tempera- 
t u r e )  a t  a r a t e  o f  200°F/hour.. These two samples correspond t o .  b r i c k  numbers 1 
and 3 r e f e r r e d  t o  i n  Table 9. 

Figure 26 i s  a .p l0 . t  of AE data generated d u r i n g  analogous t e s t s  
of two. ERDA 90 b r i c k  samples.  h he same hea t ing  r.ates were used as f o r  t h e  
LITECAST samples t o  .al low. a ' q u a l i t a t i v e  comparison o f  t h e  two types of m a t e r i a l s '  
responses. . The ERDA 90 samples. in F igure 26 correspond t o  b r i c k  numbers 2 
and 4 i n  Table 9. 

These i n i t i a l  b r i c k  t e s t s  were used -to, determine i f  AE cou ld  be 
detected from r e f r a c t o r y  m a t e r i a l s  d u r i n g  thermal cyc l i ng ,  and whether i t  
cou ld  be c o r r e l a t e d  w i t h  o the r  t e s t  parameters. A t  t h i s  p o i n t  i t  was an 
assumption t h a t  t he  pr imary source o f  t he  AE was crack ing.  The r e s u l t s  d i d  
l ead  t o  some i n t e r e s t i n g  observat ions, however. F i r s t  t he re  was a d e f i n i t e  
temperature dependance o f  AE a c t i v i t y  f o r  bo th  M a t e r i a l s  and both  hea t ing  
ra tes .  For the  LITECAST m a t e r i a l ,  t h e  m a j o r i t y  o f  t he  acous t i c  a c t i v i t y  
occurred a t  temperatures exceedi ng approx i~ i ia te l  y 1000°F on the  ho t  face. 
For t h e  denser ERDA 90 mate r ia l ,  t he  t r a n s i t i o n  temperature was lower, 
occu r r i ng  a t  approximately 600°F. Since t h e  data i n  Figures 25 and 26 were 
n o t  recorded w i t h  t ime as a va r iab le ,  i t  i s  d i f f i c u l t  t o  assess the  in f luence 
of t he  heat ing  r a t e  upon the  r e s u l t s .  It can be stated,  however, t h a t  f a s t e r  
hea t ing  ra tes  produced g rea te r  cumulat ive counts regard less  o f  the  m a t e r i a l .  
Another s i g n i f i c a n t  observat ion i s  t h a t  t h e  LITECAST m a t e r i a l  s were more 
a c t i v e  (g rea te r  accumulated AE counts)  than t h e  ERDA 90 m a t e r i a l s  a t  t he  
same corresponding hea t ing  ra tes .  These observat ions support t h e  assumption 
t h a t  t h e  ~ l i a j o r  source o f  AE from the  r e f r a c t o r i e s  was c rack ing.  LITECAST 
was a weaker m a t e r i a l  and more suscept ib le  t o  c rack ing than the  denser ERDA 
90. (See Sect ion 2.3. Ma te r ia l  Proper ty  Determinat ions).  It therefore 
should have produced more AE a c t i v i t y  because o f  i t s  a d d i t i o n a l  c rack ing 
tendency. Visual observat ions o f  t h e  b r i c k ' s  crack p a t t e r n s  a f t e r  heat ing  
conf irmed a l a r g e r  number o f  cracks f o r  t h e  LITECAST samples. 

Figure 27 d e p i c t s  t y p i c a l  r e s u l t s  obta ined f rom d dual component 
(LITECAST backing ERDA .90) panel t e s t .  I n  p a r t i c u l a r ,  these r e s u l t s  were 
obta ined f rom panel #6 as l i s t e d  i n  Tabel 10. L i t t l e  AE a c t i v i t y  was detected 
u n t i l  t he  ho t  face temperature .reached approximately.. 1300°F. It then increased 
i n  a c t i v i t y  and cont inued f o r  t h e  remainder o f  t h e  t e s t ,  even through t h e  
cooldown. 'I'here were a Few 1 arge bu rs ts  which nccurred between 1850°F and 
2000°F, but  Tot- the most p a r t  t h e  increases i n  counts were un i fo rm w i t h  t lme.  
(The bu rs ts  appear as t h e  sharp v e r t i c a l  steps i n  t h e  ringdown c o u r ~ l  curve  
in Figure 27). 
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FIGURE 25. P l o t s  o f  Accumulated A€  Rlngdown Counts : 

' .  vs. Hot Face Temperature for-. Two LITECAST . . 
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FIGURE 26. P l o t s  o f  Accumulated AF. R,ingdown Counts 
vs. Hot .Face Temperature f o r  Two ERDA-90 
Samples a t  D i f f e r e n t  Heati,ng Rates  
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I n  a d d i t i o n  t o  the  temperature, ringdown counts, and event count 
curves, F igure 27 a l so  conta ins  a p l o t  termed Re la t i ve  Energy per Event. 
Th is  i s  an AE parameter developed from the  ana lys i s  o f  the  b r i c k  and panel 
AE data, in tended t o  a l l o w  eas ie r  i n t e r p r e t a t i o n  of AE data and to  h i g h l i g h t  
s i g n i f i c a n t  ( h i g h  energy) AE a c t i v i t y .  Re la t i ve  Energy per  Event incorpora tes  
bo th  envelope (event )  counts and ringdown counts according t o  t h e  fo l l ow ing  
r e l a t i o n s h i p :  

A r i  
R e l a t i v e  Energy pe r  Event = ei 

where A r i  = change i n  accumulated ringdown counts over t ime i n t e r v a l  i 

Aei = change i n  accumulated envelope (event)  counts over  
t ime i n t e r v a l  i 

i = 5 minutes f o r  panel t e s t s ;  15-30 minutes f o r  1 i n i n g  t e s t s .  

As can be seen i n  Figure 27, t h e  Re la t i ve  Energy per  Event graph 
d i d  g i ve  a c l e a r e r  rep resen ta t i on  o f  t h e  AE a c t i v i t y .  Consequcntly f u r t h e r  
analyses of AE data concentrated on t h i s  parameter. 

r$- LC. 

Less t y p i c a l  b u t  h i g h l y  s i g n i f i c a n t  AE r e s u l t s  were obta ined cQ 
d u r i n g  t h e  t e s t i n g  o f  panel #5. Th is  panel had a dual component c o n f i g u r a t i o n  $3 

qz 
t h a t  f a i l e d  by exp los ive  s p a l l i n g .  The spa11 occurred a t  1000°F a f t e r  t h e  >$;j 

furnace c o n t r o l  ma1 funct ioned and caused a severe heat ing  r a t e  o f  480°F/hour. .$,ijilt " ,  

F igure  28 i s a photograph of the  'spa1 l e d  pane1 and furnace as they appeared I I 

immediate ly  a f t e r  the  exp los ion .  P r i o r  t o  the  c o n t r o l  l e r  ma1 func t i on ,  the  
F-' 4 1  

panel had been heated a t  1 OO°F/hour t o  200°F where i t  was he1 d f o r  t h i r t e e n  
hours. L i t t l e  AE was recorded du r ing  t h a t  per iod .  F igure 29 d e t a i l s  t h e  83 
acous t i c  events f o r  t h e  two hours f o l l o w i n g  t h e  200°1: h o l d  and preceding :;%%I 7 4 I 

the  s p a l l .  Up t o  about 1.3 hours f o l l o w i n g  the  end o f  t h e  ho ld  t h e  Re la t i ve  $).!+, 
Energy p e r  Event graph d isp layed ampli tudes and pa t te rns  t h a t  were s i m i l a r  &w{- + 
t o  those recorded from panel #6 (F igure  27). A t  about 1.4 h o ~ ~ r s ,  t h e  r e l a t i v e  
a c t i v i t y  showed CI sharp increase, as i n d i c a t e d  i n  F igure 29. Three minutes 
l a te rA  t h i s  "pr-ecursor" ac t1  v i  t y  resumed a momentary low l e v e l  , f o l  lowed by 
r a p i d l y  i nc reas ing  a c t i v i t y  which cont inued u n t i l  f a i l u r e .  Note t h a t  t he  
ampl i tude of t he  R e l a t i v e  Energy per  Event graph cont inued t o  increase up 
t o  t h e  spal 1 ' s  occurrence. 





FIGURE 29. AE Results From Panel Test #5 Which Failed 
By Explosive Spa1 1 ing 



I 2.5.3. Add i t i ona l  Small-Scale B r i c k  Test ing 
..*..... - . . . , . . . . 

I 

i During t h e  course o f  t he  1  i n i n g  t e s t s  monito'red f o r  AE,. i t  
became i n c r e a s i n g l y  e v i d e n t .  t h a t  an understanding o f  , the  basic m a t e r i a l s '  
response t o  t h e  va r iab les  imposed du r ing  a  l i n i n g  tes' t  had n o t  been obtained. 
It was n o t  economical ly  f e a s i b l e  t o  change o n l y  one o r  two t e s t  parameters 
from l i n i n g  t o  1  i n i n g  i n  o rde r  t o  i s o l a t e  i n d i v i d u a l '  e f f e c t s .  Therefore, 
many parameters (mater ia l  composition, anchor type and l o c a t i o n ,  heat ing  
ra tes  and schedules, e t c . )  were changed t o  e m p i r i c a l l y  achieve a bu lk  improvement 
i n  t h e  r e f r a c t o r y  'performance. Thi s. approach prompted addj t i o n a l  small - 
scale experiments. t o  study t h e  i s o l a t e d  e f f e c t s  o f  ma te r ia l  composition, 
heat ing  r a t e ,  and combined thermal /mechanical load ing upon the  AE response. 
The o b j e c t i v e  o f  t h i s  phase o f  the  AE development program was t o  enable b e t t e r  
i n t e r p r e t a t i ' o n  o f  t he  AE data from the  l i n i n g  t e s t s .  

The l a s t  phase o f  t h e  AE development e f f o r t  i nvo lved  designing 
' 

I . a n o t h e r ' s e r i e s  o f  t e s t s  us ing  b r i c k  samples. . F igure 30 shows the  var ious  
. .. t e s t  cases examined i n  these a d d i t i o n a l  small scale experiments. The fo l l ow ing  
:' 1  i s t  expl 'ains the  separate cond i t i ons  they  represented.. 

Case I - Mate r ia l  response t o  a  moderate heat ing  r a t e  

Case I 1  - Mate r ia l  response t o  a  moderate mechanical l o a d  

Case I11 - Mate r ia l  response t o  a  r a p i d  hea t ing  r a t e  

Case I V  - Mate r ia l  response t o  a  combined mechanical l o a d  
and moderate heat ing  r a t e  

Case V - Mate r ia l  response t o  a  combined mechanical l o a d  
and r a p i d  heat ing  r a t e  

Case V I  - 'Pro to type m a t e r i a l  response t o  a  combined mechanical 
' l oad  and rap id '  heat ing  r a t e  

The p r e l  ini nary  b r i c k  and panel t e s t s  were 1  arge l  y  qua1 i t a t i v e  
. . i n  nature;  t h a t  i s ,  they  were intended t o  demonstrate t h a t  AE r e l a t e d  t o  c rack ing 

could be detected from r e f r a c t o r y  m a t e r i a l  s  and t h a t  t h e  technique could he 
scaled-up t o  t h e  l a r g e  t e s t  vessel. These secondary b r i c k  t e s t s . d i f f e r e d  
from t h e  i n i t i a l  experiments i n  t h a t  they  were designed t o  enable d i r e c t  com- 
par ison o f  data according t o  m a t e r i a l  type and load ing  cond i t i ons .  The a n t i -  
c ipa ted  degradation occu r r i ng  i n  these a d d i t i o n a l  t e s t  cases j u s t  o u t l i n e d  
was l e a s t  f o r  Case I w i t h  p rog ress i ve l y  more damage i n  each' consecutive t e s t .  
LITECAST samples were expected t o  degrade move qulck' ly t l ~ a r ~  ERDA 90 samples 
under s i m i l a r  loads because o f  t h e i r  weaker phys ica l  p roper t i es .  The g rea tes t  
amount o f  c rack ing was expec.ted i n  Cases I V  and V, which bes t . s imu la ted  l i n e d  . . 
vessel condi t i o n s .  
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I n  these t e s t s ,  t he  b r i c k s  were placed i n  the  door o f  a  
programnabl e  Harrop e l e c t r i c  furnace as descr i  tied e a r l i e r .  To a1 low appl i c a  t i o n  

I o f  a  mechanical l oad  du r ing  the  heat ing  o f  t he  b r i c k  samples, a  load ing f i x t u r e  
8 . ' was designed and constructed. F igure 31 shows t h e  appearance .and dimensions 

o f  t h e  f i x t u r e  and the  l o c a t i o n s  o f . s t r a i n  gages f o r  app l ied  load determinat ion.  
The two p ro t rud ing  legs  o f  the  f i x t u r e  con tac ted . the  outs ide  edges of the  
b r i c k '  samples as shown i n  Figure 32,. On the  i n t e r i o r  o f  t he  t e s t  furnace, 
a ' p o i n t e d  edge ceramic ram was used t o  brace t h e  b r i c k  a t  i t s  center  l i n e .  
When an a p p l i e d , l o a d  was desired, t he  turn-down screws a t  each end of the  
f i x t u r e  were ti.ghtened aga ins t  t he  f i x t u r e .  Th is  a c t i o n  re.sul t e d  i n  a  th ree  
p o i n t  bending load, p l a c i n g  t h e  c o l d  face o f  the.  b r i c k s  i n  tens ion and the  

' 

- hot  face' i n  compression. AE was monitored by a t tach ing  sensors t o  fused s i l i c a  
waveguides embedded 3/8".  i n t o  the  sampl es. Hot face temperatures were measured . 

by contac t  mounted thermocouples on t h e  ho t  face sur face o f  each sample. 

C a l i b r a t i o n  of '  t he  AE load ing  ' f i x t u r e  was obta ined through experiments 
on a  Ma te r ia l  s  Test  System (MTS) machine. The f i x t u r e  was mounted on t h e  machine 
w i t h  each l e g  ' i n d i v i d u a l l y  contac t ing  the  hyd rau l i c  ram. Incremental loads were 
app l i ed  t o  each l e g  and t h e  f i x t u r e ' s  s t r a i n  gage readings were p l o t t e d  aga ins t  
the. load c e l l  readout from the MTS. machine. The c a l i b r a t i o n  curve so generat,ed 
a l lowed a p p l i c a t i o n  o f  known loads t o  each b r i c k  by conver t ing  the  s t r a i n  
readings measured from t h e  l e g s  . o f  t he  l oad ing  f i x t u r e . .  

* .  . 

, . I n '  o rde r  t o  a l l o w  d i r e c t  comparison o f  t h e  AE data generated 
from orie b r i c k  sample t o  t h e  .<next, i t  was necessary t o  o b t a i n  equ iva len t  
s e n s i t i v i t y  s e t t i n g s  on the  AE ins t rumenta t ion .  To accompl i sh t h i s  c a l  i b r a t i o n ,  . 

. each br. ick was pos i t i oned  i n  t h e  furnace w i t h  sensors (AET AC 375) mounted 
t o '  each o f  t h e  two s i l i c a '  waveguides. A  p u l s e r  u n i t  contained i n  . the  AETC 
system was used t o  e x c i t e  an. ex te rna l  AE s imula tor  t,ransducer (Dunegan-S140B) 
a t  30 .pullses per  second. During c a l  i bra t ion ,  ,.the AE s imu la to r  was coupled. 
t o  the :end-o f  one o f  t h e  s i l i c a  waveguides. The ou tpu t  o f .  the  AE sensor on 
the  opposi te waveguide was d isp layed on an osc i l loscope.  That sensor 's ou tput  
l e v e l  was. then ad jus ted t o  o b t a i n  0.64 . V  peak t o  peak on the  l ead ing  edge 
o f  t h e  received s igna ls .  The AE s imula tor  was . then coupled t o  the  o the r  
waveguide and s i m i l a r l y  t h e  output  o f  t h e  opposi te sensor was ad jus ted t o  the  
same l e v e l .  Th is  technique was se lec ted t o  compensate f o r  d i f fe rences i n  t h e  
acoust ic  a t tenua t ion  o f  LITECAST and ERDA.,90 samples, and f o r  d i f f e rences  
i n  sensor coup1 i n g  e f f i c i e n c y ;  I n j e c t i n g  a c a l i b r a t i o n  s igna l  i n t o  one wave- 

\ guide imp1 i e d  t h a t  t he  s igna l  had t o  propagate through t h e  var ious  coup l i ng  
i n te r faces  and t h e  specimen. Adjustments t o  the  sensor ou tput  l e v e l s  therefore 

i were d i r e c t  compensation f o r  the  v a r i a t i o n s  i n  coup l ing  and m a t e r i a l  p roper t i es .  

8' . .  

F igures 33-43 con ta in  t h e  AE' responses recorded from each b r i c k  
sample i r ~  tebt C ~ s e s  I - V I ,  r espec t i ve l y .  With the except ion o f  the  Case I 
and I V  LITECAST samples, a l l  t he  scales denot ing t h e  Re la t i ve  Energy. per  . . 
Event of t h e  AE a c t i v i t y  a re  i d e n t i c a l .  Th is  a1 lows d i ' r ec t  comparisons o f  t he  
magni tudes between t h e  var ious ma te r ia l l l ' oad ing  cond i t ions .  The hot  face 
temperature measurements (where app l i cab le )  a re  a l l  p l o t t e d  on i d e n t i c a l  
scales. Load a p p l i c a t i o n s  a r e  a l s o  noted i n  t h e  f i g u r e s  where app l icab le .  
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During the  course. of these small; scale b r i c k  t e s t s ,  th ree LLTECAST 
samples f a i l e d  (broke i n '  h a l f )  prematurely. This 1 i m i  t e d  the amount of 
c o r r e l a t i o n  t h a t  cou ld .be drawn from the scheme o u t l i n e d  'by the  var ious 
t e s t  cases. A number o f  observati,ons .were made, .however, which do lend,  . . . . ' . .- . . 

support ing evidence t h a t  the  AE detected from these samples was d, ire,et ly 
r e l a t e d  t o  t h e i r  tendency t o  crack. These observat ions are  l i s t e d  as , fo l lows:  

0 The surfaces o f  the  mechanical ly loaded and heated specimens 
showed more evidence o f  c rack ing when compared t o  those t h a t  
were not .  The corresponding AE responses monitored from those 
specimens a l so  tended t o  have g rea te r  numbers o f  occurrences and 
greater  Re la t i ve  Energy pe r  Event than non-loaded samples. 
(Case I V  vs. Case I, Case V vs. Case I I I ) .  

LITECAST samples' surfaces cracked more than ERDA' 90 samples 
under the  same t e s t  cond i t ions .  The AE from LITECAST b r i c k s  
i n  general was more f requent  and o f  h igher  energy than 
corresponding ERDA 90 tes ts .  

LITECAST samples subjected t o  combined mechanical and thermal 
load had a greater  tendency t o  f a i l  c a t a s t r o p h i c a l l y  than 
corresponding ERDA 90 samples. Three LITECAST b r i c k s  broke 
i n  h a l f  wh i l e  none o f  t h e  ERDA 90 b r i c k s  had sur face cracks 
g rea te r  than 1/2". Moments p r i o r  t o  the  ca tas t roph ic  f a i l u r e s ,  
t he  AE Re la t i ve  Energy pe r  Event increased r a p i d l y  u n t i l  f a i l u r e  
occurred. These responses were s i m i l a r  t o  panel t e s t s  t h a t  
f a i l e d  by exp los ive  s p a l l i n g .  (Cases 11, I V ,  and V - LITECAST). 

a The ERDA 50 specimen (Case V I )  produced s i m i l a r  numbers o f  
h igh  energy events a t  corresponding t imes i n  the  thermal 
cyc le  as the  ERDA 90 specimen i n  Case V. The ERDA 50 sample, 
however, had a s i g n i f i c a n t  amount o f  lower l e v e l  a c t i v i t y  
n o t  detected i n  t h e  ERDA 90 t e s t .  Th is  low l e v e l  a c t i v i t y  
was s i m i l a r  i n  na ture  t o  LITECAST responses, e s p e c i a l l y  du r ing  
cooldown. There was n o t  a s i g n i f i c a n t  d i f f e r e n c e  i n  t h e  sur face 
crack pa t te rns  on the  ERDA 50 and ERDA 90 samples. 

e Samples t h a t  were AE monitored through a complete temperature 
cyc le  (heat-up and cool  down) a t t a i n e d  a quiescent  s t a t e  (1 i t t l e  
detected A€ a c t i v i t y )  a t  e levated temperatures. This suggests 
t h a t  t he  ma te r ia l s  became l e s s  b r i t t l e  and the re fo re  had l e s s  
tendency t o  crack from induced stresses. The s p e c i f i c  temperatures 
a t  which quiescence occurred va r ied  several hundred degrees 
depending upon each sample's p a r t i c u l a r  l oad  ar~d  thermal s t ress  
s ta te .  On t h e  average t h e  quiescent  s t a t e  began a t  1000 - 1 1 0 0 ~ ~  
ho t  tace temperature upon heat-up, and ended a t  1 ZOO0 - 1 3 0 0 ~ ~  
on cooldown. I 



2.6. . Experimenta'l ,Procedures - L' i  r ~ i  ng Tests 
A < .  . ' .  

The sec t ions  which f o l l o w  descr ibe  t h e  equipment, t h e  r e f r a c t o r y .  
i n s t a l l a t i o n  procedures, t he , i ns t rumen ta t i , on  techniques, ' the pos t  - t e s t i n g  
procedures and. o t h e r  miscel laneous techniques employed t o  perform the  
1  i n i n g  t e s t s .  

Test Faci i t y  

: Pressure Vessel 

A ,  pressure vessel ..was designed by Babcock & W i  1  cox and bui1. t  by 
Chattanooga B o i l e r  and Tank (CB&T), Chattanooga, Tennessee 'under a  subcontract .  
The vessel was de l i . vered t o  and i n s t a l l e d  a t  t he  Babcock & Wilcox Lynchburg 
Research Center i n  March 1977. Figures 44 and 45 show, re's 'pect ively,  a  schematic 
o f  t h e  ve.sse1 as planned and a' photograph o f ,  t he  .vessel as de l i ve red .  

The vessel i s  o r i e n t e d  i n  a  v e r t i c a l  p o s i t i n n .  Ihe o v e r d l l  t1eiyI11 
of t he  t h r e e  sec t ions  i s  approximately 14 f e e t .  The vessel i s  5 f e e t  i n  i n s i d e  
diameter.  The complete assembly i s  supported by columns a f f i x e d  t o  the  bottom 
head. The vessel i s  made o f  carbon s t e e l  s ince no extremely co r ros i ve  atmo- 
spheres were scheduled t o  be tes ted .  The top  and bottom dished heads and the  
c y l i n d r i c a l  cen te r  s e c t i o n  a re  f langed.  Th is  permi ts  t he  furnace vessel t o  
be e a s i l y  taken a p a r t .  The top  head weighed 3580 Ibs., the  cen te r  sec t i on  
weighed 10,660 l b s .  and the  bottom head w i t h  support l e g s  weighed 4475 I b s .  
When t h e  th ree  f langed sec t ions  are attached, the t e s t  furnace f a c i l i t y  can 
be operated a t  up t o  250 p s i g  and s h e l l  temperatures o f  650°F. Both compressed 
asbestos and FLEXITALLIC* gaskets o f  1/8 i n c h  th ickness  were used t o  seal the 
vessel f langes.  The vessel was b u i l t  accord ing t o  Sect ion V I I I ,  D i v i s i o n  I 
o f  the  ASME Code and has a  U code stamp. To meet t h i s  code, t h e  vessel was 
inst rumented w i t h  a  conso l ida ted  (Dresser I n d u s t r i e s )  250 p s i g  pressure r e l i e f  
va l ve  r a t e d  a t  1284 1  b l h r  of sa tura ted  steam and w i t h  a  one i n c h  diameter 
n i c k e l  r n p t u r e  d i s c  r a t e d  fo r  287 p s i g  b u r s t  pressure a t  72°F and 253 p s i g  
b u r s t  pr i lssl~r-P a t  450°F. .The vessel was a l s o  designed w l t h  a  slealli t r a p ,  
spec ia l  s i g h t  g lass  and a pressurelsteam ven t i ng  system. The stearn Lrap " 
was made by  Wr igh t -Aust in  and had a  0-350 p s i y  ope ra t i ng  range and a  one 
q u a r t  s torage capac i ty .  Pre Sure Products Co., h i g h  pressure h igh  temperature 
s i g h t  g lasses ,  niodel "A," were used on the s i g h t  p o r t s  i n  t h e  bottom head o f  
t he  vessel and were r a t e d  f o r  250 ps ig .  The pressure steani ven t i ng  system 
was designed t o  vent  p ressur ized gases ou t  o f  t he  t e s t  bay i n  t he  event Llle 
vessel ope ra t i ng  pressure was exceeded. Th is  system was combined w i t h  the  pressure 
re1 i e f  and rup tu re  d i s c  systems. 

The bottom head conta ined f langed v iewports  s e t  a t  skewed angles 
t o  t h e  r a d i u s  (F igu re  46.) t o  permi t  v i s u a l  obse rva t i o r~s  u f  the i n t e r i o r  sur face 
o f  t h e  l i n i n g  d u r i n g  t e s t i n g .  Add i t i ona l  penet ra t ions  were l oca ted  i n  the  t o p  
and bottom heads t o  accommodate s t r a i n  gage leads, thermocouple leads, atmo- 
spher ic  c o n t r o l  connect ions, and pressure gages. The c y l  i n d r i c a l  t e s t  sec t i on  
which conta ins  t h e  r e f r a c t o r y  l i n i n g  had nozzles f o r  s t r a i n  gage and thermo- 
couple leads, pene t ra t i ons  f o r  e l e c t r i c a l  connectors, ex te rna l  mounts f o r  
acous t i c  emission antennas, and brackets  f o r  pneumatic v i b r a t o r s .  A  second i d e n t i c a l  

*FLEXITALLIC i s  a  r e g i s t e r e d  t rade name o f  F l e x i t a l l i c  Gasket Co., .Inc.- 
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rIGURE 44. Schematic o f  Overall  Test Faci l  i t y  Lay-out For 
Heating and Cooling Refractory Linings. 



FIGURE 45. Assembled Three-Part Pressure Vessel/Test Furnace 
(14 ft. x 5 f t . )  and Ex t ra  Center Sect ion.  



FIGURE 46. Location of Viewports and Support Columns on 
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cy l  i n d r i c a l  t e s t  sec t ion  was made t.o f a c i l  i t a t e  the schedule f o r -  tes t fng  and 
data co l l ec t i on .  

As shown i n  Figure 47, the t e s t  sect ion had heavy dutv hex nuts 
welded t o  the i ns i de  surface a t  6 inch  spacings f o r  attachment of  metal anchors a t  
var ious spacings. The vessel design required t h a t  any and a l l  openings o r  attach- 
ments an t i c ipa ted  dur ing the e n t i r e  t e s t i n g  program which requ i red welding, be made 
before. hydrotest ing.  This was done because any welding done a f t e r  r ece ip t  o f  the  
vessel would i n v a l i d a t e  the  code stamp. 
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The only s ign i f i can t  change made from the i n i t i a l  design was 
re la ted  t o  the she l l  wal l  thickness o f  the center section. The shel l  thickness 
was o r i g i n a l l y  designed t o  be 518" but when i n i t i a l  analyses were s tar ted on 
the re f rac tory  1 iner-shel l  in teract ions w i th  the I D  f i n i t e  element stress 
analysis model developed, much higher hoop stresses (35,000 ps i  ) than those 
o r i g i n a l l y  ant ic ipated were indicated. These stresses are generated pr imar i l y  
from the greater thermal expansion of the ref ractory l i n e r  than the shel l  
a t  2000°F hot face temperature. When they are analyzed as rad ia l  stresses, 
they are equivalent t o  an in te rna l  shel 1 pressure o f  > 500 psig. Since the 
vessel was o r i g i n a l l y  designed f o r  250 psig gas pressure and 400°F shel l  
temperature capabi 1 i t y  and w i th  no s ign i f i can t  refractory-metal shel 1 interact ions 
using the Section 8, Div is ion I of the ASME Code, t h i s  addit ional  pressure 
( rad ia l  stress from the re f rac tory  l i n e r  expansion) was expected t o  make the 
shel 1 thickness marginal. A shel 1 thickness o f  about one inch was considered 
necessary t o  reduce these stresses. When t h i s  information was combined w i th  the 
f a c t  t ha t  many pressure vessels associated w i th  high BTU g a s i f i e r  p i l o t  plants had 
shel 1 thicknesses o f  1 t n  2-1 J2 inches, a decision was lad& t o  increase the 
center she l l  thickness t o  1-1/8 inch. This thickness was the upper l i m i t  t ha t  
CB&T could r o l l  and gave a pressure vessel shel l  that  was safe ly  hydrotested 
t o  approximately 375 psig. 

Test Zone and Sensor Placement 

The middle f i v e  fee t  o f  the seven foot  high center shel l  was t o  
be covered w i th  re f rac tory  mater ial .  The remaining one foo t  adjacent t o  each 
flanged end o f  the  center section was not t o  be l ined. The re f rac tory  was 
i n s t a l l e d  as a continuous l i n i n g .  A 4 foot t e s t  zone was cen t ra l l y  located 
i n  the vessel w i th  an addi t ional  6 inches on the top and bottom t o  al low for 
thermal gradient e f fec ts  from the heating element. Only the central  4 foo t  
region was t o  contain monitoring devices and be evaluated for the t e s t  para- 
meters. 
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I n s ~ l a t i o n  of Test Zone 

The 6 inches o f  ex t ra  l i n i n g  on each end o f  the t e s t  section and 
the 1 foot o f  unlined shel l  adjacent t o  each end was for  the purpose o f  reducing 
temperatures a t  the end of the tes t  furnace chamber. A thermal ba r r i e r  
system consist ing o f  nine inches o f  ceramic f i b e r  blanket i n  a c i r c u l a r  
configuration tha t  f i t  t i g h t l y  ins ide the top o f  each l i n i n g  was used t o  reduce 
the temperature sensed by the  flanges and the dished heads. The blanket was 
held i n  place on Inconel 601 studs by Inconel 601 washers over ceramic washers. 

Under ambient pressure condit ions the head temperatures d id  not 
exceed 250-260'5 w i t h  the hot face a t  2000°F. This helped maintain temperature 
un i fo rmi ty  o f  5 2 0 " ~  wanted i n  the 4 foo t  t e s t  zone. This insu la t ion  could 
be removed and reused f o r  other tests.  A p ic tu re  o f  t h i s  insu la t ion  scheme 
i s  shown i n  Figure 48. Addit ional reflectance type insu la t ion  was considered 
f o r  the top insu la t ion  if a chimney e f fec t  became a problem. Line-of-sight 
holes were made i n  the lower insu la t ion  t o  permit the i l luminat ion  and viewing 
o f  the hot face of the l i n i n g  through the s ight  ports. 



FIGURE 48. VTew of Upp.er Insulatios aftec Removal From Lining #4 
T ~ s t  t o  1850F wfth Steam, Ce~amic Fiber Blanket ,A) i s  
kkjld .in 'Place t&h Ce-f".acnfo awl Inconel 601 Washsrs ( B )  
her Lnconel 601 S t ~ d s  



Ver t i ca l  Rest ra in t  o f  Test L in ings 

The re f rac to ry  l i n i n g  i s  r e s t r a i n e d ' i n  the  v e r t i c a l  as we l l  as 
o the r  d i r ec t i ons  by the presence o f  anchors and t o  a lesser degree by i t s  
own weight. Addi t ional  r es t ra i n i ng  i n  the v e r t i c a l  d i rec t ions  was accompl ished 
by t h e  use o f  re in forced metal "L-shaped" angles which would r e s t r a i n  the top 
s t a b i l i z e r  r i n g  p l a t e  as shown i n  Figures 49 and 50. I t s  basic design i s  as 
fo l lows:  short, open ended U-shaped metal p la tes  were welded onto the side 
o f  t he  she l l .  The top s t a b i l i z e r  r i n g  had notches a t  s p e c i f i c a l l y  spaced 
loca t ions  on the perimeter which permit ted the r i n g  t o  s l i d e  down past the 
p roper ly  spaced welded res t ra i ne r  support p lates.  Once i n  place the s t a b i l i z e r  
r i n g  was ro ta ted  a few degrees. The metal angles were then s l i d  i n  between 
the shel 1 and the welded re ta i ne r  support p lates.  Threaded b o l t s  t ightened 
these metal angles against the shel 1 wal l  so they could no t  move. This con- 
f i g u r a t i o n  allowed the re f rac to ry  l i n i n g  t o  be cast  wi thout any ex t ra  anchors 
o r  metal r i ngs  a t  the top end. I t  also permit ted f l e x i b i l i t y  f o r  ease o f  i n -  
s t a l l a t i o n  and removal o f  the l i n i n g .  Figure 51 shows the res t ra i n i ng  r i n g  
i n  p o s i t i o n  i n  L in ing  # l .  The f i r s t  t e s t  t o  1200°F ind icated t h i s  r i n g  p la te  
worked, bu t  a t e s t  t o  2000°F resu l ted  i n  the upward warpage o f  the inner  5 
inches o f  the r ing .  The r i n g  was therefore remade w i t h  twice the thickness 
(1 inch)  o f  the f i r s t  p l a t e  and d i d  no t  warp i n  fu tu re  tes ts .  

Control and Monitor o f  Test F a c i l i t y  

The t e s t  f a c i l i t y  includes the pressure vessel, heating u n i t  
con t ro l ,  s t r a i n  gage-thermocouple monitor, acoust ic emission monitor, NDT camera 
monitor, steam generator, C02 tanks, pressure monitor, crane assembly and 
o ther  support ing equipment f o r  l i n i n g  i n s t a l l a t i o n  and data co l lec t ion .  
Bo t t l ed  C02 was used when a C02 atmosphere was required. When a steam atmo- 
sphere was required, a steam generator w i t h  150 ps ig  capabil  i t y  was used. 
The steam was i n j ec ted  i n t o  the vessel through a d i s t r i b u t i o n  r i n g  arranged 
as shown i n  Figure 44 t o  evenly expose the  l i n i n g  t o  steam. Two separate 
computer data acqu i s i t i on  systems which were housed i n  an i so la ted  room b u i l t  
f o r  moni tor ing instrumentat ion on the vessel and cont ro l  o f  the pressure vessel/ 
t e s t  furnace dur ing heat-up and cool-down cycles were used. Photographs o f  
t h i s  con t ro l  and data acqu i s i t i on  equipment are shown i n  Figures 52-54. 

Transport ing o f .  Test Section 

I n  cases where the l i ned  t e s t  sect ion had t o  be moved, the i n t r o -  
duct ion of cracks i n  the 1 i n i n g  due t o  d i s t o r t i o n  o f  the shel l  were prevented 
by the use o f  external  l i f t i n g  supports a t  the flanges and by the  use o f  i n t e r - '  
na l  r i n g  plates.  I n  add i t ion  the she l l  was designed t o  have s u f f i c i e n t  thickness 
t o  minimize d i s t o r t i o n  o f  the s tee l  wal l  dur ing l i f t i n g  and movement by the 
overhead crane. In te rna l  r'ng p la tes  fabr icated t o  the necessary tolerances 
but  no t  welded t o  the  she l l ,  as shown i n  Figure 49, were used t o  insure d i -  
mensional s t a b i l i t y  o f  the re f rac to ry  1 i n i n g  dur ing i n s t a l  l a t i o n  (both w i t h  and 
wi thout  anchors). 
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FIGURE 50. Top Stabilizer Ring Plate and Hardware to Restrain 
Cast Lining in Vertical Direction. 



FIGURE 51. Top View o f  Lined Vessel With Upper Stabil i ze r  Ring 
Plate Instal led to  Restrain the Lining i n  the 
Yert ica l  Direction. 





FI&ME E& ThBrn~~wFe, S < ~ ~ B ~ V J  ~ & ~ i ~  %nd AE Data k@&%l%tah 
$y&4a. 



FIGURE 54. AE Data Acquisition System. 



Furnace Heating Element 

Heating the "hot face of the re f rac to ry  l i n i n g  was accomplished 
by rad iant  heat ing using a multizone ex te rna l l y  wound e l e c t r i c  resistance wi re  
element fabr icated by Electro-Appl icat ions,  Inc., Washington, PA. Figure 55 
schematical ly i 11 ustrates the conf igurat ion and l oca t i on  o f  the heating element 
assembly. The element was capable o f  supplying 80 KW o f  heat, a hot  face 
temperature a t  2000°F and a 300°F/hr. heating rate.  I t  could maintain a 
t 2 0 O ~  from nominal ho t  face temperature over a 4 f oo t  zone. Kanthal A-1 re-  
sistance heat ing wi re  made up the c o i l  o f  the heater. This was no t  a stock 
heater system and was d i f f i c u l t  t o  acquire. A spare element was therefore 

,,a1 so acqui red. 

3 Figure 56 shows what a heat ing element looked 1 i k e  when assembled 
and posi t ioned i n  the unl ined she l l  a f t e r  a checkout tes t .  It was designed 
as a removable plug assembly and was inser ted and removed a f t e r  each separate 
tes t .  Each zone was 18 inches i n  diameter, had a 2 inch wal l  thickness and 
was 16-18 inches t a l l .  This design permit ted the zones t o  be stacked one on 
tap o f  the o ther  i n  a s tab le  manner. The element was covered w i t h  a h igh 
a1 umina type cement t o  p ro tec t  the metal windings from steam and carbon dioxide 
environments. The three zone heating element was posi t ioned i n  the 4 f o o t  
t e s t  sect ion on a ceramic spacer cy l i nde r  and was supported by a metal pedestal 
t h a t  set  i t s i d e  the  bottom head. The face of the re f rac to ry  l i n i n g  was 
approximately 9 inches from the  heat ing element surface. The l igh twe igh t  
i nsu la t i on  systems described above helped s t a b i l i z e  and pos i t i on  the heat ing 
assembly i n  the center o f  the 1 ined vessel. 

The leads f o r  each zone are located i n  the core o f  the element 
and are brought ou t  the top  o f  the assembly. A f t e r  placement i n t o  the l i n e d  
vessel, the s i x  leads were connected t o  f l e x i b l e  leads which crossed the upper 
i nsu la t i on  support p la tes  as shown i n  Figure 57 and ex i ted  the  vessel through 
conax f i t t i n g s  near the top o f  the center section. These leads were then 
connected t o  a 230 v o l t  3 phase transformer and drew up t o  100 amperes i n  t h e i r  
on-of f  mode o f  operation. Each zone had i t s  own thermocouple, contactor and 
Barber-Col eman c o n t r o l l e r  w i t h  a1 1 three interconnected t o  the same programmer. 
When the top head was separated and the  leads disconnected, a long rod threaded 
a t  one end cou'ld be extended down the cen t ra l  opening o f  the element and threaded 
i n t o  the metal. l i f t i n g  p l a t e  underneath the  ceramic spacer cy l inder .  This rod 
permit ted the element t o  be removed from the vessel w i t h  a crane. 

Because they were o f  i n f e r i o r  qua1 i ty , each as-recei ved assembly 
requi red a s i g n i f i c a n t  amount o f  r e p a i r  lo upgrade i t s  i n t e g r i t y .  Furthermore, 
a f t e r  the  i n i t i a l  checkout t e s t  o f  an un l ined vessel, the construct ion o f  the  
elements became suspect. This was v e r i f i e d  i n  the  f i r s t  l i n i n g  t e s t  t o  2000°F. 
The Kanthal A-1 wi re  which was he1 i c a l  l y  wound around each ceramic core, went 
through an i r r e v e r s i b l e  thermal expansion which caused the cement bond ho ld ing 
the grooved A1 203 spacers t o  f a i  1 . Thi s permi t t e d  t h ~  w i  r e  windings t o  sepcirdte 

- from the ceramic cores dr~d t a  s h i t t  en masse downward. When t h i s  happened 
the bottom winding o f  the  middle heater shorted ou t  w i t h  the wi re  on the bottom 
heater and caused a terminat ion of the  tes t .  This problem i s  shown i n  Figures 
58 and 59. This problem was corrected by improving the bonding o f  the windings 
t o  the ceramic cores, adding ceramic supports t o  the Kanthal A-1 s t r i p s  which 
were the leads from the  winding t o  the f l e x i b l e  connections and p u t t i n g  ceramic 
p la tes between each zone of the heat ing element. This improved arrangement 
i s  shown i n  Figure 60. 



FIGURE 55. Schematic o f  Heating Elements. 
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FIGURE 56. Multizone Heating Element Assembly 
Instal led in Unl ined Vessel . 
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FIGURE 57. Elec t r ica l  Lead Connections and Top of Upper Fiber 
Insulat ion Support P la te  P r i o r  t o  Placement o f  Top 
Head on the Vessel. 



FIGURE 58. Top View of Externally Wound Ceramic Core after Test 



FIGURE 59. Mu1 t izone Heating Element Assembly a f te r  TerminatSon 
o f  Test t o  2000°F. 



FIGURE 60. Improved Arrangement o f  Externally Wound 
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Resistance Wire Heating Elemeqts. 
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Test Vessel Capabi 1 i ty- 

Summarized below i s  the c a p a b i l i t y  o f  the t e s t  vessel: 

High Temp. Test Zone - 4 ft. 
Pressure - 250 ps i  Top & Bottom Heads, 375 ps i  Center Sections 
Shel l  Temp. - 650°F 
Hot Face Temp. -2000°F 
Control - Temperature, Pressure 
Versat i  1 i ty  - 2 Center Sections 
Inspect ion o f  L in ing  i n  Ver t i ca l  D i r ec t i on  
Res t ra in t  o f  L in ing  i n  Ver t i ca l  D i rec t ion  
Atmospheres - A i r ,  Steam, CO2, Others 
L i n i ng  Thickness - 12 Inches o r  Less 
Heat-up Rates - 300°F/hr and Less 



Mixing and D i s t r i bu t i on  System 

A mixing and d i s t r i b u t i o n  system was b u i l t  f o r  i n s t a l l i n g  l i n i n g s  i n  
the 5 foot diameter vessel. It was designed f o r  use w i t h  the shor t  working times 
(30 minutes) o f  the re f rac to ry  concretes and considerat ion o f  personnel safety. 
The mixing and cast ing sequence was accomplished by u t i l i z i n g  two 12 cu. ft. Mul ler  
mortar mixers posi t ioned on a 4 segment, c i r c u l a r ,  elevated t rack  surrounding the 
vessel. The mixers were modif ied w i t h  swivel 1 i n g  r a i  1 road wheels which permit ted 
them t o  r i d e  on the  t racks and be eas i l y  moved. The mixers had dual screw blades 
which qu ick ly  and e f f i c i e n t l y  mixed up t o  800 l b .  batches o f  the dense and 400 l b .  
batches o f  the l i gh twe igh t  mater ia ls.  The mixers discharged ( v i a  chutes) i n t o  the 
vessel f i t t e d  w i t h  c i r c u l a r  metal forms. Figure 61 shows a schematic o f  t h i s  mixing 
and d i s t r i b u t i o n  system, and Figure 62 i s  a photograph o f  the actual  system. 

Casting Forms 
I -  - 

. , Two sets o f  metal forms were used; one for  the outer, i nsu la t i ng  
.- - component and the other f o r  the inner, dense component. These forms were r e a d i l y  - co l laps ib le  so they could be removed from the cast  furnace wi thout  d i f f i c u l t y  and 

wi thout generating cracks and other defects i n  the cast  l i n i n g .  To achieve th is ,  
the forms were d iv ided i n t o  quadrants and f u r t he r  d iv ided i n t o  a top and bottom 
sect ion. : .' 

. - 
I - . + - - '  ' 

I '  

The metal forms were equipped w i t h  pneumatic v ib ra to rs  which were 
attached t o  brackets welded t o  the i ns ide  o f  t he  forms. The pressure vessel 
was also equipped w i t h  v ib ra to rs  t o  a s s i s t  i n  the  placement o f  the  re f rac to ry  
concrete 1 in ing.  

The v ib ra to rs  f o r  the forms were Dynapac EB-25 b a l l  v ibra tors .  
Two o f  them were used and were operated a t  80 ps i  w i t h  p l an t  compressed a i r .  
They each generated 540 lb. o f  impact force. The v i b r a t o ~ s  used f o r  the she l l  
were Dynapac EP-56 heavy duty r a i l r o a d  hopper type v ib ra to rs  and were operated 
a t  90 p s i  w i t h  d iese l  powered a i r  compressors. Two o f  them were a lso  used 
and each generated up t o  5000 l b .  o f  impact force. A p i c t u r e  o f  the  i nsu la t i ng  
component metal forms a f t e r  placement i n  the vessel i s  shown i n  Figure 63. 

Test S i t e  

The t e s t  furnace/pressure vessel was located a t  the Lynchburg 
Research Center o f  Babcuck &. W i  laox I n  a 34 f o o t  h igh by 30x34 f o o t  bay. 
This bay was a i r  condit ioned and was equipped w i t h  a 10 ton overhead crane, 
a large access door t o  the outs ide and a 480 KW power transformer. There 
were two l eve l s  t o  the  high bay. A c i r c u l a r  ho le  was c u t  through the main 
f l o o r  o f  the  bay so the  pressure vessel could be counter sunk down onto t he  
concrete basement f l o o r  below. - r (  

An 8x10 f o o t  a i r  condit ioned cont ro l  and data acqu is i t i on  room 
was added t o  the bay t o  house the furnace cont ro ls  and the data acqu i s i t i on  
equipment. Figure 64 i s  a photograph o f  the main f l o o r  o f  the  t e s t  s i t e  
and shows the  arrangement o f  the  pressure vessel and cont ro l  room. 



FIGURE 61. Mixing and Distribution System for Casting Monolithic 
Linings. 





FIGURE 63. Metal Forms w i t h  t'ibrators and Anchors. 
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FIGURE 64. View o f  Test S i te  i n  High Bay Area a t  the Lynchburg 
Research Center. 



2.6.2. L in ing  Test Mat r i x  Planned 

A ser ies  o f  n ine s i ng le  o r  dual component monol i th ic  r e f r ac to r y  
concrete 1 in ings  were t o  be run a t  two spec i f i c  heating ra tes,  w i t h  d i f fe ren t  
anchor spacings and i n  a i r  a t  one atmosphere and under pressurized steam o r  
C02 t o  100 p s i g  o r  more. Other heat ing rates, r e f r ac to r y  mater ia ls  and operat ing 
condi t ions were t o  be considered as the t e s t  program progressed. The o r i g i n a l  
design t o  be studied was a dual component monol i th ic  r e f r ac to r y  l i n i n g  l i k e  
those used i n  ammonia reformers i n  the petrochemical i ndus t ry  and l i k e  those 
being used i n  a number o f  the non-slagging coal g a s i f i e r  p i l o t  p lan ts  l i s t e d  
i n  Sect ion 1.1 o f  t h i s  repor t .  This design has been designated as the "Standard" 
l i n i n g  design and i s  schematical ly represented i n  Figure 65. The actual  l i n i n g  
con f i gu ra t i on  chosen was a twelve inch  t h i c k  l i n i n g  w i t h  7.5 inches o f  i n s u l a t i n g  
backup mate r ia l  and 4.5 inches o f  dense hot  face mater ia l .  This l i n i n g  configu- 
r a t i o n  and design was t o  be modi f ied as information was acquired on the causes 
o f  cracking and deqradation o f  the standard 1 i n i ng .  

Table 11 l i s t s  the l i n i n g  ' test mat r i x  ori .ginal ly developed. 
Summarized below are the o r i g i n a l  two heat ing schedules t o  be studied: 

Case #1 

Heat-up and ho ld  a t  200-400°F f o r  16 hrs. 

Hold a t  1 000°F f o r  3 hrs. 

Hold a t  2000°F f o r  5 hrs. 

Case #2 

Heat-up a t  50°F/hr. t o  1000°F and a t  100°F/hr. from 1000-2000°F w i t h  no 
holds u n t i l  2000°F. 

In the  event cracking had n o t  occurred a f t e r  heating under Cases 1 
and 2, f a s t e r  heat ing ra tes were t o  be t r i e d  u n t i l  cracking d i d  occur. 



STANDARD LINING DESIGN. . ' . . . . .. . 

FIGURE,  65. s t a n d a r d   ini in^ . . design. t* 



TABn-E 11. P l c n  f e r  Proposed L i n i n g  Tes t s  on 112" 1hi:k 
M o n o l i t h i c  R e f r a c t o r y  L i n i n g s  ( V e r t i c a l l y  Res t ra i ned )  

L in ing  Cor~f igura t ions Anchor Conf igurat ions.  Test No. t!eatlng Schrdulcs 
Dual. Spacing, i n .  S ing le  Ataios  heres Pressures ' , t o  ZO!IO~F 

.. . .  6 . 12 24 ' Coated Uricoated A i r  Steam C02 1 Atm. 100ps iq  1 2 3 
-.--- 

L i n i n g  Ma te r ia l  #1 

Test  1 

Test 2 

T e s t 3  , - 
. . X X Open x X X 

Test 4 
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A l l  o f  t h e  1  in ' ings tes ted  were c a s t  us ing  the m ix ing  'and d i s t r i -  
bu t i on  system descr i  bed e a r l  i e r .  The i n s t a l  l a t i o n  o f  a  complete 1  i n i n g  u s u a l l y  
took two f u l l  weeks and was done i n  two steps. The i n s u l a t i n g  component was 
i n s t a l l e d  and cured. The dense component was then i n s t a l l e d  and cured. The 
steps normal l y  fol.lowed dur ing  the i n s t a l  l a t i o n  o f  t h e  1 in in .g  a re  out1 ined below: 

1ns ta l  l a t i o n  Steps . . 

1  . S i  1  icone caul  k i n g  was app l i ed  around t h e  o u t e r  .edge of t he  '. 

base o f  t h e  cen,ter s e c t i o n . o f  t h e  pressure vessel.  Th is  was done t o  
seal t h e  space between the  s h e l l  and t h e  p l a t e  ,and t o  prevent  l e a k i n g  o f  r e -  
f r a c t o r y  concrete down i n t o  t h e  .lower head du r ing  the..pour. 

2. Ceramic paper, s i l i c o n e  grease o r  f i n e  alumina g r a i n  covered 
w i t h  p l a s t i c  were used - t o  cover the  base p l a t e  p r i o r  t o  the  pour ing o f  t h e  
1  i n i n g .  This was done' t o  c rea te  a  . p a r t i n g  agent between the  p l a t e  and , the 
l i n i n g  which was' expected t o '  s i m p l i f y  the  removal o f  t h e  l i n i n g  du r ing  the  
tear '  ou t  a c t i v i t i e s .  

. . 

3. The anchors were i n s t a l l e d  i n  t h e  vessel a t  t he  spacings 
wanted by screwing one o f  . t he  threaded ends o f  t h e  anchor i n t o  the  heavy duty  
hex nuts'  welded t o  the  i n s i d e  o f  t he  s h e l l .  Three types, o f -anchors  were used. 
One was a  "V " ,  t h e  second was a  " Y "  type anchor and t h e  t h i r d  was a  "Stee'r 
horn" type anchor. The " V "  and' "Y" were designed as shown i n  Figure 66 w i t h  
a  threaded end which terminated a t  t he  i n t e r f a c e .  An extension was at tached 
t o  t h i s  p iece ' a f t e r  t he  i n s u l a t i n g  .component was i n s t a l  led .  The " V "  anchors 
were pos i t i oned  i n  a  random a r r a y  as shown i n  Figure -63 and the '  "Y" anchors 
were o r i e n t e d  so the  ex tens ion was i n  a  v e r t i c a l  a r ray .  The Steer horn" was 
designed as shown i n  Figure 66 and was o n l y  i n s t a l l e d  i n  t h e  i n s u l a t i n g  component 
o f  t h e  l i n i n g .  I t  was e s s e n t i a l l y  a  shortened vers ion  o f  t he  " Y "  anchor. 
The hex nuts  which were n o t  used were f i l l e d  w i t h  s i l i c o n e  caul  k i n g  and covered. 
This was done' t o  assure t h a t  no r e f r a c t o r y  m a t e r i a l '  f i l l e d  o r  surrounded t h e  
nuts  and caused an unusual s t ress  concent ra t ion  i n  the  r e f r a c t o r y .  

4. The threaded ends o f  t he  anchors were covered w i t h  rubber 
caps t o  p r o t e c t  t he  threads ,dur ing the  c a s t i n g  o f  t h e  i n s u l a t i n g  component 
and t o  c reate  a  ,space.around' them which permi t ted.  t he  extensions t o  be e a s i l y  
i n s t a l l e d .  Anchor coat ings  and bonding b a r r i e r s  were i n s t a l l e d  a t  t h i s  p o i n t .  
Mask,ing tape and an aspha l t  based i n s u l a t i n g  type tape (PRESSTITE) which was 
about 80 m i l s  t h i c k  were used t o  coat  t h e  anchors. Both s i l i c o n e  grease.and 
4 m i l  t h i c k  p l a s t i c  sheet were .used as bonding b a r r i e r  ma te r ia l s .  The p l a s t i c  
s'heet was at tached t o  t h e  s h e l l  o r  l i n i n g  by adhesive tape o r  s i l i c o n e  caulk.ing. 

5 .  The metal forms were assembled and i n s t a l l e d  i n  the  vessel 
as one u n i t .  The space between t h e  bottom o f  the  form and t h e  base p l a t e  was 
f i  1  l e d .  w i t h  t h e  aspha l t  base tape t o  seal the  form. The j o i n t s  o f  t he  form 
were sealed w i t h  s i l i co .ne cau lk ing  and t h e  o u t e r  sur face o f  t he  forms was 
then sprayed w i t h  a  s i l i c o n e  mold re lease compound. These two t reatments 
prevented t h e  r e f r a c t o r y  from bonding t o  t h e  mold and from having j o i n t s  
form i n  i t  d u r i n g  cas t ing .  . 
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FIGURE 66. Design o f  ' ~ n c h o r s  Used i n  L i n i n g  Tests.  



Great care was t a k e n ' t o  a l i g n  and t r u e  the molds. Both the  
i n s u l a t i n g  and dense ,component forms were brought i n t o  round, and maintained 
i n  t h a t  conf igura t ion ,  w i t h  a' wench arrangement and"were then b o l t e d  t o  the.  
base p l a t e .  ' The forms. ,had t o  be bol'ted' t o  the"p1 a,te t o  prevent  them from 
f l o a t i n g  du r ing  "pl.acement o f ,  t he  1  ining; '  '. ,. . . 

6. The i n s u l a t i n g  component' was ' c a s t  us.ing the v i b r a t o r s  at tached 
.. t o  t h e  s h e l l  and forms;, and the  concrete penc i l  v i b r a t o r s  were submerged 

i n  t h e  ma te r ia l  du r ing  placement. The s h e l l  and fo.rm .v i .b ra tors  were i n i t i a l l y  
placed on the  bottom 'ha1 f o f  t h e  equipment .and ' ra ised t o  the  top ,ha1 f a f t e r  ' , 

about h a l f  o f  t h e  l i n i n g  was i n s t a l l e d .  A s i m i l a r  'procedure was used when 
the  dense component . . was i n s t a l l e d ;  however, t h e  s h e l l  v i 'b ra tors  were n o t  used. 

- 7. P r i o r  t o  mix ing  and .cas t ing  the  l i n i n g s ,  t he  m a t e r i a l s  - t o  be 
used and mixers were brought i n  t o  t h e  t e s t  a rea ' f rom the  unheated o r  uncooled 
storage area. Th is  was done t o  a l l o w  t h e  m a t e r i a l  and equipment t o  warm up o r  
cool .down t o  about 70 t o  7.5OF. This genera l l y  took about 2  days.. S i n c e .  
the  m a t e r i a l  temperature was found t o  have t h e  b iggest  e f f e c t  on the  m i x  
temperature, a d d i t i o n a l  t ime was used t o  warm up o r  cool  down t h e  m a t e r i a l  if 
necessary. 

8. Since t h e  i n s u l a t i n g  components were commercial products, 
(LITECAST 75-28 and KAOLITE 2300 L I )  f r e s h  cas t i ng  grade m a t e r i a l  was 
ordered two weeks t o  one month before  a  l i n i n g  was i n s t a l l e d .  The water 
l e v e l s  used i n  these cas t ings  were determined i n  t e s t  pours p r i o r  t o  the  ac tua l  
cas t ing .  .Every at tempt was made t o  use the  same water l e v e l .  as was used i n  t h e  

. . p roper t y  determinat ion a c t i v i t i e s .  Th is  was 21% f o r  t h e  LITECAST 75-28 and 
59% f o r  the  KAOLITE 2300 L I .  

Fresh c a s t i n g  grade dense component mater i  a.1 was a1 so ordered 
two weeks t o  one month before  t h e  l i n i n g  was i n s t a l l e d .  The 90+% A1203 m a t e r i a l  
was made a t ' t h e  I n s u l a t i n g  Products D i v i s i o n  (.IPD) o f  Babcock & Wilcox using 
t'he mod i f i ed 'm ix  fo rmu la t i on  l i s t e d  i n  Table 7. I t  was .designated ERDA 90 and 
was u s u a l l y  made i n  5000 l b .  batches. Mix 36C was a l s o  made a t  I P D  b u t  was a  
stock i t em and was acquired as needed. Water l e v e l s  o f  7.75% and 7.5%, res-  
p e c t i  ve ly ,  were used f o r  these mate r ia l s .  

9. Two m ixe rs  were a l t e r n a t e l y  used t o  mix and place the  r e f r a c t o r y  
ma te r ia l s .  It normal ly  took 6  t o  7  batches t o  complete ly  i n s t a l l  one o f  t he  
components. A  350 l b .  quan t f t y  o f  t h e  i n s u l a t i n g  component m a t e r i a l  was used 
f o r  each batch and a  600 l b .  q u a n t i t y  o f  t he  dense , m a t e r i a l  was used. 

10. A f t e r  t he  m a t e r i a l s  were d r y  mixed f o r  30 seconds, t h e  pre-  
sc r ibed  amount o f  water and o t h e r  a d d i t i v e s ,  such as metal f i b e r s  were added 
a l l  a t  once. The mate r ia l  was wet mixed f o r  per iods  o f  90 seconds t o  5 minutes, 

-- depending upon t h e  ma te r ia l ,  and t h e  pour temperature and ba l l - in -hand consis-  
tency (BIHC) were checked. 

I f  t h e  m a t e r i a l  had a  poor BIHCy the  batch was e i t h e r  wet 
mixed another 30 seconds t o  one minute o r  more water added ( u s u a l l y  i n  0.5% 
increments),  o r  a  combination o f  t h e  two t r i e d .  This u s u a l l y  improved the  BIHC. 



11. A t a r y e l  pour temperature o f  75^F w i t h  a ~iiinimum of 70°F 
was sought. This was done t o  make the  r e f r a c t o r y  concretes as permeable as 
p o s s i b l e  and t o  min imize t h e i r  tendency t o  e x p l o s i v e l y  s p a l l .  I n  cases 
where the  r e f r a c t o r y  concrete was n o t  warm o r  cool  enough, t he  water temperature 
was v a r i e d  t o  acqu i re  the  t a r g e t  temperature. 

12. Once the  materi ,al .  was mixed, checked and approved, i t  was 
empt ied i n  t h e  hopper a t tached to, t h e  mixer  and p laced i n  the  vessel w i t h  
a i d  of  f l e x i b l e  chutes; The i n s u l a t i n g  m a t e r i a l s  genera l l y  had a wet sand 
cons is tency  and d i d  n o t  f l o w  w e l l  through t h e  hoppers .and chutes. However, 
they  f lowed w e l l  when v i b r a t e d  and f i l l e d  t h e  vessel c a v i t y .  The dense com- 
ponent ma te r i  a1 s general 1 y f lowed b e t t e r  through' t h e .  hoppers and chutes and 
v i b r a t e d  w e l l .  Both c,omponents cou ld  be c a s t  i n  about one hour. 

13. Once t h e  l i n i n g  components were cas t ,  they  were covered w i t h  
p l a s t i c  sheet t o  keep t h e  mois ture  w i t h i n  t h e  r e f r a c t o r y  and t o  a i d  cur ing:  
Usua l l y  a f t e r  about 2 hours, metal spacers were removed from the  v e r t i c a l  
j o i n t s  i n  t h e  metal forms. This  was done t o  assure t h a t  no c rack ing  uf t h e  
l i n i n g  components occurred because of  the  d i f f e r e n t i a l  expansion between 
t h e  l i n i n g  and the  metal forms. 

14. The temperature o f  the  1 i n i n g  components was moni t o r e d ' w i  t h  
t h e  embedded TC's t o  determine whether cement hyd ra t i on  had occurred. 

15. The metal forms were u s u a l l y  removed a f t e r  48 hours o f  c u r i n g  
and the  l i n i n g  inspected f o r  de fec ts ,  vo ids  and general q u a l i t y .  I n  one o r  
two cases t h e  forms were removed a f t e r  18-24 hours. I n  t h e  case o f  t he  i nsu -  
l a t i n g  component, t h e  m a t e r i a l  around and over  the  anchors was removed so t h e  
anchor extensions c o u l d  be i n s t a l l e d .  A p i c t u r e  o f  t h i s  a c t i v i t y  i s  shown 
i n  F igure  67. Once the  extensions were i n s t a l l e d  and coated i f  necessary, 
t he  i n s u l a t i o n  component was r e p a i r e d  around the  anchor. The dense component 
forms were then i n s t a l l e d  and t h e  process repeated. 

' 16. It normal ly  took two t o  th ree  weeks t o  prepare and i n s t a l l  . '  

t he  i n s u l a t i n g  component and one week t o  prepare and i n s t a l  1 t he  dense com- 
ponent. The c i r c u l a r  p l a t f o r m  was removed f rom the  t e s t  s i t e  a f t e r  t he  l i n i n g  
was completely., i n s t a l  l e d  and., . . p r i o r  t o  t h e  f i n a l  i ns t rumen ta t i on  and pre 'parat ion 
f o r  t h e  heat-up t e s t s .  . . .  . , 

17. I n  one o r  two t e s t s ,  t h e  e f f e c t  o f  roughening the  I D  o f  
t h e  dense component on t h e  tendency of t h a t  component t o  c rack  was i n v e s t i -  
gated. A l t e r n a t e  schemes were t r i e d  t o  roughen t h e  sur face.  One invo l ved  
us ing  a ch* ipping hammer t o  remove t h e  dense, f i n e  t e x t u r e d  s k i n  on the  I D .  
The o t h e r  i n v o l v e d  us ing  cor rugated cardboard covered w i t h  an a1 umina ' g r i t  
(minus 14 mesh o r  f i n e r )  as  a l i n e r  around 'the ou ts ide  o f  t he  dense component 
metal  form. Both roughened t h e  surface; however, t h e  ch ipp ing  hammer method 
removed t h e  s k i n  and the o t h e r  method produced a cor rugated sur face t e x t u r e  
b u t  d i d  n o t  p revent  t he  s k i n  f rom forming.  



- 

* 
- FIGURE 67. Instal  l a t ion  of Anchor Extensions Prior to  Casting - 

the Dense Component. 



2.6.4 .  Instrumentation 

Throughout the experiments, the tes t  units were instrumented with 
thermocouples, strain gages and pressure transducers t o  allow the measurements 
of  h o t  face awd 1 inlng temperatures, temperature gradients through the 1 ini ng,  
s train of both 1 ining components, shell temperatures and stresses, anchor 
stresses, and pressures generated from within the 1 ining materials. As an 
aid in studying the degradation of mono1 i thic refractory 1 inings under thermal 
and mechanical loading during heat-up and cool-down tes ts ,  the following infor- 
mation was obtained via the various measurement and observation techniques: 

Lining strain 
Temperature profile and distribution in the 1 ining 
Refractory pore pressure 
Acoustic emiqqions from the lining 
Vldeo taped observations of the hot face 
Anchor stresses 
Vessel temperature profi 1 es . . 
Vessel stresses 
Vessel pressure 

Of primary significance were the techniques enabl ing meaS~rement of 
s t ra in ,  acoustic emission, and temperature within the refractory 1 ining. In con- 
junction with conventional instrumentation, new techniques were developed, tested, 
and evaluated prior to  the testing of the various lining designs. Where appro- 
priate, these techniques are described and the results of development tes ts  are 
presented in the fo1.l owi ng sections. 

4 .  

Lining Instrumentation 

Strain 

A technique was developed whereby strain within refractory mat- 
e r i a l s  can be measured using commercially available high-temperature strain gages. 
These instruments are referred t o  as Ailtech electric resistance weldable type 
s t ra in  gages (Eaton Corporation, Electronic Instrumentation Division). The gages 
are hermetically sealed and are rated for use t o  1200°F; thus, they are suitable 
for use in a refractory embedment mode. The selection of this  type gage as a can- 
didate for the lining tes t s  was based on the lining t e s t  conditions, a review of 
internal and external references on the performance and problems associated with 
high temperature strain gages, and on B&W1 s extensive experience in high temperature 
s t ra in  measurement. 

The evaluation of the Ail tech gage for th is  application was based 
on i t s  thermal output performance and i t s  strain transfer characteristics in an em- 
bedment mode. In considering the embedment application of th is  gage i t  was specu- 
lated t h a t  normal data reduction procedures may require revision since the gages 
cannot be spot welded, which i s  the mounting mechanism for which the gages are 
calibrated. Such modifications would t h u s  be related to  the fact that the transfer 
of s t ra in  from the refractory t o  the gage i s  dependent upon the bond t h a t  exists 
between the two after  embedment. This point was t h o u g h t  to be particularly important 
with regard to  the more porous castables, such as the insulating type refractories. 



To study t h i s  area o f  concern, c lea ts  were attached t o  the mounting ( s t r a i n  
t ransfer )  shims o f  several of the evaluat ion t e s t  gages. These c lea ts  were 
t o  serve as a means o f  enhancing the bond and s t r a i n  t rans fe r .  Results from 
the evaluat ion t e s t s  o f  the c leated and as-manufactured qages were t o  i d e n t i f y  
the necessary data reduct ion modifications, i f  any, o r  lead t o  optimal techniques 
of modifying and embedding the s t r a i n  gages. A v isua l  comparison between a 
c leated and an as-manufactured A i l  tech r e s i s t i v e  s t r a i n  gage i s  provided i n  
Figure 68. The c l ea t s  are attached t o  the bottom side o f  the gage's mounting 
shim by spot welding. The proposed l i n i n g  s t r a i n  measurement technique was 
thus developed and evaluated through i n - a i r  t e s t i n g  o f  these gages and through 
tes t s  of r e f rac to ry  b r i c k  specimens i n  which these gages were embedded. 

The i n - a i r  t e s t  phase o f  t h i s  development e f f o r t  was performed 
t o  character ize t he  output o f  the A i l t ech  gage i n  an unbonded s ta te  as a 
function o f  temperature and time. Data obtained from one o f  the e igh t  gages 
so tested are p lo t t ed  i n  Figures 69 and 70, respect ively,  and are t y p i c a l  of 
the r e s u l t s  obtained from a l l  the gages tested. I n  acqui r ing thermal output  
as a func t ion  o f  temperature, the e igh t  gages were suspended i n  a i r  and subjected 
t o  four  thermal cycles between room temperature and 1200°F. Gage temperatures 
were obtained from thermocouples which were spot welded t o  each gage. The 
data o f  Figure 69 corresponds t o  the f ou r th  thermal cyc le  f o r  one o f  the  gages. 
From t h i s  p l o t  and the data from the previous three cycles, i t  was found t h a t  
the s t r a i n  gage output i s  1 inear  and repeatable w i t h  temperature, thus i nd i ca t i ng  
t h a t  the thermal response charac te r i s t i cs  o f  t he  A i  1 tech gages are predictable.  
These r e s u l t s  a1 so show t h a t  the s h i f t  o f  the s t r a i n  temperature curves, which ' . 

i s  a normal r e s u l t  o f  thermal cycl ing,  i s  to lerab le .  This phenomenon i s  
depicted i n  Figure 69 where a zero s h i f t  o f  on ly  24 micro-inches per inch  
was observed a t  72OF a t  the end o f  the  f o u r t h  thermal cycle.  Data obtained 
from these gages as a func t ion  o f  t ime show t h a t  the  s t r a i n  output remains 
essen t i a l l y  constant f o r  a reasonable per iod o f  t ime whi le  operat ing a t  a 
temperature comparable t o  t h a t  expected t o  e x i s t  dur ing the l i n i n g  tests .  
This r e s u l t  i s  exempl i f ied i n  Figure 70, where the values p l o t t e d  were der ived 
from the  same gage as t h a t  corresponding t o  Figure 69. Thus, the d r i f t  i n  
s t r a i n  output associated w i t h  the A i l t e c h  gage was found t o  be i n s i g n i f i c a n t  
over a shor t  term, i nd i ca t i ng  t h a t  s t r a i n  d r i f t  would no t  be o f  concern 
throughout the  durat ion o f  a re f rac to ry  1 i n i n g  heat-up t e s t .  I n  summary, 
the i n - a i r  t e s t  data was favorable and suggested that ,  based on i t s  thermal 
performance, the  proposed gage would be adequate f o r  t he  l i n i n g  t e s t s  up t o  
1200°F. 7 ' 

1 4  " 

/ L  '. p -  

The second phase o f  the s t r a i n  kasurement development e f f o r t  
consisted of t e s t i n g  the  s t r a i n  gage i n  an embedment (bonded) mode. The same 
cleated and as-manufactured gages t h a t  were tes ted i n - a i r  were cast  w i t h i n  
e i gh t  re f rac to ry  b r i c k  specimens which, i n  turn,  were subjected t o  separate 
thermal and mechanical loading. The r e s u l t i n g  s t r a i n  gage outputs were com- 
pared w i t h  reference s t r a i n  values de r i  ved simul taneously from d i  splacement 
transducers. Performance o f  the A i  1 tech gage was invest igated i n  two types 
o f  r e f rac to ry  mater ia ls.  The f i r s t  was a dense 90+% A1203 generic re f rac to ry ,  
the second was an i n s u l a t i n g  type; namely, LITECAST 75-28. The e i g h t  r e f rac to ry  
b r i c k  t e s t  specimens were two inches square by s i x  inches long. While cast ing 
them, an A i l t ech  gage was posi t ioned a t  the center o f  each b r i ck  and was or iented 
t o  sense s t r a i n  i n  the length d i rec t ion .  

The thermal load po r t i on  o f  the bonded s t r a i n  gage t e s t i n g  was 
performed f i r s t ,  f o l  1 owed by room temperature mechanical 1 oad tests .  Thermal 



FIGURE 6%. As-Manufactured and Cl eated' Embedment Strafn Gage. 
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FIGURE 69. In-Air  Test Data f o r  Stra in  Gage No.4038 - Experiment 
1, Temperature Cycle No. 4. 
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loading consisted o f  heating the strain-gaged b r i ck  specimens t o  1200°F a t  
about 200°F/hr, then cool ing t o  room temperature, whi le  a l lowing the b r i cks  

i kk t o  expand and cont ract  i n  an unconstrained manner. During t h i s  thermal cycle, 
m 

.A the expansion, shrinkage, and contract ion of each b r i ck  was measured using a 
d i  splacement transducer posi t ioned over each as ill ustra ted i n  Figure 71 . 
Figure 72 shows the  physical arrangement o f  the  dense b r i ck  specimens i n  the 
oven p r i o r  t o  tes t ing.  S t ra in  gages were embedded w i t h i n  on ly  four  br icks.  
The other two b r i cks  were included i n  the t e s t  t o  detect  any d i f ferences 
i n  the thermal expansion charac te r i s t i cs  o f  the re f rac to ry  due t o  the presence 
o f  the s t r a i n  gages. Figure 72 a lso  shows external  thermocouples cemented 
t o  the  faces o f  selected b r i cks  t o  assure minimal temperature gradients dur ing 
test ing.  Also shown are alumina rods used t o  t r ans fe r  the  growth and cont ract ion 
o f  the b r i cks  t o  the displacement transducers located above the t e s t  oven. 
A computer-based data acqu is i t i on  system, shown i n  Figure 73, was used t o  
record a1 1 the temperature, d i  spl acement , and s tLa i  n  gage data generated dur ing 
the thermal load tests .  Reference s t r a i n  values were computed from the b r i ck  
displacements, and then compared w i t h  the  s t r a i n  gage measurements. A d i s -  
cussion o f  the thermal load t e s t  r esu l t s  obtained f o r  both the  dense and 
i nsu la t i ng  re f rac to ry  b r i cks  fo l lows. 

Figure 74 through 77 are representat ive t e s t  r esu l t s  f o r  the  
c leated and as-manufactured A i l t ech  s t r a i n  gages embedded i n  both the dense 
and i nsu la t i ng  re f rac to ry  br icks.  The s t r a i n  gage resu l t s  shown were reduced 
from the s t r a i n  gage data using t he  standard procedures spec i f ied  by the  vendor 

- for  a  welded appl icat ion.  This approach was chosen t o  i d e n t i f y  what revis ions,  
i f  any, would be requi red t o  obta in  accurate s t r a i n  measurements i n  an embed- 
ment appl icat ion.  Based on the comparative p lo ts ,  i t  i s  evident t h a t  the  
c l ea t s  hinder the t rans fe r  o f  s t r a i n  from the r e f r a c t o r y  t o  the gage i n  the 
dense mater ia ls  (Figures 74 and 75), but  they enhance s t r a i n  t rans fe r  i n  the 
i nsu la t i ng  re f rac to ry  (Figures 76 and 77'). Even though the s t r a i n  gage pre- 
d i c t i ons  i n  Figures 75 and 76 do n o t  completely match t he  reference s t r a i n  
curves derived from the d i r e c t  cur rent  displacement transducers (DCDT' s) , 
i t  was f e l t  t h a t  the thermal load t e s t  r e s u l t s  were favorable, considering 
t h i s  as an i n i t i a l  approach i n  re f rac to ry  s t r a i n  measurements. r 

A f t e r  completing the  thermal load ing tes ts ,  t he  dense and 
i nsu la t i ng  strain-gaged b r i c k  specimens were subjected t o  room temperature 
mechanical tes ts .  These t es t s  were performed by p lac ing each specimen i n t o  
an l ns t ron  t e s t i n g  machine, applying a ser ies  of  compressive loads, and 
monitor ing the r e s u l t i n g  s t r d i  n  gage 'outputs and ove ra l l  b r i ck  displacements 
using a displacement transducer. This t e s t i n g  arrangement i s  shown i n  Figure 
78. As w i t h  t he  thermal load  tests,  t h e  s t r a i n  gage r e s u l t s  were compared w i t h  
the reference s t r a i n  data derived from the  b r i c k  displacements. These t e s t  
r esu l t s  are p l o t t e d  i n  Figures 79 through 82 and correspond t o  the same br i cks  
previously subjected t o  the  thermal load t es t .  Conclusions based on these 
p l o t s  were general ly  the same as those der ived f r o m  t he  thermal load  tes t ing .  
Comparing Figure 79 w i t h  80 and Figure 81 w i t h  82 ,again reveals t h a t  i t  i s  
not  advantageous t o  a t tach c l ea t s  t o  A i l t ech  gages embedded w i t h i n  the dense 
re f rac to ry ,  bu t  t h a t  c lea ts  are favorable t o  use i n  the  i nsu la t i ng  mater ia ls .  
As w i t h  the thermal load tests,  the s t r a i n  gage data from the mechanical load  
t es t s  were reduced using the standard procedures f o r  these gages i n  a  weldable 
appl i ca t  i on. 

. . 

f After the bonded s t r a i n  gage t e s t s  were completed, each b r i ck  . 
specimen w i t h  an embedded A i l t ech  s t r a i n  gage was c u t  i n t o  several sections t o  
v isual  l y  examine the  re f rac to ry - to -s t ra in  gage bond. I n  addi t ion,  the exposed 



FIGURE 71. Schematic o f  Thermal Load Test. 
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cross-sections were t o  reveal  whether the presence o f  the s t r a i n  gages causes 
crack ing w i t h  i n  the r e f r a c t o r y  mater ia l .  Typical examples of the s l i c e d  b r i c k  
cross-sections are provided i n  Figures 83 and 84 f o r  the dense and i nsu la t i ng  
mate r ia l s ,  respect ive ly .  I n  a l l  cases, the  bond between the re f rac tory  and gage 
was good. It was apparent t h a t  the gages d i d  no t  cause cracking w i t h i n  the br icks  
and t h a t  the gages would no t  be l i k e l y  t o  be sources o f  cracking w i t h i n  the re f rac to ry  
1 in ings.  

Results from the  s t r a i n  gage development work demonstrated t ha t  
acceptable t e n s i l e  and compressive s t r a i n  measurements can be obtained a t  the i n -  
t e r i o r  po in ts  o f  r e f r a c t o r y  l i n i n g s  up t o  1200°F using the A i l t ech  r e s i s t i v e  gage. 
However, inaccuracies e x i s t  w i t h  t h i s  measurement technique as exh ib i ted by these 
i n i t i a l  development t e s t  r esu l t s .  The differences noted between the s t r a i n  gage 
r e s u l t s  and the reference s t r a i n  values were thought t o  be re la ted  t o  a s t r a i n  
gage data reduct ion parameter r e fe r red  t o  as the gage fac to r .  This f ac to r  r e l a tes  
measured s t r a i n  ( s t r a i n  gage output )  w i t h  the t r u e  or actual  s t r a i n ,  and i s  an 
important  f a c t o r  i n  s t r a i n  gage data reduction. The gage fac to rs  used t o  reduce 
the thermal and mechanical load t e s t  data were spec i f i ed  f o r  each gage by t he  gage 
manufacturer. These values, however, apply t o  normal i n s t a l l a t i o n s  where the  gages 
are spot-welded t o  a surface where s t r a i n  measurements are desired. Thus i n  order 
t o  improve the accuracy o f  the  proposed re f r ac to r y  s t r a i n  measurement technique, i t  
was necessary t o  determine t he  gage f ac to r  f o r  the A i l t ech  gage i n  t h i s  unique 
embedment appl i c a t i  on. 

Determining the appropr iate gage f a c t o r  f o r  the embedment app l i -  
ca t i on  o f  these gages requ i red t h a t  add i t i ona l  r e f r a c t o r y  b r i c k  specimens be 
tested.  S ix  dense (90% AlzO3) and s i x  i nsu la t i ng  (LITECAST 75-28) type r e f r a c t o r y  
b r i c k  specimens, each having an embedded s t r a i n  gage, were tested.  Testing consisted 
o f  apply ing a x i a l l y  compressive 1 oads t o  t he  b r i c k  specimens a t  various temperatures 
through two thermal cycles t o  1200°F. By combining thermal and mechanical loads, 
the gage fac to r  could be determined as a func t ion  o f  t e m p e r a t ~ i r ~  fo r  the gages 
e~nbedded i n  both types o f  re f rac to ry .  These specimens were tes ted i n  the  Pereny 
furnace (Figure 7) r a the r  than t h e  f a c i l i t i e s  shown i n  Figures 72 o r  78 s ince the 
Pereny was capable o f  prov id ing combined thermal and mechanical loading. As w i t h  
t he  i n i t i a l  development tes ts ,  the  reference s t r a i ns  t o  which the s t r a i n  gage 
resu l  t s  were compared were computed from the  ove ra l l  b r i c k  displacements which were 
measured using a displacement transducer. Results from one o f  the dense b r i c ks  
i s  p l o t t e d  i n  Figure 85 as measured s t r a i n  (from embedded s t r a i n  gage) versus t r u e  
(from b r i c k  displacement). These resu l t s  are  t y p i c a l  o f  the s i x  dense b r i cks  
tested.  Shown are the  curves der ived from compression load ing a t  room temperature, 
300°F, and 580°F, dur ing the f i r s t  thermal cycle. For c l a r i t y ,  the remaining fami l y  
of curves from the continued heat-up t o  1200°F and cool-down t o  room temperature 
( i n  300°F increments) are  n o t  shown. The fami l y  o f  curves associated w i t h  the 
second thermal cyc le  t e s t i n g  are  l i kew ise  no t  presented i n  Figure 85. However, 
gage fac tor  values were computed from each o f  the measured s t r a i n  versus t r u e  
s t r a i n  curves generated dur ing both thermal cycles o f  t h i s  b r i c k ,  and these a re  
shown g raph i ca l l y  i n  Figure 86. The gage factors (GF) were der ived from each of the 
curves t h a t  would appear i n  Figure 85 using the standard re l a t i on :  

E 

GF = ( )  GFS 
t 
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FIGURE 85. Measured Vs. True S t ra in  o f  Dense Specimen 
(2"x2"x6") Under Axial Compressive Loading. 
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where GFS = gage f a c t o r  s e t t i n g  o f  the s t r a i n  measurement instrument, 
E = measured s t r a i n  m 

E = t rue  s t r a i n  
f; 

E 

and ($) = slope o f  curve i n  Figure 85 a t  any temperature. 

F igure 86 thus shows t he  va r i a t i on  o f  gage f ac to r  w i t h  temperature 
dur ing the i n i t i a l  heat-up and cool -down and a1 so i l l u s t r a t e s  the dif ference i n  
gage fac tor  between the  i n i t i a l  and second thermal cycles. A s i g n i f i c a n t  r e s u l t  
of Figure 86 i s  t h a t  the cool-down po r t i on  o f  the  gage f ac to r  curve dur ing the f i r s t  
thermal cyc le  does n o t  f o l l o w  the heat-up por t ion.  I n  cont rast  t o  t h i s  f i r s t  cyc le  
curve i s  the gage fac to r  data suppl ied by the manufacturer f o r  a weldable app l i ca t ion  
of t h i s  gage, regardless o f  the number o f  thermal cycles. For a weldable app l i ca t ion  
t h e  gage fac to r  decreases gradual ly  w i t h  increasing temperature and retraces the 
same curve on cool-down t o  room temperature, much l i k e  the second thermal cyc le  
Curve shown i n  Figure 86. As prev ious ly  noted, the  manufacturer's gage f a c t o r  curve has 
used t o  reduce the s t r a i n  gage data f o r  the thermal load t es t s  o f  the b r i c k  specimens 
performed i n i t i a l l y .  Thus, the inaccuracies noted i n  the previous thermal load 
t e s t s  (Figures 74 through 77), p a r t i c u l a r l y  the divergence between the s t r a i n  gage 
and reference s t r a i n  curves dur ing cool-down from120(J°F,were bel ieved t o  e x i s t  
because o f  the s i g n i f i c a n t  d i f fe rence  between the vendor-supplied gage f a c t o r  
curve and the der ived f i r s t  cyc le  curve shown i n  Figure 86. The curves p l o t t e d  
i n  Figure 86 a l so  suggest the need f o r  two separate data reduct ion procedures. 
One reduct ion procedure-would t r e a t  heat-up and cool-down data separately on an 
i n i t i a l  thermal cycle, and the second would be appl ied t o  heat-up and cool -down 
o f  subsequent thermal cycles. Formulating these s t r a i n  gage data reduct ion 
procedures f o r  both the  dense and i n s u l a t i n g  r e f r a c t o r y  mater ia ls  was hindered 
due t o  t ime cons t ra in ts  associated w i t h  the p a r a l l e l  e f f o r t  o f  instrumenting, 
cast ing,  and t e s t i n g  the r e f r a c t o r y  l i n i ngs .  I n  additTony the r e l i a b i l i t y  o f  the 
gage f ac to r  curves der ived from the i nsu la t i ng  re f r ac to r y  specimens was question- 
ab le  because l i m i t e d  data were acquired. Three o f  the s i x  b r i c k s  t ~ s t . 4  f a i l e d  
prematurely under compressive 1 oads dur ing the i n i t i a l  stages o f  the t e s t i n g  
procedure. The low q u a l i t y  of the t e s t  specimens was thought t o  be a t t r i b u t e d  
t o  e i t h e r  o l d  mix mate r ia l  o r  an e r r o r  i n  the mix ing and cast ing process. Con- 
sequently, formula t ion o f  modi f ied data reduct ion procedures on the i n s u l a t i n g  
type mate r ia l  was no t  completed because o f  t ime cons t ra in ts  and l i m i t e d  data. 

An acceptable technique f o r  measuring s t r a i n  w i t h i n  re f rac to ry  
l i n i n g s  dur ing heat-up to1200°Fwas developed and appl ied t o  the e i g h t  l i n f n g s  
tes ted  dur ing t h i s  cont ract .  From the i n i t i a l  s t r a i n  gage development tes t ing ,  
the  gage fac to r  v a r i a t i o n  w i t h  temperature associated w i t h  the  embedment app l i -  
c a t i o n  of the  proposed s t r a i n  gage was i d e n t i f i e d  as a poss ib le  source o f  e r r o r  
i n  the  data reduct ion procedure. Formulation o f  more accurate procedures 
through add i t i ona l  t e s t i n g  of strain-gaged re f r ac to r y  b r i cks  was used bu t  
n o t  completed. Unique. gage f a c t o r  versus temperature curves were der ived 
from these t e s t s  and i t  i s  recommended t h a t  the above development work be continued 
t o  es tab l i sh  and v e r i f y  a more accurate s t r a i n  gage data reduct ion procedure 
u t i l i z i n g  these unique gage f a c t o r  curves. 

A method o f  measuring s t r a i n  on the ins ide  diameter surface 
(ho t  face)  o f  t he  t e s t  l i n i n g s  was a lso inves t iga ted  dur ing t h i s  development 
e f f o r t .  One type o f  s t r a i n  gage considered su i tab le  f o r  t h i s  app l i ca t ion  was 
a capacitance gage developed by the  Boeing Company. L i ke  the A i l t ech  resistance 
gage, the  Boeing gage was a lso  designed t o  be attached t o  a specimen by spot welding. 
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This gage i s  not  sealed but  i s  ra ted  f o r  operat ion t o  1500°F. Evaluation tes ts  
performed on t h i s  gage were s i m i l a r  t o  those f o r  the A i l t ech  embedment gage i n  
t h a t  thermal and mechanical loads were anpl ied t o  a r e f r ac to r y  b r i c k  specimen 
t o  which a Boeing gage was at tached. Based on the cost  of t h i s  capacitance gaze, 
i t s  eva luat ion was l i m i t e d  t o  t e s t i n g  o f  on ly  one gage. The gage was attached 
t o  one s ide  o f  a dense b r i c k  specimen by spot welding t o  Inconel mounting pads 
which were embedded i n t o  the surface o f  the b r i c k  dur ing cast ing.  The dense 
b r i c k  was o f  the same type re f rac to ry  as t h a t  planned f o r  the dense components 
(ho t  face) of the t e s t  l i n i ngs .  A close-up view o f  the i n s t a l l e d  gage w i t h  the 
leadwires attached i s  shown i n  Figure 82. 

Results o f  the  separate thermal and mechanical load t es t i ng  
of the  Boeing gage are presented i n  Figure 88. These r e s u l t s  are p l o t t e d  
i n  the  same format as the i n i t i a l  A i l t ech  embedment s t r a i n  gage resu l t s  
presented e a r l i e r  s ince both gage typec were tes ted simultaneously. Results 
from the  Boeing capacitance gage were not  as favorable as those der ived from 
the A i l  tech resistance gages. Under compressive mechanical loading a t  room 
temperature, the s t r a i n  gage output  i s  i n  gand agreement w i t h  the rc fcrcnce 
s t r a i  ns der ived from the displacement transducer (Figure 86 ) . However, t h i s  
gage d i d  no t  adequately measure s t r a i n  o f  the b r i c k  specimen under thermal 
1 oadi ng beyond 350°F(Fi gure 88 ) . The dev ia t ion  between the s t r a i n  gage 
p red i c t i on  and the reference s t r a i n  was thought t o  be caused by several fac tors .  
One p o s s i b i l i t y  was t h a t  the b r i c k  "cur led" dur ing heat-up thereby inducing a 
bending s t r a i n  a t  the  strain-gaged surface o f  the b r i c k  which would no t  be 
completely sensed i n  the a x i a l  d i r e c t i o n  by the displacement transducer. Another 
poss ib le  explanat ion o f  the s t r a i n  gage response i s  t h a t  a transverse s t r a i n  
grad ient  may have ex is ted  w i t h i n  the  Br i ck  causing the s t r a i n  gage attachment 
pads t o  r o t a t e  w i t h  respect t o  the  strain-gaged surface. This occurrence would 
a l so  induce an erroneous bending s t r a i n  sensed by the gage. The data reduct ion 
equation associated w i t h  t h i s  gage was a lso examined, p a r t i c u l a r l y  w i t h ~ r e g a r d  t o  
a term which i s  r e l a t e d  t o  the  thermal expansion o f  the s t r a i n  gage compensating 
rod. An independent d i la tometer  t e s t  was performed on, a sample o f  t h i s  rod 
mate r ia l  t o  v e r i f y  the  thermal expansion data suppl ied by the gage manirfacturer. 
However, s u b s t i t u t i o n  o f  these new data i n t o  t he  gage data reduct ion equation d i d  not  
s i g n i f i c a n t l y  improve the v a r i a t i o n  between the s t r a i n  gage pred ic t ions and the  
reference s t r a i ns .  

Because o f  the cost, the proposed use o f  the Boeing capacitance 
s t r a i n  gage was t o  i n s t a l  1 several gages on the hot  face o f  the i n i t i a l  t e s t  
l i n i n g ,  then reuse these gages on the hot  face o f  the subsequent l i n i n g s .  This 
p lan assumed t h a t  recondi t ion ing o f  these gages would be necessa'ry a f t e r  each 
t e s t .  I n  d iscussing the f e a s i b i l i t y  o f  t h i s  p lan w i t h  the s t r a i n  gage manufacturer, 
i t  was t h e i r  opin ion t h a t  because o f  the  f r a g i l e  nature o f  the qaqe, and the 2000°F 
tcmperature t o  whicti i 1 would be exposed, the gages could poss ib ly  be reused two 
o r  th ree  times a t  most. Our observation o f  the gage a f t e r  completing the thermal 
load  phase o f  t he  bonded s t r a i n  gage t e s t i n g  confirmed t h i s  opinion. Attempts 
t o  remove the gage were d i f f i c u l t  because o f  the oxidat ion,  and hence, were no t  
successful.  It was concluded t h a t  s i gn i f i can t  reworking o f  the gages would be 
requ i  r ed  by the  manufacturer i f  they were compl e t e l y  removed and considered fo r  
reuse. A1 te rna te  methods o f  gage attachment were no t  studied under the o r i g i n a l l y  
planned eva luat ion work p r i m a r i l y  because the  spot welding approach i s  the  so le  
reconmended procedure se t  f o r t h  by the manufacturer. Because o f  these problems 
and the unfavorable eva luat ion t e s t  r esu l t s ,  use o f  the Boeing gage t o  measure ho t  
face s t r a i n  dur ing the  l i n i n g  t e s t s  was no t  considered f u r t he r .  
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FIGURE 88. Bonded S t ra i n  Gage Test Results f o r  
Boeing Capactive Gage. 



B a t t e l l  e Col umbus Laboratories Subcontract 

One o f  the f ind ings t h a t  arose whi le  reviewing external  references 
on high temperature s t r a i n  gages f o r  the 1 i n i n g  tes ts  was the work t h a t  Ba t te l  l e -  
Columbus Laboratories (BCL) had performed f o r  the National Aeronautics and Space 
Admi ns t ra t i on  (NASA) i n  developing a f r e e - f i  lament gage f o r  use t o  2000°F. Personnel 
a t  B a t t e l l e  involved w i th  the  development and character izat ion o f  t h i s  gage system 
were contacted t o  discuss the feas i  b i l  i t y  o f  modifying t h i s  gage t o  make i t  s u i t -  
able f o r  use i n  the re f rac to ry  l i n ings .  The f a c t  t h a t  the BCL gage i s  a free- 
f i lament type p roh ib i ted  i t s  d i r e c t  use i n  the re f rac to ry  appl icat ion.  I t  was 
learned from these discussions t h a t  the  BCL gage was not commercially ava i lab le  
but  t h a t  B a t t e l l e  would attempt t o  develop a 2000°F gage f o r  a re f rac to ry  embed- 
ment app l i ca t ion  on a subcontract basis. A subcontract w i t h  B a t t e l l e  was pursued 
w i t h  t he  i n t e n t  t h a t  these gages would be embedded i n  the hot  face region of the t e s t  
1 i nings where temperature would exceed 1200°F, the operat inq 1 i m i  t o f  the commercial 
A i  1 tech gages. 

- - - 
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The approach suggested by B a t t e l l e  involved modifying commercial 
1200°F A i l  tech s t r a i n  gages t o  incorporate the special  Fe-Cr-A1 a1 1 oy w i re  t h a t  was 
developed for  the BCL 2000°F gage. Spec i f i ca l l y ,  t h i s  en ta i l ed  subs t i t u t i ng  the 
special BCL a l l o y  w i re  as the s t r a i n  sensing f i lament  i n  place o f  the platinum- 
tungsten a1 l o y  which A i  1 tech uses t o  fabr icate  t h e i r  standard gages. Thus, the modi - 
f ied  gage would be s i m i l a r  i n  appearance t o  the  A i l  tech gage (Figure 68), and the a l l o y  
subs t i t u t i on  would extend the  operat ing temperature o f  the standard A i l  tech gage 
t o  2000°F. 

Fourteen modif ied s t r a i n  gages were t o  be fabr i ca ted  by A i l t e c h  
under B a t t e l l e ' s  supervision. Four o f  these were t o  undergo character izat ion and 
evaluat ion tes ts  a t  B a t t e l l e  and the remaining ten would be de l ivered t o  B&W f o r  
use i n  the  l i n i n g  tests.  It was rea l i zed  t h a t  t h i s  developaient a c t i v i t y  represented 
a fi rst -o f  -a-kind e f f o r t  and, as such, d i f f i c u l t i e s  were encountered dur ing the 
gage fabr icat ion process. Out o f  about 40 f ab r i ca t i on  t r i a l s ,  on ly  f ou r  were t o t a l l y  
successful . The f a i  1 ed gages were described as having poor i nsu la t i on  resistance, 
shorted o r  open f i laments, o r  abnormal gage resistance. It was suspected t h a t  these 
f a i l u r e  modes were re l a ted  t o  a special  heat-treatment requi red of the  BCL a l l o y  
dur ing the gage fab r i ca t i on  process. Since on ly  four  ra ther  than fourteen operat ive 
gages were avai lable,  B&W and Bat te l  l e  mutual ly agreed t h a t  character izat ion 
t e s t s  o f  the  modi f ied gages planned t o  be performed a t  B a t t e l l e  should be el iminated 
from the subcontract workscope. Thus, B&W received these four  g&@s along with 
s w r a l  af tke Fat l e d  gages. Battcl l e  P'ssu@d a repo r t  summarfzhg t h e i r  f$ukonfract 
a c t i v i t i e s ,  elbbratQng m the gaw fabrQcatfm.difficulties. L- 

--* .- - -- ,- - - 1  
L--- - _ - - \ The f o u r  modi f ied gGeS ikrts -not 
included i n  any o f  t)"r<-'iiKng3i%=l'nc933% was not  avai 1 ab le  t o  character1 ze 
these gages prQor t a  t n s t z x l l a t i ~ n  wCthOn the test l i n i n g s  as was done w i t h  the 1200°F 
A i  1 tech gages. 

L i n i ng  S t ra i n  Embedment Technique 

A technique was developed f o r  embedding the A i l t e c h  s t r a i n  gage w i t h -  
i n  t h e  i nsu la t i ng  and dense components o f  the t e s t  l i n i n g s .  Before pouring the insu- 
l a t i n g  component o f  each l i n i n g ,  the  c leated s t r a i n  gages were placed a t  t h e i r  pre- 
scr ibed 1ocati.ons i n  the annular region formed by the vessel she l l  and the i nsu la to r  
cast ing form. They were or iented t o  sense s t r a i n  i n  e i t h e r  the hoop, ax ia l ,  o r  r ad ia l  
d i r e c t i o n  of t he  l i n i n g .  The gages were r i g i d l y  f ixed i n t o  proper o r i en ta t i on  B by at tach ing t h e i r  leadwiies t o  guy wires whdch were stretched d iagonal ly  be- 
tween adjacent anchors fastened t o  the  she l l  i n  the v i c i n i t y  o f  the gaged areas. 
Figure 89 shows the arrangement used t o  i n s t a l l  the s t r a i n  gages and the guy * .  



P I W I E  @9. Strain Gage Installation Technique for Insulating 
C q o n t n t .  



wires. The lead wires were routed through penetrat ions i n  the vessel she l l  t o  the 
outside o f  the vessel where they were connected t o  the data acqu is i t i on  equipment 
cables. Sp l i t -g land Conax f i t t i n g s  threaded i n t o  these penetrat ions (Figure 90 ) 
served t o  seal the l i n i n g  and t e s t  environment w i t h i n  the vessel. Af ter  completing 
t he  1 eadwire rou t ing  and attachment a c t i v i t y ,  the i nsu la t i ng  castable was poured, 
thereby embedding the s t r a i n  gages. Whi 1 e casting, the gages were protected from 
d i r e c t  impact o f  the re f ractory ,  and were a lso hand-held t o  provide fur ther  support 
and assure o r i en ta t i on  as the castables assumed t h e i r  l eve l .  A s i m i l a r  procedure 
was followed t o  embed the uncleated s t r a i n  gages i n  the dense component of each of 
the l i n i n g s  a f t e r  the insu la t ing  component had cured. Guy wires were again used t o  
secure the s t r a i n  gages. I n  t h i s  case, t he  guy wires were attached t o  anchor 
extensions which were threaded onto the anchor bases previously i n s t a l l e d  i n  the 
i nsu la t i ng  component. This arrangement i s  shown i n  Figure 91 . 

Temperature 

Because s t r a i n  gage temperature re l a tes  t o  a necessary s t r a i n  
data reduct ion parameter, a thermocouple was attached t o  each of the embedded gages. 
I n  addi t ion,  the thermocouples provided useful  data w i t h  regard t o  temperature pro- 
f i l e s  and h i s t o r i e s  through the  l i n i n g  and a t  hot  face posi t ions.  Type K thermocouples 
were used i n  both the l i n i n g  and a t  the ho t  face pos i t ion;  however, those i n  the 
l i n i n g  were sheathed i n  304 s ta in less s tee l  and those a t  the hot  face were sheathed 
i n  Inconel. Hot face pos i t i on  thermocouples were placed by welding them t o  embedded 
metal tabs (posi t ioned during l i n e r  pouring) a t  the  hot  face surface. The s ignals  
from the thermocouples were fed d i r e c t l y  t o  the data acquis i ton system and converted 
t o  temperature values. 

With the exception o f  one t e s t  run wi thout s t r a i n  gages, the  
thermocouples were used i n  conjunct ion w i t h  the s t r a i n  gages. Their  loca t ion  
dur ing a spec i f ic  tes t (L in ing  #3) i s  ind icated 'In Table 12. Table 13 ind icates the 
loca t ion  o f  themlocouples i n  the t e s t  run wi thout s t r a i n  gages. 

- -- . . . . . . . _ - . . . 
Refractory Pore Pressure 

Measurements o f  pore pressure w i t h i n  the re f rac to ry  l i n i n g  were 
obtained so t h a t  comparisons could be made w i t h  analyses obtained w i t h  REFSAM and 
re1 ated t o  explosive spa1 1 i ng . Both the t e s t  and i t s  experimental developments 
are described i n  Section 2.4.3. 

The o r i en ta t i on  and l oca t i on  of pressure tubes, gages, and trans- 
ducers are shown i n  Figure 92. Subsequent modi f icat ions were made t o  t he  pressure 
tubes so t h a t  they were s t ra igh t ,  r a t h t r  ttian curved as allown i n  the il l i i '$tFatimon. 
The modif icat ions were based on experimental t r i a l s  whereby i t  was shown t h a t  there 
was no advantage Sn bending the tubes. 

Appl i c a t i o n  o f  Acoustic Emission (AE) 

As was discussed i n  Section 2.5., AE technique f e a s i b i l i t y  
was successful ly  demonstrated through the b r i c k  and panel tes ts .  It was therefore 
decided t o  instrument the f u l l  s ized t e s t  vessels fo r  AE moni tor ing dur ing selected 
l i n i n g  tests.  P r i o r  t o  the  f i r s t  l i n i n g  tes t ,  the  un l ined she l l  o f  the  t e s t  vessel 
was instrumented w i t h  both the Dunegan and AETC AE systems. The un l ined vessel was 
heated t o  a she l l  temperature o f  4000F and monitored f o r  AE. The purpose o f  t h i s  
t e s t  was t o  detect, locate, and minimize po ten t ia l  noise inter ferences associated 
w i t h  the vessel i t s e l f ,  the heater assembl ies, and the s t ruc tu ra l  attachments. Min i  - 
ma1 amounts o f  AE s ignals were generated dur ing t h i s  t e s t  and i t  was therefore 
concluded t h a t  the pr rcdu l ions taken t o  acous t i ca l l y3  i s o l a t e  the vessel were successful. 
These precautions incl l 'ded power supply i s o l a t i o n  and f i l t e r i n g ,  sensor channel 
f i l t e r i n g ,  and e l e c t r i c a l  i s o l a t i o n  o f  the  sensors from the vessel she l l .  

-1 51 - 



FIGURE 90, Schematic o f  Spl i t - g l a n d  Conax F i t t i n g  
Attached t o  Vessel She1 1 Through 
Penetrat ions.  



FIGURE 91. S t ra in  Gage I n s t a l  l a t i o n  Technique f o r  Dense Component. 



TABLE 12. Geometric Location & Or ien ta t ion  o f  Embedment, 
Anchor, and Shel l  S t r a i n  Gages i n  L in ing  #3 

Embedment Circumferent ia l  Ax ia l  
S t r a i n  Gage Location Loca t i on 
Number e-Degrees Z-Inches 

1 17 
2 17 
3 208 
4 17 
5 17 
6 208 
7 17 
8 17 
9 208 

10 17 
11 17 
12 208 

Anchor 112 
(Radial Stud) 

She1 1 17 
She1 1 2 08 

Radial Distance 
From Hot Face 
D-Inches 

S t ra i n  
Sensing 
D i rec t ion  

Hoop 
Ax ia l  
Radial 
Hoop 
Ax ia l  
Radial 
Hoop 
Ar.i a1 
Radial 
Hoop 
Axi a1 
Radi a1 

L iner  
Component 

Dense 
Dense 
Dense 
Dense 
Dense 
Dense 
I nsu la to r  
IIISLI~ d lorm 
Insu la to r  
I nsu la to r  
I nsu la to r  
I nsu la to r  

Embedded Circumferent ia l  Ax ia l  Radial Distance 
Thermocouple Location . Location From Hot Face L in ing  
Number &Degrees Z-Inches D-Inches Component 

Hot Face 
Dense 
Dense 
I n te r f ace  
I nsu la to r  
I nsu la to r  
Hot Face 
Dense 
Ins111 ator 
Hot Face 
Dense 
I nsu la to r  



FIGURE 92. Cross-secti on o f  Re f rac tory  Geo111e Lry o f  Two Component 
L in ing .  



Figures 9'3 and 94 d e p i c t '  t he  mode f o r  a t t a c h i  nq the var ious  AE sensors 
t o  t h e  s h e l l  o f  t he  l a r g e  t e s t  vesse'ls.. Each sensoK. was at tached t o  the  s h e l l  by means 
o f  threaded s t e e l  waveguides. The waveguides screwed i n t o  nu ts  welded a t  the l oca -  
t i o n s  shown i n  F igure 93. The t h r e e  c e n t r a l l y  l oca ted  .waveguide p o s i t i o n s  were used 
t o  a t t a c h  t h e  Dunegan sensors. A1 though t h e  Dunegan system was. a  s i n g l e  channel 
u n i t ,  t h e  h i g h l y  a t t e n u a t i v e  n a t u r e , o f  t he  r e f r a c t o r y  l i n i n g s  necess i ta ted  mix ing  
t h e  ou tputs  f rom ' th ree  evenly.  spaded 'sensors i n  o rder  . t o  achieve: f u l l  coverage of the  
vesse l .  . . 

The i nhe ren t  na tu re  pf the  AETC system necess i ta ted  us ins  fourteen 
waveguides, and.sensor channels t o  perform source l o c a t i o n .  The four teen AETC wave- 
guides were spaced a s  shown i n  F igure  94 t o  p rov ide  two bands o f  sensor po's'i t i o n s ,  
each band con ta in ing  seven sensors. .The wavegu,ides i n  t he  lower band were 'circum- 
f e r e n t i a l l y  o f f s e t  approximate ly  26 degrees from t h e  up'per band waveguides $0 form 
t r i a n g u l a r  sensor a r r a y s .  The t r i a n g u l a r  sens.or a r rays  were a  necessary Cond i t ion  
t o  a1 low t h e  'AETC system's software" t o  accept t t ie ' incoming AE d a t a  and computc i t s  
source ' locat ion.  

. . 

Thk waveguide attachment p o i n t s  were se,le<ted rlut o n l y  w l t h i n  the  
geomet r ica l  c o n s t r a f n t s  imposed by  the  vessel and AE .system desi.gns, b u t  a l so  i n '  
c o n s i d e r a t i o n  o f  t h e  r e f r a c t o r y  anchor p o s i t i o n s .  . I't was p red i c ted  t h a t  AE s igna ls  
generated w i th i ' n  the, innermost porti 'on o f  t h e  l i'nin'gs (dense component, h o t  face.) 
would be severe ly  a t tenuated and p o s s i b l y  undetectable by a t t a c h i n g  sensors t o  t h e  
she1 1. The reasons f o r  these concerns were as f o l l o w s  ! 

r The r e f r a c t o r y m a t e r i a l s  used i n  these  t ' e i t s  were h i g h l y  w. 
- a t t e n u a t i v e  t o  acous t i c  s i g n a l s  i n t t h e  frequency range o f  

, .. . . . . 
i n t e r e s t  ( rough ly  100-500 KHz). The one f o o t  t o t a l  t h i c k -  
ness o f  t h e  dual  component l i n i n g s  cou ld  complete ly  damp 
even 1  arye  iii~lipl i tude c rack - re la ted  s i g n a l s  . 

0 The dual component ( two separa te ly  cas t  m a t e r i a l s )  na tu re  
o f . t h e  l i n i n g s  formed a mechanical i n t e r f a c e  between the  
two m a t e r i a l  s which cou ld  impede acous t i c  propagat ion acr?oss 
the. i n t e r f a c e .  Therefore, AE signa' ls generated w i t h i n ,  t he  
fnnermost cas t i r l g  (dense component) may n o t  have been ;detected, 
even if t h e  a t t e n u a t i o n  was n o t  a  s i ' gn i f i can t  problem. 

r A n  ;ddi%ional acous t i c  i n t e r f a c e  ex i . i ted  between the  s h e l l  ' . 

and the  L1TECAST:component due t o  t h e  d i f f e r e n c e  i n  acous.tic 
impedances o f  t h e  s h e l l  materi'al and t h e  r e f r a c t o r y .  

To avo id  t h e .  p o t e n t i a l  compl i c a t i o n s  presented by t h e  cond i t i ons  
above, t h e  ac0ust i .c .wavegu,ides on t h e  s h e l l  were pnsi t i .dned d i r e c t l y  over  . the  anchor 
p o s i t j o n s  where possi:ble. TR.e anchors at tached d i rect1.y t o  t h e  i n n e r  w a l l  'of t h e  
she1 1  2nd penetrated through Goth 1 i n i r i g  components i'n .most cases. AE s i g n a l s  the re -  
f o re  had d i r e c t  propagat ion path.% th rough  t h e  anchors t o  t h e  s h e l l  and AE sensors, 
and cou ld  Be .detected f rom e t t h e r  component, ' Si'nce.' .anchor - r?e f rac tcy  fn te r 'ac t ions  
were known c o n t r i b u t o r s  t o  c rack ing  tendenci'es, th.i's 'tect?ni:que a1 SQ provi.ded good 
sensi'.t.i:vi'ty ' t o  those Pnteracti:ons, 



FIGURE 93.  AE Sensor P o s i t i o n s  on Large-Scale : 
. . T e s t  Vessel (Dunegan System) 
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FIGURE 94. AE Waveguide P o s i t i o n s  on ~ a r g e - s c a l e  Tes t  Vessel(AETC System) 



Anchors 

Although pred ic t ions o f  anchor s t ra i ns  and stresses were not 
planned w i t h  the math models developed on t h i s  contract ,  t h e i r  measurement was 
considered t o  be o f  great value t o  the understanding of re f rac to ry  l in ing/anchor 
in te rac t ions  which occur i n  mono1 i t h i c  1 ined process vessels. I n  addi t ion,  the 
data co l lec ted  were expected t o  g ive MIT some important experimental data f o r  t h e i r  
DOE sponsored re f rac to ry  l in ing/anchor modeling study. 

To make these measurements, s ta te-of - the-ar t  s t r a i n  measurement 
techniques f o r  metal components were used. These techniques involved spot-we1 ding 
4 un iax ia l  A i l t ech  weldable s t r a i n  gages t o  the  3/8" sha f t  o f  the "V1' and " Y "  
type anchors about two inches from the end t h a t  was attached t o  the she l l .  These 
gages were the same type used i n  the embedment work. The gages were o r i g i n a l l y  

-HC spaced 90 degrees apart around the circumference o f  the anchor and were or iented 
; such t h a t  t h e i r  axes coincided w i t h  the  anchor axes. This arrangement enabled 

the determination o f  both ax ia l  and bending stresses which were induced i n  the " 

anchors during the  heat-up o f  the  l i n i ngs .  A thermocouple was also spot-welded - -d - t o  the  anchor near the strain-gages t o  proper ly reduce the s t r a i n  data a t  elevated 
temperature. _ I  

. ' 7  . ' ) 

I .  

I n  a l l  cases, the  s t r a i n  gaged anchors were located a t  the center 
( Z  = 0 i n .  ) o f  each 1 in ing.  Leadwires from the  s t r a i n  gages and thermocouples were 
routed through sealed penetrat ions i n  the vessel shel 1 i n  the same manner as was . 
used f o r  the embedded l i n i n g  s t r a i n  gages and thermocouples. 

This technique was modif ied s l i g h t l y  i n  the l a t e r  l i n i n g s .  The 
modi f icat ion involved using on ly  two s t r a i n  gages instead o f  four  and pos i t ion ing  
them 180' apart around the  circumference o f  the  anchor. This was done t o  reduce 
the cost  o f  s t r a i n  gaging the  anchors and t o  make more channels ava i lab le  on the  
data acqu is i t i on  system f o r  o ther  t e s t  data. 

Figures 95 & 96 are, respect ively,  photographs o f  the strain-gaged 
l1Vl1 and " Y "  anchors. 

Vessel 

The two t e s l  vessel she l l s  were instrumented t o  measure tem- 
perature,stress and pressure' whi le  t he  t o p  and bottom heads were instrumented t o  
measure temperature and pressure. The methods used t o  make these measurements 
are out1 ined below. 

Temperature - - - 
u 8 

. . - T I  , 
- 

8 -  

Type K thermocouples were e i t h e r  spot-welded t o  the  shel 1 and heads 
o r  bonded w i th  a high temperature mortar. These thermocouples were placed a t  various 
s t ra teg i c  locd l ions  on the shell, Such as a t  the  center and a t  c i rcumferent ia l  
locat ions, that  coincided w i t h  the embedded thermocouple locat ions.  Most o f  the 
vessel she l l  thermocouples were associated w i t h  s t r a i n  gages. The output o f  these 
thermocouples was fed t o  the  data acqu i s i t i on  system. 



FIGURE 95. S t r a i n  Gaged " V "  Anchor. 





St ra i  n/Stress ---- 

To acquire an appreciat ion f o r  the  1 in ing/shel  1 in te rac t ions  
occur r ing  dur ing the heat-up t e s t s  and t o  generate data t h a t  cou ld  be cor re la ted 
w i t h  t he  math model p red ic t ions ,  t h e  vessel she l l s  were instrumented w i t h  b i a x i a l  
f o i l  type s t r a i n  gages. Sta te-o f - the-ar t  techniques were used t o  i n s t a l  1 and use 
these s t r a i n  gages. I n i t i a l l y  two types o f  b i a x i a l  gages were evaluated and were 
placed 180" apar t  a t  the  center (Z = 0 in.  ) o f  the  vessel she l l .  Later  a t h i r d  
type of gage was used and t h e  gages were placed 90" apar t  a t  the center ( 2  = 0 i n ) .  
of t h e  vessel she l l  and along the  leng th  o f  the vessel a t  one c i rcumferent ia l  
l o ca t i on .  These gages were designated LWK, CEA and WK, respect ive ly .  

The CEA and WK were bonded t o  the she l l  w i t h  a hiqh temperature 
adhesive and the LWK was spot welded. The gages were or iented such t h a t  
t h e i r  b i a x i a l  g r i d  axes coincided w i t h  the hoop and a x i a l  axes. ( p r i nc i pa l  s t ress 
d i r e c t i o n s )  of the  s h e l l  as shown i n  Figure 97. The LWK and CEA .gages were used 
i n  t he  e a r l y  t e s t s  ( f i r s t  f i v e  l i n i n g s )  and the WK was used i n  the l a s t  four 
1 i n i n q  t es t s .  The she l l  s t ress  r e s u l t s  which lead t o  t h i s  change i n  the type of 
b i a x i a l  s t r a i n  gage used are discussed i n  the  l i n i n g  t e s t  r e s u l l s  sect ion of t hc  
report(3.5.)  

Pressure 

Pressure gages and pressure transducers w i t h  >250 capaci ty 
were used t o  measure the  pressure i n  the t e s t  vessel dur ing the pressurized steam 
and a i r  runs. These gages and transducers were attached t o  the she l l  and top  o r  
bottom heads through the  1/2 t o  3/4 inch  penetrat ions ava i lab le  i n  these sections. 
The gages were read r o u t i n e l y  dur ing the t e s t s  wh i le  the transducers were connected 
t o  a pressure alarm system and a d i g i t a l  d isp lay .  This l a t t e r  system would r i n g  
an alarm if the  pressure exceeded a preset value. The alarm was r o u t i n e l y  set  a t  
225 t o  250 ps ig  maximum. 

Video Taped/TV Moni tor ing o f  the Hot Face 
- 2 .  , . . 

A remote video camera (Sony) was se t  up t o  moni tor  ' the hot  face 
through one of the bottom viewports. Two o f  the three viewports i n  the bottom 
head were designed t o  p r o j e c t  a t  an angle o f  20° t o  the same region i n  the middle 
o f  t he  t e s t  zone on the h o t  face. F i g u r e 9 8 i s  a top view o f  L i n i ng  #3 and shows 
two holes i n  the  lower i n s u l a t j o n  f o r  i l l u m i n a t i o n  and camera angle as we l l  as the  
i l l u m i n a t e d  viewing area on the  ho t  face. Good reso lu t i on  was obtained w i t h  a 
te lescoping lens used on the camera shown i n  Figure 99. Numerous f i l t e r s  were ava i lab le  
t o  ob ta in  optimum contrast .  A t e l e v i s i o n  was located i n  the con t ro l  and data ac- 
q u i s i t i o n  room so the ho t  face could be monitored continuously dur ing the t e s t .  A 
video recorder was used t o  record the image a t  pe r iod ic  i n t e r va l s .  



FIGURE 97. Orientation of Biaxial Strain Gage Attached to Outside 
of Pressure Vessel Shell in Hoop and Axial Directions. 



FIGURE 98. Top View of Pressure Vessel/Test Furnace 
Showing Crack Pattern After Heat-up Test 
of Lining #3 to 400°F. 



FIGURE 99.. Television Camera With Telescoping Lens Positioned 
Under Viewport far Remote Monltaring o f  Hot Face. 



2.6.5. Post Test ing 

Post t e s t i n g  included the nondestructive examination, v isua l  
inspect ion measurement,sample co l lec t ion ,  sample test ing,  and tear  out  o f  a 
l i n i n g .  O f  p a r t i c u l a r  i n t e r e s t  was the crack pat tern and crack widths which 
occurred throughout the l i n i n g  a f t e r  a heat-up test .  To perform t h i s  
work, t e s t  equipment and a number o f  techniques were acquired o r  developed. 
The sect ions which f o l l ow  describe t h i s  equipment and the techniques used. 

Test Equi pment 

To make crack width  measurements, shrinkage determinations and 
a f u l l  inspect ion o f  the  cracking pa t te rn  i n  a l i n i n g ,  special equipment 
was acquired o r  made. This equipment included: 

8 A gage f o r  measuring the diameter o f  the l i n i n g .  This gage 
was made by at taching a 34.5 i r ic l~ long aluminum rod t o  s 1 inch vern ier  
depth c a l i p e r  t o  g ive a device capable o f  measuring accurately from 35 t o  37 
inches. 

8 A PEAK LUPE 7X Opt ica l  Comparator (a magnifying eyepiece w i t h  
a graduated ob jec t i ve  lens) .  This device was used t o  measure the crack widths 
t o  hundredths o f  an inch. 

8 A l i g h t e d  magnffying glass which was used t o  locate f t n e  
(.005 inch  wide o r  smal ler)  cracks. 

8 A 36 inch long ca l i pe r  w i t h  a d i a l  micrometer. This was used 
t o  measure the thickness o f  the  l i n i n g  components a t  various locat ions along 
t he  length of the l i n i n g .  

8 Feeler gages which were used t o  measure o r  estimate the gap formed 
between the dense and i n s u l a t i n g  components. 

8 Prleumatic chipping hamners (Black & Decker) which were used t o  
roughen the  inner  surface o f  the dense component and t o  ch ip  out  samples of 
l i n i n g  mater ia l  f o r  tes t ing.  

8 An e l e c t r i c  concrete d r i l l  cor ing r i g  designed f o r  v e r t i c a l  
d r i l l i n g  which was purchased and then modif ied so hor izonta l  d r i l l i n g  could be 
done w i t h  it. The d r i l l  was manufactured by Christensen Diamond Products and 
was designated mode1 E-2-15. It had a 15 amp, 1000 rpm motor and accessories 
which a1 lowed d r t l l  b i t s  from 1 t o  6 inch diameter, o r  larger, and 6 t o  18 
i nch  long t o  be used. The ove ra l l  length o f  the u n i t  was approximately 32". 
The d r i l l  could be lcngthened w i t h  extensions and blocks t o  36" o r  more. 
Photographs o f  t h i s  equipment are shown i n  Fiqure 100. 

A pneumatic diamond wall saw and attachment assembly which were 
purchased t o  make v e r t i c a l  s l i c e s  through the l i n i n g .  This equipment was 
t o  be used t o  a i d  i n  t he  t ea r  out  o f  the l i n i n g  and a lso  t o  produce a good 





cross-sectional view of a l i n i n g .  The saw was made by GDM, Inc. and was 
i d e n t i f i e d  as Model 14. It was mainly sold t o  the concrete industry and 
was capable o f  making 5 inch deep cuts. 

a A tear  out s ta t ion  which was bui 1 t t o  handle the center section o f  
the pressure vessel/test furnace during a l l  or  par t  of the post t e s t  inspection, 
sample re t r i eva l ,  and tear-out. A photograph o f  t h i s  f a c i l i t y  i s  shown i n  Figure 
101. 

e Heavy duty pneumatic jack hammers and diesel power a i r  com- 
pressors which were rented t o  tear-out the l i n ing .  

A Cobalt 60 gamma source which was used t o  nondestructively examine 
(radiograph) two 1 in ings . The equipment was suppl i ed  by the Argonne National 
Laboratory. 

Post Testing Techniques 

The normal sequence and descr ipt ion o f  t e s t  techniques used during 
post t es t i ng  work were as fol lows: 

P r io r  t o  the tes t ing  o f  a l i n i n g  the thickness o f  the components 
and inner diameter and height o f  the l i n i n g  were determined a t  prescribed 
points. These points were marked w i th  a high temperature Temp1 1 penctl so 
they would be v i s i b l e  a f t e r  the heat-up tests. Any cracks o r  other defects i n  
the l i n i n g  were noted f o r  fu tu re  reference. Once t h i s  was done, four  2 inch 
diameter d r i l l  cores were taken from the as cast l i n i ng .  Two were taken 
about 8 inches up from the bottom while the other two were taken about 8 inches 
down from the top. These holes were patched w i th  ident ica l  material, 

A f te r  a heat-up t e s t  was made and the top head, upper 
insu la t ion  and heating element were removed from the vessel, a general vtsual 
inspection o f  the l i n i n g  was made. The dlameter and other dirner~s iurts o f  the 
1 i n i  ng were then measured a t  the predetermined ,locations using the various 
ca l ipers and gages mentioned above and the crack widths were measured i r i  LRe 
ve r t i ca l  and horizontal d i rect ions w i th  the opt ica l  comparator. Fiyu1.e 102 i s  a 
schematic drawing o f  the locat ions where the cracks were measured. 

The appearance o f  the l i n i n g  was then photographed a f t e r  whlch 
the cracks were marked (high1 ighted) w i th  i nk  and the 1 i n ing  again photographed. 

Some maps o f  the  hot face crack pattern were made a t  t h i s  po in t  
by at taching paper t o  the ID o f  the l in ing .  Tracks were made over the inked 
cracks. In cases where second and t h i r d  heat-up cycles were run on l in ings,  
the mapping was continued t o  ind icate crack growth and new cracking. 

a The 1 i n ing  was then d r i l l  cored a t  spec i f i c  locat ions t o  
c o l l e c t  samples f o r  test ing, t o  get a bet ter  look a t  the crack pattern, t o  
re t r i eve  the s t r a i n  gages and check t h e i r  or ientat ion, and t o  re t r ieve  anchors. 



FIGURE 101. Tear Out Station. 



FIGURE 102. Schematic Showing Location o f  Cracks Measured f o r  
Shrinkage Determinations. 
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The number o f  d r i  11 cores taken varied from one 1 i n ing  t o  another depending upon 
the condit ion of the l i n i n g  and the number o f  ~ i m e s  i t  was heated. Generally 
a t  leas t  4 d r i l l  cores were taken from a l i n ing .  One each was taken from the 
top and bottom of the l i n i n g  i n  a crack free area near the locat ions of the 
d r i l l  cores taken from the as cast l i n i ng .  The remaining d r i l l  cores were taken 
over the largest and s~nal l e s t  cracks and fro111 crack free regions o f  the 1 i ning. 1. 

I n  cases where gaps formed between the ref ractory l i n i n g  compo- 
nents and the shel l ,  the fee ler  gages were used t o  measure the gap. This was 
d i f f i c u l t  t o  do w i th  the 2 inch d r i l l  core holes but by using a 6 inch d r i l l  
core t h i s  problem was eliminated. This large d r i l l  core was also used t o  ex- 
t r a c t  whole anchors and t o  get a be t te r  idea o f  the cracking present i n  the 
insu la t ing  component. 

To nondestructively examine a l i ned  vessel , the 6 0 ~ o  source 
was placed i n  the vessel as shown i n  Figure 103. P r i c r  t o  t h i s  step, the 
outside o f  the vessel was covered w i th  f i l m  as shown i n  the f igure. This f i l m  
became exposed when the 60Co Source Was placed i n  posi t ion f o r  about 40 
minutes and was found t o  be successful f o r  detecting cracks, voids, d is-  
cont inu i t ies,  and anchors i n  the l i n i n g .  It took approximately one day t o  

-completely radiograph a l i n ing .  

i d C  

- 'p " 
. I .  . 

w 
? 

, ,  , The center section o f  the vessel was usual ly moved t o  the post 
tes t ing l tear  out section f o r  the f i n a l  core d r i l l i n g ,  sawing and tear-out 
a c t i v i t i e s .  

To produce a cross sectional view o f  a 1 i n ing  the dense 
component o f  the 1 in ing  was s l i ced  v e r t i c a l l y  a t  1 inch depth o f  cu t  passes 
w i th  the diamond saw. Since the saw had only a 5 inch depth o f  cut, no cu t t i ng  
o f  the insulat ing component was possible. Instead, t h i s  component was chipped 
away w i th  a chipping hammer and then dressed up so t h a t  i t s  surface para l le led t h a t  
o f  the dense. Once t h i s  was done, the cracks were highl ighted wi th  i nk  and 
the cross section was photographed. 

0 I n  cases where the dense component could be removed separately 
from the insu la t ing  component, the same type measurements, inspections, high- 
1 igh t ing  of cracks, and photographing were done wi th  the insu la t ing  component. 

The lengths o f  the " Y "  anchor studs were measured a f t e r  the 
l i n i n g  was torn.out  wi th  a ca l iper  and compared t o  the o r i g ina l  length f o r  
evidence o f  y ie ld ing.  Each stud was stamped w i th  a number t o  a i d  i n  i t s  
-r denti f i ca t ion .  

Once the 1 i n ing  was removed, the vessel was wire brushed and cleaned 
t o  prepare i t  f o r  the  next test .  It normally took one week t o  complete t h i s  a c t i v i t y .  

The s t i r i n  kages wh.ich occurr~ld.-i-n'-#a l j  n i  ng were determined by 
d iv id ing  the o r i g ina l  thickness o r  length i n t o  the changes i n  thickness o r  
length measured. I n  addit ion, the shrinkage a t  the hot face and hot face 
side o f  the insu la t ing  component were determined by adding up a1 1 o f  the crack 
widths i n  the v e r t i c a l  and hor izontal  d i rect ions and d iv id ing  these numbers 
by the o r i g ina l  circumference and height o f  the l i n ing ,  respectively. These 
shrinkages were reported as percentages. 



FIGURE 103. Gamma Radiography o f  Lined Vessel. 
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The d ' r i l l  cores were u s u a l l y  photographed before  and a f t e r  
s l i c i n g  and sect ioning,  and were o f t e n  x-rayed and/or p e t r o g r a p h i c a l l y  examined 
f o r  evidence o f  minera loq ica l  changes. Density,  weight l o s s  and p o r o s i t y  were 
determined r o u t i n e l y  on the  d r i  11 core samples us ing  the  same ,procedures used 
t o  determine the  .p rope r t i es  o f  ' t he  , r e f r a c t o r i e s  which were discussed i n  Sect ion 2.3. 
o f  the  r e p o r t .  To determine t h e  s t reng th  o f  t he  core samples, rec tangu la r  t e s t  
p ieces were c u t  from the  h o t  face and c o l d  face s ide  o f  each component. o f  each 
d r i l l  core.  However, the ' .p repara t ion  o f  samples w i t h  parall.el.. .sur faces-was very .-. . , :  ,., 

d i f f i c u l t .  As. a  r e s u l t ,  an a1 te rna te  method o f  determining. ' the s t reng th  was used. ' 
.. i - . , 

This  method was the  diambtkal compression ' ( s p l i t t i n g  t e n s i l e ) '  
t e s t  used i n  t he  concrete i n d u s t r y  t o  determine t h e  t e n s i l e  s t reng th  o f  cements 
and concretes. . The procedure was desfgned around the ASTM t e s t  (C496-71) and the 

' f i n d i n g s  o f  Marion and Johnstone12.. One'i,nch t h i c k  d i scs  were s l i c e d  f rom the  
h o t  and c o l d  face s ides  o f  each component o f  each '2 i n c h  core and ,compression , .  

. . .  :. .' 
t e s t e d  t o  f a i l u r e  a t  room. temperature. The t e s t  scheme shown i n  Figure 104' was, . 

. I (  . I _ -  used t o  ma,ke these determinat ions.  ... .. a <  . 
-:. .. . ,,, . , ' 

The specimen was t e s t e d  t o  f a i l u r e  and the equat ions indicate.d wered., . . ., 
used t o  c a l c u l a t e  t h e  s p l i t t i n g  t e n s i l e  s t rength .  The ' Inst ron t e s t i n g  machine 
was used f o r  t h i s  t e s t i n g .  

' 2.6.6. Special  Tests 

A se r i es  o f  specia l '  t e s t s  were r u n  on the  Pressure Vessel ITest  
Furnace p r i o r  t o  and a f t e r  i t  was used t o  t e s t  l i n i n g s .  Both o f  t h e  cen te r  
sec t ions  o f  t he  vessel were used f o r  a l1,or  p o r t i o n s  of, these t e s t s .  The t e s t s  
were run  t o  determine how the  f a c i l i t y  responded t o  p r e s s u r i z a t i o n  and t o  the r -  
mal. and mechanical loading.  

The p r e s s u r i z a t i o n  t e s t s  i nvo l ved  mon i to r i ng  t h e  a x i a l  and circum- 
f e r e n t i a l  s t r a i n s  occu r r i ng  i n  t h e  s h e l l  as t h e  vessel \~rps pressur ized w i t h  the  
s t r a i n  gages at tached t o  the  shel1;and mon i to r i ng  the  r a d i a l  s t r a i n  (d iamet ra l  
growth) o f  t h e  she1 1  w i t h  d i a l  gages independent o f  t h e  vessel.  A s imi  1  a r  
procedure was used t o  mon i to r  t he  thermal l o a d i n g  e f f e c t  on t h e  s h e l l  s t r a i n s .  
The hea t i ng  element was i n s t a l l e d  i.n t he  empty vessel and the  s h e l l  heated up 
t o  approximately 450°F i n  t h i s  t e s t .  

. , 

To s imu la te  a  p o i n t  l oad ing  (mechanical l oad ing )  c o n d i t i o n  which 
cou ld  be produced by an anchor t r a n s m i t t i n g  the  fo rce  o f  t h e  expanding l i n i n g  
t o  t h e  s h e l l ,  a  t e s t  procedure as shown i n  F igure  105 was used. It invo l ved  
app ly ing  a  p o i n t  l oad  a t  two p o i n t s  180" a p a r t  which were on e i t h e r  s i d e  of 
s t r a i n  gages a t t a c h e d , t o  the  OD o f  t h e  s h e l l  a t  the  cen te r  l i n e  o f  t h e  vessel 
w i t h  t h e  h y d r a u l i c  device shown. The purpose o f  t h e  a c t i v i t y  was t o  determine 
i f  the  s t r a i n  gages detected l o c a l i z e d  l oad ing  e f f e c t s .  
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FIGURE 104. Mechanica1,Loading Test to Simulate Transmission 
of Lining Force to the Shell. 
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FIGURE 105. schematic o f  I n t e r n a l  P o i n t  Loading 
Assembly and Locat ion  o f  Force App l i ca t i on .  



3. RESULTS 

L i t e r a t u r e  Search - 

Dur ing t h e  f i r s t  yea r  o f  the  program, an ex tens ive  l i t e r a t u r e  search was 
conducted t o  p rov ide  in fo rmat ion  r e l a t i n g  the  c rack ing  o f  mono l i t h i c  , r e f r a c t o r y  
1  i n i n g s  t o  ' the phys i ca l  and mechanical p r o p e r t i e s  and chemical s t a b i l i t y  o f  t h e  
r e f r a c t o r i e s  du r ing  c u r i n g  and heat up. The f i n d i n g s  o f  t h i s  search a r e  discussed 
i n  d e t a i  1  . . in a  repor t ,  C r i t i c a l  L i t e r a t u r e  Search, FE-2218-14, December 1977, under 
!he o l d  c o n t r a c t  number (EX-76C-01-2218). Out1 ined below i s  a. b r i e f  summary of the  
f i n d i n g s  o f  t he  search and, o f  a d d i t i o n a l  in fo rmat ion  . . acquired a f t e r  the  search was 
pub1 i shed. . ,  . 

Summa ry 

A cons iderab le  number o f  references were found which documented t h e  
f a i l u r e s  o f  r e f r a c t o r y  concre te  and phosphate bonded ramming mix monol i t h i c  1  i n i n g s  
used i n  process vessels.  The causes f o r  these f a i l l ~ r e z  were most ly  associated 
w i t h  c h e ~ ~ l i c a l  degradat ion o f  t h e  m a t e r i a l s  which l e a d  t o  a  reduc t i on  i n  s t reng th  
and abrasion res i s tance .  These proper ty  changes caused the  ma te r ia l  t o  crack, erode 
and spa11 du r ing  se rv i ce .  A few papers discussed f a i l u r e s  due t o  exp los ive  s p a l l i n g  
o f  monol i t h i c s  du r ing  t h e  i n i t i a l  d ry  o u t  and due t o  c rack ing  and spa1 1  i n g  caused by 
metal  anchor l re f rac to ry  i n t e r a c t i o n s .  

Only two re ferences ( 9  & 13) were found t h a t  considered the thermo- 
mechanical aspects o f  r e f r a c t o r y  1  ined vessel s. Wygant and crow1 ey '  sg  paper 
reviewed the  s ta te -o f -  t h e - a r t  on monol i t h i c  . r e f r a c t o r y  designs f rom t h e  l a t e  1950' s  
and e a r l y  1960's and repo r ted  eng ineer ing  c a l c u l a t i o n s  on the  e f f e c t  of creep t o  
1000°F. The s t ress  analyses performed were very  s i m p l i s t i c  e l a s t i c  a t~a lyses  and 
developed gross approximations a t  best .  They d i d  n o t  cons'ider a  c i r c u l a r  cross 
s e c t i o n  o r  mu1 ticomponent 1  i n i n g  designs. 

Hugget t 's13 paper. was more p r a c t i c a l  i n  nature.  He i n d i c a t e d  the  
.need t o  keep shr inkage o f  m o n o l i t h i c  1  i n ings  below 0.1% and t o  use wide ( 2  f o o t )  
anchor spacings t o  reduc ing  c rack ing  o f  s i n g l e  component l i n i n g s .  He recommended 
keeping the  s h e l l  cool  t o  keep the  l i n i n g  i n  compression as a  means t o  keep cracks 
c losed  d u r i n g  s e r v i  ce. 

Other so l  u,t.ior~s o r  gu i  de l  i nes recommended t o  minimize the  e f f e c t  of 
c rack ing  o r  prevent  s p a l l i n g  i nc luded  the  use o f  rep laceab le  metal shrouds i n s e r t e d  
on t h e  i n s i d e  o f  t he  l i n e d  vessel,  vapor b a r r i e r s  every t h r e e  t o  f l v e  fee t  a long the  
l e n g t h  o f  t he  s h e l l ,  more anchors and c u r i n g  temperatures above 75°F. Independent 
anchor ing o f  the  i n s u l a t i n g  component o f  a  dual component l i n i n g  t o  keep i t  t i g h t l y  
i n  con tac t  w i t h  the s h e l l  was another  apprSudch taken. 

. . . . 

The use of 90+% ~ 1 ~ 0 3  mbnoli t h i c  r e f r a c t o r ' e s  w i t h  l e s s  than 0.1% by 
we igh t  Fez03 and S i  02 was recommended fo r  petrochemical 114) and s t e e l  i n d u s t r y  
a p p l i c a t i o n s  t o  reduce t h e  e f f e c t  of chemical co r ros ion  caused by hydrogen, steam 
o r  carbon monoxide. . .  . 



Some evidence15,16,17 was beginning t o  develop i n  the mid-70 's  which i n d i c a t e d  
t h a t  c o n t r a r y  t o  Crowley's14 f i nd ings ,  5.0% A1 203 refr,acto,ry concr,etes were i n i -  
proved by exposure t o  h igh  pressure. (500 ps,i ,and greater ) ,  steam o r  steam con ta in ing  
atmospheres 'whi l~ 99+%A12T)g re f rac to ' r y  concretes were degraded. These resu l  t s  
were q u i t e  s u r p r i s i n g  t o  the  r e f r a c t o r i e s  . . .  i ndus t r y -and  f u r t h e r  t e s t i n g  was planned 
t o  con f i rm  i t .  . :  . .  a 

No references were i d e n t i f i e d  i n  which a  m o n o l i t h i c  r e f r a c t o r y  l i n i n g  
was instrumented t o  measure t h e  s t ress .and s t r a i n s  which develop du r ing  the  i n i t i a l  
heat-up o r  t o  1  i s t e n  t o  c rack ing  w i t h  acous t i c  emission techniques. Some gu ide l ines18 
were publ ished on i n s t a l l a t i o n  procedures8and sa fe  and economical heat-up schedules 
t o  prevent f a i l u r e  o f  a  l i n i n g .  

A number.'of references w e r e  found i n " t h e  po r t1  and .cement based concre te  
1  i t e r a t u r e  .which discussed t h e  r e l a t i o n s h i p s  between p rope r t i es ,  c u r i n g  and 
thermomechani.ca1 performance and were found t'o 'be he1 p f u l  . i n  t he  'development of t h e  
REFSAM and t h e  creep t e s t  procedures used. Some o f  these references were i d e n t i f i e d  
e a r l i e r ( 4  &10)whi le  t he  o the rs  a re  1  i s t e d  i n  t h e  l i t e r a t u r e  search. 

. , 
19 $ 2 0  

~ f t e r  t h e  1  i t e r a t u r e  search was repor ted,  two a d d i t i o n a l  ' re ferences 
were i d e n t i f i e d  which d.iscussed the  thermo-mechanical as ec ts  o f  t he  r e f r a c t o r y  l i n e d  
vessels.  Both discussed e l a s t i c  analyses and' o n l y  one I le considered temperatures 
above 1000°F. Ne i the r  o f  them, however, considered the  e f f e c t s  o f  creep o r  t he  s t r e s s  
s t a t e  o f  t he  l i n i n g  du r ing  t h e  i n i t i a l  d ry -ou t  and heat-up. 

P i e r c e ' s  20 work appeared t o  be t h e  most c l o s e l y  a1 l i e d  t o  the  o b j e c t i v e  
of  t h i s  program. He was designing ac.id r e s i s t a n t  r e f r a c t o r y  l i n i n g s  and was most 
concerned about cracks forming i n  t h e  l i n i n g  t h a t  cou ld  l e a d  t o  vessel co r ros ion  and 
mechanical degradat ion. M r .  P ie rce  became an impor tan t  con tac t  d u r i n g  t h i s  program. 

The conclus ions drawn from t h e  search were as fo l lows:  

. .. (1  ) Cracking o f  mono1 i t h i  c  r e f r a c t o r y  1  i n i  ngs and t h e  subsequent 
co r ros ion  and/or. over  heat ing  and f a i l u r e  o f  t h e  metal s h e l l  
i s  a  w e l l  recognized problem and has been f a i r l y  w e l l  documented 
i n  t he  l i t e r a t u r e .  There a r e  very  few references,  however, t h a t  
d iscuss t h e  i n t e r r e l a t i o n s h i p  between t h e  phys i ca l ,  mechanical 
and chemical p r o p e r t i e s  o f  m o n o l i t h i c  r e f r a c t o r i e s  and the  
c rack ing  of ' these r e f r a c t o r i e s  i n  l a r g e  process'  vessel s .  

Guide1 i n e s  do e x i s t  on m a t e r i a l  s p e c i f i c a t i o n s  and i n s t a l  l a t i o n  
procedures t o  p revent  c rack ing  o r  exp los i ve  s p a l l i n g  due t o  
shr inkage and steam .entrapment. However, few mechanical p r o p e r t y  
gu ide l ines ,  cool  -down g u i d e l i n e s  o r  1  i n i  ng design c o n f i g u r a t i o n s  
on r e f r a c t o r y  concretes o r  phosphate bonded ramming mixes used 
i i s  c y l  i n d r i c a l  PI-ocess vcssc l  s e x i s t  t o  prevent  c rack ing  . Mnst 
o f  t h e  gu ide l i nes  t h a t  do e x i s t  a r e  based main ly  on f i e l d  'experience 
i n  commercial f a c i l i t i e s  and cons ider  t he  e f f e c t s  o f  t h e  cement . type 
and l e v e l ,  c u r i n g  temperature and dry -out  and heat-up schedules 
on t h e  tendency o f  t h e  m o n o l i t h i c  r e f r a c t o r y  l i n i n g s  t o  crack and/ 
o r  e x p l o s i v e l y  spa1 1  du r ing  t h e  i n i t i a l  heat-up cyc le .  



(3 . )  Very l i t t l e  s t r e s s  analysis work has been performed on monolit,hic 
refractory l inings i n  cylindrical '  process vessels 'and as a resu l t  
there '  i s  only a 1 imi ted understanding of what causes mono1 i t h i c  
refractory l inings to  crack and how to  prevent ' it. For,these 
r easons . i t  .is thought' tha t  a systematic study of the thermo- 
mechanical aspects of monolithic refractory lined cy.lindrica1 
process vessels such as  was.done.on t h i s  contract was needed. 
The determination of engineered properties of monolithic refrac- 
t o r i e s  such as  creep ra tes  and modulus of e l a s t i c i t y  versus 
'temperature was also .needed. 

( 4 )  Some very useful references, on ':the model i ng and engineered 
properties . o f  Portland cement based concretes have been iden- 
t i f i e d  and have been used t o  develop the math model required 

- ' . f o r  t h i s  program. . .  . 

( 5 )  This cont ra i t  work should r e su l t  in the necessary.data for  de- 
termining whether mono1 i  t h i c .  refract.ory 1 inings fo r  coal qas i f i -  
cation process vessels should be cons.idered .more seriously i n  .$he 
future or if . ,  brick 1,inings should be used t o  protect.  the vessel. 
she1 1 .  

. . . . L .  

. . . . 



. , 
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3.2. Ma t e r i  a  1  P rope r t i  - -- es 

l h i s  s e c t i v r ~  S ns l  udes a summary of t h e  phys i ca l ,  thermal and thermo- 
mechanical p rope r t i es  of t he  key mono1 i t h i c  r e f r a c t o r i e s  used i n  the  1  i r ~  i IKJ 
tests..  These p r o p e r t i e s  were the  ones used i n  t h e  s t ress  analyses. I t  a l s o  
inc ludes  general comnents about these r e f r a c t o r i e s  and a  d iscuss ion  o f  the s im i -  
l a r i t i e s  and d i f f e rences  between them.. The remaining data co1,lected on the  
o t h e r  m a t e r i a l s  l i s t e d  i n  Table 5  and on these key m a t e r i a l s  a t  va ry ing  water  
l e v e l s ,  heat t reatments,  e tc . ,  a r e  summarized i n  Appendix B. The key r e f r a c t o r y  
m a t e r i a l s  i nc lude  the  mod i f i ed  90+% A1203 dense g e n e r i c  (ERDA go), the  50% A1 203 
dense gener ic ,  t he  KAOCRETE XD 50 (Mix 36C) w i t h  and w i thou t  s t a i n l e s s  s t e e l  
f i be rs ,  LITECAST 75-28 and KAOLITE 2300 L I .  The ERDA 90 and LITECAST 75-28 
were used i n  L in ings  # I -4 ,  KAOCRETE XD 50 (Mix 36C) and LITECAST 75-28 were used 
i n  L in ings  #5 and 6, KAOCRETE XD 50 (Mix 36C) w i t h  4 w/o 310 s t a i n l e s s  s t e e l  
f i b e r s  and LITECAST 75-28 were used i n  L i n i n g  #7. and KAOCRETE XD 50 (Mix 36C) 
w i t h .  4  w/o 310 s t a i n l e s s  s t e e l  f i b e r s  and KAOLITE 2300 L I  were used i n  L i n i n g  #9. 

Tables 14 through 23 1  i s t  t he  p r o p e r t i e s  o f  these key r e f r a c t o r i e s  and 
Figures 106 through 120 show some o f  t h e  thermal expansion, thermal c o n d u c t i v i t y  
and thermo-mechanical p r o p e r t i e s  obta ined.  Some data a r e a l s o  inc luded on commer- 
c i a l  products i n  t h e  same c lass  as t h e  gener ic  m a t e r i a l s  and on samples of the  key 
m a t e r i a l s  which were made d u r i n g  the  i n s t a l l a t i o n  o f  t h e  l i n i n g s  f o r  comparat ive 
purposes. 

General ly,  t h e  water  l e v e l s  requ i red  t o  achieve good ba l l - i n -hand  consis-  
t enc ies  f o r  these materi ,al  s  were found t o  agree w i t h  the  l e v e l s  recommended by t h e  
r e f r a c t o r y  vendors on t h e  commercial products t e s t e d  o r  commercial products s i m i l a r  
t o  t h e  generics. Every at tempt was made t o  use as l o w ' a  water  l e v e l  as poss ib le  
t o  g i ve  these good cons is tenc ies .  The as c a s t  and d r i e d  b u l k  d e n s i t i e s  and modulus 
of  rup tures  o f  these key m a t e r i a l s  were a l s o  found t o  agree we l l  w i t h  b u l k  d e n s i t i e s  
and modulus o f  rup tu res  repo r ted  by the  r e f r a c t o r y  vendors and g i v e  f u r t h e r  evidence 
o f  t h i s  good agreement. These r e s u l t s  were i n t e r p r e t e d  t o  mean t h a t  acceptable 
r e f r a c t o r y  m a t e r i a l s  were being tes ted .  

As expected t h e  ERDA 90 had t h e  h ighes t  bu l k  dens i t y ,  c o e f f i c i e n t  of thermal 
expansion, thermal c o n d u c t i v i t y ,  s t r e n g t h  and creep res i s tance  of t he  key refrac-.  
t o r i e s  tes ted  w h i l e  t h e  KAOLITE 2300 L I  had the  lowest  p r o p e r t i e s  by comparison. 
The general o rde r  o f  decreasing proper - t ies  was ERDA 9 0 ,  KAOCRETE XD 50 (Mix 36C), 
KAOCRETE XD 50 (Mix ' 3 6 ~ )  w i t h  4  w/o 310 s t a i n l e s s  s t e e l  f i b e r s ,  50% A1203 dense 
generic,.LITECAST 75-28 and KAOLITE 2300 L I .  W i t h i n  each t ype  o f  m a t e r i a l  as t h e  
water 1  eve1 was increased above t h e  ' optimum, the  phys i ca l  and mechanical p r o p e r t i  es 
genera l l y  degraded. F igure  106 shows an example o f  t h i s  e f f e c t  on the ,  thermal expan- 
s i o n  and shrinkage .of LITECAST 75-28 as t h e  water l e v e l  was increased from 21 t o  
24%. Other examples which i n d i c a t e  the  e f f e c t  on dens i t y ,  s t r e n g t h  and creep r e s i s -  
tance a re  i nc luded  i n  Appendix B. 

F igure  107 shows a  thermal expansion curve f o r  t h e  as-cast 90+% A1203 dense 
gener i  c  r e f r a c t o r y  which was s to red  i n  a  one hundred percent  humi d i  t y  env i  ronment 
and a  curve o f  t h e  same m a t e r i a l  which was a l lowed t o  d r y  p r i o r  t o  t he  t e s t .  The 
d i f f e r e n c e  i n  shr inkage and ove.ral1, thermal expansion o f  these two m a t e r i a l s  i n d i -  
c a t e  why t h e  curve f o r  t h e  one hundred percent  humi,dity s to red  sample was used i n  

f 
t he  s t ress  analyses. It showed more shr inkage b u t  a . s i m i l a r  expansion charac ter  
t o  t h e  d r i e d  sample. Thls d i r f e rence  i n  shri'nkage cha rac te r  was thought t o  be very  
impor tan t  t o  t h e  o v e r a l l  performance o f  t h e  r e f r a c t o r y  l i n i n g .  I f  i t  were n o t  



Table 14. Chemical ,4nalyses o f  Mono1 i t h i c  Re f rac to r i es  (Pub1 i shed Data) 

90 RRIYHS . .  90 + %A1 203 KAOCRETE 
Chemical Pi~osphate. Bonded Dense G e i e r i c  . 50% A1203 XD 50 LITECAST KAOL ITE 

Ana lys is ,  "!o Ramming N i x  (ERDA 30) Den-se Generic (Mix 36C) 75-28 2300 L I  

S i02  2.7 . 0.1 . 40.0 43.2 . . 36.3 37.0 

CaO Trace 

Trace 

A1 k a l  i es. 0.3 
(Na20 & K20) 

0.1. 

Trace, 

4.6. 
. . 

Trace 



TABLE 15. P rope r t i es  o f .  Mod i f i ed  90+% A1 ?03 Dense 
Generic (ERDA 90) and KAOTAB 95 

90+% A12g3 Dense Generic 
KAOTAB 95 Propert ies 

. . 

Water Level, % 

~ u l k  Density, . pc f  

(220°F Cured) 

Coef f i c ien t  o f  Thermal Expansion, a 

X 1 0 ' ~  in / in / "F  1 s t  Cycle RT-1875°F 
700-1875°F 

2nd Cycle RT-1875°F 

  in ear Shrinkage, 9 

af te,r  220°F 
a f t e r  1000°F 
a f t e r  1500°F 
a f t e r  2000°F' 

Thermal Conductivi ty , k 

BTU, i n / ~ r / ~ t ' / ' ~  ( a t  temp) 

Spec i f i c  Heat, c 

Poisson's Ratio, v 

Hot Modulus o f  Rupture, ps i .  

RT 
500" F 
l0OO0F ' 

1500°F 
1 7 5 0 " ~  
2000°F 

Hot ~ompress'ive strength, ps i  

RT 9100 + 1750 121 40 
5OOiF 9220 7 580 - 
1000" F 9690 T 1040 - 

. 15OO0F 9130 T 1480 - 
1750°F 7300 1 11 60 - 
2000" F 8455 + 420 - 

. I 

Hot Modulus o f  Elast ' ic i  ty; ps i  x 106 

RT 1.5 + 0.5 - 
500°F '0.8 + 0.3. - 
1000" F 0.8 z 0.3 - 
1500°F 0.7 2 0.3 - 
1750°F 0.4 + 0.1 ,. - 
2000° F 0.4 2 0.2 - 

Hot Compressive Fracture S t ra in ,m i l / i n  

. RT . 3 .  . - .  - :  

13 500" F . - 
13 1000°F - 

1 500°F . I .  9 2 - 
1 750°F 27 . ' - 
2000°F . . 

' 24 - 



TABLE 16. P r o p e r t i e s  o f  50% A1203 Dense Gener ic ,  KAOCRETE XD 50 (Mix 3 6 ~ )  
W i t n  and l J i t h o u t  4 W/O 310 SS F i b e r s  and LABORDE -. 

KAOCRETE XO 50 (Mix 36C) 

50% ~ 1 2 0 3  
Propert ies Generic Without With 4 w/o 31055 LABOROE 

(L in ing #7) 

10 11 Water Level, % . . 7.5 .. 7.5 

Bulk Density, p c f  

(220°F Cured) 

Coe f f i c ien t  o f  Thermal Expansion,.a. 

~ l o - ~  in / in / "F  1 s t  Cycle RT-1875°F 
700-1875°F 

2nd Cycle, RT-1875°F 

i i n e a r  Shrinkage, % 

a f t e r  220°F 
a f t e r  1000°F 
a f t e r  150UoF 
a f t e r  2000°F 

Thermal conduct iv i ty ,  k 

BTU, i n / ~ r / f  t 2 / " ~  ( a t  temp) 

Spec i f i c  Heat, c 

Poisson's Ratio, v 

Hot Modulus o f  Rupture, p s i  

RT 
500°F 
1000" F 
'1 SUOU F 

. 1750°F 
2O0O0F 

Hot Cgmprpzzive Strength, psi 

RT 8026 + 880 
500°F 6705 I 850 
1OOOn F 8570 + 910 
1500°F 10130-2 490 
1 750°F 8690 + 390 
2000°F 6300 I 1020 

Hot Modulus u f  E l a s t i c i t y ,  ps i  x 106 

RT 0.9 + 0.5 
500°F 0.6 0.3 
1000°F 1.0 0.4 
1500" F 0.6 F 0.2 
1750" F 0.6 T 0.3 
2000" F 0.2 z 0.1 

Hot Compressive Fracture Strain,rni l / in 

RT 10 
500°F 12 
l0OO0F - 
1500°F 2 1 
1750°F 16 
2000" F - 

. .. . 

*Added 10% t o  k due t o  presence of 310SS Fibers 
' 



TABLE 17.  P r o p e r t i e s  o f  LITECAST 75-28 and KAOLITE 2380  L I  
. . . . 

.Proper t ies  LITECAST 75-28. : . KAOLITE ,2380 L I  > 

Water Level, % . 2 1 59 

' Bulk Density, pcf ~.., . 85 62 

(220°F Cured) . . 
. . . . ,  

Coe f f i c i en t  o f  Thermal ~ x ~ a n s i o n ,  a . ,  . . . -  

~ l o - ~  i n / i n / "F  I s t . .  Cycle RT 1875°F 2.61 . . -0.12." 
. . 

. . 700-1875°f:, 4.04 . . . . 
1.19 

2nd Cycle RT 1875°F . . 4.1 . . 3.30 
. . 

L inear  Shrinkage, % ' . 

0.3 0 :1 . ' . a f t e r  200°F 
a f t e r  1000°F . ' 0 . 4  . . , . 0.4 
a f t e r  '1 500" F ' 0.4 0.6 ' 

. . 
Therma.1 Conduct iv i ty ,  k . . 2.8 1.6 

BTU, i n / ~ r / ~ t ~ / " ~  ( a t  temp) 

0.83 s p e c i f i c  Heat, c 0.83 ' 

. . 

Poisson's Rat io,  v .0.2 0.2 

~ o t '  Modulus o f  Rupture, p s i  
.570 + 65 230 + 30 RT. 

' . 320 7 30 170 20 5OO0F 
1 000" F 225 7 55 ": . . ' 150 T 15 
1250" F : .. 220 25 ' . 140 T 10 

150 5 25 1500" F .. . 185 E .115  . . ' . .  . 

Hot Compressive Strength, ps i  

RT . . .. 
5OO0F 
1 000° F ': '. 

1 2 5 0 " ~  ' 

-1500°F 

H Q ~  Modulus . .  ... o f  E l a s t i c i t y ,  p s i  x106 . . .- 

. RT ' 

500°F 
. . 

1 000" F 
1250°F 
1500° F 

Hot Compressive Fracture St ra in ,  m i v i n  

UT 
500°F 
1000°F , , . 
1250°F ' 

1500°F' . . 
. .  . 



. . . . . , 

Table 18. Creep Resu l ts  on t h e  ~ o d i ' f i e d  90+X A1203 
Dense Generic Re f rac to ry  Concrete a t  

. .  . D i f f e r e n t  S t ress  Levels  and Temperatures 

. . . .  . . . .  . , 

Percent (%)  ~ e f o r m a t i o n  
. . . .  , 

1500 p s i  2000 p s i  3300 p s i .  

Time, h r .  / Temperature, OF . .  . 

1 h r .  / RT' 

3 h rs .  / . 500°F - 0.23 0.52 

3 h rs .  / .lOOO°F 0.26 0.08 - 0:16 

3 h rs .  / 150'0°F 0.34 0.20 : " . j A " , S  

3 hrs .  / 1800°F 0.90 0.32 0.58 

10 h rs .  / 2000°F 

T o t a l  
* . .  

3.22 . 2.71 5.38 

Post Tes.t Resu l t s  3.54 2.36 5.00-' 

. . 

Table 19. Creep Resu l ts  on t h e  Mod i f i ed  90+% A120 Dense 2 Generic R e f r a c t o r y  Concrete a t  D i f f e r e n  St ress  ' , 

. . Leve ls  and Temperatures (ERDA 90 - L i n i n g  #4)*  . ' 

Percen-t (% j  ~ e f o r m a t i o n  ...... .- 

~ 1 5 0 0 1 5 0 0  i s i  '2500 p s i  3300 psLi I 
, . . .  . . . .  

Time, hr: / Temperature, OF. 

1 h r .  / RT 0.03 0.10 0.08 

3 h r s .  / 1000°F 0.08 d: 25 0.22 
. . 

3 h rs .  / 1 500°F 0.14 0.32 . 0.40 

3 h r s .  / 1800°F 0.49 0.85 0.87 

10 h r s .  / 2000°F . . ' 1.08 1.54 2.77,.  

T o t a l  1.82 3.06 4.34 

Post T e s t  desu l ts * *  1.45 2.33- . . . 3 .7'5 
% .  

* Samples were p repa red ,wh i l e  L i n i n g  # I  was be ing  i n s t a l l e d .  
** Measured a t  RT on Stepwise Tested Specimens. 



. . . !  . . .', . 

Table. 20. Creep Resu l ts  on the '  50% A1 203' Dense. Generic. 
Refractory.  Concrete. a t  D i f f e r e n t  S t ress '  Levels  - and Temperatures 

' I .  . . ., 

. . , :  Percent (%) Deformation 

1500 psi..: 2000 p s i  
. . . . 

Time, h r .  / ' ~ e m ~ e r a t u r e  OF 

3  hrs .  ,/ - 250°F , , - 0.08 

3  h rs .  - / 500°F - ' 0.30 

3 h rs .  / 1000°F 0.07 0.11 

3  h rs .  / 1500°F 0.31 0'1 4.1 

10 h r s  .' / 1 8 0 0 ' ~  0.65 0.87 

Tota l  

Post Test  Resul ts  

Table 21. creep Resu l ts  on t h e  KAOCRETE XD 50 
(Mix '36C) R e f r a c t o r y  Concrete a t  

, D i f f e r e n t  s t r e s s  Leve ls  and .Temperatures 

. . 
. . 

Percent (%) Deformation 
. . . . 

1000 p s i  2000 p s i  2500 p s i  

Time, h r .  / Temperature OF 

1  h r .  / .RT 

3  h rs .  '/ '.500°F 

3  h rs .  / 1000°F 

3  h rs .  / 1.500°F 

3 h rs .  / 1800°F 

10 hrs .  .: J 2000°F 

,To ta l  

Post Tes t  Resu l ts  



TA3LE 22. Creep Resu l ts  on the  KAOCRETE XD 50 (Mix 36C) Refract .ory  
Con,crete -Wi th 4 W/O 310 .S ta in less  S tee l  F ibe rs  a t  
D i  .F.fet-ent' S t ress  Levels. and Temgeratures. 

. . +, 
. . 

Percent (%)  Deformation 

1000 p s i .  1500 p s i  2000 p s i  

Time; h r .  / Temperature OF 

3 h r s .  / 500°F 0.23 0.27 0.52 

3 h r s .  / 1 5 0 0 " ~  0.35 0.37 0.50 

3 h r s .  / 1800°F. 0.27 0.38 0.49 

10 h rs .  1 2000°F 

T o t a l  2.79 3.44 . 5.72 

pos t  Tes t  .Results 1.78 2.29' . - 

Table 23. Creep Resu l ts  on LITECAST 75-28 I n s u l a t i n g  
R e f r a c t o r y  Concrete a t  D i f f e r e n t  S t ress  
Level  s and Temperatures A- a . 

, Percent  ( X )  ' ~ e f o r m a t i o n  

700 p s i  1000 p s i  1500 p s i  
. . 

Time, h r .  / Temperature OF 

1 h r .  . 1 '  RT 

3 h rs .  / 250°F 

3 h rs .  / , 500°F 

3 h rs .  / 1'000°F . . 

3 h rs .  / 1250°F 

10  hrs .  / 1500°F 

T o t a l  

Post .Test ~ e s u l t s '  1.73 3.79 ' , 6.40 



T H E R M A L  , EXPANSION OF O E N S E  A N D  INSULATING 
. . 

. . .  

T E M P E R A T U R E ,  F . . .  
. . 

. . .  . ., . 
. . 

. . . . - .  . . . . 

FI.XJRE.106. Thermal Expansion . . Curves of Castab les d u r i n g  I n i t i a l  . . 

Heat-up; 



3.8 1 A i r  s t w e d  18 Days (0.1% L inear  Shrinkage t o  1200 F )  

0 200 400 600 8830 . 1000 , . 1200 1400 . . 1600' 1830 2000 
Temperature', . O F  

. . 

FIGURE. .107. "Thermal ',Expansion Curves o f '  ERDA 90 A f t e r ' .  . ,  . . :  ,:. , . - 
Stcrage i n '  D i f f e r e n t  EnGironments. 

' ~ ,.. . . ... . .  , 



THERMAL CO!JDUCTIVITY OF A DENSE AND INSULATING MATERIAL 

. . , :  

. .. 'MEAN TEMPEPATUKE (OF x 100) ..:.;:.: 

. . 

FIGURE 108. Thermal C o n d u c t i v i t y  'ds :' ..Temper,ature of go+% A1 203 Dense 
.' Generic and LITECAST 75-28 Ref rac to ry  Concretes: 



FIGURE 1 09. Therma 1 Conduct i y i ty  Vs . ~ e m ~ e r a  t u r e  o f  KOACRETE XD- 50. . 
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Mean Temperature. ( O F  X 100) 
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FIGURE 1 1  1 . Thermal Conductivity Vs. Temperature 

o f  KAOI. ITE 2300-L I .  



TEMPERATURE, O C '  
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'3.-POINT BENDING : 

. . TEMPERATURE,' F 
FIGURE i 1 2 .  ~ o ' t  Bendinp ~ t r e n ' ~ t h  Vs. Temperature o f  ~ e n s e  ~ e n e r i c  

. . and I n s u l a t i n g  Castab les.  
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accounted f o r  accura te ly  i n  a s t ress  ana lys is ,  t h a t  ana lys i s  cou ld  be g ross l y  
i n  e r r o r .  

As shown i n  Figures 112-115, t h e  s t rengths  o f  t h e  key m o n o l i t h i c  re f rac -  
. t o r i e s  were f a i r l y  un i fo rm over  t he  te~ l~peva tu re  ranges used and the  ma te r ia l s ,  

a1 1 genera l l y  broke i n  a b r i t t l e  manner. The modulus of rup tu re ,  ~nodulus of 
e l a s t i c i t y  and f r a c t u r e  energy values genera l l y  showed an i n i t i a l  l oss  a t  50U°F 

8 of  up t o  50% bu t  then remained f a i r l y  cons tant  above t h a t  temperature. The 
compressive s t r e n g t h  values on the  o t h e r  hand showed l i ' t t l e  i n i t i a l  l o s s  and 
o n l y  minor v a r i a t i o n s  over  t he  temperature ranges s tud ied .  The use o f  4 w/o 
310 s t a i n l e s s  s t e e l  f i b e r s  i n  KAOCRETE XD 50 (Mix 36) d i d  no.t apprec iab ly  change 
t h e  s t reng th  o f  t h i s  ma te r i a l  b u t  d i d  improve i t s  toughness as noted d u r i n g  the 
modulus of r u p t u r e  t e s t i n g  by t h e  g rea te r  area under i t s  load/def lec t , ion  curves 

, : compared t o  t h e  f i  ber  f r e e  m a t e r i a l .  

Al though the  compressive s t r e n g t h  t e s t s  were r u n  on smal l  samples, t he  
room temperature measured r e s u l t s  were found t o  agree w e l l  w i t h  s t rengths  de te r -  
mined on b r i c k  s i z e  samples o f  t he  same o r  s i m i l a r  types o f  m a t e r i a l s .  I n  a d d i t i o n ,  
as diagrammed i n  F igu re  113 the  samples genera l l y  broke i n  a near p e r f e c t  shear 
f a i l u r e  mode which would be expected f o r  un i fo rm u n i a x i a l  compressive l oad ing  of 
b r i t t l e  ma te r i a l s .  Based on these f i n d i n g s ,  t he  h o t  compressive s t reng ths  de te r -  
mined on these s ~ i ~ a l l  samples,w:ere' used w i  t h  conf idence i n  t h e  s t r e s s  ana lys i s  work. 

. " 

The modulus o f  e l a s t i c i t y  values determined on these key monol i t h i c  re f rac -  
t o r i e s  were genera l l y  smal le r  ( l e s s  than 2  x 106 p s i  and u s u a l l y ~ . l e s ~ s , .  than 1 x 106 p s i )  

. t han  those of f i r e d  r e f r a c t o r i e s  bu t .  they were s i m i l a r  t o  u the  values repo r ted  f o r  
Po r t l and  cement based concretes 5,10. The val  ues W ; ~ C  a lso  c o n s i d e r a b l y  lower 
(by an order  o f  magnitude) than the  values repo r ted  f o r  dense. re . f rac to ry  8 concretes when measured w i t h  a sonic method. I t  appears t h a t  a mechanical method 
of determin ing modulus o f  e l a s t i c i t y  i s  a more r e a l i s t i c ' m e t h o d  for s t r e s s  a n a l y s i s  
work than a sonic method. . . .. .. 

Tables 18 through 23 l i s t  t h e  creep r e s u l t s  0n.mos.t o f  t h e  key r e f r a c t o r i e s  
a t  t h r e e  s t ress  l e v e l s  and the  temperatures o f  i n t e r e s t .  The actua1,creep data 
c o l l e c t e d  on these key r e f r a c t o r i e s  a t  these d i f f e r e n t  s t r e s s  l e v e l s  and tempera- 
t u res  and a t y p i c a l  t a b u l a t i o n  o f  t he  same-.creep data on t h e  50% .A120j dense 
gener ic  r e f r a c t o r y  concrete which,have been reduced t o  U n i t  S t ra ' in  a r e  i nc luded  
i n  Tdbles [1-18 through B-34 'i'n Appendix B.-. F igures 116 through 123 show t y p i c a l  
U n i t  Creep p l o t s  ob ta ined on-  these materials., t h e  d i  r rerence i n  masroscnpic 
appearance o f  the 50% A1203 dense gener ic  r e f r a c t o r y  concrete and the  KAOCRETE 
XD 50 (Mix 36C) a.f ter 'creep t e s t i n g  and, , t he   microscopic appearance of some of ' t h e  
r e f r a p t o r i  es be fore  and a f t e , r  .creep t e s t i n g  .' , . . 

. .  . ..- ., - . . . . 

As can be seen from these creep data  and t h e  stepwise creep p l o t  shown i n  
F igure  12 for. the  mod i f ied .  go+<%. A1 i 0 3  dense gener ic  r e f r a c t o r y  concrete, steady 
s t a t e  creep appeared t o  be a t t a i n e d  i n  t h r e e  t o  f i v e  hours. These c;reep data  a1 so 
showed t h a t  t h e  creep o f  t h e  m a t e r i a l s  was more temperature dependent than s t r e s s  
dependent i n  t h e  temperature and s t r e s s  ranges used. General ly ,  very  l i t t l e  creep 
occurred f o r  any o f  t h e  m a t e r i a l s  below 1000°F. Th i s  was f u r t h e r  conf irmed w i t h  the  
s t r e s s  r e l a x a t i o n  r e s u l t s  which a re  i nc luded  i n  Appendix B and by t h e  creep work of  
McGee, Smyth and Bray 22 . The LITECAST 75-28 began t o  creep d r a m a t i c a l l y  some- 
what above t h i s  temperature and genera l l y  deformed t h e  most w h i l e  t h e  o t h e r  m a t e r i a l s  

f d i d  n o t  creep s i g n i f i c a n t l y  u n t i l  h ighe r  temperatures. The c r i t i c a l  temperatures a t  
which creep became s i g n i f i c a n t  f o r  t h e  var ious  key monol i t h i c  r e f r a c t o r i e s  were found 
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FIGURE 120. Appearance o f  50% A1203 Dense Generic and KAOCRETE 
XD-50 (Mix 3GC) A f t e r  Creep Testing. 
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FIGURE 122. Appearance o f  50% A1203 Dense Generic 
After Creep Test. 





t o  be: 

90+% A1203 dense generic 

KAOCRETE XD 50 (Mix 36C) 

KAOCRETE XD 50 (Mix 36C) 
w i t h  4  W/O 310 's ta in less 
s tee l  f i b e r s  

50% A1203 dense generic 

LITECAST 75-28 

KAOLITE 2300 L I  Not Determined 

The amount o f  creep genera l ly  fo l lowed t h i s  same order. 

The LITECAST /!I-28 cou ld  be tes led  a t  1500°F but  could no t  withstand 
stresses above 1500 ps i .  The 50% A1203 dense generic could be tes ted a t  1800°F 
and stresses t o  2500 p s i  bu t  would f a i l  i f  tes ted a t  2000°F and 1000 ps i  o r  more 
as shown i n  Figure 120. The 90+% A1203 dense generic and KAOCRETE XD 50 (Mix 
36C) could be tes ted a t  2000°F and 2500-3300 p s i  w i thout  f a i l i n g .  This was no t  
t r u e  f o r  the 90+% A1203 dense generic, however, i f  the water l eve l  used was 0.5 
t o  1.0% higher than the optimum. The mater ia l  l o s t  considerable creep resistance 
and would f a i l  a t  2000°F and 2000 ps i .  This was a lso no t  t r u e  f o r  the KAOCRETE 
XD 50 (Mix 36C) when s ta in less  s tee l  f i b e r s  were added t o  it. The mater ia l  could 
no longer surv ive a  creep t e s t  a t  2000°F i f  i t  contained 4 w/o 310 s ta in less  s tee l  
f i b e r s  and i t  was tes ted  a t  2000 p s i  o r  h igher stress. As shown i n  Appendix B, the 
mate r ia l  had even poorer creep res is tance when i t  contained 2 o r  4  w/o 446 s ta in less  
s tee l  f i b e r  and was tes ted a t  2000°F and stresses greater than 1000 ps i .  

The creep r e s u l t s  l i s t e d  i n  Tables 18-23 genera l ly  show a d i f fe rence  i n  
creep between the cummulative t o t a l  and the post  t e s t  . t o t a l .  This d i f fe rence  was 
thought t o  be due predominantly t o  the creep recovery which occurs i n  the samples 
dur ing  the unloading porbtion o f  the t e s t .  This creep recovery was no t  accounted 
f o r  i n  the c u m u l a t i v e  t o t d l  bu t  i s  essen t f a l l y  accounted f o r  on the specimen 
measured a f t e r  the t es t .  The creep recovery genera l ly  appears t o  be greater, the 
g rea te r  the creep. 

These creep r e s u l t s  i nd i ca te  t h a t  the chemical composition, r e f r a c t o r i -  
ness o f  the bond afid dens i ty  (poros i t y )  o f  thesc key r e f r a c t o r y  concretes are  
major fac tors  i n  c o n t r o l l i n g  creep. The d i f fe rence  i n  creep between the 90+% 
A1203 and 50% A1203 dense generics i s  mainly due t o  the former two property effects 
wh i l e  the d i f fe rence  i n  creep between t he  50% A1203 dense generic and the KAOCRETE 
XD 50 (Mix 36C) i s  due t o  the l a t t e r  two property e f f ec t s .  Spec i f i ca l l y ,  these 
a re  the lower. cement l e v e l  (c15X vs 25%) and the optimized g ra i n  s i z i n g  o f  the 
KAOCRETE XD 50 (Mix 36C) compared t o  the  50% A1203 dense generic re f rac to ry .  The 
l oss  o f  creep resistance o f  the  KAOCRETE XD 50 w i t h  4 w/o 310 s ta in less  s tee l  f i -  
bers i s  apparent ly due t o  the e f f e c t i v e  increase i n  po ros i t y  created by the pre- 
sence o f  the  s o f t  f i b e r s  and t o  the enhancement o f  shearing caused by the so f t  
f i b e r s  dur ing the high temperature tes ts .  

Very few mate r ia l s  were tes ted on a  second cyc le  o r  monitored f o r  creep 
dur ing  the  cooldown bu t  those t h a t  were tes ted on a  second cyc le  genera l ly  'showed 
a reduced l eve l  o f  creep. This l a t t e r  e f f ec t  i s  shown i n  Appendix B f o r  the 90+% 
A1203 and KAOCRETE XD 50 (Mix 36C) mater ia ls .  More data on these e f f e c t s  on creep 
are ava i l ab le  i n  the  work o f  McGee, e t  a1 22. 



The microscopic examination o f  the creep tes ted re f r ac to r i es  showed t ha t  
they had densi f ied and developed microcracks dur ing the tes ts .  The degree of 
dens i f ica t ion and microcracking was dependent on t he  s t ress l eve l  used i n  the t es t .  
Figures 121-123 show the t y p i c a l  appearances o f  the 90+% A1 03 dense generic, the 
50% A1203 dense generic and the  LITECAST 75-28 before and a f t e r  t es t i ng .  

A1 though on ly  1 i m i  t ed  t e s t i n g  was done t o  s p e c i f i c a l l y  evaluate the 
crack res is tance o f  the key re f rac to r ies ,  the f r ac tu re  energy r e s u l t s  showed 
an i n te res t i ng  t rend t h a t  would be fo l lowed i n  the l i n i n g  tes ts .  This t rend 
which i s  shown i n  Figure 11 5 ind ica ted  t h a t  the 50% A1 203 dense generic was 
more r e s i s t a n t  t o  crack growth than the 90+% A1 0 dense generic and LITECAST 
75-28 i n  t h a t  order. The KAOCRETE XD 50 (Mix 3 k 3  was expected t o  ac t  l i k e  
the 50% A1203 dense generic and the use o f  metal f i b e r s  i n  i t  was expected t o  
make i t  even more res i s t an t  t o  crack propagation. 



3.3. Evaluation and V e r i f i c a t i o n  Tests 

The f o l  lowing two sect ions describe r e s u l t s  o f  panel and hol low cy l inder  
t e s t s  : 

3.3.1. Panel Tests 

Ten panels were made f o r  heat-up t e s t i n g  as described e a r l i e r  i n  Table 
8. The purpose o f  t h i s  work was mul t i - faceted and included evaluat ing o r  i n v e s t i -  
gat ing:  

(1 ) The temperature p r o f i l e s  on twelve (1 2) inch  t h i c k  l ini'ngs. 

(2 )  The design and performance o f  the experimental V-type anchor, 
and d i f f e r e n t  anchor conf igurat ions inc lud ing  no anchors. 

( 3 )  The performance o f  dual component panels using lower water 
leve ls ,  d i f f e r e n t  mix ing and cur ing times and cur ing condi- 
t i ons ,  

( 4 )  The performance o f  the 50% A1203 s ing le  component l i n i n g .  

( 5 )  The e f f e c t  o f  independent anchoring b f  the i n s u l a t i n g  compo- 
nent on the cracking tendency o f  the dual component l i n i n g .  

( 6 )  The e f f e c t  which the 12 cu. ft. Mul ler  mixer and l a rge r  batch 
s izes (600-700 lbs .  ) would have on the q u a l i t y  o f  the panel 
produced and the  heat-up performance obtained. 

( 7 )  Various Acoustic Emission (AE) moni tor ing techniques. 

(8) The sample c o l l e c t i o n  and t ea r  ou t  procedures planned for  
the l i n i n g s .  

The work was found t o  be very bene f i c ia l  t o  the r e s t  o f  the program. 
Through i t  a be t t e r  apprec ia t ion was gained o f  the explosive spa l l i ng  tendency o f  
the dual component l i n i n g s  w i t h  the dense 90+% A1203 castable and the fac tors ,  
espec ia l l y  the  r a p i d  heat-up ra tes  (>250°F/hr i n  400-1000°F range), which caused 
it. I n  add i t ion,  t h i s  work ind ica ted  t h a t  the V-type anchor design should be 
modi f ied t o  improve i t s  performance, a s i x  (6 )  inch  spacing was too c lose and could 
have cont r ibuted t o  the  exp los ive s p a l l i n g  problem, less  cracking could occur when 
Y-type anchors are used, the modi f ied 90+% A1 203 generic formulat ion looked acceptable 
f o r  the  l i n i n g  tes ts ,  the  50% A1203 s i ng le  component l i n i n g  appeared t o  be suscept ib le 
t o  cracking, independent anchoring o f  the  i n s u l a t o r  d i d  not  have any not iceable  ef fect  
on the l i n i n g  performance, and a v i ab le  acoust ic emission moni tor ing technique had 
been developed f o r  use i n  the  l i n i n g  tes ts .  

Figure 124 i s  an example o f  the type o f  thermal p r o f i l e  obtained dur ing 
a t y p i c a l  panel t e s t .  It i s  f o r  the panel contain ing the  uncoated Y anchors. Figure 
125 shows the  crack pa t t e rn  observed i n  t he  90+% A1203 and i n s u l a t i n g  castable por- 
t i o n s  o f  t h i s  panel on the hot  face and through i t s  cross section. The cracks have 
been h igh l igh ted  w i t h  b lack ink .  

The r e s u l t s  showed t h a t  the metal she l l  could get  up t o  250°F when a 
6" anchor spacing was used and a 2000°F h o t  face temperature was achieved. They a lso  
ind ica ted  t h a t  the i n s u l a t i n g  castable could ge t  as hot  as 1600°F a t  the i n te r f ace  
between the two components and t h a t  the  dense castable cooled very qu i ck l y  and a t  
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one point was cooler than the hot test  region of the insulating castable. 

By comparison to  the Y anchor containing panel, the anchorless panel 
had a 50 to  100°F lower shell  temperature. T h i s  differende indicated that  the 
anchors which extended out into the dense castable acted'as heat sinks and conducted 
considerable heat t o  the she l l .  In e i the r  case, however, even with cracking, the 
pressure vessel she1 1 wall should remain below 650°F, the  shell wall design tem- 
perature. 

The cracking pattern seen in Figure 125 for  the uncoated Y anchor con- 
ta ining panel was f a i r l y  typical of the appearance of a l l  the panels except that  
the degree of cracking i n  the dense castable varied. I t  was hardly cracked a t  a l l  
i n  the coated anchor containing panel whereas i t  was severely cracked i n  the un-  
coated anchor containing panel and contained shallow surface cracks only in the 
anchorless panel. The cause fo r  the b i g  differences between the cracking tendency 
of the  anchorless and wdx coated anchor containing panels and the uncoated anchor 
containing panel is  apparently due to  the absence or reduction of anchor-refractory 
interact ions.  However, the use of 1 .O% l ess  water i n  the dense castable component 
of the coated anchor containing panel cou1.d a l so  have helped reduce the cracking 
tendency of t h i s  component. 

The consistent cracking of the LITECAST 75-28 indicated tha t  the 26% 
water level was too high and tha t  lower water levels would be necessary. Through 
experiments w i t h  100 lb .  quant i t ies  of t h i s  castable in a 4 cu. f t .  mortar mixer, 
i t  was found tha t  21% water was a minimum level to  produce good castings; and some 
amount between 23 and 24% appeared to  be the optimum level.  

The 9.3% water level used with the dense 90+% A1203 castable in the 
uncoated anchor containing panel was generally considered t o  be the m i n i m u m  level 
t o  produce good castings.  A 9.8% level was considered to  be closer to  the optimum 
level fo r  t h i s  castable when the 4 cu. f t .  mixer was used. 

Thermal prof i les  for  two panels which underwent explosive spalling a re  
shown in Figures 126 & 127. Photographs of the spa1 led ydnel appcar i n  Figures 28 
& 128. When panel 4 explosively spalled, the front  2-1/2 inches of the 90+% A1203 
generic hot face material separated from the r e s t  of the panel with such force, i t  
blew the 285 1 b. panel out of the furnace door. The panel continued to  expldde fo r  
a number of minutes a f t e r  i t  landed on the f loor .  Even though this explosion oc- 
curred, the insulating component and some of the dense component remained in t ac t  
(and anchored) t o  the metal plate .  The s t r a igh t  anchor legs were also in t ac t  and 
did not appear t o  be bent o r  dis tor ted by the explosive spalling of the dense 
castable.  They obviously had provided very l i t t l e  holding force fo r  the fa i led  
dense component. 

This explosive spaliing of the panel 4 ide r~ l i f i ed  the need for a re- 
ta ining bar on the  f ront  of the furnace to  prevent panels from blowing out of the 
furnace door i f  explosive spal l ing occurred again. T h i s  event a lso led to  a re- 
view of the mixing, casting and curing history of t h i s  panel t o  determine i f  some- 
t h i n g  had contributed to  the spalling. T t  became apparent from t h i s  review tha t  a number 



.FIGURE 125. Front and Side View o f  TMQ Component 
Panel (#ti) After Heat-Up Test to 2000°F. 
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FIGURE 128. Spa1 led Panel #4. 
Straight Anchor Sticking Out of Insulator. 
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o f  factors contributed t o  the high s e n s i t i v i t y  o f  panel 4 t o  explosive spal l ing 
during an inadvertent rapid heat-up ra te  i n  the 700°F temperature range. These 
factors i ncl uded: 

(1) 5" o f  90+% A120 generic castable were used rather  than the 
4-1/2" o r i g ina l  9 y planned. 

(2) The 90+% A1203 generic was cast i n  two (2)  separate pours from 
a 4 cu. ft. mortar mixer. (This could have produced a d i  s- 
cont inu i ty  i n  t h i s  component i n  the loca t ion  o f  the f racture 
surface. ) 

(3) The hot face surface was troweled smooth and covered wi th  wet 
b l o t t e r  paper before being covered w i th  p l a s t i c  t o  maintain 
a high humidity during curing. 

(4) The panel cured over a long weekend when the laboratory tem- 
perature was lowered t o  $65"F. 

These l a s t  two factors were thought t o  be the main contr ibutors t o  t h i s  
s e n s i t i v i t y  and give credence t o  the f indings o f  other invest igators who have 
reported the explosive spa1 1 i ng  s e n s i t i v i t y  o f  high a1 umina castabl es tha t  have been 
cured a t  below 75°F. This s e n s i t i v i t y  becomes apparent a t  temperatures o f  800°F 
and higher during rap id  heat-up rates (250°F/hr o r  higher). - '."; 

- 4- - . -  - . : * %  

To t e s t  the v a l i d i t y  o f  these 4 factors, panel 5 was made and heated. 
Great care was taken during the fabr icat ion o f  t h i s  panel t o  el iminate the factors 
which made panel 4 sensi t ive t o  heat-up rate, and included: 

(1 ) Repeating the same anchor spacing but bending the l a s t  one inch 
o f  each leg  inward 90". 

(2) Using warm water during the placement o f  both components t o  
maintain a pour temperature above 75OF. 

(3) Roughening the hot face surface w i th  a wi re brush a f t e r  cast ing 
t o  open the surface pores. 

(4) Wrapping the panel w i th  p l a s t i c  and ceramic f i b e r  blanket t o  
maintain a %80°F o r  higher cur ing temperature environment. 

( 5 )  Deleting spray water on the cast surface. 
I 

This greater care apparently reduced the s e n s i t i v i t y  o f  panel 5 t o  
explosive spa l l ing  by permit t ing i t  t o  remain i n t a c t  a t  the rapid heat-up ra te  
[460°F/hr) due t o  a con t ro l l e r  malfunction u n t i l  the 800 t o  1000°F temperature range 
had been reached. The panel exploded w i th  the same force as panel 4 but the re- 
s t ra in ing  bar i ns ta l l ed  on the front o f  the furnace prevented the panel from being 
blown out o f  the furnace. The panel f a i l e d  i n  the same manner as the previous panel 
except t h a t  the hot face component spalled i n t o  four  (4)  pieces and the bent anchor 
extensions remained embedded i n  these pieces. The force o f  the explosion was great 
enough when f a i l u r e  occurred, t ha t  the threaded nuts o f  the anchor extensions were 
str ipped o f f  the welded leg. These items are stlown i n  Figure 129- 

Despite the furnace control  l e r  problems, the resu l t s  indicated tha t  the 
s i x  (6) inch spacing which was common t o  panels 4 and 5 should not be used further. 

D 



FIGURE 129. Spalled Panel #5 Showing Stripped 
Anchor Nuts. 



They a l s o  i n d i c a t e d  t h a t  the  dry -ou t  port ' ion ' o f  t h e  Case #1 heat-up schedule should 
be extended t o  remove as much mechanical water as p o s s i b l e . f r o m  the  l i n i n g  before 

- the  heat-up t o  1000°F' i s  s t a r t e d . '  These resul'ts. 5 n  pane1 5 a l s o  i.ndi.cated the  
need f o r  a  f a i l  -safe system on t h e  pressure v e s s e l l t e s t  furnace and around the  c l o c k  
s u r v e i l l a n c e  o f  t he  l i n e d  vessel ,heat-up t e s t s .  

These f a c t o r s  were ' inves t iga ted  i n -  panel .6 along w i t h  t he  prev ious  f a c t o r s  
s tud ied  i n  .panel. 5. I n  a d d i t i o n ,  a  d i f f e r e n t  anchor c o n f i g u r a t i o n  (see F igure  15)  
was used. ' I t included. t h ree  ( 3 )  Y-typesanchors spaced between 8-112" and 12" a p a r t  
and am independent V-type anchor i n  t he  i n s u l a t o r  component. Since t h e  modi f ied 
Case #1 heat-up schedule was achieved d u r i n g  the  runn ing  o f  t h i s  panel as i n d i c a t e d  
by t h e  thermal p r o f i l e  i n  F igu re  130, n o . r a p i d  hea t i ng  r a t e s  o r  exp los i ve  s p a l l i n g  
were experienced. .The panel was cracked through bo th  the  dense and i n s u l a t o r  com- 
ponents a f t e r  t h e  t e s t .  The crack p a t t e r n  was ma in l y  random bu t  some cracks  appeared 
t o  p a r a l l e l  t h e  anchor o r i e n t a t i o n s .  

. . 

Since. n e i t h e r  t he  mod i f i ed  90+% A120 gener ic  cas tab le  o r  m a t e r i a l s  mixed 
w i t h  t h e  12 cu. ft. mor ta r  mixer  had been evalua 2 ed i n  any o f  t h e  panel. t e s t s ,  panel 
7  was made t o  i n v e s t i g a t e  these po in t s .  It was p r a c t i c a l l y  i dden t i ca l  t o  panel 6 
except f o r  t h e  d i f f e r e n c e s  mentioned above and f o r  t he  f a c t  t h a t  t he  m a t e r i a l s  were 
mixed and poured a t  s l i g h t l y  h igher  temperatures. Th is  caused t h e  LITECAST 75-28 
t o  be somewhat s t i f f  d u r i n g  placement. T h i r d l y ,  a  lower water lev .e l  was used w i t h  
t h e  mod i f i ed  90+% kl2o3 gener ic  cas tab le  (8.5% vs 9.3%). 

It was found t h a t  panel 7  had o n l y  minor  sur face  c racks  compared t o  
panel 6 a f t e r  t he  mod i f i ed  Case #1 heat-up schedule and f o r  a l l  p r a c t i c a l  purposes 
was uncracked. Since t h e  main d i f f e r e n c e s  between panels 6 and 7  were t h e  fortnula- 
t i o n s  o f  t he  dense m a t e r i a l ,  t h e  water l e v e l  used i n  t h e  dense component and t h e  m i x i n g  
and c u r i n g  temperatures used, these d i f f e r e n c e s  must be p r i m a r i l y  respons ib le  f o r  
t h e  b e t t e r  performance o f  panel 7. Based on these f i n d i n g s ,  t h e  m o d i f i e d  90+% 
A1203 gener ic  m a t e r i a l  w i t h  t h e  m ix ing  and c u r i n g  c o n d i t i o n s  f o r  panel 7  was used 
i n  t h e  f i r s t  l i n i n g  t e s t .  

The panel t e s t s  a l s o  p rov ided an o p p o r t u n i t y  t o  eva lua te  t h e  l i n i n g  
t e a r - o u t  procedures planned. The anchor less panel s p l i t  a p a r t  q u i t e  r e a d i l y  a long 
t h e  dense- l igh twe igh t  i n t e r f a c e .  I t  was then sec t ioned by a  diamond saw t o  d e t e r -  
mine t h e  e x t e n t  of c rack .p ropagat ion .  A l though i t  was d i f f i c u l t . t o  determine, t h e  
cracks d i d  n o t  appear t o  propagate complete' ly through t h e  th ickness  o f  t h e  dense 
m a t e r i a l .  A hammer and c h i s e l  were.used on t h e  panels w i t h  anchors. S p l i t t i n g  
fo l lowed t h e  l a r g e r ,  deeper cracks i n  t h e  su r face  o f  t h e  dense cas tab le  as chunks 
.were chipped away f rom t h e  panel.  A x i a l  c racks  i n  m a t e r i a l  ad jacent  t o  anchors 
were noted i n  bo th  t h e  dense and i n s u l a t i n g  r e f r a c t o r y  when chunks o f  l i n i n g  were 
' pu l l ed  away f rom t h e  anchors. Genera l ly ,  t h e  panels  c o u l d  be t o r n  a p a r t  w i t h o u t  
t o o  much d i f f i c u l t y  and the  same anchors were used f o r  t h e  two anchor c o n t a i n i n g  
panel s. 

I n  summary, t he  panel work was .very h e l p f u l  and in fo rmat ive .  It had 
i n d i c a t e d  t h e  s e v e r i t y  o f  t h e  exp los i ve  s p a l l i n g  o f  t h e  90+% A1203 dense gener ic  
type  mater.ia1 and t h e  s e n s i t i v i t y  o f  t h i s  m a t e r i a l  t o  h e a t i n g . r a t e s  o f  250°F/hr 
o r  g r e a t e r  i n  t h e  700 t o  1000°F temperature range e s p e c i a l l y  when i t  i s  cured a t  
below 75°F. A hea t i ng  r a t e  o f  200°F/hr o r  l e s s  appears t o  be a  sa fe 'one  t o  use 
t o  p revent  exp los i ve  s p a l l i n g .  

f '  





. T h i s  work has a l s o  showed t h a t :  

1  ) The modifie! Case',#l heat-up, schedul'e shou ld  be used i.n t he  
i n i t i a l  vessel l i n i n g  t e s t s .  

(2 )  A f a i l  - sa fe :  system should. be i n s t a l l e d  on the  pressure vessel / .  . . 
t e s t - f u r n a c e  t o  prevent  r a p i d  heat ing  r a t e s  from occur r ing .  

( 3 )  A s i x  (6 )  i n c h  anchor spacing i s  too  c l o s e  and p r o b a b l y ' c o n t r i -  
butes t o  s t ress  bu i l d -up  i n  t he  l i n i n g .  

(4 )  Y-type anchors may produce l e s s  c rack ing  than V-type anchors. , . 
. . 

( 5 ) .  The mod i f i ed  90+% .A1203 gener ic  cas tab le  m ixed .w i th  the  12 cu. 
ft. mor tar  mixer  a t  a  8.5% water l e v e l ' o r  lower i s  an accep tab le ,  

' 

dense component mater i 'a l '  t o  use i n  t he  l i n e r  t e s t s .  LITECAST 75-28 
c a s t  a t  21% wafer g ives a  low shrinkage m a t e r i a l  which i s  acceptabl'e 
f o r  use a s  t h e  i n s u l a t o r  component. . . . . 

( 6 )  Batch temperatures o f  a t  l e a s t  70°F and p r e f e r a b l y  75OF shou ld  
be used t o  reduce c rack ing  and exp los ive  s p a l l i n g  tendencies. 

. . .. _ 
. .. 

( 7 )  Surface roughening o f  the,dense' component ho t  face he1 ps reduce 
the  ' s e n s i t i ' v i t y  o f  t h i s  type ma te r ia l  t o  exp los i ve  spa1 1  ing .  

( 8 )  The V-type anchor design should be mod i f i ed  t o  improve the  s t r e n g t h  
o f  the  threads.  

( 9 )  Independently anchoring the  i n s u l a t i n g  component d i d  n o t  appear t o  
have a  p o s i t i v e  o r  negat ive  e f f e c t  on t h e  tendency o f  t h e  l i n i n g  t o  
crack.  

. * 

The . f i nd inas  o f  t h i s  work de'al ing w i t h  exp los i ve  s p a l l i n g  were pub- 
23,24 l i s h e d  i n  1978. . . 

. . . . 

3.3,2. Hol low Cy l i nde r  Tests 

Tables 24 through 27 summarize the  ma te r ia l s ,  design conf igura t ions ,  . , ! . . .  
ope ra t i ng  cond i t i ons ,  heat ing  schedules, and r e s u l t s  obta ined o n f o u r  o f  t h e  key 
monol i t h i c  r e f r a c t o r i e s  (mod i f ied  90+% A1 *03 dense gener ic ,  KAOCRETE XD 50 (Mix 
.36C), LITECAST 75-28 and KAOLITE 2300 . L I )  and mod i f i ca t i ons . . t o  them i n  the  ho l low 
c y l i n d e r  t e s t s .  The purpose o f  these t e s t s  was t o  eva lua te  v a r i o u s , m a t e r i a l s  and/ 
o r  designs and ope ra t i ng  parameters t o  acqu i re  a d d i t i o n a l  d i r e c t i o n  on how b e s t .  t o  
improve the  performance o f  monol i t h i c  r e f r a c t o r y  1  i n i n g s  and d i r e c t  t h e  p lans f o r  
t he  l a s t  t h ree  t o  f o u r  l i n i n g  t e s t s . '  The f i n d i n g s  o f  t h i s  t e s t i n g  a r e  discussed . . 

i n  t h e  f o l l o w i n g  paragraphs. 

The order  o f  c r a c k i n g  tendency was i n  general t h e  h ighes t  f o r  t he  
LITECAST 75-28 fo l l owed  by KAOLITE ,2300 L I ,  t h e  mod i f i ed  90+% A1203 dense gener i c  
andKAOCRETE XD 50 (Mix 36C). I n  general,  i t  o n l y  took  a heat ing  
r a t e  o f  about 400°F/hr t o  c rack  the  LITECAST 75-28 and . .- KAOLITE 2300 , L I  m a t e r i a l  s  



TABLE 24. Cy l i nde r  Test  Resul ts  f o r  Modi f ied 90+% A12Q3 Generic 

Cyl. . Composition Casting ' . F i r ' ing ' Temperature' Crack Width Crack . 1.0. 
No. - and Design Hi s tory  Schedule P r o f i l e  . Ranking . Pattern Shrinkage V Meter 

1 7.75% H 0 Stored 13 600°F/hr. HF. -1660°F 4 2 Medium. .13% 25.7 1 L lne r  4 months t o  1.660°F, CF. -1 1 70°F - large 
Unrestrained Sealed 200°F/hr . AT -490°F . . .cracks 95%:' ' . 

cool penetrat ion 

2 7.75% H20 . Stored 13 ' 600°F/hr HF-1760°F 5 2 L a r g e .  N.C 32.9. 
L Ine r  4 Months t o  1 760°F, CF/shell -1210°F** cracks 90% . . .. . 
Attached Sea 1 ed 200°F/hr . AT-550°F penetrat ion 
Rest ra in t  

3 10 W/O Kyanite Stored ' 600°F/hr HF-1860°F 3 3 Fine . ' .30% 34.6 
Added, 8Z H20 4 days t o  1860°F, CF-1060°F cracks 65% 
Cast i n  Sea 1 ed 200°F/hr She1 1 -78OU.F*** Penerratlon . 
Restrain ing cool ~ T - 8 8 0 Y  
rlng(1/2"SS)- 
Ring coated 
w/si l icone grease . . . 

4 10 W/O Kyanite stored 600°F/hr 
Added, 8-1/22 4 dzys t o  .1820°F, 
H20, Cast i n  Sealed 200°F/hr 
r e s t r a i n t  ng cool. 
r i ng - r i ng  coated 
w/si l icone grease 

5 8.25% H20 Mortar a i r  600°F/hr ' to 
cas t  i n  re -  . d r i ed  5days max heating 
s t r a i n i n g  r i n g  castable o f  mortar 
p re l i ned  w i t h  stored (750°F), 
l./1" HES mortar 1. day BOII°F/ h r  

Sea 1 ed cool 

HF-1845OF 
CF-1 140°F 
Shel 1-1 040°F 
BT-805°F . 

HF-1 320°F 
CF-790°F 
Shel 1-700°F . 
AT-620°F . 

2 1 Fine crack .32% 
1 Med. crack 

. , (port ion) . ' 

. '. ..: 54% Penetration 
. . 

2 3 v e r y f i n e  .16% 
,cracks 50% 
penetrat ion 

6 .10 W/O Kyanite Stored 14 600aF/hr t o  HF-1660°F 4 2 Medium -13% 37.9 
Added, 10.25% days 1850°F CF-1140°F large cracks 

"2O Seal cd 
200°F/ h4 AT-520°F Penetration 

Unrestrained cool 
I 

Legend: crack Widths:' . . . .  . 
Rank 5 - !.arge - .01OU+ , . .  

Rank 4 - Med. Large - .007"-.O1dl' 
Rank 3 , -  Med. - .005"-.007" , '  

This ranking appl ies t o  a i l  $ou r  tables (23-26) .. 

. Rank 2 - Fine - .002"-.005" . . 
. . Rank 1 - Very Fine - .002" 

Penetration Average: , An average o f  the penetration. depths, hot  face t o  co ld  face, . ,. 
, ' 

I n  a given sample. . . 

. . .  
*.Denotes t h a t  cyl inder was made dur ing pour o f  L in ing #4. . . ** Aluminum r i n g  me1 ted - no e f f e c t i v e  r e s t r a i n t  dur ing hold o r  cool down. ' 

. .. . 

*** Stafnless steel  r i n g  . . .  s l ipped 1/2" during tes t ,  siezed s o l i d  dur ing .cool down. 
, . 

. , 



TABLE .25. Cylinder Test ~esu l ' t s  .for KAOCRETE XD 50 (Mix  36C) 

'~omposl t ton  Castlng F i r ing  lemoerature Crank . Crack .I  .D. 
and Oeslgn History . Schedule Prof 1 l e  Rdnk - Pattern Shrinkdgc - V Meter 

29.7 7.SX Hz0 Liner 5' Stured 11 9UU3F/hr HF - 162U°F 1 NO cracks .041 
Unrestralned Months to  1600°F, CF - 980°F 

Sea 1 ed Fastcool  AT-640°F 

7.5% Hz0 Liner 6 
Unrestrained 

F i  red 600°F/hr HF - 1760°F 
Stored 6 t o  176O0F. CF - 1200°F 
Wonths 200°F/hr AT - 560°F 
Sealed cool 

2 2 Flne .031 
Cracks 301 
Penetration 

2 2 Very f i ne  .021% 
cracks 15% 
Penetratlon 

7.52 Hz0 Liner 5 
Unrestrained 

Stored 11 600°F/hr HF - 1720°F . 
Uonths t o  1720°F, CF - 1120°F 
Sealed 200°F/hr AT - 500°F 

cool 

7.75% Hz0 Cast i n  
Restraining r i ng  - 
RIng pre-l ined w/ 
114" HES mortar 

Mortar a i r ,  600°F/hr t o  HF - 1540°F 
dried 5 max ra t ing CF - 740°F 
days, cast- o f  mortar Shell - 620°F 
able stored (750°F), AT - 920°F 
sealed 1 day 200°F/hr. cool 

1 No cracking None 

2 . . 2 V e r y f n e  
cracks 36% 
Penetratlon 

7.5% H20, Unre- 
strained-Hot Face 
coated w/RX-14 

Cast wi th  . 600°F/hr t o .  HF - 1850°F 
Lining 6 1850°F. CF - 940°F 
Stored 8 200°F/hr AT -, 910°F 
b. Sealed cool 

A i r  dr ied 600°F/hr t o  HF - 1830°F 
24 hrs. 1850°F. CF - 790°F 

2W°F/hr Shell - 740°F 
 COO^ AT - 1090°F 

7.9% Hz0 10 w/o 
lCyanite Added, Re- 

,strained w/SS r i ng  

2 1 Flne Crack None 
+ Random very 
f l ne  pattern 
25% Penetration 

,7.5% Hz0 Re- A i r  dr ied 600°F/hr t o  HF - 1850°F 2 Extensive .0421 , 36.3 
strained w/ ' 24 hrs. 1850°F. CF - .770°F ' very f i ne  
f S  r i ng  .. 200°F/hr ' ' She1 1 - 720°F random cracks 

cool AT - 1130°F apparen't pene- 
t r a t i on  10%. . . 

' . o r  less . 

7.5% H20+ 4 w/o 1" Stored 48 
RIbtecSSf iber ,  hrs. 
Restrained W/ Sea 1 ed 
SS r i n g  

600°F t o  
1850°F 
250°F/ hr 
cool 

HF - 1900°F 1 Few random .28% 
CF - 610°F . . Surface 
Shell - 500°F Cracks : 
AT - 1400°F 

9% ~~0 10 w/o .Stored 4 
Pyrophyll i te  Days 
Added, Restrained Sealed 
wISS r l ng  

HF - 1840°F 2 '2 Very 'f ine . .46%, 
CF - 560°F ' ~ r i i c k s  40% 
Shell - 480°F Penetration 
AT -' 1 360°F . . 

. ... .. 

600°F/hr 
tn 1850°F . 
2009 F/hr 
cool 

10 , ' 7.5% H ~ O  Re- Stored 7 . 600°F/hr:to HF - 1840°F 3 3 Fine t o  .0642 37.1. . 
strained w/SS . . days ' . . 1850°F. ' CF - 300°F . W. large tlng-water , : Sealed. 200°F/hr Shell - 170°C ' . cracks 40% 
cool edttf cool' AT - 1670°F Penetration . . 

11 7 . 5 % H 0 + 4 w / o .  Stored 48 600°F/hr HF - 1780°F 3 2 Flne cracks .32X 
1' ~ i b f e c  SS . hrs. t o  1830°F CF - 660°F + random f i ne  
f l b e r  Sealed 250°F/hr AT - 1120°F pattern top 

. . cool . , , . .surface and hot 
. . , face 88% 

' penetration' 

Denotes that  cyl inder WJS m'adc durinq paur of L in inq # S .  
' **. C0iItin9 on I t .  r. saJe dccurdte nrasurements trn~ossi ble. 

, . *+* , Uater .cooled: sanlple had copper tubing wrapped aroirnd restra in inq 
t inge water was'clrculdted th ru  tubing t o  carry o f f  heat. 



TABLE 26. Cy l i nde r  Test  Resul ts  f o r  LITECAST 75-28 

F i  r i n g  
Sc hedul e 

400°F/hr t o  
2 1 0 0 " ~ , f ~ s t  
cool  

400" F/ h r  t o  
1440°F, 
200" F/ h r  
cool 

Compos i ti on Cast ing 
and Design . H i s t o r y  

Temperature 
P r c f i  l e  

Crack Crack 
Rank Pa t te rn  

I .D. 
Shrinkage V Meter 

Cyl . 
No. 

21% Hz0 L i n e r  5* Stored 11 
Unres t ra ined.  Months 

Sealed 

. 5  2 l a r g e  - l 
small  crack 
100% pene- 

. 5  2 l a rge '  
cracks 95% 

. . . . pene t ra t i on  

21% H20 L i n e r  6 Stored 5 
Unres t ra ined . Months 

Sealed 

3 .21% Hz0 L i n e r  6 Stored 5 400°F/hr t o  HF-1520°F 3 2 med. cracks .26% 44.5, 
' a t tached  r e -  Months . 1520°F, CFIshel l-700°F 502 pene t ra t i on  

', s t r a i n t *  Sealed ' 200°F/hr - AT-820°F 
cool 

4 21 % H20+4% w/o 
Ri b tec  1-318" 

A SS f i  bers-unre- 
N s t r a i n e d  
N 
I 

Stored 2. 
days 
sealed ex- 
posed t o  
a i r  4 days . 

400°F/hr t o  HF-1500°F . 2 
1 50O0F, ' CF-300°F 
2 0 o 0 ~ / h r  AT-700°F 
cool  . 

3 very f i n e  
cracks 25% 
pene t ra t i~on  

5 21% Hz0 cas t  i n  
SS r e s t r a i n i n g  
r i n g - r i n g  coated 
w / s i l i c o n e  grease 

Stored 2 
days 
Sealed e r -  
posed t o  
a i r  4 days 

400°F/hr t o  HF-,1490°F. 4 
1 5@0°F, . CF-465°F 
200" F/ h r  She1 1 -450°F 
cool '  AT-1 035" F 

2 med. l a r g e  
cr3cks 8€% 
pene t ra t i on  

21% Hz0 L i n e r  6 
Unrestra ined-I .D.  
coated w!RX-14. 

Stored 18 400°F/hr LO 
Weeks 1 5OO0F, 
Seal ed 200" F/ h-* 

coo l  

HF-1 500°F 
CF-4800 F 
AT- 1020" F 

5 2 1 arge cracks - - 
95% pene t ra t i on  - 

2 

21% Hz0 2e- 
s t r a i n e d  i n  SS 
r i  ng-watf l r  cooled 

s to red  4 400°F/hr t o  
days 15OO0F, . 

Sealed : 200°F/hr 
.2 days . cool  
a i r  ex- 
posure 

HF-.1500°F 
CF-200°F 
Shel 1-200°F 
AT-1 300°F 

5 5 f i n e  l a r g e  .25% 
-cracks 50% 
pene t ra t i on  

. - 

Legend: * - ~ t t a c h e d  r ? s t r a i n t :  sp l  i t  a1 uminum r i n g  t i g h t e n e d  w i t h  s t a i n l e s s  s t e e l  clamps. 



TABLE 27. Cy l inder  Tes t  Resul ts  for '  KAOLITE 2300 L I  
, ,  . 

Composit ion Cast ing F i  r i  ncj Temperature Crack Crack I ,D. Cyl . 
No. and De'sign . H i s t o r y  Schedule Pro f  i 1 e  . - Rank. 'Pat tern Shr'i nkage " V Meter 

Stored 19 400"~ / ' h r  t o  HF-1460°F. ,. 2  Very f i n e  .042% 1  i V / O I ~ S S ~ ~ -  
- - 

bers, 59% H20 days 150O0F, ' CF-210°F random 
r e s t r a i n e d  i n  Sea 1  ed 200°F/ h r  She1 1-21 0°F p a t t e r n  ' 10% 

AT-1 250,"F pene t ra t i on  SS r i n g  cool 

2  59% H20, r e -  Stored 17 400°F/hr t o  HF-1500°F 4  3  med-med l a r g e  .23% - - 
s t r a i n e d  i n  SS days 15OO0F, CF-180" F  crackst exten- 
r i  ng-water cool  ed Seal ed 200°F/hr She1 1-140°F s i v e  very f i n e  

cool  AT-1 360°F sur face cracks 
65% pene t ra t i on  

. . 

1  v/o 1 "  SS f i -  
t e r ,  59% H20, 
r e s t r a i n e d  i n  SS 
r i n g .  Ring l i n e d  
v/ 114" HES mar- 
t a r ,  p ro tec ted  
w/4ml p l a s t i c  

Mor ta r  a i r  400°F/hr t o  HF-1 500°F 
d r i e d  24 15OO0F, CF-220°F 
hrs., Cas- 200°F/hr She1 1  -200°F 
tab le ,  . . cool  . AT-1 300°F 
s to red  48 
hrs.  , sealed 
24 hrs .  a i r  

.Extensive ran-  No 
dom f in.e-med. . ..change. 
cracks 30%. 
pene t ra t i on  
L,arqe separa-.. 
t i o n  between ' 

mor ta r  & s h e l l  a 

exposure . . 



w h i l e  i t  took heat ing  r a t e s  o f  600 t o  900°F/hr t o  crack the  two dense ma te r ia l s .  
W i t h i n  each ma te r ia l  t he  c rack ing  tendency appeared t o  be hi.gher f o r  t he  unre- 
s t r a i n e d  c y l i n d e r s  than f o r  t h e  s t a i n l e s s  s t e e l  r i ,ng r e s t r a i n e d  c y l i n d e r s .  Water 
coo l  i n g  appeared t o  worsen cracki,ng s l  i g h t l y .  A1 so w i t h i n  ea,ch ma te r ia l  the h igher  
t h e  t e s t  temperature, t h e  g rea te r  the  tendency t o  crack.  

The c a s t i n g  and storage h i s t o r y  ' d id  n o t ,  have a  s i g n i f i c a n t  e f f e c t  on 
t h e  c r a c k i n g  tendency o f  t he  m a t e r i a l s  and t h e  a d d i t i o n  o f  raw kyan i te  'or pyro- 
p h y l l i t e  which a r e  expanding type minera ls ,  d i d  n o t  reduce c rack ing .  However, 
t h e  use o f  4 w/o 310 SS f i b e r s  was found t o  reduce the  c rack ing ' tendency  o f  both 
i n s u l a t i n g  m a t e r i a l s  and the  KAOCRETE XD 50. 

The use o f  1/4" o f  HES mortar  between the  r e s t r a i n i n g . r i n g .  and these 
same m a t e r i a l s  had oppos i te  e f f e c t s  on them. It s i p i f i c a n t l y  helped the  mod i f ied  
90+% A1203 dense gener ic  and KAOCRETE XD 50 bu't d e t r i m e n t a l l y  a f f e c t e d  t h e  KAOLITE 
23QO L I .  The CITECAST 75-28 was n o t  t es ted  w i t h  t h j s  m a t e r i a l .  The use o f  the  RX-  
14 h i g h  e m i s s i v i t y  coa t i ng  had no bene f i c i a l  e f fec ts  when tes ted  w i t h  e i t h e r  t he  
dense o r  i n s u l a t i n g  ma te r ia l s .  

Th i s  se r i es  o f  t e s t s  i n d i c a t e d  t h a t  t he  KAOCRETE XD 50 (Mix 3 6 ~ )  
combined w i t h  a  l a y e r  of HES mor tar  w i l l  g i ve  good performance i n  a  c y l i n d r i c a l l y  : 

' l i n e d  vessel .  The e f f e c t  of adding SS f i b e r s  was minimal i n  these c y l i n d e r  t es t s .  ..-  

I n  a d d i t i o n ,  some improvement i n  1  i n i n g  performance was achieved w i t h  the  use o f  KAOLITE 
2300 L I  i n s t e a d  of the  LITECAST 75-28 from both  t h e  c rack ing  and i n s u l a t i n g  po in t s  . ,  

o f  view. Water cool i n g  of t h e  vessel she1 1. was expected t o  increase t h e  tenden.cy o f  
a  1  i n i n g  t o  crack.  

3.3.3. Weight Loss Data For 'Pore 'Pressure  Analyses 

  able 28 l i s t s  t h e  weight  l o s s  data generated on .the s o l i d  cy l4nders 
o f  t he  90+%A1 203 dense gener ic  (ERDA go),  LITECAST 75-28 and KAOCRETE X D  5O,'(Mix. 
36C) a t  d i f f e r e n t  heat-up r a t e s  and/or maximum t e s t  temperatures. The weight l o s s  
versus t ime  curves generated on the.se r e f r a c t o r i e s  a r e - i n c l u d e d  i n  Appendix C.  

. . 

These data do n o t  show any unusual weight l o s s  c h a r a c t e r i s t i c s  and 
were found t o  show the  same weight  l o s s  t rends  Z. P. Bazant pub l ished5 on 
convent ional  concretes. Since these .data were n o t  analyzed w i t h  t h e  Bazant 1.D. 
model, t h e r e  w i l l  be no f u r t h e r  d iscuss ion  of  these data. 



Table 28. Weight Loss Data on As-Cured 90+X 
A1203 Dense Generic (ERDA go), 
WOCRETE XD 50 (Mix 36C) and 
LITECAST 75-28 Re f rac to ry  Concretes 
For Pore Pressure 

Diametral  Bulk Heat ing Maximum we.ight Loss, % 
M a t e r i a l  %H20 Shr inkage.  Dens i ty  Rate Temperature, 300" F Maximum 

% PC f " F l h r .  0 F (200°F) " ~ e m p e r a t u r e  

ERDA 90 . 7.5 .10 182 110.3 500. 0.6 5.2- 

ERDA 90 7.5 . l o .  181 . 100 ' 250 (0.0)  3.1 . . 
, 

ERDA 90 ' 10 .05 180 100 250 (1  - 0 ) -  5.0 
I 2. ." 

ERDA 90 10 .14 181 100 500 2.4 7.6 - - 
* 

(0 .5)  

KAOCRETE X D  50 7.5 .05 145 100 250 (0.4)  4.4 

LITECAST 75-28 21 , .15 9 6 100 500 

LITECAST 75-28 21 .08 . 96 100 : 250 

. . . 



3 .4 . .  A n a l v t i c a l  P r e d i c t i o n s  

Dur ing and a f t e r  t h e  RESAM .and, RESGAP model developnents, thermal and 
e l a s t i c  and i n e l a s t i c  s t ress  .analyses were performed on the  standard and modi f ied  
l i n i n g  designs and on vessels o f  var ious  s h e l l  th icknesses and diameters. These 
analyses were performed, us ing  the  p rope r t y  data. summarized i n  Sect ion 3.2 of 
t h i s  r e p o r t ,  t o  develop i n f o r m a t i o n  which cou ld  guide the  program. This i n f o r -  
mat ion was expected t o  enhance the  understanding o f  the  mechanisms o f  1 i n i n g  
degradat ion  du r ing  t h e  i n i t i a l  heat-up, , a s s i s t  i n  t he  design o f  t he  Pressure Vessel/ 
Test Furnace and t e s t  procedures, a i d  i n  the  eva lua t i on  o f  scale-up e f fec ts  on 1 i n i n g  
performance and g i ve  d i  r e c t i  on t o  improved 1 i . n i  ng desi  gns ." The sec t ions  whi ch 
f o l l o w  d iscuss the  r e s u l t s  o f  these analyses. They a re  grouped i n t o  analyses t h a t  
were main ly  e l a s t i c ,  o the rs  t h a t  were thermal and, f i n a l l y ,  e l a s t i c  o r  i n e l a s t i c  
analyses which were run  on the  1 i n i n g  designs being tes ted .  

3.4.1. E l a s t i c  S t ress  Analyses 

Figures 131 through 134 show, r e s p e c t i v e l y ,  the  t r a n s i e n t  e l a s t i c  s t ress  
a n a l y s i s  done on t h e  standard dual component l i n i n g  design used f o r  L in ings  #1 
and 2 and the  steady s t a t e  e l a s t i c  s t ress  analyses done on a twelve i nch  t h i c k  s i n g l e  
component 1 i n i n g  which had p r o p e r t i e s  t h a t  approximated the  average p r o p e r t i e s  o'f 
t h e  standard dual component l i n i n g .  These approximated p rope r t i es  were a l s o  temper - , ,  
a t u r e  independent. These l a t t e r  analyses show t h e  general e f f e c t  o f  s h e l l  t h i c k -  

.ness and vessel diameter v a r i a t i o n s  on t h e  st resses induced i n  the  s h e l l  and l i n i n g  
and on t h e  e f f e c t i v e  pressure exer ted  b y , t h e  l i n i n g  on the s h e l l .  These r e s u l t s  
e s s e n t i a l l y  summarize the  l i m i t e d  parameter s tudy done w i t h  the model i n  some key 
areas of i n t e r e s t .  

Design o f  Pressure Vessel./Test Furnace Faci 1 i t y  

The change i n  t h e  s h e l l  th ickness  o f  t h i s  f a c i l i t y  a f t e r  s t r e s s  
analyses were done ,on the  1 i ned  vessel c o n f i g u r a t i o n  t o  be used i n i t i a l l y  i n  t h i s  
work a re  discussed i n  Sect ion  2.6.1. These analyses a r e  shown i n  F igure 131 and 132 
and i ndica ted  t h a t  a t  steady s t a t e  cond i t ions ,  t e n s i l e  circumference (hoop) stresses 
up t o  3500 p s i  would be induced i n  a h a l f  i n c h  t h i c k  she1 1 by  a twelve i n c h  t h i c k  
m o n o l i t h i c  r e f r a c t o r y  l i n i n g  heated t o  a 2000°F ho t  face temperature. This  s t r e s s  
was be1 ieved t o  be g r e a t  enough t o  y i e l d  t h e  vessel s h e l l .  By i nc reas ing  t h i s  
s h e l l  th ickness  t o  one inch ,  t h e  ana lys i s  i n d i c a t e d  t h a t  the  st resses would be 
reduced by about h a l f .  Fur ther  reduc t ions  were a1 so poss ib le  by i nc reas ing  the  
th i ckness  from one i n c h  t o  t h r e e  inches b u t  they  were n o t  as s i g n i f i c a n t  as those 
obta ined w i t h  t h e  i n i t i a l  increase.  When these st resses were converted t o  the  
e f f e c t i v e  pressure t h a t  t he  l i n i n g  would e x e r t  on the  vessel s h e l l  as shown i n  
F igu re  134, t h e  r e s u l t s  i n d i c a t e d  t h a t  s i g n i f i c a n t  pressure would be induced i n  
the  s h e l l .  Th i s  pressure was i n  t he  f i f t y  t o  s i x t y  p s i  range f o r  a f i v e  f o o t  
d iameter  vessel w i t h  a s h e l l  th ickness  i n  t h e  one h a l f  t o  one Inch range. This 
pressure i s  g e n e r a l l y  n o t  accounted f o r  i n  s t r e s s  analyses on r e f r a c t o r y  l i n e d  
pressure vessels t o  determine t h e  code stamp. These r e s u l t s  i n d i c a t e  t h i s  e f f e c t  
should be more s e r i o u s l y  considered. 

Although these analyses were conserva t ive  because they  d i d  no t  
i n c l u d e  t h e  e f f e c t s  of  shr inkage and creep which were expected t o  reduce the' 
s h e l l  s t resses,  a d e c i s i o n  was made t o  increase t h e  s h e l l  th ickness  from the  
f i v e  e i g h t h s  i n c h  th i ckness  o r i g i n a l l y  planned t 'o approximate ly  one i nch .  
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FIGURE 332 .  P r e d i c t i o n  o f  She l l  Hoop Stresses f o r  a Mono1 i t h i c  
Refractory L ined Vessel o f :Va ry ing  She l l  Thi.ckness 
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. , FIGURE 133. P r e d i c t i o n  o f  Hoop Stresses a t  the I n s i d e  (Hot Face) 
and Outside (Cold Face) S u r f a c e s o f  a  Twelve Inch 
Thick Mop01 i t h i c  Ref rac tory  L i n i n g  Versus She1 1  
~ h i c k n e s s  and Diameter. ( E l a s t i c  Ana lys is )  



QL=3.4 p in . /  in./F 

Es=28.5 MILLION psi 

EL=0.57 MILLION psi 

FIGURE 134. P r e d i c t i o n  of Pressure Exerted by a Twelve I n c h  
Mono1 i t h i c  L i n i n g  on. a Vessel ' o f  Varying She1 1 
Thickness and Diameters. . . 



The t e s t  vessel was. constructed by the Chattanooga Boiler and Tank Co. 

Lining Stresses 

As. can be seen .in Figure 131,  when the e l a s t i c  properties l i s t ed  
for  the 90+% A1203 dense generic and the LITECAST 75-28 in Tables . I5  and 23, 
respectiv,ely., were used in the analysis,  a compressive stre.ss i s  induced in the , 

dense component of the c i rcu lar  l ining as i t  expands outward during heating to  
approximately 2000°.F a t  a ra te  of 100°F/hr and makes contact with the insulating 
component. This, s t r e s s  decreases through the four and a ,ha1 f inch thickness of the 
dense component to  about ha1.f the hot face, level.  A t  2000°F, the hot face s t r e s s  
i s  approxiamtely 10,000 psi which i s  equivalent to  or  greate.r than the compressive 
strength of the 90+% A1 03 dense refractory concrete materia.1 used in t h i s  component. 
Th,is r e su l t  indicates t 2 a t  i f  the l ining acted purely e l a s t i ca l ly ,  the dense com- 
ponent of the standard l ining could crush during the heat-up of the l ining.  . 

On the other hand,' the seven and a half inch insulating component 
i s  pa r t i a l ly  in compression near the interface region of the l ining and pa r t i a l ly  
in tension near the shell  during the heat-up., The s t resses  induced.became pro- 
gressively more compress.ive and t ens i l e  in each .region, as  the heat-up progresses 
through the ten hour hold a t  2000°F.' Since the compressive and t ens i l e  s t resses  
a re  in the 3000 ps i .  and 2000, psi range respectively, these resu l t s  indicate tha t  
i f  the 1 ining , acted purely e l a s t i ca l ly ,  t h i s  component would t ens i l e  crack from the 
shell  (cold face) s ide of the l ining and might crush on the interface side during 
the heat-up of the. . l ining t o  2000°F. 

Because the s t r e s s  analysis i s  e l a s t i c ,  the s t resses  indicated in  
the l ining decrease during the cool-down and f ina l ly  return to  the zero s t r e s s  
s t a t e  a t  70°F., Although t h i s  i s  not what i s  expected in an actual l ining,  the an- 
a lys i s  i s  helpful in understanding the s t r e s s  s t a t e  tha t  can occur in a dual com- 
ponent 1 ining and the she1 1 in  a mono1 i t h i c  refractory 1.ined process vessel . 

Creep Test Stress Levels 

From the above discussed e l a s t i c  s t r e s s  analysis of the dual 1 component standard 1 ining design, i t  became apparent tha t  considerably higher s t r e s s  
levels  than the one hundred t o  two hundred psi levels  normally used in standard 
refractory creep t e s t s  would be required t o  perform signif icant  s t r e s s  analyses 
with the model. I t  a lso became apparent., however, t ha t  steady s ta te  conditions 
could be achieved rather quickly during the i n i t i a l  heat-up t e s t .  Based on 
these points, i t  appeared tha t  the dense component type material should be creep 
tested a t  compressive s t r e s s  levels up t o  about 5000 psi and for  periods of up t o  
ten hours. I t  a lso appeared tha t  the insulating component should be creep tested 
a t  compressive s t r e s s  levels up t o  about 2000 psi for  a similar period; and 
possibly t ens i l e  creep tested t o  1000 psi as well. 

Scal e-Up Effects 

Since one objective of the program was t o  develop a model tha t  could 
predict  scale-up e f fec t s ,  some scale-up steady s t a t e  e l a s t i c  s t r e s s  analyses, were 
done. The general findings of these analyses fo r  a twelve inch s ingle  component 



l i n i n g  w i t h  average p r o p e r t i e s  which approximate those of  a  dual component l i n i n g  
a r e  shown i n  F igures  132-134. The s h e l l  s t r e s s  a n a l y s i s  i n d i c a t e s  t h a t  t he  s h e l l  
s t resses  a re  una f fec ted  by vessel diameter i n  t he  f i v e  foo t  t o  t h i r t y  f o o t  diameter 
range f o r  a  cons tan t  1  i n i n g  th ickness  b u t .  a re  af fected s i g n i f i c a n t l y  by she1 1  
th ickness .  The s h e l l  pressure a n a l y s i s  i n d i c a t e s  t h a t  t h e  e f f e c t i v e  pressure 
e x e r t e d  on t h e  s h e l l  s i g n i f i c a n t l y  decreases as the  vessel diameter i s  increased 
f rom f i v e  t o  t h i r t y  fee t .  Th i s  p o i n t  i n d i c a t e s  t h a t  present  pressure vessel codes 
a r e  more r e l i a b l e  f o r  l a r g e r  d iameter  vessels  than smal l  ones. The l i n i n g  s t ress  
a n a l y s i s  i n d i c a t e s  t h a t  l i t t l e  change i n  t h e  t e n s i l e  s t r e s s  s t a t e  occurs f o r  t he  
c o l d  face  r e g i o n  o f  t h e  l i n i n q  as the  vessel i s  scaled-up from f i v e  t o  t h i r t y  f e e t .  
T h i s  was n o t  t r u e  f o r  the  ho t  face reg ion .  This  r e g i o n  showed a  s i g n i f i c a n t  reduc t i on  
i n  compressive s t r e s s  as t h e  vessel d iameter  s i z e  increased from f i v e  t o  t h i r t y  
f e e t .  Th i s  i s  'considered t o  be b e n e f i c i a l  t o  l i n i n g  performance s ince  i t  would 
reduce t h e  p o t e n t i a l  o f  t h e  l i n i n g  t o  c rush  o r  creep. 

3.4.2. Thermal Analyses o f  L i n i n g  Designs 

Figures 135 through 137 are  thermal analyses run  w i t h  t he  uncoupled. 
heat  t r a n s f e r  r o u t i n e  o f  t h e  REFSAM and RESGAP. F igure  135 i s  f o r  t h e  s tandard 
l i n i n g  des ign  which was used i n  L i n i n g s  #1 and 2  and t h e  o t h e r  i s  one o f  t h e  
m o d i f i e d  designs used i n  L i n i n g  #9. From these analyses i t  was learned t h a t  the  
dense 90+% A1 203 (ERDA 90) m a t e r i a l  w i l l  have a  smal le r  thermal :g rad ien t  across i t  and 
w i l l  g e n e r a l l y  operate a t  h i g h e r  temperature than t h e  50% A1203 dense m a t e r i a l  
(KAOCRETE XD 50 w i t h . 4  w/o 310 S t a i n l e s s  S tee l  f i b e r s )  used a t  t h e  same h o t  face 
temperature. Th i s  w i l l  make t h e  90+% A1203 dense m a t e r i a l s  expand more and i n -  
s u l a t e  l e s s  than t h e  50% A1203 m a t e r i a l  and r e s u l t  i n  h igher  l i n i n g  s t resses  and 
i n t e r f a c e  temperatures. 

Since t h e  i n s u l a t i n g  component m a t e r i a l s  have lower t h  rmal c o n d u c t i v i t i e s  
than t h e  dense component ( k  = 1.5 t o  3.0 vs 7.5 t o  13 BTU i n / h r  FtyOF),  t h e  l a r g e  
g r a d i e n t  p r e d i c t e d  across t h i s  component compared t o  t h a t  o f  t h e  dense component i s  n o t  
s u r p r i s i n g .  The r e s u l t s  c l e a r l y  show t h e  importance o f  t h i s  component i n  i n s u l a t i n g  
t h e  s h e l l ,  and i n d i c a t e  t h a t  t h e  i n s u l a t i n g  component c o u l d  p robab ly  be one t o  
two inches  t h i n n e r  and s t i l l  g i v e  adequate thermal p r o t e c t i o n  t o  t h e  s h e l l .  

F igure  137 compares t h e  p r e d i c t e d  versus t h e  ac tua l  experimental  t h e r -  
mal p r o f i l e  r e s u l t s  on L i n i n g  #2 du r i ng  t h e  heat-up t o  1200°F. The resu l  t.s show 
the  o v e r a l l  e x c e l l e n t  agreement o f  these p r o f i l e s  w i t h  one another  except f o r  a  
r e g i o n  i n  t he  i n s u l a t i n g  component (from t h e  cen te r  t o  t he  s h e l l ) .  The delayed 
removal o f  t h e  mois tu re  which occurs i n  t h i s  component d u r i n g  the  heat-up t e s t  
a t  100°F/hr i s  n o t  accounted f o r  by t h e  thermal model i nc luded  i n  REFSAM and 
RESGAP. Th i s  model does g i v e  a  good o v e r a l l  a n a l y s i s  o f  t h e  thermal c o n d i t i o n  o f  
the 1  i n i n g ,  however, and i s  expected t o  be adequate f o r  most mono1 i t h i c  l i n i n g s .  
I t  should work very w e l l  f o r  l i n i n g s  which no l onge r  have water assoc ia ted  w i t h  
them. The Z. P. Bazant 1  D thermal and mass t r a n s f e r  model i s  t he  type  model 
needed t o  i n c l u d e  t h i s  delayed mois tu re  removal e f f e c t  and t o  pe rm i t  t h e  most accu 
r a t e  s t r e s s  a n a l y s i s  t o  be made on m o n o l i t h i c  r e f r a c t o r y  l i n i n g s .  

Two a d d i t i o n a l  p o i n t s  were learned from these analyses; t he  1  i n i n g s  
be ing  s t u d i e d  reached steady s t a t e  c o n d i t i o n s  i n  f o r t y  hours o r  l e s s  and a t  heat ing  
r a t e s  below 200°F/hr, t r a n s i e n t  e f f ec t s  were r e l a t i v e 1  y smal l  (1 5%) compared t o  
steady s t a t e  cond i t i ons .  b 



FIGURE 135. Thermal Dist r ibut ion Predicted f o r  the Standard Lining 
Design (Linings #1 and 2) During a 100°F/hr Heat-Up 
t o  2000°F. 



FIGURE 136. Thermal D i s t r i b u t i o n  Pred ic ted for L i n i n g  $9 During 
the  200°F/hr Heat-Up t o  2000°F. 





3.4.  3.' L i n i n g  Analyses 

When the e f f e c t  o f  shr inkage and creep were incorporated.  i n  the e l a s t i c  
analyses run  on the  standard 1  i n i n g  design used f o r  Lin- ings $1 and 2; i t  was i n d i -  
ca ted  t h a t  these two l i n i n g s  would crack.  I t  was a l s o  i n d i c a t e d  t h a t  these 
two p r o p e r t i e s  were the  p r i n c i p a l  f a c t o r s  a f f e c t i n g  c rack ing .  I n  a  t y p i c a l  mono- 
1  i t h i c  r e f r a c t o r y  1  i n i n g  geometry t h i s '  c rack ing  would be expected t o  occur a t  t he  
i n s i d e  sur face du r ing  cooldown. Trans ien t  thermal s t resses ( o r  thermal shock) 
should n o t  be s i g n i f i c a n t  a t  normal heat ing  and c o o l i n g  r a t e s  (on the order  o f  
100°F pe r  hour ) .  Stresses develop due t o  c o n s t r a i n t s  caused by bonding t o  the s h e l l  
and t o  t h e  anchors which prevent  f r e e  c o n t r a c t i o n  o f  the  l i n e r  upon cooldown.. 
The anchors a re  no t  modeled i n  the '  present  program, bu t  t h e i r  e f f ec t  i s  simulated 
by t h e  c o n t i n u i t y  o f  displacements which prevents gaps from occu r r i ng  between the  
l i n e r  and s h e l l  and between, t he  i n s u l a t o r  and dense l i n e r  upon cooldown. The hoop 
and a x i a l  s t resses i n  t h e  l i n e r  a re  n e a r l y  equal.  There i s  a  s l i g h t  preference 
f o r  r a d i a l  cracks a long the  a x i s  o f  t he  r e f r a c t o r y  due t o  a  s l i g h t l y  g rea te r  
hoop s t ress ,  b u t  c i r c u m f e r e n t i a l  cracks due t o  a x i a l  s t ress  would a l s o  be expected. 
The e f f e c t  o f  creep i s  t o  cause negat ive  i n e l a s t i c  s t r a i n s  t o  occur throughout the 
dense l i n e r  and p a r t i a l l y  i n t o  t h e  i n s u l a t o r ,  which a re  i n d i s t i n g u i s h a b l e  from 
shr inkage s t r a i n s .  Both creep and shrinakge s t r a i n s  cause a  t e n s i l e  s t ress  s t a t e  
upon 'cool  down. 

Some o f  these e f f e c t s  a r e  shown i n  F igure 138, which i s  a  p l o t  o f  t he  
h o t  face  hoop s t r e s s  f o r  t h e  geometry descr ibed p rev ious l y  w i t h  a  heatup r a t e  
o f  approximate ly  100°F per  hour t o  2000°F, ' fol lowed by a  40-hour ho ld  a t  temper- 
a tu re ,  and subsequent cooldown. Two analyses a re  shown i n  F igure 138. The f i r s t  
neg lec ts  creep e f fec ts  and i n d i c a t e s  h igh  compressive st resses du r ing  heatup l i k e  
those seen . in t h e  e l a s t i c  ana lys i s  which l e v e l  o f f  du r i ng  the  h o l d  per iod ,  and even- 
t u a l l y  go t e n s i l e  near t h e  end o f  t he  cooldown due t o  the  shrinkage which has 
occur red  d u r i n g  the  heat ing  cyc le .  The s tep  i n  t h e  curves, e a r l y  i n  the tcm-, 
pe ra tu re  ramp, i s  due t o  t h e  reve rsa l  which occurs i n  t he  thermal expansion curves 
d u r i  ng heatup. 

Th i s  p a r t i c u l a r  . run  d i d  1.1o.t: i r ic lude c rack ing  e f fec ts ,  b u t  t h e  t ime o f  
c r a c k i n g  can be p red i c ted  by n o t i n g  t h a t  t he  t e n s i l e  s t reng th  o f  t he  dense l i n e r  
ERDA 90 i s  about 1200 s i  ( i n d i c a t e d  by dashed l i n e )  a t  1000°F, as est imated from 
modulus o f  r u p t u r e  t e s  1 s. Although t h e  depth o f  c rack ing  was n o t  p red i c ted  i n . t h i s  
ana lys i s ,  i t  i s  expected t h a t  t h e  c rack ing  would have proceeded through t h e  e n t i r e  1  i n e r  
i n  t h i s  case, s ince  t h e  t e n s i l e  s t resses  exceed the  t e n s i l e  s t reng th  by a . l a r g e  margin. 
The second a n a l y s i s  shown i n  F igure  138 i nc ludes  creep e f f e c t s .  The e f f e c t  o f  creep 
i s  seen , t o  be very  s t r o n g  as soon as t h e  h o t  face temperature reaches about 1700°F. 
The e f f e c t '  i s  a  r e l a x a t i o n  of  t he  compressive s t resses  t o  a  value which l e v e l s  o f f  
a t  about 1000 p s i  toward t h e  end of  t he  ho ld  per iod .  Upon c o o l i n g  the  st resses 
become t e n s i l e  and reach a  h ighe r  l e v e l  due t o  creep. The d i . f fe rence between the  
f i n a l  s t r e s s . v a l u e s  a t  t = 100 hours i s  much smal le r  than t h e  compressive s t ress  
d i f f e r e n c e  e a r l  i e r  i n  t he  t e s t .  Th i s  r e s u l t  i s  mis leading,  however; a c t u a l l y ,  
t h e r e  should be a  much l a r g e r  d i f ference.  The reason f o r  t h i s  i s  t h a t  when t h i s  
ana lys i s  was made, t h e  creep phenomenon was modeled by a  s e r i e s  o f  ,Kelvin elements 
which p r e d i c t e d  complete creep recovery upon removal o f  t he  s t ress .  Hence, upon 
cooldown t h e  p r e v i o u s l y  accumulated 'creep s t r a i n s  a r e  disappearing. A more r e a l i s t i c  
procedure i s  t o  a l l o w  o n l y  a  p a r t i a l  recovery o f  t h e  creep s t r a i n s  (a value o f  one- 
t h i r d  i s  more t y p i c a l  o f  expebimental r e s u l t s  i n  u n i a x i a l  compression t e s t s ) .  



FIGURE 138. Hoop Stress p r e d i c t i o n s  a t  t he  I n s i d e  Surface o f  t h e  
Standard L i n i n g  Design (L in ings  #1 and 2) Versus 
Time When Heated a t  100°F/hr. 



Th is  change had the e f f e c t  o f  i nc reas ing  the  t e n s i l e  s t ress  a t  the  hot  face upon 
cooldown i n  the  creep run.  .Thus, the mechanisms of creep and shrinkage both appear 
t o  be s i g n i f i c a n t ,  and e i t h e r  i s  capable o f  generat ing ho t  face st resses i n  excess 
o f  t he  a v a i l a b l e  t e n s i l e  s t r e n g t h  p rope r t i es .  

The s t ress  d i s t r i b u t i o n  through the  r e f r a c t o r y  and s h e l l  i s  shown i n  
F igure  139 f o r  the corresponding analyses a t  two p a r t i c u l a r  t in ie values : T = 
20 hours, corresponding t o  t h e  end o f  the heat ing  ramp; and a t . t h e  end o f  t he  t e s t ,  
T =' 100 hours. The e f f e c t  o f  creep i s  t o  reduce the  ho t  face compressive st resses 
s u b s t a n t i a l l y  and t o  move t h e  l o c a t i o n  of the maximum compressive s t ress  toward 
the  cen te r  o f  t he  dense l i n e r .  I n  add i t i on ,  creep i s  ' bene f i c i a l  i n  t h a t  i t  s i g n i f i -  
c a n t l y  reduces the  t e n s i l e  s t resses i n  t he  s h e l l .  On the  o t h e r  hand, a t  T = 100 
hours the  res idua l  t e n s i l e  s t resses i n  t h e  dense l i n e r  exce,ed the  t e n s i l e  
s t r e n g t h  by a  subs tant ia l -amount  due t o  shrinkage alone; and t h i s  e f f e c t  i s  
aggravated by creep. Since t h i s  ana lys i s  d i d  n o t  compensate f o r  creep recovery 
e f f e c t s ,  t h e  f i n a l  t e n s i l e  s t r e s s  i n  the  dense l i n e r  should be q rea te r  f o r  t he  
creep run .  Th is  ana lys is  a l s o  p r e d i c t s  a  l a r g e  res idua l  compressive s t ress  i n  the  
s h e l l  a f t e r  t h e  heat-up t e s t . '  However, s ince  c rack ing  i s  p red i c ted  t o  occur bu t  
t h e  e f f e c t  was not  i nc luded  i n  t h i s  ana lys is ,  these res idua l  s t resses a re  expected 
t o  be s i g n i f i c a n t l y  lower.  Since the  model ing o f  shr inkage i n  REFSAM i s  a  simple 
l i n e a r  e x t r a p o l a t i o n  r a t h e r  than a  t ime dependent e f f e c t ,  the  exact  t ime a t  which 
c r a c k i n g  occurs i s  uncer ta in ,  a l though the 'even tua l  occurrence o f  c rack ing  i s  no t .  
For example, c rack ing  due t o  shrinkage might  occur very e a r l y  i n  a  t e s t  run i f  t h e  
hea t -upschedu le  were t o o  slow o r  inc luded holds a t  a  r e l a t i v e l y  low temperature. 
Th i s  i s  because du r ing  t h e  heat-up, t h e  r e v e r s i b l e ' t h e r m a l  expansion counteracts 
the  shr inkage so t h a t  , on l y  a  smal l  .dimensional change ac tua l  l y  occurs. The u l t i m a t e  

4 
c o n t r o l l i n g  f a c t o r  i n  de termin ing  whether c rack ing  w i l l  occur,  however, i s  t h e  ex-  
t e n t  and d i s t r i b u t i o n  of i n e l a s t i c  s t r a i n  which occurs and the  degree o f  mechanical 
c o n s t r a i n t  on the  l i n e r  p revent ing  the  accommodation o f  these s t r a i n s  upon cooldown. 
Thermal s t resses  a r e  impor tan t  i n  t h a t  they  determine t h e  amount o f  creep which 
w i  11 occur, b u t  should n o t  themselves cause c rack ing  i n  a  cons t ra insd  (anchored) 
l i n e r .  I n  a  l e s s  cons t ra ined  l i n e r ,  thermal s t resses m i g h t b e  expected t o  cause 
c rack ing  i n  t h e  i nsu l ' a to r  du r ing  heatup. 

The creep p red i c t i ons 'd i scussed  above are  based on r e l a t i v e l y  s h o r t  t ime 
creep t e s t s  and were in tended t o  be r e l i a b l e  f o r  i n i t i a l  heatup and cooldown. 
The above r e s u l t s  suggest t h a t  long term creep e f fec ts  would be s i g n i f i c a n t  a t  
even lower s t ress  l e v e l s .  

From these i n i t i a l  analyses done w i t h  REFSAM, i t  became apparent t h a t  
c r a c k i n g  i n  m o n o l i t h i c  r e f r a c t o r y  l i n i n g s  cou ld  be reduced o r  e l im ina ted  i n  two 
d i f f e r e n t  ways as f o l l o w s :  

1. M a t e r i a l  Mod i f i ca t i ons  : 

a. By reducing shrinkage through modi f ied  m a t e r i a l s  o r  c u r i n g  
procedures. 

b. By improving creep p r o p e r t i e s  o r  by a l t e r n a t e l y  ope ra t i ng  
a t  luwer. .terrlperatures where the  creep r a t e  i s  much l e s s  
severe (1750°F o r  l e s s  i n  dense l i n e r ,  1250°F o r  l e s s  
i n  i n s u l a t o r ) .  . . 

c. 1111proving t e n s i l e  s t reng th  c h a r a c t e r i s t i c s  by composit ion 
c.hanges ,' o r  mechanical 'or f ib rous  re inforcement  . C 



FIGURE 139.. ~ o o p ' s t r e s s  D i s t r i b u t i o n  P r e d i c t i o n  Through the  Standard 
L i n i n g  Design and She l l  a t : t h e  End o f  t he  Heat ing Ramp 

D (T = 20 h r s )  and t h e  Residual Stresses . A f t e r  . Cooldown 
(T = 1'00 -hrs) .  



d. By improving the  f r a c t u r e  toughness o f  the m a t e r i a l s .  

. . ;.. 
2. Design Mod i f i ca t i ons :  

a. E l im ina te  c o n s t r a i n t s  on l i n e r  so tha t - .shr inkage can occur 
as f r e e l y  as poss ib le '  (a1 te rna te  anchoring schemes). 

b. Reduce compressive st resses on the  1 i n e r . b ~  an expansion 
. . .  a l lowance t o  reduce the  i n t e r f e r e n c e . w i t h  the  s h e l l .  

(There i s a  t radeo f f  he,re, because reduced compression 
- ' a t  the  h o t  face w i l l  r e s u l t  i n  increased tens ion  and poss ib le  

c rack ing  j,n the  i n s u l a t o r ) .  

These approaches became the  bas is  f o r  much of t he  experimental  ma te r i a l  
p r o p e r t y  work and l i n i n g  t e s t  work done on the  r e s t  o f  the  program. They empha- 
s i z e d  t h e  need t o  keep shr inkage and creep t o  a  minimum by t h e  use of as l i t t l e  
water  as poss ib le  i n  t h e  r e f r a c t o r y  concretes; and the  use o f  m a t e r i a l s  w i t h  low 
cement l e v e l s  and opt imized g r a i n  s i z i n g .  They a l s o  emphasized the  need t o  look  
a t  m a t e r i a l s  w i t h  f i b e r  a d d i t i o n s  t o  increase s t reng th  and/or f r a c t u r e  toughness. 
F i n a l l y ,  they s t ressed the  need t o  s tudy l i n i n g  designs which reduced the  constraining 
e f f e c t s  o f  anchors and the  bonding o f  t he  components t o  one another and t o  the  
s h e l l  and which reduced the  i n t e r a c t i o n  o f  t he  s h e l l  w i t h  t h e  l i n i n g  du r ing  the  
t e s t .  Any o r  a l l  o f  these changes were expected t o  reduce the  c rack ing  o f  the 
mono1 i t h i c  r e f r a c t o r y  1  i n i n g s  f o r  use t o  2000°F. 

During t h e  l a t t e r  p a r t  o f  t he  program, a  number o f  these e f f e c t s  were 
analyzed w i t h  the  RESGAPprogran: f o r  comparison w i t h  the  l i n i n g  t e s t  r e s u l t s .  

8 
This  a n a l y s i s  was done on the  L i n i n g  #9 type c o n f i g u r a t i o n  which inc luded f o u r  
m i l  gaps between t h e  two r e f r a c t o r y  components and a  t h i r d  l a y e r  (HES mor tar )  
a t tached t o  the  shel 1. The r e s u l t s  a re  i 1 l u s t r a t e d  i n  Figures 140 through 144 f o r  
e l a s t i c  s t r e s s  analyses. F igures 140 through 143 show the  temperature h i s t o r i e s  
f o r  each component o f  t h e  l i n i n g  and the  s h e l l  obta ined w i t h  a  200°F/hr heat-up 
t o  2000°F and the  accompanying'hoop st resses.  F igure  144 shows the  hoop s t r e s s  
d i s t r i b u t i o n  through t h e  L i n i n g  #9 cross sec t i on  a t  var ious  t imes du r ing  the  
heat-up t e s t  when LITECAST 75-28 was used as t h e  i nsul  a t i n q  component m a t e r i a l .  
Appendix D l i s t s  t h e  computer p r i n t o u t  o f  L i n i n g  #9 w i t h  KAOLITE 2300 L I  as t h e  
i nsu l  a t i  ng component m a t e r i a l .  

' The r e s u l t s  i n d i c a t e  t h a t  the  dense component m a t e r i a l  (KAOCRETE XD 50 
w i t h  4  W / O  310 S t a i n l e s s  Stee l  f i b e r s )  w i l l  n o t  c rack  d u r i n g  the  heat-up t e s t  t o  
2000°F a t  200°F/hr; however, t h e  i n s u l a t i n g  component m a t e r i a l  s  (LITECAST 75-28. o r  
KAOLI'I'E 2300 L I )  and t h e  HES mor tar  w i  11 . ' The compressive st resses generated 
i n  t he  dense component and t h e  st resses induced i n  the  s h e l l  are p red i c ted  t o  be 
' less than . those for, the  standard 1  i n i n g  design ( L i n i n g s  #1 and 2) and a re  be1 i eved  
t o .  be low enough t o  keep t h e  e f f e c t  o f  creep t o  a minimum. A c t u a l l y  t he  s h e l l  
s t resses  are  p r e d i c t e d  to'  be compressive d u r i n g  t h i s  heat-up t e s t  b u t  are suspect 
because of  t h e  ' h igh  t e n s i l e  s t resses  p red i c ted  f o r  t.he HES mortar .  The use o f  
KACPLITE 2300 L I  i ns tead  o f  LITECAST 75-28 f u r t h e r  lowers the  st resses generated i n  
t h e  dense component and the  shel 1  and; t he re fo re ,  . i t s  use should improve the  per-  
formance o f  bo th  t h e  KAOCRETE XD 50 w i t h  o r  w i t h o u t  4 w/o 310 S ta in less  Steel  f i b e r s  

' 

and the  90+% A1203 dense gener ic  r e f r a c t o r y  concrete i n  a .  dual o r  mu1 t icom- 
component 1  i n i  ng'. The t e n s i l e  s t rengths  o f  t he  i n s u l a t i n g  component m a t e r i a l s  
a re  t o o  low, however, t o  r e s i s t  t he  t e n s i l e  .stresses induced i n  t h i s  conlponent 

. . d u r i n g  t h e  heat-up t e s t s .  r 



FIGURE 140'. ~empera ture :  and Hoop' S t ress  p r e d i c t i o n s  o f  t he  Dense . '  

Component o f  L iming  #9 Dur ing  200°F/hr. Heat-up t o  2000°.F. 



FIGURE 140 (CONTI-D) .  
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FIGURE 141. Temperature and Hoop St ress  P r e d i c t i o n s  o f  t h e  ~ n s u l a t i n ~  
Component of L i n i n g  #9 During.200°F/hr.  Heat-up t o  2000°F. 
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FIGURE 141 (CONY: C )  . 



FIGURE 142. Temperature and Hoop Stress Pred ic t ions o f  the HES Mortar  
o f  L i n i ng  #9 Dur ing 20O0F1hr. Heat-up t o  2000°F. 



FIGURE 142 (CONT'D) . 
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. . FIGURE 143 ., ~ e r n ~ 6 , r a t u r e :  and H O O ' ~  s t r e s s  p r e d i ' t t i q n s  o f  t h e  918 Inch 
Ca rbon .S t ee l+She l l  o f  Lining # 9 D u r i n g  200°F/hr. Heat-up 
to 2 ' 0 0 0 ~ ~ .  ' 



FIGURE 143 (CONT' D) . 
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From these r e su l t s  Lining #9 was expected to  perform well in a heat- 
u p  t e s t  t o  2000°F a t  a ra te  u p  t o  200°F/hr. 

3.4.4. End Effects 

In an attempt t o  explain the large differences between the predicted 
and measured axial 1 ining s t r a i n s  in the ear ly analyses and lining tests ;  a study 
was made of end e f fec t s  using an e l a s t i c  f i n i t e  element program, FESAP. End 
e f f e c t s  are  known t o  be present in the t e s t  vessel b u t  were eliminated as much 
as  possible by using a five (5)  foot t e s t  section and taking a l l  s t r a in  measurements 
a t  the center of the t e s t  section. Figure 145 i s  a plot of the minimum principal 
s t r e s s  contours in the vessel when subjected to thermal loading due to  an experi- 
mental l y  determined radi a1 temperature gradient ( 1  OOO°F hot face temperature). 
As shown in  Figure 145 the end e f fec t s  a re  concentrated in the upper quarter of 
the vessel (only the upper half was analyzed due to  symmetry). Figure 145 i l l u s -  
t r a t e s  the axial variation of hoop s t r e s s  along the hot face A-B and along the out- 
s ide of the shell  C-D. As shown in Figure 146 the present generalized plane 
s t r a i n  ( G . P . S . )  model predicts lining s t resses  very SSmilar to the more elaborate 
axi symmetric model . However, the she1 1 s t resses  show considerable differences. 
To verify the consistency of the resu l t s  a subsequent analysis was made of a vessel 
twice as 'long as  the current one. As the vessel becomes longer l t  must approach 
generalized plane s t r a in  a t  the center.  The s t resses  along C - D  f o r  L=60 inch 
do in f a c t ,  approach the G.P.S. resu l t s  a t  A/L=O.  I t  i s  noted tha t  the peak 
s t r e s ses  in the vessel occur near the ends and are  similar for  the two vessels. 
More importantly, these r e su l t s  indicate tha t  while a simp1 i f i ed  one-dimensional 
analysis  i s  adequate fo r  l in ing  design, a more sophisticated analysis may be 
required t o  insure vessel in tegr i ty  when interact ions between the l in ing  and shell  
a r e  present. 

3.4.5. Gap Effects 

The I n i t i a l  predictions of nonl inear e f fec ts  by the model indicated 
t h a t  cracking could take place a t  re la t ive ly  low temperatures due t o  shrinkage and 
creep s t r a i n s .  In t h i s  case the cracking occurs due to  t ens i l e  s t resses  which 
develop because the l ining i s  constrained from moving f ree ly .  As a consequence, 
Linings #3 and #4 u t i l ized  compressible layers between the two l inings and between 
the  l ining and the s h e l l .  These layers served as parting agents to  allow the l inings 
t o  move re l a t ive  t o  each other ,and a lso  served. to  prevent continuous cracks across 
the  interface.  They a1 so were visualized as gaps. 

An, analytical model was developed to  predict the s ignif icant  e f f ec t s  
of gaps. The principal r e su l t  of the gap analysis was tha t  gaps should be mini- 
mized f o r  t h i s  par t icular  application since they are  detrimental t o  the l ining.  
Figure 147 i l l u s t r a t e s  the e f f ec t  of gaps on the maximum tens i l e  hoop s t r e s s  in 
a dual component l ining subjected to  thermal loading. I t  a lso indicates tha t  
increasing the gap thickness between the l in ing  components or  between the l ining 
and the shel l  r e su l t s  in higher t ens i l e  s t resses  in both components. A.gap between 
components i.s l e s s  harmful than one a t  the shell provided tha t  the s t r e s s  s t a t e  
in the dense component remains compressive. The e f fec t  of gaps on shell  s t resses  
i s  j u s t  the opposite; increasing the gap reduces any interaction between the l ining 
and she l l .  Hence, there i s  an inherent t radeoff ,  with regard to  the presence of 
gaps, between the s t r e s s  s t a t e  in  the components of the l ining and tha t  in the 
she l l .  The e f fec t  of pressure, also shown in Figure 147, i s  re la t ive ly  minor. 
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FIGURE 145. Minimum P r i n c i p a l  Stress Contours f o r  a Dual Component 
Refractory  Subjected t o  an Experimental ly Determined 
Radius Temperature Gradient  (1 000F Hot Face Temperature). 
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FIGURE 146. Hoop Stress D i s t r i b u t i o n s  vs. Ax ia l  Distance From 
Center Along the  Hot Face ..and Along Outside of 
She1 1. 
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FIGURE 147. ~ s t i m a t e  o f  Gap E f f e c t s  on  the  Maximum 
Hoop Stresses i n  a Dual Component 
R e f r a c t o r y  Under Combined. Thermal 'and 
Pressure Loads. 



L i n i n g  Tests 

3.5.1. General Comments 

Once t h e  t e s t  equipment was checked . o u t  and approved f o r  use, i t  
operated very  we1 1  and requ i  r e d  o n l y  minor  r e p a i r s  o r  mod i f i ca t i ons .  The heaters 
were t h e  main except ion  t o  t h i s  s ince they  requ i red  constant  maintenance, r e p a i r ,  
and some m o d i f i c a t i o n s .  These m o d i f i c a t i o n s  are ' .descr i  bed i n  Sect ion 2.6.1 o f  
t h i s  r e p o r t .  

I t  u s u a l l y  took th ree  t o  four  months t o  per form a  complete l i n i n g  
t e s t  p l a n  and requ i red  a  group of  four  t o  s i x  people working t h r e e  qua r te r  t o  
f u l l  t ime du r ing  t h i s  per iod .  The ins t rumenta t ion ,  i n s t a l l a t i o n ,  pos t  t e s t i n g  
and t e a r  o u t  a c t i v i t i e s  were the  most t ime consuming w h i l e  the  . t e s t  runs, data 
r e d u c t i o n  and a n a l y s i s  o f  the  r e s u l t s  were cons iderab ly  l e s s  t ime consuming by 
comparison. 

The. h ighes t  vessel temperature recorded d u r i n g  the  heat-up t e s t s  
was about 370°F..(measured a t  t h e  bottom of t he  vesse l ) .  This  occurred d u r i n g  the  
35 hour  soak o f  t h e  1850°F, 145 p s i g  steam run  on L i n i n g  #6. F igure  148 shows ' 

s chemat i ca l l y  t he  temperatures measured'at var ious  l o c a t i o n s  on t h e  t e s t  fa,ci  1  i ty  
d u r i n g  t h e  t e s t .  ! .  

During the  l i n i n g  t e s t s  r u n  i n  a i r ,  a  l a r g e  volume o f  steam was r e -  
leased f rom the  1  i n i n g  a t  a h o t  face tempera.ture o f  about 1000°F. This  u s u a l l y  
caused the  steam t r a p  i n  t h e  bottom o f  t h e  vessel t o  begin opera t ing .  This  . t rap  
was c o n s t a n t l y  i n  opera t ion .  d u r i n g  the  pressur ized steam , t e s t .  Th is  was p a r t i a l l y  
due t o  t h e  condensat ion o f  steam which was i n j e c t e d  d i r e c t l y  i n t o  the  botto,m .head 
t o  keep i t  h o t  d u r i n g  t h e  pressur ized s team ' tes ts .  

The steam caused o x i d a t i o n  of t he  i n s i d e  o f  t he  top  and bottom heads 
and t h e  u n l i n e d  p o r t i o n s  o f  t h e  vessel s h e l l  b u t  the  e f f e c t  was minor.  I t d i d  
no t  appear t o  have any major  e f f e c t  on t h c  performance o i . L l ~ t !  heaters whereas 
temperature d id .  While t h e  heaters.needed t o  be repa i red  a f t k r  the  1700-2000°F 
runs, t hey  d i d  n o t  a f t e r  the  1200°F runs. 

The steam was found t o  condense i n  the  t o p  i n s u l a t i o n  d u r i n g  a  t e s t  
and sa tu ra ted  it. This d i d  n o t  reduce i t s  i n s u l a t i n g  a b i l i t y  s i g n i f i c a n t l y  o r  

' 

cause any chimney e f f e c t s ;  however, because o f  t he  thermal. energy requ i red  t o  
vapor ize  it, a  c o o l i n g  e f f e c t  occurred. This  caused the  t o p  end o f  t h e  h o t  zone 
t o  be about 20°F c o o l e r  than t h e  lower zones o f  t he  l i n i n g .  Th is  e f f e c t  was not .  
seen d u r i n g  t h e  h i g h  temperature (>1 700°F) cyc les .  

D r i l l  c o r i n g  was t h e  most e f f i c i e n t  method for. deter.s~ining the  crack 
c o n d i t i o n  o f  t t ie  l i n i n g .  A s e r i e s  o f  t e n  t o  twenty f i v e  d r i l l  cores u s u a l l y  per -  
mi t t e d  t h e  crack depths and gap s i z e  t o  be determined. .Core d r i l l i n g  was a l s o  
used t o  e x t r a c t  reg ions  around anchors s ince samples w i t h  good i .n . tegr i ty  cou ld  
be e a s i l y  c o l l e c t e d .  The core d r i l l  i n g  equipment was used tw ice  , i n  the  f i e l d  f o r  
DOE; once a t  t he  C02 Acceptor p l a n t  i n  Rapid City, .South Dakota and once a t  t he  
HYGAS p l a n t  i n  Chicago. 



FIGURE 148. Schematic o f  Test Faci 1  i t y  . ( Ind icated Temperatures Measured 
Dur ing'35 H r .  Hold a t  1850°F and 145 ps ig  Steam - L in ing .#6) .  ,. 



The t e a r  o u t  o f  t h e  1 i n i n q s  was genera l l y  very  d i f f i c u l t .  The dense conl- 
ponent g e n e r a l l y  broke up more e a s i l y  than the  i n s u l a t i n g  component m a t e r i a l  bu t  
t he  presence o f  anchors compl icated the  job .  Once bonding b a r r i e r s  and coated 
anchors a t  wider  anchor spacings were used, t h e  t e a r  ou t  j o b  became eas ie r .  I t  
g e n e r a l l y  took  two men one week t o  complete ly  t e a r  ou t  and c lean up a vessel and 
ge t  i t  ready fo r  another  1 i n i n g  t e s t .  

3.5.2. Specia l  Tests on Vessel 

. . .  Pressure Ef fec t  

P r i o r  t o  t he  pressuriz 'ed l i n i n g  t e s t s ,  t he  t e s t  f a c i l i t y  was 
checked o u t  t o  determine how we1 1 i t  mainta ined pressure and what t he  r a d i a l  
growth of t h e  s h e l l  would be a t  pressures up t o  200 ps ig .  Both compressed 
asbestos and FLEXITALLIC 1/8 i n c h  t h i c k  gaskets worked very  w e l l  a t  s e a l i n g  the  
f lange connect ions. The vessel was t i g h t  enough t o  .mainta in 200 p s i g  pressure 
over  a 24 hour p e r i o d  w i t h  a l o s s  i n  pressure o f  l e s s  than 10 p i g .  ..The vessel 
responded q u i c k l y  t o  pressure and was found t o  grow r a d i a l l y . a n  amount equ iva len t  
t o  t h e o r e t i c a l  p red ic t ions . .  

Dur ing  l a t e r  l i n i n g  t e s t s  when good conf idence e x i s t e d  i n  t h e  
-she l l  s t r a i n  gage technique, i t  was determined t h a t  i n t e r n a l  vessel p ressu r i za t i on  
o f  150  psi^ added 4000 p s i  s t r e s s  t o  t h e  s h e l l  stresses'  generated du r ing  the  heat- 
i n g  o f  t h e  r e f r a c t o r y  l i n i n g .  

Thermal E f f e c t  

P r i o r  t o  t he  i n s t a l l a t i o n  of L i n i n g  #6, a spec ia l  400°F heat-up 
t e s t  was run  on the  empty vessel s h e l l  t o  i d e n t i f y  which type s h e l l  s t r a i n  gage 
was t h e  most r e l i a b l e  and determine t h e  l e v e l  o f  t he rma l l y  induced st resses which 
occurred independent of l i n i n g  e f fec ts .  

The f i r s t  a c t i v i t y  was done t o  he lp  e x p l a i n  the  I n c o n s i s t e n t  
s h e l l  s t r e s s  r e s u l t s  ob ta ined w i t h  the  t h r e e  types o f  s t r a i n  gages' used i n  t h e  
f i r s t  f i v e  l i n i n g  t e s t s .  These d i f ferences a r e  summarized i n  Table 29. 
They i n d i c a t e d  t h a t  t h e  s t resses  were predominant ly  t e n s i l e  a t  8 = 208O and 
compressive a t  8 = 17O f o r  Vessel A on L i n i n g s  #1, 3 and 5 w h i l e  they  were the  
same a t  these same l o c a t i o n s  f o r  Vessel B on L i n i n g s  #2,and 4. The r e s u l t s  
i m p l i e d  t h a t  d i f f e r e n c e s  i n  e i t h e r  s h e l l  c o n s t r u c t i o n  o r  s t r a i n  gaoe r e l i a ~ i l i t y  
cou ld  be t h e  cause. 

To check o u t  these p o i n t s ,  it was decided t o  cha rac te r i ze  bo th  
she1 1s  more f u l  l y  us ing  the  t h r e e  t y p e s  o f  gages o f  i n t e r e s t  i n  a redundant 
manner. I n  a d d i t i o n ,  t h i s  was a l s o  considered t o  be an appropr ia te  t ime  t o  i n s t r u -  
ment t h e  vessels t o  check o u t  end e f f e c t s .  The geometr ic l o c a t i o n s  o f  t he  o r i -  
g i n a l  gages as we l l  as t h e  a d d i t i o n a l  gages used on s h e l l  A f o r  L i n i n g  #6 a re  
i n d i c a t e d  i n  Table 30. , . . . . . . - 

The resu l  t s  ob ta ined d u r i n g  t h i s  t e s t  a r e  shown i n  F igu re .  149' 
t i ~ r o u g h  153. F igure  149 shows t h e  nea t i nq  scnedule used as sensed by t h e  vessel 
s h e l l  a t  t h e  m idpo in t  of t h e  1 ining w h i l e  F igures 150-153 show comparisons be- 
tween t h e  LWK, CEA and WK s t r a i n  gage r e s u l t s  a t  var ious  1,ocations around the . '  
m i d p o i n t  o f  t h e  vessel and o t h e r  l o c a t i o n s  as w e l l .  



TABLE 29. Summary o f  Vessel She l l  Stresses Observed from 
Li.ninqs #1 through 5. .. 

L i n i n g  . 
No. 

Gages Used' & Stresses ,Observed a t :  . 
0 = '17", z = 0" 0 = 208";.z = 0" 

LWK (Compressive) 
LWK & CEA (Tens i l e )  CEA ( ~ e n s i 1 . e )  
LWK (compressive) W (Tens i l e )  
CEA (Compressive) CEA (Compressive) 
LWK (Compressive) WK (Tensi 1 e )  . . . 

TABLE 30 - Locat ion  o f  B i a x i a l  S t r a i n  Gases: o n  Vessel She l l  f o r  i i n i n g  #6: 
Gages were A l igned t o  Obta in Stresses i n  t he  Hoop and A x i a l .  

C i r cumfe ren t i a l  Axi a1 S t r a i n  R e l i a b l e  
She l l  S t r a i n  L o c a t i  on Loca t i on Gage Temperature 
Gage Locat ion  0 - Degrees - Inches TY pe L i m i t  - O F  

0 CEA 

0 . '  LW K* 
+27 . , ..WK 

+15 . . WK 

-1 5 W K 

-27 WK 

0 WK 

0, . CEA 
0 .  W K* 

0 .  W K 

* O r i g i n a l l y  i.nsta1 l e d  gages . . on she1 1 A. ' 
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a)  Heat ing schedule b)  Temperature V a r i a t i o n  i n  Ax ia l  . D i r e c t i o n  

FIGURE 149. She1 1 Heating Schedule and Temperature V a r i a t i o n  
I n  Ax ia l  D i r e c t i o n .  



FIGURE 150. She1 1 Stresses a s '  Determined ~i t h '  CEA. and 'LWK Type . . 

S t r a i n  Gages During Heat-up Test  o f  Empty Vessel - . . 
TO,  4000~; (0- = ,170, i, 0") . . 
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Froln a rev iew o f  these r e s u l t s ,  i t  i s  e v i d e n t  t h a t  t h e  WK s e r i e s  
gages performed c o n s i s t e n t l y  and y i e l d e d  s t resses  t h a t  were o f  t h e  same order  of  
magnitude and d i r e c t i o n .  They fu r thermore  e x h i b i t e d  good ze ro - re tu rn  s t r a i n  
s t a t e s  a t  t h e  complet ion o f  t h e  t e s t .  Th is  5 s  expected s ince  t h e  apparent s t r a i n  

- curve de r i ved  f o r  t h e  WK gage when bonded t o  a  separate sample o f  t h e  s h e l l  m a t e r i a l  
r e t r a c e s  i t s e l f  on cooldown from 450°F w i t h  l i t t l e  z e r o - s h i f t  i n  s t r a i n  upon r e -  
t u r n  t o  room temperature. I n  c o m ~ a r i s o n ,  t h e  CEA type gage (F iqu re  151 ) fo l lows 
t h e  WK gage r e s u l t s  up t o  a  c e r t a i n  p o i n t  then d iverges  f rom t h e  WK r e s u l t s  and 
does n o t  r e t u r n  t o  a  zero s t r a i n  s t a t e .  Th i s  p o i n t  corresponds t o  t h e  upper 
ope ra t i ng  temperature of  t h e  CEA gage. An upper ope ra t i ng  temperature o f  300°F 
was determined from apparent s t r a i n  t e s t s  r u n  on t h i s  gage. Whi le  c o o l i n g  f rom 
temperatures above 300°F, t h e  apparent s t r a i n  curve was found t o  d i v e r g e  from t h e  
heat-up data, and a  l a r g e  z e r o - s h i f t  i n  s t r a i n  occurred upon r e t u r n i n g  t o  room 
temperature. However, when heated t o  temperatures below 300°F, t h e  cooldown' 
apparent s t r a i n  curve r e t r a c e d  t h e  heat-up curve, w i t h  l i t t l e  z e r o - s h i f t  i n  s t r a i n  
a t  room temperature. 

With t h e  knowledge t h a t   the'^^^ gages per form t e l i a b l y  a t  tem- 
pera tu res '  below 300°F,. t h i s  gage can be used t o  eva lua te  t h e  r e l i a b i l i t y  o f  t h e  
LWK.type gage f rom a  comparison o f  t h e  p l o t s  i n  F igu re  150. Th i s  comparison c l e a r -  
l y  demonstrates t h e  u n r e l i a b l e  na tu re  of t h e  LWK,gage s ince  t h e  r e s u l t i n g  s t resses  
a re  o f  oppos i te  d i r e c t i o n  f rom t h e  CEA gage d u r i n g  t h e  e n t i r e  d u r a t i o n  o f  t h e . t e s t .  
Furthermore, these s t resses  a re  i n c o n s i s t e n t  w i t h  t h e  r e s u l t s  ob ta ined f rom the  WK 
gages e l  sewhere on the  she1 1. A1 though t h e  pub1 ished temperature 1  i m i  t f o r  re1  i a b l e  
ope ra t i on  o f  t h e  LWK gage was n o t  exceeded, and t h e  gage was found t o  e x h i b i t  good 
apparent s t r a i n  c h a r a c t e r i s t i c s ,  t h i s  gage i s  b e l i e v e d  t o  be u n r e l i a b l e  because o f  
i nhe ren t  design d e f i c i e n c i e s .  The pr imary  one i s  the 'method o f  gage attachment t o  
t h e  s h e l l .  Th is  i s  achieved by spot  we ld ing  a  subs t ra te  s h i m . t o  which t h e  gage grid 
i s ' a d h e s i v e l y  bonded. It i s  suspected t h a t  t h e  mechanical s t r a i n  does n o t  adequate ly  
t r a n s f e r  f rom t h e  s h e l l  t o  t h e  shim, thus  causing t h e  gag'e g r i d  t o  sense an erroneous 
s t r a i n .  An improved method o f  gage attachment migh t  i n c l u d e  a  r e v i s e d  spot  we ld ing  . . 

p a t t e r n  t o  prevent  t h e  shim f rom warping under l oad  and thereby  e l i m i n a t i n g  erroneous 
s t ra i .ns  t o  be sensed by t h e  g r i d .  . The LWK gage was i n i t i a l l y  se lec ted  t o  measure 
s h e l l  s t r a i n s  f o r  t h e  l i n i n g  t e s t s  because o f  i t s  good apparent s t r a i n  c h a r a c t e r i s -  
t i c s  and t h e  ease w i t h  which i t  can be at tached.  Al though t h e  WK r e q u i r e d  consid-  
e r a b l y  more t ime  f o r  at tachment t o  t h e  she1 1  (adhesive bonding),  i t  was decided t o  
use t h i s  gage f o r  a l l  f u t u r e  l i n i n g  t e s t s  s i nce  i t  was f o u n d ' t o  be t h e  most r e l i a b l e .  

Once t h e  r ~ l a l i u r ~ s h i p s  between t h e  va r i ous  s t r a i n  gages were known, 
t h e  l e v e l  o f  t h e r m a l l y  induced s t resses  i n  t h e  l i n i n g  t e s t s  a t  t h e  t o p  temperature 
o f  t h e  t e s t  cou ld  be determined. The maximum l e v e l  was about 4000 p s i  f o r  a  s h e l l  
temperature of 340°F. Th i s  l e v e l  .decreased t o  about 3000 p s i  f o r  a  s h e l l  temperature 
o f  250°F.and t o . a b o u t  2300 p s i  f o r  a  s h e l l  temperature o f  200°F. 

P o i n t  Loadina 

The s t r a i n  r e s u l t s  ob ta ined du r i ng  t h e  p o i n t  l o a d i n g  experiments . 

on Vessel B t o  s imu la te  anct .~or /sheI l  i n t e r a c t i o n s  a re  summarized i n  Table 31. They 
i n d i c a t e  t h a t  t h e  hoop s t r a i n s  go through maxima and minima depending upon l oad ing  
d i s tance  f rom t h e  s t r a i n  gages. Th i s  i s  i n  general  agreement w i t h  t h e  t rends  pre- 
d i c t e d  by theo ry  o f  t h i n  w a l l e d  pressure vessels .  The r e s u l t s  a l s o  i n d i c a t e  t h a t  
p o i n t  l o a d i n g  o f  t h e  s h e l l  by ancho r / re f rac to ry  i n t e r a c t i o n s  a r e  p o s s i b l e  and cou ld  

f be hav ing  .a. l o c a l  i z e d  e f f e c t  on t h e  vessel s h e l l  s t r a i n s .  The magnitude o f  these 
st ra i ,ns,  however, were r e l a t i v e l y  smal l  and were be l i eved  t o  be o f m i n o r  o v e r a l l  
s i g n i f i c a n c e .  . . 



TABLE 31 - Shel 1  S t r a i n s  Determined Dur ing I n t e r n a l  
P o i n t  Loading o f  Empty Vessel B. 

I n t e r n a l  Load 
(1 bs )  

Load 
Ang 1  e* 

Shel 1  S t r a i n  Gages 
17'' 

H O O ~  Axi  a1 

* I n d i c a t e d  on F igu re  105 
. . 

(G.F.S.' =,' 2.00,) 
. . 

208" ' . 
. . 

HOOP' ' Ax ia l .  



The cond i t i ons  under which the  l i n i n g s  were tes ted  are  shown i n  lab ' le  
32. The o r i g i n a l  t e s t  p lan  i n c i  uded a g rea te r  niimbei- o f  i c i n g s  Set i t  was necess- 
a r y  t o  dev ia te  from t h i s  due t o  the amount o f  i n fo rma t ion  aenerated. the v a l l l ~ !  o f  
running a  second o r  t h i r d  cyc le  on each 1  i n i n g ,  and the t ime . requi red t o  analyze 
and c o r r e l a t e  the  r e s u l t s  o f  each l i n i n g .  The p lan  evolved as i n fo rma t ion  was 
acqui red from . the whole program and as experience was gained. from the 1, in ing . 

t e s t s .  Much o f  t he  d i r e c t i o n  o f  the  t e s t s  was based on the  a n a l y t i c a l .  and experf-  
mental f i n d i n g s  o f  L in ings  #1 arid 2  and l a t e r  o n . t h e  f i n d i n g s  o f  o t h e r  DOE con- 
t r a c t o r s  who repo r ted  good performance of t h e  50% . . A1203 r e f r a c t o r y  concrete i n  
coal  g a s i f i e r  atmospheres. 

The o r i g i n a l  p lan  f o r  each l i n i n g  was t o  run  one heat-up t e s t  a t  one '  
of two heat ing  schedules;. o r  a  f a s t e r  schedule if t h e  l i n i n g s  d i d  n o t  crack a t  
the  slower ra tes .  The o r i g i n a l  hea t i ng  schedules inc luded one a t  10D°F/hr w i t h .  
holds a t  200°F, 400°F, 1  000°F and 2000°F and a  .second a t  50°F/hr t o  l(jOO°F and 100°F/ 
h r  t o  2000°F w i t h  no holds except a t  2000°F. This  p lan  was changed t o  i nc lude  
two o r  more cyc les  on each 1  i n i n g  w i t h  the  f i r s t  c y c l e  run  t o  1200°F o r  l e s s .  
This  was done because c rack ing  was expected t o  occur  be fore  t h i s  temperature was 
reached and because the  embedded s t r a i n  gages i n  t he  dense component were n o t  ex- 
pected t o  g i ve  r e l i a b l e  s t r a i ' n  data on the  second and subsequent cyc les  if used 
above 1200°F on the  f i r s t  cyc le .  

The f i r s t  hea t i ng  schedule was fo l l owed  f o r  L i n i n g  Nos. 1-3 and the , 

second heat ing  schedule was fo l lowed f o r  L i n i n g  Nos. 4-7; A t h i r d  schedule, fas te ' r  
than.  the  f i r s t  two, was fo l lowed'  f o r  L i n i n g  No. 8; and a  f o u r t h  schedule, slower 
than the  o the r ,  was fo l lowed f o r  L i n i n g  No. 9. A slow cool  -down r a t e  (50°F/hr) 
was followed,:for L i n i n g  No. 1-7 and 9; and a  f a s t e r  (>1509F/hr) cool-down r a t e  . .  
was f o l l o w e d . f o r  L i n i n g  No. 8. 

A l l  1  i n i n g s  were o f  t he  12 i n c h  dual component c o n f i g u r a t i o n  w i t h  
7-112' inches o f  . i nsu la t i n ' g  and 4-112 inches dense m a t e r i a l .  The design .conf igu-  
r a t i o n  inc luded V-type anchors spaced 12 inches apar t .  f o r  the  f i r s t  two 1  i n i n g s .  
The major comparison was uncoated versus co,ated anchors. The t h i r d  l i n i n g  was . ' -  

anchorless, i n  o rde r  t o  b e t t e r  i s o l a t e  the  materi .al  f a c t o r s  c o n t r i b u t i n g  t o  'crack ing,  
and L i n i n g s  #4 through 9  used standard Y-type and independent anchors bo th  spaced 
a t  36 inches apa r t .  The standard design c o n f i g u r a t i o n  o r i g i n a l l y  s t a r t e d  ou t  w i t h  
i n t i m a t e  . bonding between r e f r a c t o r y  components and the  r e f r a c t o r y  and the she1 1  . 
However, l a t e r  1  i n i n g s  i nc luded  ceramic' f i b e r  paper, p l a s t i c  sheet and s i l i c o n e  . 
grease as bonding b a r r i e r s  a t  these l o c a t i o n s  t o  a l l o w  each component t o  sh r i nk  ' . .  

independent ly  o f  one anoth'er. The emphasi s  was a1 so sh i  f t e d  from a  90+% A1 203 dense 
ma te r i  a1 t o  a  50% A1203 dense r e f r a c t o r y  .concrete m a t e r i a l  c o n t a i n i n g  metal f~ bers 

3.5.4'  Ins t rumenta t ion  

The 1  i n i  ngs were i n i  ti a1 1  y inst rumented w i  t h  embedded s t r a i n  gages 
o r i e n t e d  i n  a l l  t h ree  p r i n c i p a l  s t ress  d i r e c t i o n s  and l oca ted  a t  v a r i o u s  depths 
throughout  t h e  1  i n i n g  on opposi te s ides.  Th is 'was changed t o  j u s t  one s ide  and 
t o  t h e  midpo' int  o f  each component f o r  L i n i n g s  #4-6 and 9: ' L i n i n g  #7 had no em- 
bedment s t r a i n  gages. 

f 
' 

.. As noted p r e v i o u s l y  t h i s  reduced l i n i n g  i ns t rumen ta t i on  was accom- 
panied by an' increased anchor and she1 1  i ns t rumen ta t i on .  The moni tur. i r ig o f ' .  i n t e r -  
na l  pore pressure was begun i n  L i n i n g  #4 and accu ra te l y  measured i n  L in ings  #7 and 9. 

. . . .  . , .. . . . . . . . .  



TABLE 32. Summary o f  Test  Condi t ions - L i n i n g  Nos. 1-9* 

. LINING NO. DESIGN AN C 40 RS ATMOSPHERE . ' HEATING SCHEDULE 

1 Standard Uncoated V A i  r # 1 
12 Inches 1200, 2000°F 

. .  # 1  2 . s tandard ' C o ~ t e d  V A i  r 
12 Inches 1200°F 

. . 

3 Mod i f i ed  . . .  Pone A i r ,  Stearr # 1 
( B a r r i e r s )  400, 1200, 2000°F 

4 MoJi f i e d  Semi-coated Y A i r ,  Steam # 2 
and Ifidependent 1200, 1850°F*** 

36. Inches 

5' Modi f i e d  Coated Y and A i r  , ' Steam # 2 
( B a r r i e r s )  Independent 1200, 185OoF*** 

36 I r ches  

. 6  Mod i f i ed  Coated Y Steam I 
N 

# 2 
1200,*** 1850°F*** QI 

QI 
( B a r r i e r s )  

I #2 7 Modi f i ed Coated Y A i  r 
( B a r r i e r s  & F i b e r s )  36 I'nches 1700, 1700,*** 1850°F 

8** . Modi f i ed Coated Y A i  r # 3 
( B a r r i e r s  & F ibe rs )  36 [nch'es 1700, 1700°F 

9 M o c i f i e d  Coated' Y Ai  r #4 
( B a r r i e r s ,  F ibers ,  36 inches 1850" F 
. 3 r d  Layer)  

* Nos. 1-4: 90+% ~l O3 g e i e r i c / L ~ ~ ~ ~ ~ ~ ~  75-28 
NOS. 5-8: 50% ~1 263 (KAOCRETE XD 5O)/LI-E:AST 75-28,. . . . . 

No. 9: 50% A1203 (KAOCRETE XD 5O)/KAOLITE 2303 L I  and HES mor ta r  . . ' . 

. . . . 

** - L i n i n g  No. 7 l e f t  i n  p lace  and rzheated .Z addi t i o i a l  cyc les  
Heat ing ra tes :  >250°F/Hr. Cool i i g  r a t e s  : ilSO°F/Hr. 

.. , 

*** Vessel p ressur ized  t o  150 ps ig .  
. . 



3.5.5. I n s t a l  l a t i o n i  
? .  

The mix ing,  c a s t i n g  and i n i t i a l  c u r i n b  c o n d i t i o n s  u s e d > i n  each of t he  - e , i y t ~ l  1  i n i n g s  installed a r e  summarized i n  Tabl'es 33 and 34. Table 33 1  i s t s  t he  
r e s u l t s  f o r  t h e  i ,nsula. t ing component m a t e r i a l s  and Table 34 1 i s ts " " the  r e s u l t s  
f o r  t he  dense component m a t e r i a l s .  The LITECAST 75-28 m a t e r i a l  was g e n e r a l l y  t h e  
most d i f f i c u l t  ma te r i a l  t o '  p l ace  and had t h e  most v a r i a b i l i t y  i n .m i<x ing  and cas t -  
i n g  performance. The ERD.A 90. mater ia l ,  on t h e  o t h e r  hand, was t h e  e a s i e s t  t o  p lace.  

...; j :  

The mixers performed. very  we1 1  and .permi t ted  lower .water  1  eve1 s  than 
had been a n t i c i p a t e d  i n  t h e  batches o f  dense component m a t e r i a l s . '  A l l  t h e  mater- 
i a l s  f lowed w e l l  under v i b r a t i o n  and f i l l e d  t h e  vessel c a v i t y  s a t i s f a c t o r i l y .  The 
use o f  metal  f i b e r s  i n  t he  KAOCRETE XD 50(Mix  36C) m a t e r i a l  made i,t somewhat more , 

d i f f i c u l t  t o  pour; however, i t  f lowed w e l l  w i t h  v i b r a t i o n .  

3.5.6. Heat-Up Tes t '  Resul ts  

The sec t i on  which f o l l o w s  sumniarizes t h e  f i n d i n g s  o f  t h e  n i n e  l i n i n g  
t e s t s  de'scr i  bed i n  Table 32. These f i n d i n g s  a r e  grouped i n t o  f o u r  o r  f i v e  areas 
as they  r e l a t e  t o  t h e  o v e r a l l  o b j e c t i v e s  o f  t h e  program. Only t h e  high1 i g h t s  o f  
each l i n i n g  a re  discussed. For more d e t a i l s  on each 1  i n i n g ,  t he  f o l l o w i n g  q u a r t e r l y  
and/or annual r e p o r t s  on t h i s  c o n t r a c t  s'liou'ld be reviewed: 

L i n i n g  Report  . . 

1  F i r s t  Annual , Nov: 1977 
F i f t h  Q u a r t e r l y ,  Dec. 1977 , 

2 F i f t h  Q u a r t e r l y ,  Dec. 1977 
S ' i x th  Q u a r t e r l y ,  Jan. 1978 

3  S i x t h  Q u a r t e r l y ,  Jan. 1978 
, Seventh Q u a r t e r l y ,  A p r i l  1978 

. . 

4  Seventh Q u a r t e r l y ,  A p r i l  1978 
Second Annual , J u l y  1978 

Second Annual, J u l y  1978 
N i n t h  Q u a r t e r l y ,  Nov. 1978 

6 ~ e n t h  Q u a r t e r l y ,  Jan. 1979 .', 

~ l e v e n t h  Q u a r t e r l y ,  May 1979 
T h i r d  Annual , Aug. 1979 

8 Inc luded i r i  Appendix C 

Tables 35 and 36 summarize t h e  c rack  w id th  and shr inkage r e s u l t s  and 
pos t  t e s t  r e s u l t s ,  r e s p e c t i v e l y ,  o f  t he  n i n e  l i n i n g s  tes ted .  A d d i t i o n a l  data a re  
i nc luded  i n  Appendix E  on L i n i n g s  #7-9. 



TABLE 33. Ba tch ing  Parameters - I l i s u l a t i  r g 
Component, L i n i n g  Nos. 1-7 and 9. 

L i n i n g  #1 L i n i n g  # 2 L i n i n g  #3 L i n i n g  #4 L i n i n g  #5 L i n i n g  #6 
Parameter ' LITECAST 75-28 'LITECAST75-28 LITECAS775-28 LITECAST75-28 LITECAST75-28 -CITECAST75-28 

Batch S ize  600 l b s .  600 lbs. 6 0 0 ' 1 ~ s .  450 l b s .  450 l b s .  450 lbs .  

# Batches 7-114 7-113 . 8-1/3 8 8 9 

M a t e r i a l  Temp.. 76°F 78°F 72°F ' 62°F . 75'F . 73.4"F 

Room Temp. 75°F; 78-112°F 720.- 64°F . 75°F 73.4"F 

80°F 77°F Water Temp. 73.5-77OF 74.5"F 75°F 76°F 

Water Content* 21% 21 % 24% 21 % 21% 21 % 

.Mix Time Dry N 30 sec. 30 sec. 30 sec. 30 sec. 30 sec. 30 sec. 
m 

Mix Time Wet 90 sec. 90 sec. .. 90 sec. ' . . 90 sec. 90 sec. ' . 90 sec. 

. Bal l - in-Hand ,, Good Good GoodIDry ' Good Poor ~ a i  r - ~ o o d  
Excel./Wet . . 

Fourabi 1 i t y  F a i r  . . F a i r  Good Good F a i r  Good 
. . 

Placement Time . 90 min. 58 min. 66 r i n .  78 min. 57 min. ?O min. 

Cure Temp. 
I n i t i a l - P e a k  85 - 129OF 83 - 136DF . 77 - 130°F . 71 - 119°F N.D.. 78-124°F 

Pour Temp. N.D. N.D. N.D. 69 - 71°F ' . 77°F 77°F 

Legend: N.D. - Not determined 
* Basis  o f  d r y  batch. " Only metal form v i b r a t i o n  was usad d u r i n g  c a s t i n g  t o  prevent  damage t o  HES Mortar.  

L i n i n g  #7 
L ITECAST 75-28 

450 1 bs. 

30 sec. 

90 sec; 

Good- 
Excel l e n t  

Very Good 

65 min. 

L i n i n g  #9 
KAOLITE 2300 L I  

240 l b s .  

30 sec. 

5 min. 

Good- 
'Excel l e n t  

Excel l en tYC 

120 min. 



Parameter 

Batch Size 

# Batches 

Roon Temp. 

Water Temp. 

Water Content* 

Mix Time Dry 

Mir. Time Wet 

B a l l  -in-Hand 

Pourabi l  i t y  

Placement ~ i m e  

TABLE 34. Batching Parametevs - Dense Component, L i n i n g  Nos. 1-7  and 9. . \ . * . .  . . ., 

L i n i n g  #7 L i n i n g  #9 
- L i n i n g # l  . L i n i n g R .  L i n i n g # 3   ini in^ #4 L i n i n g  #5 L i n i n g  #6 50% A1 703 
90+% 41203 90+% A1 $I3 90+% A1203 90+% A1 203 50% A1 203 50% A1 203 4 w/o F ibers 
Generic . Generic Generic Generic B&W 36-C B&W .36-C B&W 36-C B&W 36.-C 

800 l b s .  700 1 bs. 
800 lbs' ' (ERDA 90IKaotab) 800 lbs' 600 l b s .  600 1 bs . 600+ 24 1 bs. f i b e r  600+ 24 1 b r  f i b e r  

5-112 6 6 6 6 6 5-112 6 

69°F 70°F 77°F 78-83°F 75°F -76°F 74-75°F 77°F - .  ' .  

7-314- -8% 7-3/4% .. 7-314% - 8-3/42: 7-314-8% 7-1 12% 7-1/22 . 7-112% -7-112% .: 

30 see. 30 sec. . . .  60 sec.. 30 sec.-8 min. 30 sec. 30 sec. , 30 sec. . - 30 sec. ,., . . . 

90 sez. 90-120 szc. 90 sec. 90-150 sec. 5 min. 5 min,. 5 min. - .  5 min. ... : 
. .  . . . -' 

Poor t o  dood t o  ' Good/ Dry F a i r  t o  Good Good Poor-Fai r Poor ldry-  F a i r  . -  
Excel Bent Excel l e n t  -Excel lent/Wet . . . . Goodlwet ' . . 

. . - .  
Very Good Good Good S t i f f t o ' F a i r  Good F a i r  Poor-Fai r  Good 

44 min. 42 min. . . 
.. . .. 
47 'mi  n , . 60 min. 75 min. 65 min. 75 min. 7 5 m i n . :  .. 

Cure Temp. 78-i  1 3 " ~  84-109°F 74-98"~. .  . : 71-90°F N.O. 80-96°F 74-88°F - 81-98°F .,' . '  
I n i t i a l - P e a k  . .,. 

.. . ' 

Pour Temp. N.D. ' N.D. : ' N.D. 71 OF 81 OF 79.5"F 80" F 85°F 
< .  . . . . . 

, . . . . , . . . . 
.:, 

- - - - - - -  
Legend: N.D. - Not determined. 

* Basis  o f  Dry B a k h  



TABLE 35. L i n i n g  Shrinkage and Crack/Gap Widths 
A f t e r  Heat-Up Tests - L l  n ing Nos. 1-9 

L i n i n g  Temp. . .  .Shrinkage* . ' ,  Crack Width**. Gap Width*** 
No. ( O F )  ( % )  ( i n . )  ( i n . )  

. . 

1 2000 N A . NA N A 

2 ' i 200 .20 .oz5 N A 

Legend: NA - '  Not Determined 

NM - Not Measurable 

* - L.inear .shri:nkage ca l cu l a t i ons  assume summation o f  crack ,widths* accounts 
f o r  shrinkage i n  v e r t i c a l  and hor i zon ta l  d i r ec t i ons  from as-cast 
cond i t i on .  

** - ~ v e r a ~ e  o f  cracks i n  v e r t i c a l  and hor i zon ta l  d i rec t ions .  

*** - Gap w id th  i s  measured between dense and i n s u l a t i n g  'components. : 

**** - L i n i ng  No. 7 l e f t  i n  place and'reheated Z add i t i ona l  cyc'ies. 



TABLE 36. Post  Test  Phys ica l  P r o p e r t i e s  - L i n i n g  Nos. 1-9 

TENSiLE STRENGTHS'. PSI 

OEilSE LINIfIG I 3  LINING I 4  . LINING I 5  
CO!.l?OfIEflT LINING I 1  LINlNG 82. 2000°F LINING R6 LINING 18 LINING 17 L;N:N,; r9  -- 1 8 5 0 ° F '  1200°F . 1850°F As-Cast 1200°F 1850°F. 1700°F 1706°F 1850°F 1700JF As-Cast 1 9 5 0 ' ~  

Hot face la70 '985 ,1880 1570 . 250 71 5 521 638 879 725 700 845 51 0 475 435 

1nter.face . -- . -- 1110 - 1185 305 -- 552. 575 781 430 710 . 765 -740 ., 450 420 

tnte-face 220 

' t o l d  Face -- 

I DENSE 3 C0"P. 

C;) Hot Face 177 

In ter face -- 
INSULATIAG 
CC:430!iEfIl 

Interface 81 74.7 82.9 . 74 85.8 -- 
Hot Face -- -- -- 

' 78 65.8 -- 
. . 

*Determined by d l a m t r a l  compression t e s t  

**Determined by v o l u m t r l c  tedhnlque 



Standard Lining @sigfi 

Cracking occurred in both Lining Nos. 1 and 2 (Standard ~ e s i g n )  even 
though the " V "  anchors in No. 2 were wrapped with masking tape (20-30 mil th ick) .  
The l inings were heated to  1200°F in accordance with the modified Case #1 schedule; 
and Lining No. 1 was subjected to a second cycle to  2000°F which resulted in 
propagation of the cracks. The appearances of the two l inings are shown in Figures 
155-1 56. 

As shown in the figures,  the cracking generally followed the principal 
s t r e s s  direct ions of the l i n e r  and the anchor spacings. I t  i s  fur ther  noted that  
the cracks appear to  have propagated across the interface between the two components 
and became more severe a t  the higher t e s t  temperature. Although the severity 
of the cracking, considering the small amount of shrinkage (<0.20%),  was not an t i -  
c ipated,  the cracks do match those as observed in the C02 Acceptor and HYGAS 
gas i f i e r s .  Thus, the r e su l t s  indicate tha t  the conditions in the t e s t  f a c i l i t y  
were simulating those of p i l o t  plant and f i e ld  t e s t s .  

\/hen Linings #1 and 2 were post tes ted,  i t  was found as shown in 
Figure 157. t h a t  the hot face cracks propagated completely through the l ining 
to  the shel l  and followed the anchor orientation and spacing. I t  was also found 
tha t  the two components were well bonded to one another and' to  the shel 1 as shown 

. 

by the well bonded d r i l l  core removed from Lining #2 (see Figure 158). Futhermore, 
i t  was found from the l in ing  s t r a in  data on these l in ings ,  the anchor s t resses  
determined for  a s t r a in  gaged "V "  anchor used in Lining #2 and t'he shell  s t r e s s  
r e su l t s  of Lining #2 which a re  shown in Figures 159, 160 and 161, respectively,  
t ha t  1 i ning s t r a ins  and anchor and shel 1 s t resses  were generated almost instantane- 
ously upon heating of the dense component. 

These findings indicated t h a t ,  i n i t i a l l y ,  the l ining ac t s  e l a s t i ca l ly ,  
i n t e rac t s  severely with the anchors and shell , and i s  constrained by the shel 1 
and anchors from shrinking and contracting on cooldown. This combination of e f fec ts  
appears to  have played a s ignif icant  role in causing the lirlirigs t o  crack. Since 
the cracking became more severe a f t e r  the 200O0F hcat - u p  o f  L ~ I I  i r ~ y  # I ,  I t  a1 So 
appeared tha t  creep was a s igni f icant  factor  in af reel i n g  cracking. Propagation 
of the cracks was enhanced by the bonding of the two components to  each other and 
t o  the she l l .  

These r e su l t s  agreed favorably with the predictions of t h e  REFSAM 
f i n i t e  elemellt comput.er program (Figures 131, 138 ar~d 139) and indicated tha t  the 
material and design modifications as  proposed from the resu l t s  of the analytical 
work should be seriously considered. 

Modi.fied L i n i ~ g  Designs 

S i  nce the -anchor/ref ractory interact ions appeared t o  be so intense, 
a decision was made to  omit a l l  b u t  f ive of the anchors ' in Lini'ng #3 and place 
bonding bar r ie rs  between the interface and shell s o . t h a t  the components could 
shrink and contract f ree ly .  The f ive anchors tha t  were used were wrapped with 
masking tape. Four were used t o  support s t r a in  gages (suspended) and the f i f t h  
was s t r a i n  gaged. A schematic of the l ining i s  shown in Figure 162. 



FIGURE 154. As Tested Appeavance crf Lfning #I After 
Two Thermal Gy~les to  1200" and 2000°F 



FIGURE 155. Appearance of L in ing  #1 After Cracks Are Inked 
Foll owing Two Thermal Cycles t o  1200 and 2000°F. 



FIGURE 156. Appearance o f  Lining #2 After Cracks Were Inked 
Following One Thermal Cycle to  1200°F. 



. FIGURE 157. Top View o f  Linfng t l  During Tear-Out and Examination. 
Dense comp~nent cut w i t h  diamond saw and i nsulator 
dressed with a chisel. Cracks are marked w i t h  ink. 
Four f o o t  test zone l ies with in  the a-prows. 



FIGURE 1518. Mo~4za;ntal Cut Through Drill Core Taken 
, F m  Ltni ng. P2 After' Test to, I 20C1°F. 
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FIGURE 159. Radial S t ra in  History  o f  L in ing #2 
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FIGURE 160. "V"  Anchor Stresses. From L i n i n g  #2 
1200°F Heat-Up 



. , .  TIME . (HR) . . . . 

. . . . 

FIGURE 161. she1 1 Stresses A t ,  D i f f e r e n t  Circumferent ia l  
Locations During L i n i ng  #2 1200°F Heat-up. 



(30 MIL LAYER) , . . 

FIGURE 162. ~chemat ' ic o f  L i n i n g  #3 



L i n i n g  #3 was heated on th ree  cyc les .  I n  addi t i ,on t o  being i n s t r u -  
mented, i t  was moni tored w i t h  a  video camera du r ing  two o f  t he  cyc les .  The f i n d i n g s  
o f  these t e s t s  i n d i c a t e d  t h a t  t he  90+% A1203 (ERDA 90) dense and LITECAST 75-28 
m a t e r i a l  s  were s t i  11 q u i t e  suscep t i b le  t o  c rack ing  even when the  c o n s t r a i n i n g  
e f f e c t  o f  t h e  anchors were removed and t h e  o v e r a l l  shr inkage o f  the  l i n i n g  was 
l e s s  than t h a t  measured f o r  L in ings  #1 and 2. However, i t  was demonstrated t h a t  .*. 

cracks  which formed i n  the  dense component cou ld  be prevented from propagat ing 
i n t o  t h e  i n s u l a t i n g  component by t h e  use o f  t he  ceramic. f i b e r  paper bonding. b a r r i e r  

' 

and t h a t  a  gap wou ld . fo rm between the  two components which go t  p rog ress i ve l y  l a r g e r  
as t h e  t e s t  temperature was increased. F igure 163 shows the  appearance of  L i n i n g  I 
#3 a f t e r  t h e  2000°F c y c l e  and Figure 164 shows the  i n t e r f a c e  reg ion  o f  the l i n i n g  . 

and t h e  presence o f  a  125 m i l  gap a f t e r  t he  t e s t .  As can be seen from these 
f i gu res ,  L i n i n g  #3 went through a  combinat ion o f  exp los ive .  spa11 i n g  and thermo- 
mechanical c rack ing .  The cracks i n  t he  h o t  face a re  more random than those t h a t  
occur red  i n  L i n i n g s  #1 and 2  and i t  appears t h a t  the  l i n i n g  m a t e r i a l  i s  prone 
t o  c r a c k i n g  because o f  shr inkage and creep. 

Even though a  s u b s t a n t i a l  amount o f  tape and ceramic f i b e r  paper 
c o a t i n g  were app l i ed  t o  t h e  s t r a i n  gaged anchor, as shown i n  F igure 165, t h i s  
anchor was h e a v i l y  loaded ( a x i a l l y )  du r ing  the  heat-up t e s t s  and was expected t o  have 
been y i e l d e d .  A c t u a l l y ,  t h e  s t resses  d u r i n g  t h e  400°F heat-up were found t o  be 
g r e a t  enough t o  y i e l d  the  anchor. This  p o i n t  was checked du r ing  the  t e a r  o u t  

I ;r ' 

o f  t h e  1  i n i n g  and as shown i n  F igures 166 and 167, t h e  anchor was found t o  be 
y i e l d e d  and the  i n s u l a t i n g  component ma te r i a l  around i t  was bad ly  cracked. These 
f i n d i n g s  i n d i c a t e d  t h a t  g r e a t e r  care was requ i red  t o  assure t h a t  an adequate gap - - 
would form around the  ex tens ion  n u t  on t h e  anchor t o  prevent  t he  dense component 
f rom i n t e r a c t i n g  w i t h  i t .  The load ing  r e s u l t s  on the  anchor a l s o  i n d i c a t e  t h a t  
h o l d  t imes i n  the  heat-up schedule a t  250°F, 450°F and 1000°F a r e  de t r imen ta l  t o  
t he  l i n i n g  because o f  c y c l i c  l oad ing  each t ime t h e  h o l d  i s  s t a r t e d  and stopped. 
Th i s  p o i n t  was checked d u r i n g  subsequent l i n i n g  t e s t s .  -- 

Other f ea tu res  o f  t he  l i n i n g  i n v e s t i g a t e d  d u r i n g  the  tea r -ou t  were: 
bonding of  t he  i n s u l a t i n g  component t o  t h e  shel 1  and the  condi t i o n  o f  the component. ""  ' 

F igu re  168 zhnws t h e  appearance of the  i n s u l a t i n g  component dnd i n d i c a t e s  how 
h e a v i l y ,  b u t  randomly, cracked i t  i s .  This  component was w e l l  bonded to  the  s h e l l  
even though a  bonding b a r r i e r  o f  ceramic f i b e r  paper was used. During i n s t a l l a t i o n ,  
t h e  paper was i n f i l t r a t e d  by the  cement phase i n  t he  i n s u l a t i n g  component which 
r e s u l t e d  i n  a  subsequent s t r o n g  bond t h a t  c o n t r i b u t e d  t o  crack fo rmat ion  i n  t he  
component. 

One a d d i t i o n a l  l i n i n g  w i t h  the  standard l i n i n g  design type m a t e r i a l s  
was t r i e d  t o  determine i f  t h e  use o f  a  b e t t e r  bonding b a r r i e r  m a t e r i a l  ( s i l i c o n e  
coated ceramic fi ber  paper a t  t he  shel 1  ) , lower top  ope ra t i ng  temperature, and a  
15fl p s i g  p ressu r i zed  steam atmosphere would h e l p  improve the  performance o f  t he  
90+% A1 20j m a t e r i a l  . Th is  1  i n i n g  was deslgnated L ~ I I  i l l y  H4. 

Experiments were a1 so t r i e d  w i t h  expansion a1 1  owances around the  
o u t s i d e  o f  t h e  metal forms f o r  t h e  dense component, use o f  t he  Case #2,  heat.-up 
schedule, and i n c l u s i o n  o f  coated, semi-coated and uncoated " Y "  anchors a t  a  two 
t o  t h r e e  f o o t  spacing. PRESSTITE*'material was used t o  coa t  e i t h e r  t he  e n t i r e  
anchor o r  t he  ex tens ion  p o r t i o n .  

PRESSTITE i s  a  r e g i s t e r e d  t rade  name o f  t h e  V i r g i n i a  Chemical Co., I n c .  
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FIGURE 164. View o f  Dual Component Lining With Section of  Dense 

Component Removed to  Show Insulator and Gap a t  Interface. 



Stra in  Gage Locations on Coated 
304 Stainless Steel Anchor Stud 
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FIGURE 167. Cracking Observed in  Insulating Conrponent o f  Lining #3 
Around Nut of Strain Gaged Anchor (Dark Regions Indicate 

, 1  , . 8 3 . 0 , 
Drill Core Sampling) 

' 7  ; . .*-hc ' , , a,.. - . -  
X* r., 



FIGURE 168. Top View o f  L in ing  #3 During Tear-out 
[Dense Component Removal ) . 



Figure 169 shows the appearance o f  L in ing  d4 a f t e r  the 1850°F heat- 
-- up t e s t .  It has a  crack pa t te rn  s i m i l a r  t o  L in ing  13 a f t e r  the 2000°F heat-up 
F:, -:a cycle: however, i t  i c  no t  as  severely cracked and the qap formed between the two 

components i s  smaller. The cracks do propagate through the e n t i r e  l i n i n g  i n  
both components. 

These was no not iceable e f f e c t  o f  the pressurized steam on the dense 
re f rac to ry  o r  on the i nsu la t i ng  mate r ia l .  However, the she l l  stresses d i d  increase 
as pred ic ted by theory r e l a t i v e  t o  i n t e r n a l l y  pressurized vessels. The completely 
coated s t r a i n  gaged anchor had a markedly reduced s t ress compared t o  the uncoated 
and p a r t i a l l y  coated anchor and ind ica ted  t h a t  the i n t e r a c t i o n  had been e s s e n t i a l l y  

, 3  el iminated.  This i s  shown i n  Figure 170 f o r  the three type anchors dur ing the 
1200°F heat-up. The r e s u l t s  i nd i ca te  t h a t  the bonding o f  the i n s u l a t i n g  component 
mater ia l  t o  the sha f t  o f  the semi coated anchor i s  apparently adequate t o  r e s t r a i n  
i t  from elongating; and can cause i t  t o  go i n t o  compression. 

As can be seen i n  Figure 171 the coat ing was completely burned away 
i n  the dense component and l e f t  an adequate expansion allowance around the extension. 
The coat ing d i d  not  completely burn away i n  the i n s u l a t i n g  component; however, i t  
d i d  create an adequate allowance f o r  expansion. 

The r e s u l t s  from t e s t i n g  t h i s  l i n i n g  suggested t h a t  the use of a  
slower heat ing r a t e  (50°F/hr vs 100°F/hr), the e l im ina t i on  o f  holds dur ing heat- 
up t e s t i n g  t o  a  lower temperature, and the  complete coat ing o f  the " Y "  type a n c h ~ r  
spaced two t o  three f e e t  apar t  improved the  performance o f  the l i n i n g .  Even thobgh 
the s i l i c o n e  coated ceramic f i b e r  paper d i d  prevent the bonding o f  the i n s u l a t i n g  
component t o  the she l l ,  i t  d i d  no t  reduce the cracking which occurred i n  the  
i n s u l a t i n g  component. The r e s t r a i n i n g  e f f e c t  o f  the independent anchors may have 
been responsi b l  e  f o r  the  observed crack pat tern .  

Based on these f ind ings  and the i n t e r e s t  on the p a r t  o f  DOE i n  working 
w i t h  a  50% A1203 dense r e f r a c t o r y  concrete and experimenting w i t h  a  mater ia l  which 
had b e t t e r  shrinkage cha rac te r i s t i c s  than the 90+% A1 0 dense generic mater ia l  
L in ing  #5 was designed t o  use an improved product, KA~CBETE XDSO(Mix 36C), as the  
dense component mater ia l .  This 1  i n i n g  was p r a c t i c a l l y  i d e n t i c a l  t o  L in ing  #4 i n  
design and t e s t  p lan and was found t o  perform as wel l  as, i f  no t  b e t t e r  than, 
L in ing  #4. Figure 172 shows the appearance o f  L in ing  #5 a f t e r  the 1850°F heat-up. 
This l i n i n g  d i d  no t  show any not iceable  reac t ion  w i t h  the pressur ized steam o r  any 
greater  r e s i  stance t o  cracking than L i n i ng  #4. The cracks propagated completely 
across the  thickness o f  the dense component bu t  stopped a t  the in te r face .  The i n -  
su la t i ng  component had a completely independent crack pat tern .  

One i n t e r e s t i n g  r e s u l t  o f  t h i s  l i n i n g  t e s t  was the very h igh s t ress 
measured fo r  a completely coated anchor which had been s t r a i n  gaged. The anchor 
s t ress  r e s u l t s  ind ica ted  t h a t  the anchor would be y ie lded  due t o  an i n t e r a c t i o n  
w i t h  the l i n i n g .  This r e s u l t  was confirmed dur ing the  post  t e s t  and t e a r  ou t  
a c t i v i t i e s  on L i n i ng  #5 when i t  was discovered t h a t  the coat ing on the end of ': - , * 3 ,, 
the  " Y "  extension had been rubbed away. Th is  exposed the end o f  the anchor ex- 
tens ion t o  the dense KAOCRETE XD SO(Mix 36C) mater ia l  and caused a l o c a l i z e d  de- 
formation as shown i n  Figure 173. These r e s u l t s  i nd i ca te  the importance o f  using 
a  s t i f f  coat ing mater ia l  and core dur ing the i n s t a l l a t i o n  o f  the anchors and l i n i n g .  



FIGURE 169. Top View of L i n i n g  #4 Hot Face A f t e r  Heat-up Test  t o  
1850°F and 120 ps ig  Steam. 
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FIGURE 170. (Cont'd. ) 



FIGURE 171. D r i l l  Core From L i n i n g  f4 A f t e r  1850°F Test Showing 
Gap Around Anchors (Wrapped With 100 M i l  Asphalt  Tape 
During I n s t a l l a t i o n ) .  



FIWE 172. Top Vilaw o f  Lining iQ5 A f t e r "  Ha t -up  Test to: .1850QF and 
. - 940 pslg s@eam (Shaft Locatf a s  o f  Anchors Indicated 

an Top sa*g&y," ., *,: --'*..*:'&-? 



FIGURE 173. Sectioned Drill Cores From Dense Component of Lining #5 
Af te r  1850°F Test (Note Gap Around Combustible Coated 
Anchor). 



Fl8WRE 174. Top YIew of LinSng #6 Hot Face A f t e ~  .fileat-Up Test To 1&50F935 WPS Wjth Stern 
Pmssure of 120-150 psig. Cracks Maw Been HtghlighW W4th Blank Ink.. 
Stmi ght Lines f Y 1ndS Locrtibn o f  Tap R o w  o f  Anchors (Photo No. P-78-638E ) . 
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FIGURE 175. Hoop and A x i a l  Shell Stresses a t  30 Hrs. I n t o  
1850°F Heat-Up Tes t  o f  L i n i n g  #6. 
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Figures 178 and 179 show the appearance o f  L in ing  1#7 a f te r  the f i r s t  
cyc le  t o  1700°F on the Case #2 heat-up schedule, and a f t e r  three cycles. The 
l i n i n g  had very 1 i t t l e  shrinkage a f t e r  each cyc le  ( less  overa l l  than the previous 
1 in ings tested) and had a very f ine ,  random crack pa t te rn  t h a t  d i d  no t  propagate 
completely through the l i n i n g .  It was found t h a t  the cracks which had formed 
dur ing the f i r s t  cyc le  t o  1700°F had s t a b i l i z e d  and no t  grown dur ing the second 
and t h i r d  cycles. Evidence o f  t h i s  i s  shown i n  Figure 180 f o r  the dense component. 
Three d r i l l  cores werz taken along the same v e r t i c a l  crack, one a f t e r  each o f  the 
three cycles. As can be seen i n  Figure 180, the crack d i d  no t  grow from one cyc le  
t o  the other. This was considered t o  be a major improvement i n  performance. The 
i nsu la t i ng  component mater ia l  acted i n  the same manner. 

The she l l  stresses ind ica ted  q u i t e  wel l  the  expected d i f ferences 
between the f i r s t  and subsequent cycles; and s i m i l a r  d i f ferences were seen i n  
i n te rna l  pore pressure between the f i r s t  and subsequent cycles. These d i f fe r -  
ences i n  she l l  stresses are shown i n  Figure 181-182 f o r  the three heat-up t es t s  
and the pore pressure r e s u l t s  f o r  the f i r s t  cyc le  are presented i n  Figure 183. 
The she l l  stresses induced dur ing t he  i n i t i a l  heat-up show the immediate i n t e r a c t i o n  
between the 1 i n i n g  and she1 1 fol lowed by a re l ax ing  o f  the s t ress as the 1 i n i n g  
shrinks. This i s  fo l lowed by a sharp r i s e  and f a l l  i n  s t ress which appears t o  be 
creep re la ted.  This i n i t i a l  l i n i n g  i n t e r a c t i o n  e f f e c t  i s  missing on the second 
and subsequent cycles and i s  replaced w i t h  a phase o f  no l i n i n g  i n te rac t i on  followed 
by a sharp r i s e  t o  peak stress.  This r e s u l t  suggests t h a t  the gap which i s  known w' 
t o  e x i s t  a f t e r  the  f i r s t  cyc le  must close f i r s t  before the 1 i n i n g  begins t o  i n f e r a c t  8hs'L-: 

w i t h  t he  she l l .  The monitor ing o f  she l l  stresses can therefore be a means of 
understanding what i s  happening t o  the l i n i n g  dur ing service. 

Re la t i ve ly  low, but  s i gn i f i can t ,  pore pressures were generated i n  t he  
l i n i n g  dur ing t he  f i r s t  cycle.  These pressures d iss ipa te  as the i n i t i a l  heat-up 
progresses and are higher i n  the i nsu la t i ng  mater ia l  , because o f  process water, 
than the dense mater ia l .  They are not  a f a c t o r  i n  the subsequent cycles. 

Since L in i ng  #7 was considered t o  meet t he  goal o f  a l i n i n g  desigp 
w i t h  reduced cracking, i t  was reheated a t  two r a p i d  (>200°F/hr) heat-up and codldown 
cycles t o  determine i f  i t s  performance changed s i g n i f i c a n t l y .  The r e s u l t s  o f  the 
t e s t s  ind ica ted  t h a t  on l y  minor add i t iona l  surface cracking o f  the dense component 
occurred; however, there was f u r t h e r  cracking i n  the i n s u l a t i n g  component a1 though. a 

it was no t  considered severe. Another d r i l l  core was taken from along the same - :- ,- 

v e r t i c a l  crack and compared t o  the previous three d r i l l  cores. As shown i n  ~ i ~ u r e ' : ~ '  
184, the crack depth i n  the ' four th  core i s  approximately equal t o  t h a t  o f  t he  
previous three. These r e s u l t s  suggest t h a t  the 310 s ta in less  s tee l  f i b e r  add i t ion  
t o  the KAOCRETE XD 50 improved i t s  f racture toughness and reduced i t s  tendency t o  
crack even though the f ibe rs  degrade i t s  creep resistance. 

r- 

Based on these resu l ts ,  the f ind ings  o f  the  s t ress analyses, the 
hol low c y l  inder  work, contacts w i t h  R. Pierce o f  Pennwal t Corrosion Engineering rr1.l , 

Div., N. Severin o f  Hotworks Services and the  DOE; a decis ion was made t o  modify .. 
both the  i n s u l a t i n g  mater ia l  and t he  design o f  L in ing  #7 t o  f u the r  improve i t s  
performance. This l i n i n g  was designated L in i ng  #9 and was composed o f  three 
layers  o f  mater ia l  instead o f  the  two used i n  a l l  the previous l i n i n g s .  It was 
t o  be heated a t  a slower heat ing r a t e  than was used i n  any o f  the  previous t es t s  
(25"F/hr vs 50°F/hr). The l i n i n g  was designed w i t h  an ac id  r e s i s t a n t  mortar 
which had good re f rac to r iness  and would s t re t ch  as i t  was heated and cured. 
The idea behind using t h i s  mater ia l  was t h a t  a t h i r d  l a y e r  was considered a good 



FIGURE 178. Top View o f  Lining #7 Showing Oxidized 
Metal Fibers (Dark Spots) After  1850°F 
Heat-Up Test In A i r .  



I@-, FIGURE 179. Top View of Lining #7 After Three Thermal 
, , I -  - Cycles (1700°F i n  A i r  1700°F i n  100 psig . .b~&.  w5fJ o*. " -. !$:y F 3 



FIGURE 180. Drill Cores of Dense Component Adjacent to Same 
Vertical Crack (Lining #7 - Three Thermal Cycles). 
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Second Heat-up of 
L in ing #7 t o  1700F 
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Figure 182. Shel l  Stresses f o r  Lining #7 During Second 
Heat-up t o  1700°F on Case #2 Schedule 
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of Lining #7 t o  1700°F. 



FIGURE 184. Drill Cores of Dense Component Adjacent 
to Same Vertical Crack (Lining #7 - Five 
Thermdl Cycles). 



approach t o  lower stresses ana temperatures. I n  addi t ion,  i f  i t  were ac id  res is tan t ,  
i t  could a f f o rd  added protect ion t o  the vessel she l l  i n  a corrosive coal gas i f i ca t ion  
type environment. This layer  was bonded securely t o  the she l l  using the procedure 
ou t l i ned  below and then covered w i th  four  m i l  p l a s t i c  sheet t o  p ro tec t  i t  whi le 
the res t  o f  the l i n i n g  was i ns ta l l ed .  UOLITE 2300 L I  was used as the i nsu la t i ng  
component mater ia l  instead o f  the LITECAST 75-28 and KAOCRETEXD 50w i t h  4 w/o 
310 s ta in less steel  f i be r s  was the dense component r e f r ac to r y  mater ia l .  Figure 
185 i s  a schematic o f  t h i s  l i n i n g  design. 

The KAOLITE 2300LI was used t o  determine how a weaker, l ess  s t i f f ,  
but  be t t e r  i nsu la t i ng  mater ia l  than LITECAST 75-28 affected the performance o f  the 
1 in ing.  The use o f  the slow continuous heat-up r a t e  was based on the previous 
resu l t s  and inpu t  from N. Severin o f  Hotworks Services on f i e l d  pract ices.  

HES L in ing  And I ns ta l  1 a t i on  

P r i o r  t o  i n s t a l l a t i o n  of the HEPlayer, the ins ide  surface o f  the 
vessel shel 1 was sandblasted t o  promote good bonding o f  the ac id  r es i s t an t  mater ia l .  
No bonding b a r r i e r  was used between the HES layer  and the she l l .  This component 
was troweled onto the she l l  surface i n  two 1/4 inch t h i c k  layers  fo r  a t o t a l  
thickness o f  1/2 inch. During i n s t a l  l a t i o n  the processing parameters f o r  the 
HES mortar mater ia l  were c a r e f u l l y  monitored i n  a manner s i m i l a r  t o  t h a t  f o r  the 
re f r ac to r y  castables. The mortar was a two component system o f  cement and aggregate 
t o  which water was added. It was mixed w i t h  a Hobart mixer t o  achieve a workable 
mater ia l  . Important processing condi t ions are 1 i s t e d  i n  Table 37. Figure 186 . 
i s  an overhead view o f  the vessel dur ing the HES i n s t a l l a t i o n .  

Af ter  the HES mater ia l  was i ns ta l l ed ,  the heating assembly was - . 
placed i n  the vessel and used for  curing. The cur ing schedule was based upon a '  
recomme~idation by the Pennwalt Corporation. The schedule was 20 hours t o  reach 
200°F and a 35 hr.  soak a t  200°F. 

. , 
To determine if the use of 150 ps ig  steam dur ing the e n t i r e  dry-out 

and heat-up would bene f i t  the performance o f  the l i n i n g ,  L in ing  #6 was run on two 
cycles t o  1200°F and 1850°F. This l i n i n g  was almost i den t i ca l  t o  L in ing #5 i n  de- 
s ign except t h a t  the independent anchors were not  used and a new ser ies o f  s t r a i n  
gages were appl i e d  t o  the shel 1 t o  generate more re1 i a b l e  shel 1 s t ress data around 
i t s  circumference and along i t s  length. This l a t t e r  instrumentation was t o  check 
f o r  end e f fec ts .  One other  experiment planned involved running the t e s t s  for  up 
t o  40 hours a t  temperature and pressure t o  determine if steady heat t ransfer  con- 
d i  t i ons  would occur and how t h i s  would a f f e c t  cracking. 

Figure 174 shows the appearance- o f  L in ing  #6 a f t e r  the 1850°F cycle. 
The crack pa t te rn  i s  s i m i l a r  t o  t h a t  o f  L in ing  #5 a f t e r  a much shorter  t e s t  but  
i t  has a f a i r l y  la rge 30-40 m i l  hor izonta l  crack i n  i t  which suggests the dense 
component had been constrained from cont ract ing f ree ly  dur ing the coaldown o f  the 
1200°F run. The shel 1 stresses showed var ia t ions  both c i rcumferent ia l  l y  and 
a x i a l l y  which d i d  not  correspond c l e a r l y  t o  end e f fec ts ,  but ra ther  t o  loca l i zed  
temperature e f f e c t s  (See Figure 175). The s t ress l eve l s  were lower, however, 
than they had been f o r  the standard 1 i n i n g  design. The temperature p r o f i l e  through 
the l i n i n g  as shown i n  Figure 176 ind icated t h a t  steady s ta te  condi t ions were 
being ap9roached i n  35 t o  40 hours a t  1850°F and t h a t  the temperatures were high 
enough t o  cause both shrinkage and creep t o  occur. . ., 

q e g i  stered Trademark, Ennwal t Co. 
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FIGURE 185. Schematic of Improved LiningW'Design. 



TABLE 37. Processing Conditions f o r  HES Component i n  L in ing  #9 

Steel Temperature - 81 -83.5OF 

Mixing Water Temperature - 80°F 

Mater ia l  Temperature - 80°F 

Mixing Water pH - 6.6 

Steel Surface pH - - neut ra l  

A i r  Temperature - 80-85OF 

Wet Bulb Temperature - 75OF (70% Saturat ion)  

Steel Dew Po in t  Temperature - 74'F 

I n s t a l l a t i o n  Time of 1 s t  Layer - 6 hrs. 

1ns ia l  l a t i o n  Time o f  2nd Layer - 3 hrs. 



FIGURE 186. I ~ M I  1st ton tmimdge M place ~ 6 5  
en ;knaI& o f  Vessel For Li~inlg #9 



The LITECAST 75-28 i n s u l a t i n g  component, as cast, was found t o  be 
aelissr and considerably stronger than i t  had been i n  previous l i n i n g s ,  but  i t  was 
again severely cracked and had a s i m i l a r  pa t te rn  t o  the o ther  l i n i n g s .  This can 
be seen i n  Figure 177 f o r  both the dense and i nsu la t i ng  components. No strength 
enhancement was detected i n  e i  the r  mater ia l  a f t e r  the pressurized steam runs. 

Since no major changes occurred i n  the 1 in ings  when the 90+% A1 203 
dense generic was replaced w i t h  a 50% A1203 dense mater ia l  i n  the modi f ied design 
(except from some add i t i ona l  i n s u l a t i o n  e f f e c t ) ,  plans were developed t o  t r y  o ther  
mater ia ls  and designs whi le cont inu ing t o  work w i t h  the 50% A1 0 dense re f r ac to r y  
concrete. The f i r s t  change involved the use o f  s ta in less  stee? { ibers.  This was 
considered t o  be appl i cab le  t o  coal combustors, but  concern was ra ised about how 
wel l  these f i b e r s  would stand up t o  a coal g a s i f i c a t i o n  atmosphere. To resolve 
t h i s  question, samples o f  castables conta in ing s ta in less  s tee l  f i b e r s  were sent 
t o  the U.S. Bureau o f  Mines i n  Tuscaloosa and tes ted i n  both clean and sour coal 
gases a t  h igh pressures. The r e s u l t s  25 were very encouraging and showed 1 i t t l e  
o r  no e f f e c t  o f  H2S and other  cor ros ive gases i n  a shor t  term (500-1000 h r )  t e s t .  

Based on these resu l t s ,  L i n i ng  #7 was planned. It was t o  inc lude 
4 W/O 310 s ta in less  s tee l  f i b e r s  i n  the 50% A1 203 dense component mate r ia l  
(KAOCRETE XD 50) coated " Y "  anchors, and running two o r  more heat-up t e s t s  t o  
1700°F o r  h igher wi thout  stopping a t  1200°F as was done i n  a l l  previous l i n i n g  
tes ts .  It a lso  included moni tor ing the i n te rna l  pore pressure o f  the l i n i n g  
dur ing the f i r s t  heat-up. 

The o ther  two components o f  L in ing  #9 were cas t  i n  a manner s i m i l a r  
t o  the  previous l i n i ngs .  They were 7" o f  Kao l i te  2300LI and 4-1/2" o f  the 501 
A1 0 dense castable. The mixing and cas t ing  summary i s  presented i n  Tables 33 
an% 34. The L in ing  #9 i n s t a l l a t i o n  a l so  included 4 m i l  +,thick p l a s t i c  sheet bonding 
b a r r i e r s  between the  HES l aye r  and the i n s u l a t i n g  component and a t  the i n te r f ace  
between the i n s u l a t i n g  and dense r e f r a c t o r y  concrete mater ia l .  Only one type o f  
anchor was used i n  t h i s  l i n i n g .  This was a standard " Y "  anchor, used i n  previous 
l i n i n g s ,  coated w i t h  approximately 80 m i l s  o f  an asphal t  tape. This was 20 m i l s  
th inner  than previous anchor coatings. These anchors were spaced 30-36 inches 
apart .  The V l e g  extensions o f  a l l  anchors were o r ien ted  v e r t i c a l l y  t o  be con- 
s i s t e n t  w i t h  e a r l i e r  l i n i n g s .  Figure 187 shows the p l a s t i c  bonding b a r r i e r  and 
coated anchors p r i o r  t o  i n s t a l l a t i o n  o f  the  dense component. 

Instruments were i n s t a l  l e d  a t  the vessel she l l  and w i t h i n  each component 
t o  measure the i n te rna l  pore pressure dur ing the heat-up t es t .  Techniques s i m i l a r  
t o  those used i n  L in ings #6 and #7 were used i n  L i n i ng  #9. Oxidized s ta in less  
s tee l  tubes (1/4"OD) were embedded i n t o  both the dense and i n s u l a t i n g  components 
t o  measure pressure a t  the midpoint  o f  each. During cast ing,  the tubes were f i i l e d  
w i t h  removable wi re  t o  prevent the castable from en te r ing  the tube. These tubes 
were monitored w i t h  pressure transducers which were connected t o  the computerized 
data acqui s i  t i  on system; a m i  11 i vol t recorder provided a con ti nuous record o f  
f l  uctuat ions.  Pressure gages were a1 so attached t o  penetrat ions through the vessel 
she1 1 t o  moni tor  pressure on both sides of the  HES. 

Figure 188 i s  the  appearance o f  L i n i ng  #9 a f t e r  a 25OF/hr continu- 
ous heat-up t o  1850°F. The dense component had some very f i ne ,  h a i r l i n e  type 

P 
cracks i n  i t  but they d i d  not  propagate very f a r  i n t o  the mater ia l  as ind ica ted  by 



FIGURE 187. Appearance o f  L in ing  1#9 A f t e r  
I n s t a l  1 a t i o n  o f  KAOLITE 2300 L I  , 
P l a s t i c  Bonding Bar r i e r ,  and 
Coated Anchor Extensions. 
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, ; , A  Test to  1850°F. 



t he  appearance of. the d r i l l 1  .core i n  Figure 189. The i nsu la t i ng  component was 
cracked badly and many of the cracks propagated t o  the she1 1 . As shown i n Tab1 e 
35, L i n i ng  #9 shrank very l i t t l e  compared t o  the o ther  l i n i ngs ;  however, a gap 
formed between the  components. Figures 190-193 show the thermal and stress h i s t o r y  
o f  L i n i ng  #9. The l i n i n g  had the lowest .she l l  stresses, she l l  temperature, pore 
pressure and l i n i n g  s t r a i n s  o f  any o f  the  l i n i n g s  prev ious ly  tes ted a t  h igh tem- 
peratures. The l i n i n g  temperature and she l l  s t ress r e s u l t s  agree favorably w i t h  the 
thermal and s t ress analyses done on L i n i ng  #9 w i t h  REFSAM and i nd i ca te  t h a t  the 
proper choice o f  mate r ia l s  and design parameters had been used t o  g ive an optimized 
design. I t  a1 so appears t h a t  the use o f  a slow continuous heat-up schedule t o  top 
temperature wi thout  stopping a t  1200°F has a bene f i c i  a1 e f f e c t  on 1 i n i n g  performance. 
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FIGURE 169. Drill Cores of  Lining 97 and #9 
Gk. k?,' * C - After 185QPF Heat-Up Tests. 
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FIGURE 190. Temperature History o f  Lining #9 During 
Heat-Up Test t o  1850°F. 
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FIGURE ,192. Hoop and' Ax ia l  she1 1 Stresse's ~ u r i n g  
Heat-Up Test o f  L i n i n g  #9 to'1850°F. 
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3.5.7. Acoust ic  Emission 

During the  course o f  t h i s  i n v e s t i g a t i o n ,  f i f t e e n  f u l l  -sca le  1  i n i n g  
t e s t s  were moni tored f o r  acous t i c  emission a c t i v i t y .  ' Those t e s t s  were desig-  
na ted  1, 1-A, 2, 3-A, 3-8, 3-C, 4-A, 4-8, 5-A, 6-By 6-C, 7-A, .7-B., 7-C, and 9. 
Table 38 conta ins  a  summary o f  t he  AE r e s u l t s  ob ta ined from those t e s t s .  I n  some 
instances,  bo th  AE systems (Dunegan-si ng l  e  channel , and AETC-mu1 t i  channel ) were 
used t o  reco rd  the a c t i v i t y .  I n  those cases the  t o t a l  ri,ngdown counts 'and t o t a l  
event  counts 1  i s t e d  i n  t h e  t a b l e  were obta ined from t h e  s i n g l e  channel AE system's 
data. Table 38 a l s o  l i s t s  the  maximum h o t  face temperature reached dur ing  the  tes ts ,  
s i nce  t h i s  parameter i n f l u e n c e d  the  r e l a t i v e  amount o f  AE generated i n  a  g iven t e s t .  

An i n t e r e s t i n g  observat ion from the  data l i s t e d  i n  Table 38 i s  t h a t  
t h e  accumulated rinpdown counts were always g rea te r  i n  the second and t h i r d  thermal 
c y c l e s  o f  any one l i n i n g  c o n f i g u r a t i o n .  For example, t e s t  7-A was the  f i r s t  thermal 
c y c l e  o f  t h e  " l i n i n g  7" con f i gu ra t i on  and produced 202,000 ringdown counts. 
'l 'ests 7-8 and 7 - C  were subsequent f i r i n g s  o f  t he  same l i n ' i ng  (no new r"efrqac.tory 
i n s t a l  l e d )  and produced 466,000 and 533,000 counts, r e s p e c t i v e l y  . The same was 
t r u e  o f  l i n i n g  con f i gu ra t i ons  3, 4, and 6, each o f  which had m u l t i p l e  f i r i n g s  
moni tored f o r  AE. An except ion  t o  t h i s  observa t ion  occurred i n  t he  r e s u l t s  f o r  
t e s t  3-A, which had 2,550,000 counts recorded due t o  an equipment ma l func t i on .  
(Th i s  was an obvious e l e c t r o n i c  f a i l u r e ;  i .e., counts were recorded even w i thou t  %., :, 
sensors connected. ) .. .. 

The above observat ions imp ly  t h a t  a  g rea te r  amount o f  1  i n i n g  degradat ion 
was induced du r ing  a d d i t i o n a l  thermal c y c l  i n g  o f  the  1  i n i n g s .  The observat ions . 4 C *  

a l s o  support  t h e  assumption t h a t  the  acoust ic  emission de tec ted  d u r i n g  these t e s t s  
was t h e  r e s u l t  o f  l i n e r  degradat ion by c rack ing  and n o t  by l e s s  severe e f f e c t s  
such as steam re lease.  Most o f  t he  f r e e  water h e l d  i n  t he  uncured r e f r a c t o r y  l i n i n g s  . . 
was fo rced  o u t  d u r i n g  t h e  f i r s t  thermal cyc le .  Subsequent f i r i n g s ,  however, 
generated g rea te r  amounts o f  AE, suggest ing t h a t  steam re lease was no t  a  s i g n i -  
f i c a n t  i n f l u e n c e  i n  t he  AE r e s u l t s .  

F igures 194 - 208 are  the  p l o t s  o f  K e l a t i v e  Energy per  Event f o r  each 
, o f  t h e  l a rge '  scale 1  i n i n g  t e s t s  moni tored f o r  acous t i c  emission. Each f i g u r e  

a l s o  has t h e  h o t  face temperature p r o f i l e  over layed on t h e  AE data f o r  reference.  
These f i g u r e s  are in tended t o  show when s i g n i f i c a n t  degradat ion was o c c u r r i n g  i n  
each t e s t .  It i s  d i f f i c u l t  t o  form c o r r e l a t i o n s  from t e s t  t o  t e s t  because each 
1  i n i n g  had a  d i f f e r e n t  c o n f i g u r a t i o n  (ma te r i a l  composit ion, hea t i ng  ra tes ,  anchor.  
types, anchor p o s i t i o n s ,  i n t e r n a l  pressure, p l a s t i c  coat ings  a t  component i n t e r -  
faces, ceramic paper coa t i ngs  a t  component i n t e r f a c e s ,  e t c .  ) .  Even second and t h i r d  

. cyc les  o f  t h e  same 1  i n i n g  design represented new t e s t  cond i t i ons  because the  r e -  
f r a c t o r y  m a t e r i a l s  had been a l t e r e d  by  t h e  prev ious  thermal cyc les .  I n  s p i t e  o f  
t he  v a r i a b l e  t e s t  c o n d i t i o n s ,  several general i 'zed statements can be made concerning 
t h e  r e l a t i o n s h i p  o f  t h e  R e l a t i v e  .Energy p e r  Event data t o  o the r  measured para- 
meters. Those re1 a t i o n s h i  ps a r e  as f o l  lows: 

There was increased AE a c t i v i t y  p l u s  l a r g e r  Re la t i ve  
Energy pe r  Event occu r r i ng  du r ing  ' the dynarrric p o r t i o n s  
o f  t h e  temperature cyc les .  The 1  a rges t  amp1 i tudes 
correspond t o  t h e  l a r g e s t  slopes ( r a p i d  changes) i n  
t h e  heat ing  r a t e .  



TABLE 38. Sumnar.~ of L i n i n g  Tests ~ o n i t o r e d  With Acoust ic  Emission instrumentation 
. . 

. . 

Maximum Hot . ' 

. . 

I 
tj 
.m 
W 
.I 

Dunegan & AETC 76 dB, @HES c o s t i n g . o n . i n s i d e  
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FIGURE 196. Acous t i c  Emission Data and Hot Face ,, 
Temperature Recorded Dur ing  L i n i n g  
Tes t  #2.- : 
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FIGURE 197. Acoust ic  Emission Data and Hot Face 
Temperature Recorded Dur ing L i n i n g  
Test  #3-A. 
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FIGURE 198. Acoust ic  Emission Data and Hot Face - Temperature Recorded Dur ing L i n i n g  
, Test  #3-B. - \ 
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FIGURE 199. Acoust ic Emission Data and Hot Face ~empera ture  
Recorded During L i n i n g  Test #3-C 
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FIGURE 200. Acoust ic Emission Data and Hot Face 
Temperature Recorded Dur ing L i n i n g  
Test #4-A, . , 

. . 
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FIGURE, 201 ;' Acoustic ~ m i s s i b n  Odte and Hut Face 
' Temperature. Recorded During Lin'ing 

. Test #4-8. 
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... .. FIGURE 203. 'Acoust ic  Erniss.ion Da.ta and H o t .  Face 
' 

.Temperature Recorded During L i n i n g  
T e s t  #6-B. . . ,  
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FIGURE 205. Acoustic Emission Data and ~ o t  Face 
. Temperature Recorded ,.During L i n i n g  

Test #7-A. 
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FIGURE 206. ' dcoust ' ic Emission Data and Hot Face 
. Temperature Recorded Dur ing L i n i n g  

Test #7-B. 
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FIGURE. 207. A'coustic Emi'ssion Data and Hot Face 
Temperature Recorded During L i n i n g  
Test #7-C. 

. , 
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FIGURE 208. Acoust ic  Emission Data and Hot Face 
Temperature Recorded Dur ing ~ i n i ' n g  
Test  #9-A. 



a Large Relat ive Energy per  Event spikes general ly  preceded 
o r  coincided w i t h  p o s i t i v e  o r  negative changes i n  the 
she l l  s t ress measurements. 

When strain-gaged anchors went i n t o  compression, AE had 
greater Relat ive Energy per  Event than the average fo r  a 
given test .  Also the "t ime densi ty"  o r  r a t e  o f  occurrence 
o f  h igh energy emissions was greater whi le anchors were 
i n  compression. 

a I n  those instances when v isua l  and audible v e r i f i c a t i o n  o f  
spa11 ing  was obtained, spikes were noted a t  and p r i o r  t o  
t h a t  time i n  the Relat ive Energy per Event p lo ts .  

An add i t iona l  observation o f  the trends exh ib i ted  by the Relat ive 
Energy per Event p l o t s  i n  Figures 194-208 i s  t h a t  the AE a c t i v i t y  appears t o  
group i n t o  three general "time windows". For discussion purposes, these groupings 
are termed Group I ,  Group 11, and Group I 1 1  a c t i v i t i e s .  Figure 209 i s  an idea l i zed  
drawing showing the t y p i c a l  occurrence o f  these groups, r e l a t i v e  t o  t ime and hot 
face temperature. 

Group- I a c t i v i t y  begins i n  approximately the same temperature range 
i n  each t e s t .  That temperature range i s  between 800°F t o  100°F on heat-up, when 
using heat ing ra tes  o f  50°F/hr. t o  100°F/hr. The amplitude and t o t a l  number o f  
emissions i n  Group I depend both on the  smoothness o f  the heat ing r a t e  curve and 
the l i n i n g s '  h i s t o r y  o f  thermal cycles. Abrupt changes i n  heating r a t e  generate 
add i t iona l  AE and presumably corresponding r e f r a c t o r y  degradation. The ef fec t  
was f i r s t  noted i n  the heat-up t es t s  o f  l i n i n g s  1-5 where various heat ing ra tes  and 
temperature soaks (holds) were t r i e d  before reaching maximum temperature. The 
e f f e c t  was no t  as evident i n  t e s t  6-B when ove ra l l  a c t i v i t y  was minimal by comparison 
t o  preceding tests .  Tests on L in ing  #7 and #9 used rounded heating r a t e  changes 
t h a t  reduced t h i s  e f f ec t .  

The l i n i n g s '  h i s t o r y  o f  thermal cycles a lso inf luences the number 
and amplitude o f  Group I emissions. The i n i t i a l  f i r i n g  o f  the as-cast 1 in ings  
produced fewer t o t a l  emissions than fo l low ing  t es t s  on the  same l i n i n g ,  but  each 
successive f i r i n g  showed increased Group I (heat-up) a c t i v i t y  over the previous 
f i r i n g .  

A quiescent per iod fo l lows  the Group I emissions i n  which l i t t l e  
acoust ic a c t i v i t y  occurs. This quiescence i s  very s i m i l a r  t o  t h a t  noted i n  the 
b r i c k  t e s t  data reported i n  Section 2.5.3. Addi t ional  Small-Scale Br ick  Testing. 
The quiescent s ta te  usual ly  appeared dur ing the  holds a t  maximum temperature a f t e r  
many hours. The quiescent per iod d i d  no t  occur dur ing shor t  ho ld  per iods presumably 
because a steady-state s t ress d i s t r i b u t i o n  was r ~ o t  developed. I n  these cases, 
Group I a c t i v i t i e s  d i d  not  cease before cooldown had s tar ted.  A b r i e f  quiescence 
w i l l  occur as the hot  face cools through a temperature d i s t r i b u t i o n  a t  which the 
stresses are minimal, but  the temperature and the time t h a t  quiescence occurs i s  
d i f f i c u l t  t o  p red ic t .  It w i l l  depend s t rong ly  upon the heat ing r a t e  used, the 
maximum temperature at ta ined, length o f  t ime dur ing a hold ( i f  any), and the coo l ing  
ra te .  
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Group I 1  a c t i v i t i e s  s t a r t  immediately w i t h  the beginning o f  cooldown, 
prov ided quiescence has' been a t t a i n e d  d u r i n g  the ,  soak per iod .  Group. 1I:"emi ss ions 
are  s i m i l a r  t o  Group I i n  the  sense. . t ha t  they  a r i s e  from the s t resses  c rea ted 
hy dynamic thermal g rad ien ts  through the .  thickness of  thc  , l i n i n g '  componcnts. 
Group 11 a c t i v i t y  cont inues u n t i l  approximatel-y.900-500°F; and may .overlap,,Group 
I 1 1  emissions. . . 

Group I 1 1  a c t i v i t y  i s  sometimes d i f f i c u l t  t o  d i s t i n g u i s h  from Group 
I 1  emissions. The a c t i v i t y  genera l l y  over laps  Group I 1  as shown i n  the  f i g u r e ,  
s t a r t i n g  below 600°F on cooldown. The l e a s t  ove r lap  o r  g rea tes t  t ime separa t ion  
between Group I 1  and Group I 1 1  occurs d u r i n g  the  i n i t i a l  f i r i n g  o f  a  g iven l i n i n g ,  
w i t h  genera l l y  l e s s  separa t ion  w i t h  successive thermal cyc les .  Thermal c y c l e  h i s -  
t o r y  e f f e c t s ,  however, are n o t  as pronounced upon Group I 1  and Group I 1 1  a c t i v i t i e s  
as they a r e  upon Group I. 

It has been pos tu la ted  t h a t  Group I 1 1  a c t i v i t y  r e s u l t s  f rom t e n s i l e  
s t resses on t h e  h o t  face as the  sur face coo ls .  The t e n s i l e  s t resses develop 
o n l y  du r ing  t h e  l a t t e r  stages o f  cooldown as the  dense component con t rac ts .  While 
the  l i n i n g  i s  soaked a t  h igh  temperature, t h e  e f f e c t s  o f  creep r e l i e v e  compressive 
st resses t h a t  have b u i l t  up i n  t h e  components d u r i n g  heat-up. The quiescent  p e r i o d  
which occurs d u r i n g  t h e  h o l d  (g iven s u f f i c i e n t  t ime)  supports t h e  statement t h a t  
s t r e s s  r e l i e f  occurs. The st resses,  however, a re  r e l i e v e d  a t  e leva ted  temperatures, 
where the  m a t e r i a l s  a r e  i n  an expanded s ta te .  Upon coo l i ng ,  t h e  components c o n t r a c t  
again, p l a c i n g  t h e  h o t  face i n  a  s t a t e  o f  tension.  It i s  hypothesized t h a t  t he  
tens ion  becomes g rea t  enough below 600°F t o  cause c rack ing ,  as i n d i c a t e d  by the 
AE response. Th is  ana lys i s  i s  supported by t h e  math model p r e d i c t i o n s  f o r  t he  t ime 
o f  c rack ing  d u r i n g  cool  down. 



3.6 Seminar 

A one and one h a l f  day seminar was h e l d  a t  the Lynchburg Research Center 
o f  Babcock and Wi lcox on September 17 and 18, 1980, t o  rev iew the  r e s u l t s  o f  the  
work and d i  scuss t h e  recommendations w i t h  i n v i t e d  personnel from var ious  i n d u s t r i e s .  

Inc luded i n  Appendix F i s  the  announcement o f  t h e  seminar which was sent 
t o  approx imate ly  s i x t y  companies o r  people known t o  be i nvo l ved  and/or i n t e r e s t e d  
i n  r e f r a c t o r y  l i n i n g  designs fo r  coa l  g a s i f i e r s .  A 1 i s t  o f  attendees i s  a l s o  i n -  
c luded  i n  t h e  appendix. The minimal $60 fee was found t o  cover the  t r a n s p o r t a t i o n  
and meal expenses i n c u r r e d  d u r i n g  t h e  seminar. 

The seminar was w e l l  rece ived and a considerable amount o f  in terchange'  
occur red  among t h e  attendees and t h e  speakers. There, were'many recommendations 
t h a t  t he  seminar be longer  i f  he ld  again; and .several of  t h e  attendees suggested 
t h a t  i t  should be a fo l l ow-up  a f t e r  t he  f i n a l  r e p o r t ' a n d  math model users manual 
were pub1 i shed'. A l l .  those i n  attendance a t  t he  seminar were informed t h a t  . they 
would r e c e i v e  copies o f  t h e  f i n a l  r e p o r t  and manual . They were a1 so informed 
. t h a t  they  cou ld  acqu i re  a copy o f  t h e  REFSAM and RESGAP programs through Babcock 
& W i  1 cox Company. 



1 .  From the 1 i n i n g  t e s t  k e s u l  t s  obtained, i t  has been concluded t h a t  . ' 

The r e s u l t s  con f i rm  the  model analyses performed 
on bo th  t h e  standard and the  experimental  l i n i n g s .  

r Cracking' o f  the'  standard 1 i n i n g '  design occurs by 
1200°F and probably a t  temperatures as low as 400°F.; 

' 

r 50% A1 0 .dense r e f r a c t o r y  concretes have thermo- . . 

mechanicel p roper t?&$ which make them good candidates.  f o r  t he  
dense, work ing 1 i n i n g  , o f  non-sl  agging coa l  g a s i f i c a t i o n  process 
vessels. . . . . . . . 

s ince  the  t e s t s  on t h e  standard 1 i .n ing  design: agree w i t h  
the  f . i e l d  r e s u l t s ,  t he  improvements achieved w i t h  L i n i n g s  #7.and 9 . . 
should be p o s s i b l e  i n  f i e l d  a p p l i c a t i o n s .  . . 

. 150 p s i  p ressur ized steam has no apparent e f f e c t .  on the  
thermomechanical. p r o p e r t i e s  a'nd performance 0.f e i t h e r  t h e  standard 
o r  improved l i n i n g s .  . . 

. . 

r Rapid heat ing  r a t e s  (>250°F/hr) i n  t h e  8 0 0 - 1 0 0 0 ~ ~  h o t  face  
temperature range should be prevented f o r  90+% A1203 dense r e f r a c t o r y  
concretes d u r i n g  the  i n i t i a l  heat-up t o  avo id  exp los i ve  s p a l l i n g .  ' 

a Improved 1 i n i n g  performance which i s  achieved on the  f i r s t  
'heat-up c y c l e  i s  mainta ined on subsequent cyc les .  

r The h igh  t e n s i l e  s t resses  developed i n  t h e  s h e l l  d u r i n g  t h e .  
heat-up of t he  standard type 1 i n i n g  i n d i c a t e  t h a t  a d d i t i o n a l  . s a f e t y  
f a c t o r s  should be added t o  the  code c a l c u l a t i o n s  on pressure vessels. 

r   he use o f  4 w/o 310 SS f i b e r s  i n  the  KAOCRETE XD 50 dense - componen't used I n  L i n i n g s  #7 and 9 ~ r ~ a  kes ,L;t~i s cornpotlent r e a c t  more 
u n i f o r m l y  t o  thermal and. mechanical 1 oading , reduces t h e  tendency f o r  
cracks t o  grow and genera l l y  makes i t  tougher. 

r . P e r m i t t i n g  t h e  dense i n n e r  component o f  a dual component 
1 i n i n g  t o  s h r i n k  and c o n t r a c t  f r e e l y  by .reducing the  c o n s t r a i n i n g  

' e f f e c t s  o f  anchors and bonding a t  the  . i n t e r f a c e  have reduced i t s  
tendency t o '  crack.  



2. Cracking o f  mono1 i t h i c  r e f r a c t o r y  concrete . . 1  i t i i ngs  can be 
reduced o r  e l i m i n a t e d  by us ing  

e M a t e r i a l s  which expand, sh r i nk ,  and creep l e s s  than t h e  
standard design type m a t e r i a l s .  

e. A 50% A1 203 dense r e f r a c t o r y .  concrete,  such as the 
KAOCRETE XD 50 m a t e r i a l  i n  t he  dense component. 

0 Up t o  4  w/o 310 SS f i b e r s  i n  t he  dense compqnent. 

A  low i r o n  50+% A1203 i n s u l a t i n g  r e f r a c t o r y  c'oncrete w i t h  
a  compressive s t reng th  of a t  l e a s t  400 p s i .  

e F ive  (5 )  m i l  o r  l e s s  bonding b a r r i e r s  a t  the  s h e l l  and 
between the  two r e f r a c t o r y  components. 

e Spacir~ys between anchors o f  two t o  th ree  f e e t .  

e Anchors c a r e f u l l y  coated, w i t h  60-70 m i l s  o f  an 'o rgan ic  ty.pe 
m a t e r i a l  t o  p revent  bond-iny. 

e . A un i fo rm l i n i n g  th ickness.  

Thin (0.5" o r  l e s s )  co r ros ion  r e s i s t a n t  l a y e r  
a t  s h e l l .  

 h he l owes t  water  l e v e l  which w i l l  pe rm i t  good placement 
and v i b r a t i o n . .  ' 

0 As poured and c u r i n g  temperatures o f  70°F o r  s l i g h t l y  
h ighe r ,  and mo is t  sur face d u r i n g  cur ing .  

0 Slow (25-50°F/hr) cont inuous hea t i ng  r a t e s  w i t h  'no 
temperature holds u n t i  1  t he  maximum temperature i s  reached.. 

0 ~ r a d u a l  r a t h e r  than abrupt  changes . in  heat-up o r  cool-down. 

e 100°F/hr o r  s lower cool-down r a t e s .  
. . 

e P r e s s u r i z a t i o n  .'and dep ressu r i za t i on  r a t e s  o f  '50 p s i / h r  
o r  l e s s .  

e Casti 'ng fo rms 'wh ich  w i l l  produce rough sur faces on the  h o t  
. . .  

f a c e  o f  t h e  l i n i n g .  

3 .  Good agreement has been achieved between t h e  p r e d i c t e d  (mathematical model ) : 

performance and . t h e  exper imenta l  1  i n i n g  t e s t .  r e s u l t s .  .This i n d i c a t e s  t h a t  
t h e  REFSAM and RESGAP computer programs'are very  use fu l  design t o o l s  f o r  
o p t i m i z i n g  t h e  performance o f  sing1 e  and, mu1 ti-component monol i t h i c  r e f r a c -  
t o r y  l i n c d  vesse ls  used t o  2000°F. ' ' 



4. From the  e l a s t i c  and i n e l a s t i c  . s t r e s s  analyses run  on the  s i n g l e  
and multi-component m o n o l i t h i c  r e f r a c t o r y  vessels,  . i t , h a s  been concluded 
t h a t  

Refractory 1  i n ing /vesse l  shel 1  i n t e i - ~ ~ c  1 i i r r ~ i  dut7iny the  '. 

i n i t i a l  d ry -ou t  and heat-up o f  a  twelve i n c h  t h i c k  l i n i n g  can ' induce 
t e n s i l e  s t resses  which exceed the  y i e l d  s t r e n g t h  i n  t h i n  (0.5"  o r  . 
l e s s )  carbon s t e e l  s h e l l s .  

The use o f  one i n c h  o r  g rea te r  shel 1  ' th icknesses w i l l  reduce 
the  e f f e c t  of t h i s  i n t e r a c t i o n  and 1-ower the  s t resses  induced i n  t h e  . 

shel 1  t o  acceptable l e v e l  s. 

For a  g iven s h e l l  th ickness ,  t h e  u s e ' o f  t h i n n e r  l i n i n g s  
( < I 2  . in . )  o r  twe lve  i n c h  t h i c k  l i n i n g s  w i t h  lower  average thermal 
expansion c o e f f i c i e n t s  and s t i f f n e s s e s  t h a n  the  standard type l i n i n g  
design reduce t h e .  e f f e c t  o f  t he  1  i n ing /vesse l  shel 1  i n t e r a c t i o n s .  

Steady s t a t e  s t resses  a t  maximum temperature a r e  much h ighe r  
than those produced d u r i n g  a  100°/hr heatup i n  a  s tandard l i n i n g  design. 

e Shrinkage and creep a r e  the  p r i n c i p a l  f a c t o r s  which a f fec t  
c rack ing  of the  standard l i n i n g  design d u r i n g  t h e  i n i t i a l  heat-up, 
assuming c rack ing /exp los ive  s p a l l i n g  caused by steam entrapment can be 
prevented. 

e Shrinkage and creep s t r a i n s  cause t e n s i l e  s t r e s s e s , .  which 
exceed the  s t reng th  o f  t he  r e f r a c t o r y ,  t o  develop a t  t h e  h o t  fac.e on 
cooldown. Good bonding o f  t he  r e f r a c t o r y  t o  t h e  s h e l l  and/or bonding 
between t h e  dense and the  i n s u l a t i n g  components increases t h i s  s t r e s s  
and should be prevented. 

e M a t e r i a l s  w i t h  lower shr inkage (<0.1%) and b e t t e r  creep 
r e s i s t a n c e  than t h e  90+% A1 203 dense r e f r a c t o r y  concrete.  w i l l  reduce 
c r a c k i n g  of , the h o t  face o f  t he  l i n i n g .  

a The presence o f  gaps o r .  expansion al lowances between the  com- 
ponents of a  l i n i n g  and between the  1. in ing.and t h e  vessel  w i l l  reduce t h e  
i n t e r a c t i o n s  between these components and the  s h e l l  and a l s o  reduce t h e  
t e n s i l e  c rack ing  o t  t he  h o t  face  on cooldown due t o  the  creep e f f e c t .  . If, 
however, these gaps a r e  g r e a t e r  than 10 m i l s ,  t ens ion  s t resses  can form 
on t h e  c o l d  face s i d e  o f  t h e  components d u r i n g  heat-up which w i l l  c rack  
the  l i n i n g .  



a From the  p r e d i c t i o n s  obta ined w i t h  the  REFSAM model, 1  i n i n g  
designs which keep the  h o t  f ace  i n  a  m i l d  s t a t e  of compression (1000 p s i  
o r  l e s s )  and the  s h e l l  i n  a  low l e v e l  o f  t e n s i l e  s t ress  (3000 p s i  o r  l e s s )  
d u r i n g  the  i n i t i a l  heat-up w i l l  resu1.t i n  t he  l e a s t  crack ing.  

5. The evidence prov ided by the  acoust ic  emission t e s t s  i s  l a r g e l y  
qua1 i t a t i v e ;  however, i t  does suggest t h a t  AE mon i to r i ng  prov ides a  means 
t o  r e l i a b l y  assess c rack ing  tendencies du r ing  thermal c y c l i n g  o f  m o n o l i t h i c  
r e f r a c t o r y  l i n i n g s .  The AE method i s  e a s i l y  app l ied ,  does n o t  i n te r fe ' re  
w i t h  the  i n s t a l l a t i o n  o f  t he  r e f r a c t o r y  l i n i n g s ,  and prov ides  r e a l - t i m e  
a n a l y s i s  capab i l  i t i e s .  

A r e a l - t i m e  AE mon i to r i ng  system cou ld  be cons t ruc ted  based upon the 
R e l a t i v e  Energy per  Event c r i t e r i a .  The system cou ld  be used t o  mon i to r  
t he  thermal c y c l i n g  o f  f i e l d  i n s t a l l e d  l i n i n g s .  For a  f i x e d  l i n i n g  con- 
f i g u r a t i o n  and hea t i ng  schedule, base1 i n e  acous t i c  emission response 
c o u l d  be es tab l ished.  S i g n i f i c a n t  dev ia t i ons  f rom t h a t  base1 i n e  response 
would be i n d i c a t i v e  o f  1  i n i n g  degradat ion, a l l o w i n g  c o r r e c t i v e  a c t i o n  t o  
be taken. 

6. A creep model has been developed which uses data from ,a s h o r t  term 
"stepwise"  creep t e s t  and t h e  u n i t  creep technique employed i n  the  concrete 
i n d u s t r y .  This  pe rm i t s  s t r e s s  analyses, i n c l u d i n g  the  e f f e c t  o f  creep, t o  
be done on m o n o l i t h i c  r e f r a c t o r y  concrete l i n i n g s  du r ing  the  i n i t i a l  d ry -ou t  
and heat-up. Th is  model i s  thoroughly discussed i n  the  REFSAM and RESGAP 
user  manual w r i t t e n  under separate cover on t h i s  c o n t r a c t .  

7. The mechanical p r o p e r t y  t e s t  r e s u l t s  i n d i c a t e  t h a t :  

e Up t o  1  700°F, t he  90% A1203 phosphate bonded mono1 i t h i c  
r e f r a c t o r i e s  a r e  the  s t rongest ;  however, above t h a t  temperature the  
9U+% A1203 dense r e f r a c t o r y  concre te  and the  KAUCKETE XU SU a r e  s t ronger ,  
e s p e c i a l l y  i n  compressive creep. 

o Lowering the  cement con ten t  o f  the  50% A1203 dense r e f r a c t o r y  
concre te  and o p t i m i z i n g  t h e  g r a i n  s i z i n g  have reduced the  shrinkage and 
improved t h e  creep r e s i s t a n c e  w i t h o u t  d e t r i m e n t a l l y  a f f e c t i n ' g  s t rength .  

o The modulus o f  e l a s t i c i t y  o f  r e f r a c t o r y  concretes and phosphate 
bonded m o n o l i t h i c  r e f r a c t o r i e s  are  comparable t o  f u l l y  s e t  convent ional  
concre tes  a t  room temperature. Typ ica l  va lues a r e  i n  t he  0.75 t o  1 . 5 ~ 1 0 6  
p s i  range depending upon the  dens i t y  o f  t he  m a t e r i a l .  These values a r e  
reduced t o  one-hal f  o r  l e s s  w i t h  hea t i ng  t o  500°F. 

a With in  t h e  creep t e s t  c o n d i t i o n s  used, t he  creep res i s tance  o f  
t h e  r e f r a c t o r y  concretes and phosphate bonded m o n o l i t h i c  r e f r a c t o r i e s  i s  
more temperature dependent than s t r e s s  dependent. Th is  i n d i c a t e s  t h a t  t h e  
r e f r a c t o r i n e s s  o f  t h e  bond i s  a c o n t r o l l i n g  f a c t o r  i n  creep res is tance.  



a The temperatures a t  which creep becomes s i g n i f i c a n t  f o r  
the  var ious  m a t e r i a l s  t es ted  are:  

, : 

90+% A1 0  dense r e f r a c t o r y  concrete - 1800°F . , 

2 3  . .  , .  

50% A1 203 dense r e f r a c t o r y  concrete - , 1  700°F 

KAOCRETE XD 50 - , '  1800°F 
. . 

90% A1 203 Phosphate Bonded 

LITECAST 75-28 - 1.250°F 
. . 

a ,The a d d i t i o n  o f  2  t o  4  w/o 310 o r  446 s t a i n l e s s  s t e e l  f i b e r s  
improves the  toughness o f  t he  dense, and i n s u l a t i n g  r e f r a c t o r y  concretes 
tes ted  b u t  reduces the  creep res i s tance  a t  2000°F and a t  s t resses  above 
1000 p s i .  This  h i g h  temperature e f f e c t  i s  more pronoun'ced f o r .  t h e  con- . . 

c r e t e s ' w i t h  446 SS f i b e r .  This  d i f f e r e n c e  i s  thought  t o  be due t o  t h e  
lower h o t  s t r e n g t h  o f  t he  446 SS f i b e r s .  

' 

a The combinat ion o f  the  lower  c o e f f i c i e n t  o f  thermal expansion, 
shr inkage, thermal conduct ' iv i  ty, .modulus o f  e1ast ic . i  ty and s t rength ,  an.d 
equ iva len t ' c reep  p r o p e r t i e s . o f  t he  KAOCRETE XD 50 compared t o . t h e  90+% 
A1 0  .dense r e f r a c t o r y  concrete (ERDA 90) 'made i t  we1 1  s u i t e d  . f o r  reduc ing  
th2  $t resses induced i n  a  1  i n i n g  d u r i n g  heat-up and  cool-down and i n s u l a t i n g  
the ' vesse l  . . . 

. a The p r o p e r t i e s  o f  r e f r a c t o r y  concretes a r e m a r k e d l y  a f f e c t e d  b y '  , .  
the  water l e v e l  used. Every at tempt should be made t o ' u s e  t h e  lowest  poss ib le  . .  - , 

water l e v e l s .  

4.2 Recomrnenda ti ons 

1. . The m a t e r i a l ,  design, i n s t a l l a t i o n  and ope ra t i ng  gu ide l  i nes  out1 ined 
i n  t he  conclus ions sec t i on  o f  t h i s  r e p o r t  a r e  recommended t o  produce non- 
slagg,ing coa l  g a s i f i e r  mono1 i t h i c  r e f r a c t o r y  concre te  1  i n i n g s  w i t h  1  i t t l e  
o r  no c rack ing  and g e n e r a l l y  improved performance. 

2.. L i n i n g  #9 can be used as a  model f o r  t h e  above recommendation; The 
use o f  an impervious chemical b a r r i e r  a t  t h e  i n n e r  sur face o f  t he  s h e l l  t o  
g i v e  added c'hemical and thermal p r o t e c t i o n  t o  the  s h e l l  and t o  a c t  as a  

. compl ian t  l a y e r  which reduces s t resses  i s  .a lso  recommended., 

3 .  F i e l d  t e s t i n g  o f  these gu ide l  ines  should be arranged as soon as 
poss ib leandev idence  sought f o r  t h e  l o n g  range b e n e f i t s ' o f  t h e  s h o r t  
range improvements obta ined.  



4. A thorough parameter study on var ious  types o f  l i n i n g  designs, 
should be undertaken w i t h  t h e  REFSAM and RESGAP computer programs developed. 
The r e s u l t s  o f  o t h e r  DOE c o n t r a c t o r ' s  s tud ies  cou ld  be f a c t o r e d  i n t o  t h i s  
e f f o r t .  

5. A s tudy should 'be undertaken t o  combine the two s t ress  amalysis 
computer programs (REFSAM and RESGAP) i n t o  one a1 1 i n c l u s i v e  program and 
t o  determine how t o  expand i t  f o r  ana lys i s  o f  b r i c k  l i n i n g s .  

6. S t r a i n  gaging, o f  t he ' vesse l  she1 1 and o the r  components o f  a gas i -  
f i e r  w i t h  the WK type weldable e l e c t r i c  res i s tance  s t r a i n  gage . i s  recommended 
as an accura te  method t o  mon i to r  the  performance o f  a r e f r a c t o r y  l i n i n g  du r ing  
s e r v i c e  and the  s h e l 1 , d u r i n g  opera t ion .  

7. ~ u r t h e r  exami,nation and eva lua t i on  o f  t he  embedment s t r a i n  gage, 
a c o u s t i c  emission monitor. ing and pore pressure techniques developed and/or '  
expanded o n . t h i s  program should be done. The development o f  devices which. 
would generate r e s u l t s  i n  r e a l  t ime would b e . t h e  expected ou tpu t  o f  the  
work and would a i d  those respons ib le  f o r  the  s,afe and successfu l  d ryou t  . 
and heat-up o f .  a new 1 i n i n g  and would complement the  s h e l l  s t r e s s  mon i to r i ng  . .  

t ec  hn i q.ue recommended. 

. . 8. Since l a r g e  g e s i f i e r  l i n i n g s  a r e  gunned r a t h e r  than c a s t , ,  r e f r a c t o r y  
companies should be encouraged t o  make'gunning r e f r a c t o r y  concretes w i t h  
p r o p e r t i e s  a.s ,c lose as p o s s i b l e  t o  those o f  t he  KAOCRETE XD 50 type m a t e r i a l .  

9. A separate p r o j e c t  should be undertaken t o  b r i n g  together  t h e  r e s u l t s  
o f  a1 1 t h e  DOE-approved programs on mono1 i t h i c  r e f r a c t o r y  concretes and 
phosphate bonded r e f r a c t o r i e s .  This  cou ld  i n d i c a t e  the  need f o r  f u r t h e r  
work i n  t h i s  area r e l a t i v e  t o  the  advancements be ing  made i n  g a s i f i c a t i o n .  
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Appendix B. A d d i t i o n a l  M a t e r i a l  P rope r t i es  

The t a b l e s  and f i g u r e s  i n  t h i s  appendix summarize the  p rope r t y  data 
c o l l e c t e d  on t h e  m a t e r i a l s  s p e c i f i e d  t o  be t e s t e d  i n  the  program b u t  n o t  used 
i n  t h e  l i n i n g  t e s t s  o r  s t r e s s  analyses. They a l s o  i nc lude  the  p r o p e r t i e s  o f  
t h e  o r i g i n a l  50 and 90+% A1203 dense gener ics  fo rmula t ions  be fore  they were 
changed t o  c o n t a i n  c a s t i n g  grade CA-25 cement i ns tead  o f  r e g u l a r  grade and changed 
t o  make them mix and c a s t  more e a s i l y  i n  l a r g e  mixers.  Furthermore, they  present  
t h e  s t r e s s - s t r a i n  and creep s t r a i n  data generated on the  key r e f r a c t o r i e s  
and an example o f  how t h e  creep s t r a i n  i s  reduced t o  U n i t  S t ra in -da ta  f o r  use i n  
a U n i t  Creep P l o t .  The spec ia l  t e s t  data r e l a t i v e  t o  the  monol i t h i c  r e f r a c t o r i e s  
d iscussed i n  Sect ion 3.2. o f  t h i s  r e p o r t  a re  inc luded.  . 

Tables B-1 through B-3 l i s t  t h e  b u l k  dens i t y ,  apparent p o r o s i t y ,  
mean pore s i z e  and l o s s  on i g n i t i o n  (LOI) data generated on the.ab0ve mentioned 
m a t e r i a l s .  Tables 8-4 through B-9 l i s t  t h e  l i n e a r  shr inkage, c o e f f i c i e n t  of 
thermal expansion, modulus o f  rup tu re ,  c rush ing  s t rength ,  modulus o f  e l a s t i c i t y ,  
sp l  i t t i n g  t e n s i l e s  and some o t h e r  miscel laneous p r o p e r t i e s  o f  t he  ma te r ia l s ,  
some o f  which were f rom t h e  l i n i n g  pours. F igures B-1 through B-5 show 
t h e  thermal expansion c h a r a c t e r i s t i c s  o f  t h e  phosphate'bonded r e f r a c t o r i e s  and . . ,  . 
some of  t he  dense and i n s u l a t i n g  m o n o l i t h i c  r e f r a c t o r i e s  a i xed  w i t h  d i f f e r e n t  .. :p. ~ , 

amounts o f  water  and s to red  i n  d i f f e r e n t  environments. These f i g u r e s  a l s o  show the  hbt 
compressi ve s t r e n g t h  curves o f  t h e  phosphate bonded r e f r a c t o r i e s  and the  stre'ss . . 
r e l a x a t i o n  curves generated on t h e  standard 50% A1203 dense gener ic ,  t he  mod i f i ed  . . 
90+% A1203 dense gener ic  and LITECAST 75-28 a t  d i f f e r e n t t e m p e r a t u r e s  and loads. 

Table B-10 and F igures  B-6 through B-8 a r e  t h e  t y p i c a l  ou tpu t  data 
o f  t h e  computer program developed f o r  t he  HP 9830 computer t o  reduce and p l o t  -. 
modulus of  rup tu re ,  compressive s t r e n g t h  and modulus o f  e l a s t i c i t y  p r o p e r t i e s  I 

versus temperature. The t a b l e  i s  ou tpu t  on t h e  compressive s t reng th  and s t r e s s -  
s t r a i n  r e s u l t s  o f  one specimen o f  t he  standard 90+% A1203 dense gener ic  re f rac -  -. 
t o r y  concre te .  The f l g u r e s  a r e  uncorrected s t r e s s - s t r a i n  p l o t s  of t he  50% A1203 
gener ic ,  t h e  standard 90+% A1203 dense gener ic  and the  LITECAST 75-28 developed 
f rom t h e  compressive s t r e n g t h  t e s t s .  

Tables B-11 through B-24 summarize the  creep and h o t  l o a d  
r e s u l t s  ob ta ined  on the  key monol i t h i c  r e f r a c t o r i e s  ( d i f f e r e n t  water  
l e v e l s ,  d e n s i t i e s ,  f i b e r  a d d i t i o n s ,  and pre t rea tments) ,  and the  phosphate 
bonded monol i t h i c  re f rac to r i ' es  ( d i f f e r e n t  s t r e s s  l e v e l s  and temperatures).  
F igu res  B-9 and B-11 a re  the  stepwise creep o r  U n i t  Creep p l o t s  of t he  

phosphate  bonded r e f r a c t o r i e s  and the  m o d i f i e d  90+% A1203 dense gener ic  
r e f r a c t o r y  concre te  a t  d i f f e r e n t  water  l e v e l s .  

From a rev iew o f  t h e  phys i ca l  p rope r t y  data presented, t he  e f f e c t  o f  
water  l e v e l  v a r i a t i o n s  on t h e  b u l k  dens i t y ,  p o r o s i t y ,  shr inkage, s t r e n g t h  and 
creep p r o p e r t i e s  of t h e  va r ious  r e f r a c t o r i e ' s  t e s t e d  i s  ev idenc t .  Levels above 
t h e  optimum 1 eve1 general l y  decreased bu l  k dens i t y ,  thermal expansion, s t reng th  
and creep resistance;and increased p o r o s i t y  and shrinkage. These f i nd ings  em- 
phasized t h e  importance o f  us ing  as low water  l e v e l s  as poss ib le  t o  g e t  good 
1 i n i  ng performance. 

- 



From a  rev iew o f  these data,  i t  i s  ev.ident t h a t  the  phys i ca l  and. 
s t reng th  p r o p e r t i e s  o f  t he  dense 5C% A1203 gener ic  cas tab le  appeared t o  b e . d e t r i -  
men ta l l y  a f f e c t e d  by f o r m u l a t i o n  change even though i t  mixed and c a s t  b e t t e r  than 
the  standard fo rmu la t i on .  The reduced f i n e s  may have c o n t r i b u t e d  t o  the  r e d u c t i o n  
i n  dens i t y .  and s t reng th  obta ined.  Two o t h e r  f a c t o r s  may have c o n t r i b u t e d  t o  t h e  
reduced p rope r t i es ;  . .  One.was the  use o f  t h e  r e g u l a r  grade of CA-25 ceme'nt and a '  

, 

b o r i c  a c i d  a d d i t i o n .  The o the r  was t h a t  t h e  t e s t  bars were made from a  '600 I b .  
batch o f  t he  mod i f i ed  fo rmula t ion  a f t e r  t h e  m a j o r i t y  o f  i t  was used t o  c a s t  t e s t  
panel #9 and an arc  segment. The m o d i f i c a t i o n s  o f  t he  mod i f i ed  .go+% A1303 gener.ic 
had ve ry '  1  i t t l e  e f fec t  on phys ica l  and s t r e n g t h  p rope r t i es .  

The r e s u l t s  g i v e  f u r t h e r  evidence t h a t  t h e  o r i g i n a l  and.modi f ied 
gener ic  cas tab les  have comparable p r o p e r t i e s  t o  commer.cia1 50 and 90+% A1203 
castables.  They a l s o  i n d i c a t e  t h a t  t h e  use o f  t he  c a s t i n g  grade CA-25 cement 
i n  t he  gener ic  fo rmula t ions  improves t h e i r  phys ica l  and mechanical p r o p e r t i e s  
and ho t  l o a d  and creep c h a r a c t e r i s t i c s .  S ince . the  use o f  t h i s  cement a l s o  i m -  
proved t h e  c a s t i n g  c h a r a c t e r i s t i c s  o f  these gener ic  castables,  t h e  d e c i s i o n  was 
made t o  con t i nue  working w i t h  the  m o d i f i e d  c a s t i n g  mixes. 

Unl i ke the  dense mono1 i t h i c  r e f r a c t o r y  concretes, t h e  phosphate bonded 
m o n o l i t h i c  r e f r a c t o r i e s  had s t reng ths  t h a t  were s t r o n g l y  temperature dependent. 
The s t reng ths  were g e n e r a l l y  equal t o  o r  g r e a t e r  than t h e  dense concre te  i n  t h e  . 
as-cured s ta te ,  b u t  increased w i t h  temperature t o  1500°F before  dropping o f f  r a p i d l y  
above 1750°F. Th i s  sharp s t r e n g t h  l o s s  c o r r e l a t e s  w i t h  t h e  s i g n i f i c a n t  l o s s  i n  
creep r e s i s t a n c e  o f  these m a t e r i a l s  above 1800°F. 

Both the  45 and t h e  90% A1203 phosphate bonded r e f r a c t o r i e s  have , 

smooth thermal expansion curves compared t o  t h e  as-cured r e f r a c t o r y  concretes.  
They do n o t  appear t o  be af fected by storage c o n d i t i o n s  on t ime  as the  re -  
f r a c t o r y  concretes are.  These f e a t u r e s  o f  t h e  phosphate bonded m a t e r i a l s  make . 

them a t t r a c t i v e  m a t e r i a l s  f o r  1  i n i n g s  o p e r a t i n g  t o  1800°F t o  2000°F. 

The f r a c t u r e  energy r e s u l t s  which were ob ta ined on notched bend spe- 
cimens and were presented i n  Sect ion 3.2. o f  t he  r e p o r t  were found t o  be i n  
same o rde r  o f  magnitude f o r  r e f r a c t o r i e s  as o t h e r  i n v e s t i g a t o r s '  have repor ted .  
The r e s u l t s  i n d i c a t e d  t h a t  t h e  standard 50% A1 O3 gener ic  cas tab le  had b e t t e r  
r e s i s t a n c e  t o  c rack ing  than e i t h e r  t h e  s t a n d a d  o r  m o d i f i e d  90+% A1203 gener ic  
cas tab les . '  The i n s u l a t i n g  c a s t a b l e  had t h e  l e a s t  c rack ing  res i s tance .  There i s ,  
however, some concern about t h e  re1  i a b i l  i t y  o f  these f r a c t u r e  energy r e s u l t s  f o r  
two reasons. One was t h a t  t h e  r e s u l t s  f o l l o w  t h e  same t rends  as t h e  h o t  bending 
s t r e n g t h  curves. The o the r  was t h a t  t h e  d e f l e c t i o n s  measured w i t h  the  LVDT se t -  

.up were ve ry  smal l  and the  standard d e v i a t i o n  was h igh.  



The h o t  l o a d  and creep data g i v e  added support t o  t he  r e s u l t s  d i s -  
cussed i n  Sect ion 3.2. of t h i s  r e p o r t  and c l e a r l y  show the  de t r imenta l  e f fec ts  
o f  h ighe r  water  l e v e l s  and lower d e n s i t i e s  on creep. The 90+% A120 dense a gener ic ,  f o r  example, deforms 0.5 t o  1.0% more a t  t he  same t e s t  con i t i o n s  when 
t h e  water l e v e l  i s  increased f rom 8.5 t o  9.0%. The i n s u l a t i n g  r e f r a c t o r y  showed 
more dramat ic  increases i n  deformat ion (1.2 t o  2.3% o r  h ighe r )  when the  water 
l e v e l  was r a i s e d  f rom 21 t o  24%. 

The creep data  a l s o  i n d i c a t e s  how poor the  creep res i s tance  of the  
KAOLITE 2300 L I  i s  compared t o  the  LITECAST 75-28 and t h a t  the  KAOCRETE XD 50 
(Mix 36C) w i t h  4  w/o 310 SS f i b e r s  i s  b e t t e r  i n  creep res i s tance  than t h e  same 
m a t e r i a l  w i t h  2 o r  4  w/o 446 SS f i be rs .  Th is  d i f f e r e n c e  appears t o  c o r r e l a t e  
w i t h  t h e  h igher  f i b e r  t e n s i l e  s t reng th  a t  1600°F (2200 p s i  vs 7650 p s i )  of t he  
310 SS than t h e  446 SS. 

The creep r e s u l t s  a  l so i n d i c a t e  t h a t  mod l fy iny  l he  50% A1 03 dense f gener ic  r e f r a c t o r y  concrete w i t h  r e g u l a r  CA-25 cement and a  b o r i c  a c i  a d d i t i o n  
had a  de t r imen ta l  e f f e c t .  This  was e s p e c i a l l y  no t i ced  when t h e  s h o r t  term creep 
r e s u l t s  a t  1800°F were compared. The modl f  l e d  yeneric m a t e r i a l  deformed more 
than the  standard when t e s t e d  a t  1500 p s i  s t ress  and f a i l e d  a f t e r  1.25 hours a t  
2500 p s i  s t ress .  The commercial-LOABRADE 50% A1203 dense r e f r a c t o r y  concrete 
deformed more than the  mod i f i ed  gener ic  m a t e r i a l  a t  1800°F and 1500 p s i  and 
would probab ly  f a i l  a t  t h e  h ighe r  s t r e s s  l e v e l .  

F i n a l l y ,  t h e  h o t  l o a d  and creep data  i n d i c a t e  t h a t  t h e  45% and 90% 
A1 0  phosphate bonded m o n o l i t h i c  r e f r a c t o r i e s  have b e t t e r  creep res i s tances  a t  
an% 8elow 1800°F than t h e  50 and 90+% A1 203 dense r e f r a c t o r y  concretes bu t  worse 
creep r e s i s t a n c e  above 1800°F. 

Since s t r e s s  r e l a x a t i o n  and creep a re  r e l a t e d  and t h e  s t r e s s ' r e l d x a t j o n  
t e s t  procedure i s  r e l a t i v e l y  f a s t  and commonly done on an I n s t r o n  type t e s t  machine, 
some experiments were performed on t h e  dense and i n s u l a t i n g  cas tab les  d u r i n g  the  
h o t  compressS ve t e s t  work. The main experi inents performed i nvol  ved determin ing  
t h e  l e v e l  of r e l a x a t i o n  a t  d i f f e r e n t  temperatures, s t r e s s  l e v e l s  and t imes.  Since 
t h e  experiments were combined w i t h  t h e  compressive s t r e n g t h  t e s t i n g ,  i t  was planned 
t o  s top  t h e  experiments when t h e  r e l a x a t i o n  l e v e l e d  o f f .  The s t r e s s  r e l a x a t i o n  
r e s u l t s  were ob ta ined d u r i n g  t h e  h o t  compressive s t r e n g t h  t e s t s  by s topp ing  t h e  
I n s t r o n  crosshead a t  loads  t h a t  would n o t  c rush t h e  sample. The decay of t h i s  
l o a d  w i t h  t ime  was 0 b s e r v e d . a ~  t h e  sample deformed t o  r e l i e v e  t h e  s t ress ,  The 
r e s u l t s  f o l l o w  t h e  same temperature and s t r e s s  dependent r e l a t i o n s h i p s  as t h e  
creep r e s u l t s  on t h e  same mate r ia l s .  

The i n i t i a l  f i n d i n g s  (see F igu re  B-5) i n d i c a t e d  t h a t  no, r e l a x a t i o n  
occur red  below 1000°F f o r  t h e  i n s u l a t i n g  cas tab le  o r  below 1500°F f o r  t h e  dense 
cas tab les  tes ted .  These r e s u l t s  agreed f a v o r a b l y  w i t h  t h e  creep r e s u l t s  on t h e  
same m a t e r i a l s .  The r e l a x a t i o n  above these temperatures occurred very  q u i c k l y  
and l e v e l e d  o f f  i n  four  t o  f i v e  minutes. Fu r the r  a n a l y s i s  o f  t h e  r e s u l t s  i n d i -  
ca ted  t h a t  they  c o u l d  be used i n  t h e  math model t o  p r e d i c t  creep e f f e c t s  b u t  
l onge r  r e l a x a t i o n  t imes a r e  needed t o  f u l l y  v e r i f y  t h i s  p o i n t .  
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P r o p e r t i e s  ' .;' 

Water Added, % 

Table B-1.. physical Properties of the Stamdard and ~ o d i  f i e d  90+% A1 0 ' Dense Generic 
Refrac tdry Concretes a t  Different Hater Level s and with 6i ?ferent Cements 

Bulk  Censi t y ,  pcf ( b r i  ck )  

RT Cured 
24 hrs..: @ 250°F 

2 .hrs. ' @  450°F 
2.. hrs .  , @ ..1 (SOOPF 

hrs .  @ 1 58O0F 

we igh t  . . ~6;s;; . % . (green t o  f i r e d )  

A f t e r . 2 4  h rs .  @ 253'~. 
'Aftei .  . 2 hrs .  @ 10DI0F 
A f t e r  2 hrs; @ 1,503OF 
A f t e r  0 h r r .  @ 1875" 

Apparent Poros i t y ,  % . 

RT ,cured 
24 h rs .  @ 250°F 

2 hrs.  @ 1000°F 
2 hrs .  . @ . 2000°F(3Q hrs..) 

Mean Pore Size, vni 

RT Cured 
24 .h rs .  .@ 250°F 

2 .hrs. @ 1000°F 
2 h rs .  @ 2000°F(30 hrs.  ) 

Standard 90+% A12c, Generic Castable Hodi f i e d  90+5 . 
J Standard 90+% ~1 2~ ~ e n e r i c  P.120 . G2neric Wi th . 

Wi th CA - 25 Wi th  S e c i r  250 .With CA - 25 Cast ing Grade CA - $5 Zas t ing  Grade 

Note: .RT. = Room Temperature 



. P r o p e r t i e s  
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TABLE 8-2. phys ica l  p r o p e r t i e s  o f  t he  Standard and Mod i f i ed  50% A1 0 Dense Generic 
Re f rac to ry  Concretes a t  D i f f e r e n t  Water Level s . and ~i t h 2 ~ ? f  f e r e n t  Cements 
and Commerci a1 Re f rac to ry  Concretes f o r  Comparison 

Standard 50% ~ 1 ~ 0 .  Generic Modi f ied 50% A120 
Generic With CA - 35 . . Commercial 

Cast ing Grade KAOTAB 95 . 
~ o m n e r c i  a1 LA08RADE - 

W'itt- CA - 25 With Ref'con Cast ing Grade 

Water Added, % 10.2 . 10.8 10. 2 10 11 8.0 10 . 10 11 12 

Bu lk  Densi ty ,  p c f  ( b r i c k )  

RT Cured 
24 hrs.  @ 250°F 

139(140)1 . 140(142) - 141(140) 143(142) 141(141) 1 7 7 1 7 8  176(175 .143(143) 138(139) 133(139) 

2 h rs .  @ 450'F ' 

134(134)1 i33(133)  . 138(137) 140(139) 137(136) 172[173] 169(167{ 138(137) 136(135) 135(133) - - - - - - - 
2 h rs .  @ 1000'F - - - - 

- .  - 133 132 - - - 131 129 
2 h r s .  @ 1500°F - - - 133 132 - - - 128 .. 128 

Weight Loss, % (Green t o . f i r e d )  

m 
I A f t e r  24 hrs.  @ 250°F 
m A f t e r  2 hrs.. @ 1000°F 

A f t e r  - 2  hrs .  @ 1500°F 
A f t e r  0 h rs .  @ 1875OF 

Apparent ' Po ros i t y ,  % 

RT Cured 
24 h rs .  @ 2 5 0 0 ~  

2 h rs .  @ 1000°F 
2 h rs .  9 200!I0F(30 hrs.  ) 

Mean Pore Size, urn 

RT Cured 
24 hrs.  .@ 250°F 

2 hrs .  @ 1000°F 
2 hrs, @ 2000°F(30 hrs.  ) 

Note :. RT = Room T,emperature 



  able 8-3 .  Phys ica l  P r o p e r t i e s  o f  t h e  LITECAST.75-28 and .Phosphate Bonded ~ o n o l ' i t h i c .  
. . . R e f r a c t o r i e s  a t  D i f f e r e n t  Water Leve ls  o r  a t  D i f f e r e n t  A1703 Contents ' .  

. . . . 

Propert ies. ' .  

Water Added, % 

Bu lk  Densi ty ,  p c f  :bri:ck) 

RT Cured 
24 hrs.. @ 250°F . . 

2 h rs .  @ 450°F 
2. hrs .  @'lOOO°F 

. . . 2 h r s . @ 1 5 0 0 ° F  . ,  
. . 

.. .-.-  
. . Weight Loss, % (Green t.0 f i r e d )  
. c 

m ! A f t e r 2 4  h r s . . @  250°F. . 

4 A f t e r  2 hrs .  @ 1000°F 
R f t e r  2 hrs .  @ 1500°F 
A f t e r  0 hrs.  @ 1875OF 

. . 

Apparent Poros i t y ,  X 

RT Cured 
24 hrs.. O 250°F 

2 hrs .  @ 1000°F 
2 hrs .  @ .1500°F . 

' ' Mean Pore Size, urn 

R T  Cured. 
, ' ' 2 4 .  hrs .  9 . 250°F ' . 

2 hrs .  @ 1000°F 
- 2 h r s .  @150O0F , 

C o m e r c i a l  LITECAST 75 - 28 

21 23 24 26 2 9 

Phosphate Bonded M o n o l i t h i c  Re f rac to r ies  . . 

G e n e r i c  -0, Generic 90 RAM Comnercial 

Note: RT = Room Tempenture . . 



TABLE 8-4. Physical  and k c h a n i c a l  Proper t ies  o f  the  90,X A1 0 Dense Generic Ref rac tory  
Concretes a t  U i  f f e r e n t  Water Levels and W i t h  6 i  f fZ rJn t  Cements 

Standard 90+% A1 Q Generic 
K i t h  CH-25 ~ a s t f n a  Grade 

Modif ied 90+: 
A1 0 Generic With 
CAZ22 Castins G r a L  

Water Added, % 

Shrinkage, 7, Linear (I Volume.! 

Green t o  251I0F f o r  24 hrs. 
Green t o  453°F f o r  24 hrs. 
Green'to lDbJUF f o r  2 hrs. 
Green to  IEOS'F f o r  2 hrs. 
Green t o  127j°F (no hold) - 

. Cceff i c i e n t  o f  Therval Expansion 
(10-',in/in.F) 

,D - lL75' (!nd cvc le)  
7fin - le75'F 

E l  V C J ? C ~ ~ S  o f  qupture, p s i  

. As Cured . f i f t e r  24 hrs. @250"F 

Hot I'odulus o f  Rupture, pst 

Hot C-ljshing Strength. 'pst 

RT (d r ied  @250°F f o r  24 hrs.) 
5cr4 2 F 

Hot 1:odulus o f  E las t t c i t y ,  l 0 j p s t  

AT 
537°F 

Themal Conductivi ty, 8 tu/ in / - r r . f tZF . - 



TABLE B-5. Physical  and Mechanical P rope r t i es  o f  the  50% A1 0 Dense Generic 
Refractory Concrete a t  D i f f e r e n t  Water Levels an$ a i t h  D i f f e r e n t  , .  

Cements and the  Commercial Ref rac to ry  Concretes f o r  Comparison '? 

' Proper t ies 

Modi f ied 50% A1 0 
Standard 50% A1,0, Generic Generic w i th2  Commercial 

With CA - 25 ' 'With Refcon CA-25 Cast j .n~Grade -' -95 ' 

11 
11 

(Large Batch) Water Added. I 

Shrinkaqe, % L inear  (% Volume1 

Green t o  ?50°F f o r  24 hrs. 
Green t o  45O0F f o r  24 hrs. 
Green t o  1000°F f o r  2 hrs. 
Green t o  l!500°F f o r  2 hrs. 
Green t o  1875'F (no hold)  

Coe f f i c ien t  o f  Thermal Expansion - 
(10 -6 in / in iF )  

RT - 1875"(2nd cyc le )  
700 - 1875°F 

RT flodulus o-: Rupture, p s i  

. . As Cured' 
A f t e r  24 h-3 .  @250°F ' 

Hot Modulus o f  Rupture, p s i  

500°F 

Hnt  Crushing] Strength, p s i  

Hot Hodulus o f  E l a s t i c i t y ,  106psi 

RT 
5OO0F 

1000°F 
1250°F 
15OO0F 
1750°F 
2O0O0F . . 



TABLE B-6. Phys ica l  and 'Mechanical P rope r t i es  o f  t he  I n s u l a t i n g  Re f rac to r y  
Concretes .ant Phosphate Bonded Mono1 i t h i c  R e f r a c t o r i e s  a t  
Di f f e r e n t  Water Level  s and Wi th  Di f f e r e n t  A1 24 Contents 

Commercial 
KACLITE Phosphate Bonded Monoli thic Refractories 

Propert ies Comnercial LITECAZT 75 - 28 2300 L I  45% A12g, Generic 90% Al,Oj Generic 90 RW Comnercial 

Sh-e. X Linear ( X  Volume) -- 

Green t o  250°F f o r  24 hrs. 
Green t o  450°F fo r  24 hrs. 
Gregn to  1C3GQF f o r  2 hrs. 
Green t o  1500°F f o r  2 hrs. 
Green t o  1375°F (no hold)  

U e f f i c i e n t  of i h e n x i l  Expansion. 
(10---n/ in."F) 

RT - 1875' (2nd cyc le)  
73', - lE57OF 

RT itodulus o f  Rupture, ps i  . . 

As Cured 
A f te r  24 hrs.' @250°F 

Hot :'odulus o f  Rupture, p s i  

E o ~ .  ~ r b s h i v ~  'trength, ps i  

R T  (d r ied  @2j01F f ir 24 hrs. )  
j:g=F 

195b'; 
l i50'F . 
1f:j:F 
!75S'F . 
2005'F 

hot 14odulus o f  E l a s t i c i t y ,  l o j p s i  - 

T h e m 1  Conductivity, Etu/ in /nr . f t2F . 2:8 - 2.6 1.6 

. . 



Proper t ies  

TABLE 8-7. Physical  and Mechanical Proper t ies  o f  Various Ref rac to ry  Concretes . 

from D i f f e r e n t  L i n i n g s  o r  With D i f f e r e n t  Pretreatments 

Improved 90+% A1203 Generic With 
CA - 25 Castlnn Grade 

. . ' y '  1200F 1850F. 
' Steam* Steam 

L in ing  #3+ #4 #4 #4 

Shrinkage % L inear  

, Green t o  250°F,for :4 hrs.. .03 .05 - 
Green t o  1000°F fo r  : hrs. - - - 
Green t o  1500'F f o r  2 -hrs. .2 - .1 0 
G-een t o  2000°F f o r  2 hrs. .2 - .1 .05 

. . 
Coe2f ic ient  o f  Thermal Expansion 

(10-6in/in./'F) 
CE' 
I 

' --I RT - 1 8 7 5 0 ~  (Second cyc le )  3.86(4.8) - . 
.- 700° - 1875°F 5.42 

Modulus o f  Rupture, p s i  
' (dried @ 2 5 W f o r  24 hrs) 

Crushing Strength, p s i  
'(dried @250DFfor 24 h rs ]  

. . S p l i t t i n g   ensile Strength. p s i  . 1880 1560 
(d r ied  @25TF f o r  24 hrs)  

w 

150 p s i g  steam 
+ Samples were prepared wh i le  t h e  l in ings 'were.  being cast. 

WOCRETE XO 50 (Mix 36C) 
. . 

1 2 0 0 ~  1850F 1200F 1850F 
Steam Steam Steam Steam 

i i n i n g  #5 #5 #5 L in ing  86 #6 #6 

. .  . 

. ~ k e r d a l  LITECAST 75-6 
. . 

1200F. '1 8 5 0 ~  
Steam .'..Steam 

L i n i n g  #6 #6- C6 . . 



TABLE 8-8. Phys ica l  and Mechdrlical P r o p e r t i e s  o f  KAOCRETE XD 50(Mix 36C) 
w i t h  D i f f e r e n t  Leve ls  and Types o f  S t a i n l e s s  Steel  F ibers  

KAOCRETE' XC50 (Mix 36C) . ' 

P rope r t  i es . . 2% 446SS 4% 446SS .4% 31 OSS 
( L i n i n g  #7) 

Bu lk  Dens i ty ,  p c f  
(220°F ~ r i  ed) 

L i n e a r  Shrinkaqe, % 
(-1875°F) 

C o e f f i  i e n t  o f  Thermal Expansion 
x ( lo - '  i n / i n / " F )  

RT - 1875°F (second c y c l e )  3.32 3.81 5.0(4.51). 
680 - 1875°F 3.65 4.02 5.73 

Hot  Modulus o f  Rupture, p s i  

RT 1460 + 135 1,990 +430 
I 

1150 2 225 
500" F 585 2 120 675 + 85 1080+430 - I 

1000" F 650 2 140 565 + 140 , 1070+190 
1 500" F 570 + 170 650 + 60 990 21 75 
1800" F 510 + 80 460 2 30 730+ 90 
2000" F 470 + 75 390 + 55 575+160 

Hot Crushing Strength,  p s i  - 

Hot  Modulus o f  E l a s t i c i t y  
x 106 p s i  

RT 
500" F 

1000" F 
1 5OO0F 
1750°F 
2000" F 



TABLE B-9. Shrinkage Resu l ts  on ERDA 90 and LITECAST 75-28 A f t e r  J i f f e r e n t  Storage Condi t ions 

ERDA 90-(7.8% Water) LITECAST-75-28 (21X.'Water) 
. . - 

200 i / h r '  t o  120@ F O 2 hrs -- Case t l  t o  200C F F 5 hrs 220 F /$ r . to  93C t :? 2 h r s  - Czse $1 tn i 5 W '  F ? 5 ? r s  
Storage Conditions 

K t .  L O S S  N t .  LOSS U:. ioss  h':. LOSS 
. & i / L , I  b V / V , %  'Y, cl/L,X , A Y / V , %  % A L I L , Z  A'/:'' , 1 .* " n C *I .o -- - --- -- A;/?,: AT/'/ ,z - -- - , . 

. . 

I n  Air (Ambient) 

. 18 Days 0.1 - 0.3 2.7 - - -- - - 0.2 0.5 . . 

iw l j ?k  Humidity . . 
I . . 

' A  

.t+ , - 5-bays , 0.2 0.4 ' .  4.0 -- -- - - 0.4 0.9 
. . ~ ".." . ' 
.... 18 Days 

~. 
. . . . . .. ,. 

. . . \ ' .  

NOTE: ' S n p l e ,  t e s t  bars were cured overnight a t  .amb!ent cer:d< tions i n  molds, then recoved 
f rom nolds and e i the r  stored in a i r  or placed in 100% htiaidfty env i ron~en t  !a ' . . ' . 

D ~ s ' c t a t o r  ccntaining water.) a t  72 1: (30 C) fo r  the  prescribed pcrio3 before the 
sbrinke-se t e s t s  were run. S q a r a t e  sanples were-azed f c r  each tes t .  ' . .  

. . 
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TABLE B-10. U n i a x i a l  Compression Test  Data f o r  L i n i n g  #5 
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TABLE B-11. Percent (%)  Deformation Dur ing Creep Tests on LITECAST 75-28 
w i t h  Vary ing Water Lev'els Subjected t o  700 p s i  o r  Less S t r a i n  

500 'ps i  

S t a r t i n g  Dens i t y  ( p c f )  

Time (h rs ) / iempera ture  , . . . (OF) 

l h r .  / 75°F 
, . 

. 3  h rs .  1 .  500°F 

3 hrs.  / 1 GOOOF 

3  h r s  . . , / ... . 1  E-OO°F 

,. . .  . . 

3  h rs .  / 1 800" F 

10 hrs .  / , - 2000°F 

pos t  Tes t  Dens i ty  (pc f )  

1.51 2.26' 
(10 hrs .  ) (10 hrs,) 

(10 hrs .  ) - (3.0 hrs .  ) (30 hrs .  ) 

p c f  = 1 b / f t 3  



S t a r t i n g  Densi ty  
dtf 

Time(hrs)/ 
Temperature( OF) 

1 hr .  ! 75OF 

3 hrs. ! 1000°F. 

3 hrs .  : 1,50C°F 

3 hrs. ,' 1800°F 

. lo h rs .  ; 2000°F 

Post Test  Densi ty  
(pcf)  

p c f  = l b / f t 3  

TABLE B-12. Percent  (%)  Deformat ion Dur ing Creep Tests  on Various 
Mono1 i t h i c  R e f r a c t o r i e s  Subjected t o  1000 P S I  S t ress  

KAOCRETE XO EO (Mir 36C) 
L i n i n g  #5 L i n i n g  86 WE% 31055 w/4% 44655 

138.E' 143.6 145.9 

Phosphate Bonded ' 
LITECAST 75-28 Monoli i h i c  R e f r a c t o r i e ~  

~ 1 2 1 %  H?O ~ 1 2 1 %  H?O w / 2 4 % ~ ~ ? 0  y~ . 4 5 ~  

84.S 84.7 80.4 187 - '  186.1 181 145.0 

2.08 2.93 4.97 .04 .O1 - .04 .G4 
(10 hrs) (10 h r s )  (3  h r s )  

.76 .53 .76 .22 

- .  
(10 h r s )  (10. h r s )  

1.26 ' 1.68 
( f a i l e d  l 2 m i n )  ( f a i l e d  l2min) 



TABLE. B-13. Percen t (%)  Deformat ion ~ h r i n g  Creep Tests  on Various M o n o l i t h i c  
R e f r a c t o r i e s  S u b ~ e c t e d  t o  1500 and 2000 P S I  St resses 

90+% ~ 1 ~ 0 ~  KAOCRETE XO 50 50% A1,03 Generic w i t h  CA-25 
Generic k i t h  (Mix 36:) w/310SS Comnercial LITECAST 75-28 

Secar i 5 0  1 s t  Cycle I R e t e s t l  Standard Standard f'lodi f i e d  LOA@;U\nE 21; r 1 > L  21; ; I  0 2- 
S t a r t i n g  Densi ty  ( p c f l  172.4 145.4 143.4 13Z.8 136.0 137.8 134.6 84.6 85.4 

Time(hrs)/ iempert ture( 'F1 

1 h r .  / 75°F .14 .02 - - .14 .23 
3 hrs. / 500°F .27 .02 .19 . 2 1  .22 
3 hrs. / 1000°F .35(30 h r )  .20 .14 .47*(34 h r )  .25 .25 .20 .26 .40 
3 hrs .  / 1500°F .37 .27 .31 .39 .36 3.10(10 h r )  3.d1(10 h r )  
3 hrs .  / laOO°F .38 .27 .65(10 h r )  .55 1.05(10 h r )  - 

10 hrs.  / 2000°F 2.08 1.32 .73 

Past Test  lensit !  (pcf )  ' 166.9 

*. Average 3 f  two samples which had OH6 & 0.48% Deformation 

. . 
2000 p s i  

S t a r t i n g  Dens.ity (pc f )  

Mod i f i ed  90tS A1203 Generic . MOCRETE XD 50 (Mix 36C) 
With CA-25 Casting Grade . . 

1200DF Steam* w/2X ~ 1 4 %  L i n i n a  #7  ~ 1 4 %  
--- - L i n i n g  $6 L i n i n g  #5 310SS 3 1 0 ~ ~  W I ~ Z ~ ~ O S S  44'655 

169.8 171.8 175.4 146.3 137.7 143.0 141.3 141.6 

: 

. Phosphate B o ~ d e d  . 
Monoli ' thic Refraztcry  45P 

145..0 

1 hr .  / - 75OF n~ - .  . "- 
3 h r s .  / 5 0 0 : ~  .13 
3 hrs. / 1000°F .25 . . I 2  
3 hrs. / 15G0°F .44 .29 
3 hrs. / 1800°F .51 

10 hrs. / iOOODF 2.4 2.52 

Post Test Densi ty  ( p c f l  161'.7 163.6 

.ll 

.38 

. 2 2  

.50 

.60 
f a i l e d  

. . 

1 . . . 2 9  
.2E .52 
.28 .28 

. .54 .50 
.71 , .49. 

f a i l e d  . f a i l e d  

.24 

.13 

.49 ( 1 1  h r s )  . 
. . 



TABLE 8-14. Percent  (%)  ~ e f o r m a t i o n  Dur ing Creep Tests on Various 
R e f r a c t o r i e s  Subjected t o  2500 and 3300 P S I  Stresses 

2500 PSI 

50% A1,0, Generic 
L cl 

KAOCRETE XD50 
(Mi x. 36C) 
L i n i n g  #6 Standard Modi f i ed' 

S t a r t i n g  Densi t y  (pc f ]  ------- 142.1 139.8 137.2 

~ i m e  (hrs)/Ternperature (OF) 

3. hrs/1500°F .37 .41 .94 

3 hrs/1800°F .46 .87 1 . 8 5 '  " 
(10 h r s )  . ( f a i l e d  1.25 h r s )  

Post Tes t  Dens i t y  (pc f )  - . 138.7 ,134.9 --- 

3300 PSI 

90+% A1,0, Generic Wi th CA-25 Cast ing  Grade 
L J 

S t a r t i n g  Dens i t y  ( p c f )  169.8 174.4 174.8 - -- 
Time(hrs)/Temperature (OF) -. 

.16(3 h r s )  

.54 

.24 

: 3 hrs/1800°F - -- ' .58 ; .1 .32  

10 ' h r s / 2 0 0 0 " ~  . . 2.22 3.62 3.65(7' h r s )  

Post  Tes t  Dens i t y  ( p c f )  163.7 166.8 162.1 
. . 



TABLE B-15. 11 Hour Hot Load Deformation o f  90+% A1203 Generic 
Wi th  CA-25 and Phosphate Bonded R e f r a c t o r i e s  

90+% A1 703 Generic - 
, . .I ' . " 

.. , Dens i ty  . ..., % ~ e f o r m a t i o n  % Deformation 
( p c f )  @ 1800°F @ 2000°F 

M a t e r i a l  

s tandard  
' II 

L i n i n g  #4 
I I 

Before,  , A f t e r  . 100.. p s i  200 . p s i  100 p s i  200 p s i  . -  
. . ..; 

168.9, . 161.0 . . . ; I 8  ... - .  - - . . 

172.5 165.5 . . , - .23 - - 
. . . . .  170.4 . - . .  - . .'. 08 ' '172.1 - 

172.8 166.2 - - . - .31 

Modi f i ed/. 
Cast ing Grade 170.9 i62 .3  - - .  . .033 : .  - 

1 I 172 :7 164.3 - - .028 - .  

. . . . 
Modi f i ed/ . .  . 

Cast ing.Grade . 171.2 162.6 - - . .  +.083 - .  
, . 

I I .011 - 175.4 168.7 - - 
t I 173.6 ,164.9 - . - .. 033 - 
I I 1.77. 0 164.9 - - .022 ' , - 

Note: + = Expansion 

. . .  

Phosphate Bonded R e f r a c t o r i e s  

Dens i ty  % Deformat ion . % Deformat ion 
@ 1500°F ( p c f )  @ 2000°F . . 

, , M a t e r i a l  ~ e f o r e  A f t e r  100 p s i  200 p s i  1OOps i  2OOps i  



TABLE B-16.. 11 Hour Hot Load Deformation of 
50% A1302 M o n o l i t h i c  R e f r a c t o r i e s  - 

Dens i t y  % Deformation % Deformation . % Deformation 
(pc f )  @ 1500°F @ 1800°F @ 2000°F 

M a t e r i a l  Before A f t e r  100 p s i  200 p s i  100' p s i  200 p s i  100 p s i  200 p s i  

50% A1203, 
Generic 

KAOCRETE XD.50 
L i n i n g  #5 

I I 

L i n i n g  #6 
I I 

L i n i n g  #7* 
I I 

KAOCRETE XD 50 
I I 

LOABRADE 
I I 

KAOCRETE XD 50 
~ 1 1 0 %  Kymte 140.1 135.7 - - - - - .12 

I I 146.7 139.9 . - - - - - .61 

KAOCRETE XD 50 
w / 2 %  446.5s 136.7 133.4 - - - - - .54 

I t  145.'1 141.8 . - - - - - .  .54 
I I 133.6 ,130.6 - - - - - .63 
I I ' 137:7 134.1 - - - . - - ; 46 

* T h i s  m a t e r i a l  has 4 w/o 310SS F i b e r s  .added t o  it. 



TABLE ' 8-1 7 .  1 1  ' ~ o . u r  ~ d t  L o a d  Defofmati on o f  ' 
I n s u l a t i n g  M o n o l i t h i c  R e f r a c t o r i e s  

Dens i ty  % Deformation % Deformation % Defo,rmation . .  

Mater i  a1 ( 1  b / f t 3 )  . . C. 1500°F ' @ 1800°F @ 2O0O0F 

L i  t e c a s t  75-28 Before  A f te r  100 p s i  100 p s i  200  p s i  100 p s i  200 p s i  

Fai  1  ed 
- L i n i n g  #4 

I1 

- 
Fa i  1  ed 

- 
L i n i n g  #5 

I I 

L i n i n g  #6 
I I 

- 
Fa i  1  ed 

- 
Fa i  1  ed 

- 
- 

Fa i  1  ed 

L i n i n g  #7 
I I 

F a i l e d  
- 

Kaol i t e  2300LI 62.2 59.4 - 
I I - - - 
I I - - - 



TAB LE B-18. Creep and Deformat ion Resu l t s  on t h e  M o d i f i e d  90+X A1203 Dense Generic 
R e f r a c t o r y  Concrete a t  D i f f e r e n t  S t r e s s  Leve ls  and Temperatures 

Tota l  
oef: 

Temperrb~re I T  W0.F IO00.F 1500.F 1800'F 2000.F S 

Stress . . I500 PSI 

T i m  Log T . (Bulk Denslty. p c f l  i.170.0) 

0 
3 Minutes 

6 Minutes 

12 Minutes 

15 Wfnuter 

30 Minutes 

45 Minutes 

) Hour 

2 Hours 
3 Hours 

4 Hours 

5 Hours 

10 Hours 

S Oeformdtion . 0.02 . - 0.26 0.34 0.90 1.7 3.22 
(3.22) 

(Post Test Oefor!wtion Peasured RT on Skewise l e i l e d  Specinun) 
' 

Sample Mas Sl ightl) "5" Shaped Af ter  Test) 

Tota l  
Oef. 
I. Tmpera tu re  1MO'F lS0OoF 

2000 PSI 

. (171.8) . 
Stress 

l ime  Log T 

0 0 

3 Mlnutcs -1 3 0 1  

6 Mlnutes -1.000 

12 Minutes -0.699 

15 Minutes -0.602 

30 Minute$ -0.301 

45H inu te r  -0.125 

1 Hour 0.000 

2 Hours 0.301 

3 Iiours 0.477 

4 H o ~ ~ r r  0.602 

5 Hours 0.699 

10 Hours 1.000 

Stress 

Time Log T 
3300 PSI 

(174.4) 

0 
3 Hlnutes 
6 Minutes 

12 Minutes 

I 5  Minutes 

39 Minutes 

45 Minutes 

1 Hour 

2 Hours 

' 3 Hours 

4 Hours 

, 5 Hours 

10 Hours 



TABLE B-19. Creep and Deformation Resul ts on the  ~ o d i f i e d  90+% ,A1 0 
Dense Generic (ERDA 90-Lin ing X4) Ref rac tory  concrete2a$ 
D i f f e r e n t  Stress Levels and Temperatures. 

Total 
h f  

l k r a t u r e  RT jwu?r: 1500'~ 1uuu'~ ~ U U U ' ~  

Stress . .. . l 5 0 0 ~ t ! .  , . . 
llu :,  LO^ T . (Bulk Density. pcf) (174.4) , , 

0 
3 Mlnuter 

6 Mlnuter 

12 Minutes 

. I S  Minutes 

30 Minutes 

45 Minutes 

1 Hour 

2 b u r s  
3 Hours 

4 Hours 

5 b u n  

10 b u r s  

1 Deformation 0.03 0.08 , 0.14 0.49 1;08 1.82 
(1.45) '. 

. . 
(Post Test Deformtion measured a t  RT on Stepwise Tested Specimen) 

Te~gerature 

Stress 

TiQe Log T 

0 0 .  
3 llfnutes -1.301 

6 Minutes. -1 .OW 
' 12 Minutes -0.699 

15 Minutes -0.602 

30 llinutes -0.301 

45 Minutes -0.125 

1 Hour 0.000 

2 Hours 0.301 
3 Hours , 0.477 

4 Hours 0.602 
5 Hours 0.699 

10 Hours t .WO 

% Deformation 

Tanperature 

Stress 
Time ' LO9 T 

0 0 
3 Mlnutes -1.301 
6 Minutes -1 .OW 

12 Mlnutes -0.699 

16 Utnutoc -0.601 
30 Mlnutes -0.301 

45 Mlnutes -0.125 

1 Hour 0.000 

2 b u n  ' 0.301 

3 Hours 0.477 

4 Hours , 0.602 

S b u n  0.699 

10 h u r s  1.000 

5 r * f o m t i o n  

Total 
Oef. 

RT 1000'~ 1500°F 1800°F 20W°F Z 
2500 psi  

Total 
Def. 

Rf IQW'F lS,PY°F 1800'F 2000'F Z 
3300 ps i  



~empera  t u r e  

Stress 

T i ~ e  Lsg T 

0 0 

3 Hinutes -1.301 

6 M i n u t e s  -1.000 

12 Ninutes -6.699 

15 3 inu tes  . -C.602 

30 Minutes -0.301 

45 Minutes -0.125 

' 1 Hour 0. 000 

2 Hours 0.301 

3 Hours 0.477 

4 Hours - , 0.602 

5 Hours 0.699 

10 Hcurs 1 .OOO 

L Deformation 

TAB-E 8-20. Creep ( Inches)  and Ie fo rmat ion  ( % )  Results on '50% A1 *03 
Dense Generi-c i e f r a c t o r y  Concrete a t  D i f f e r e n t  Stress 
Levels  and T e m e r a t ~ r e  (6  I nch  Long Specimens) 

Tota l  
Oef. 

Iu 250°F 5OO0F 1000°F 1530°F 18OO0F % 
2500 p s i  

Temperature 

Stress 

Time Log T 

0 0 

3 Minutes -1.301 

6 Minutes -1.000 

12Minu tes  -0.699 

15 Minutes -0.602 

30 Minutes 

45 Minutes 

1 Hour 

2 Hours 

3 Hours 

4 Hours . 

5 Hours 

10 Hours ~ 

% Deformation 

Tota l  
Def. . 

RT 1000°F 1500°F 18C0°F X 
1500 p s i  

(Bulk Density, pc f )  (136.0) 

(Post Test Ceformation Measured a t  RT on.Stepwise Tested Specimen) 

Sample was s l i g h t l y  "5" shaped a f t e r  t e s t .  



" TABLE B-21. Creep and Deformation Resu l ts  on KAOCRETE XD 50 ( M i x  36C) Re'fractory 
Concrete a t  D i f f e r e n t  S t ress  Levels and Temperatures. 

. . Toial ' , 
: ,. 5'. 

T-rrture n SWoF ' lQIQ0F 1500'F , 18W.F . 2000'F . 
Stress . 1000 PSI 
t f m  Log T ( h l k  tensity, pcf) (143.'6) 

o a .  
1 Minutes -1.301 

6 Mlnutes -1:OW 
12 I i inutes -0.699 

15 Minutes -0.602 
30 Minutes -0.301 

4S Minutes -0.125 

I b u r  0.,000 

2 b;n 0.301 
3 b u r s  . 0.477 

4 l b u n  0.602 
5 l b d n  0.699 

10 Haun 1.000 

1 R f o m t i o n  

(Post l e s t  Defomt lon  hasured a t  RT on Step lse  Tested Speclmn) 

Total 
Dcf. 

x Temprrrture 

S t m r  . 
T l m  

0 
3 Hfnuces 

6 Minutes 

12 Minutes 

IS Minutes 
30 M n u t o  , 

4S Mlnutes 

1 Hour 
2 b u n  
1 Hours 

4 t b u n  
5 b u r s  . 
10 b u n  

Total 
otf. 

x T-rature RT SWaO.F lW0.F 

stress . 
tlm Log T 

0 
3 Minutes 

6 Mlnutes 

12 Mlnutes 

IS Mlnutes 

30 l i inu te l  
45 Mlnutes 

l b u r  

2 b u n  

3 b u n  

4 b u n  . 
5 n o u n  

10 n"un 



TABLE B-22. Creep and Defo rmat ion  R e s u l t s o n ,  KAOCRETE XD 50 ( M i x  36C) 4 w/o 310 SS 
'F ibers  R e f r a c t o r y  Concrete a t  D i f f e r e n t  S t ress  ~ e v e l  s  and ~ e m ~ e r a t u r e s  - . 

' I m p e r a  ture 

WxsX 
Uee .LOP T 

0 0 
3 Minutes -1.301 
6 Minutes ' -1 .OW 

12 Minutes -0.699 
15 Minutes -0.602 
30 Minutes -0.301 

' 45 Minutes -0.125 

1 Hour 0.000 
2 Hours 0.301 
3 Hours 0.477 

4 Hours 0.602 
S Hours 0.699 
10 Hours 1 .WO 

I D e f o m t i o n  ' 

Tora 1 
Def. 

RT 500.F 1000.F 1500'F 1800.F 2000°F Z 
1000 ps l  

(8ulk Oenslty pcf)  (145.9) 

(Post Test ~ i ' fonnat fo"  Measured a t  RT on Stepwise lested Specimen) 

Total  
t f .  

Temperature RT 500°F 1000°F 1500°F 1800°F 2000°F . . 
Stress 
Time Log T 

0 0 
3 Minutes -1.301 
6 Minutes -1..000 
12 Minutes -0.699 . 
I S  Minutes -0.602 
30 Minutes -0.301 
45 Minutes -0.125 

Hour 0.000 
2 Hours 0.301 
3 Hours 0.477 

4 Hours 0.602 
5 Hours 0.699 

10  Hours 1 . X l  

I Deformation 

Tota l  
Def. 

. Temperature RT 500°F 1000°F 1500°F .l80O0F 2000°F.  2 

Stress 
Tlw Log 1 

0 0 
a n l n ~ l t ~ ~  .I In1 

6 Minutes -1.000 
12 Minutes -0.699 

15Minutes  -0.602 
30 Minutes . -0.301 
45 Minutes -0.125 

1 Hour , 0.000 
2 Hours 0.301 
3 Hours 0.477 

4 Hours 0.602 
5 t tour l  0.699 

10  Hours 1.000 

S Deformation 

2000 p s i  
(141.3) 

P i l e d  @ - 
3.64:. a f t e r  
5.5 hrs. Failur.:. 5.72 : 



. - - - - - - . - 
I 

_ ( .  . -  . ~oric;-eie a t l : ~ i f f e r e n t  St~eis!~Lev'e.l s and Temperatures ; . . 
. .. 

Total 
' Det. 

Tempwature T ZSO*F SW*F ION*F . 12UI.f 150O0F I 
. . Stress 

id0 psi  

T h e  Log T (Bulk Density. pcf) (85.0) 

0 .  
3 Mlnutes 

6 Mlnutes 

12 Klnutes 

15 Mlnutes 

30 Minutes 

45 Minutes 

1 Hour 

2 Hours 

3 Hours 

4 Hours 

5 Hours 

10 Hours 

(Post Test Deformation Measured a t  RT on Stepwise Tested ~p;dEen) 

Total 
Def. 

RT 250eF 500°F 1000°F 1250°F 1500°F. I 
. loo0 psi  

Temperature 

Stress 
T l n  Log T 

0 0 

3 Mlnutes -1.301 
6 Mlnutes -1.000 

12. Minutes -0.699 

1S'Hlnutes -0.602 

30 Klnutes -0.301 
45 Minutes -0.125 

1 Hour 0.000 

2Hours .  0.301 
' 3 Hours 0.477 

4 Hours 0.602 

SHours 0.699 

10 Hours . 1.000 

Total 
Oef. 

BT 250°F 500°F 1000°F 1250°F 1500°F X . 
l500 psi 

(85.0) 

Tauperature 

Stress 

T i n  , Log T 

0 0 .  

3 Mlnutes , -1.301 

0 Hlnutcs -!.OM) 
12 Mlnutes -0.699 

I S  Mlnutes -0.602 

30 Mlnutes -0.301 

45Minutes -0.1.25 

I Hour 0.000 

2 Hours 0.301 
3 Houn 0.417 

4 b u n  0.602 

. 5 Hours 0.699 

10 Hours , 1.000 

S D e f o m t i o n  . ' 



TABLE B-24. Example o f    educed .Creep Qata t o  U n i t  S t r a i n  ( i n / i n / p s i  ) 
on 50% A1 0 Dense Generic Ref rac tory  Concrete 2 -3 



FIGURE 6-1. Thermal Expansion of 45 and 90% A1 O3 Generic phosphate 
Bonded Ramming Mixes (Stored At ~ o 2 m  Temperature). ' 



. Coef. Therm. EXD. 

m 
.I 
W 
0 

0 2 00 400 ' . 6 0 0  . ,800' . 1000 . ' 1200 1400 1600 1800 2000 
Temperature O F  

FIGURE 8-2. . Thermal Expansion o f  50 and 90+ A1203 Generfc Castables 
On I n i t i a l  Heat-Up (Stored a t  Room Temperature). 



Ef F ECT OF STORAGE CONDITION ON INSULATING COMPONENT 

FIGURE B-3. Thermal Expansion o f  LITECAST 75-28 (21% Water) A f t e r  
Storage i n  A i r  o r  High Fumidi ty  Environment. 
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A i r  Stored 18 Days (0.2% Linear Shrinkage t o  900 F]  - 
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'oooo ""1. ( A )  45% A1203 

0 500 1000 1500 2000 
TEMPERATURE ( F )  

L ( B )  90% A1203 Generic 

0 1  I I I I I I I I I 1 1 - 1  1 1 . 1  I 1 1 . 1 )  
0 500 1000 . 1500 2000 

TEMPERATURE (F) 

FIGURE B-4.' Hot Crushing Strength ,o f  the  Phosphate Bonded Monol i th ic  Refractor ies.  
8-32 



1 1 1  F i r s t  Cycle 

- - - - - Second Cycle 
[l "xO. 5." Cross' Sect ion)  5000 t . 1 

I I I 

F i r s t  Cycle 
5000 - - - -  - -  Second Cycle 

('1 "x0.5" Cross Sect ion)  

l 1 . I I l - I '  
* 

F i r s t  Cycle 

5000- ( 6 )  - 

d4000 - - 
7 

d 

1500F 

20ooa- - 
L OooFl 500F 

1 0 0 0 - "  I '  I I . '  - 
Time, Minutes, Time, Minutes . Time, Minutes 

( a )  50% A120 Generic a ( b) 9W% A1 O3 Generic ( c )  LITECAST 75-28 
(Standar Formulat ion) ( ~ o d i f i g d  Formulat ion) 

FIGURE B-5. Stress Relaxat ion Curves o f  Un iax ia l  
Compression Tested Specimens o f  Castables. -._ . . 



. STRAIN ( M I L S / I N ) .  

. FIGURE 6-6.. Stress-Strain curves For 50% AlzOj Dense Refractory Concrete. 



STRAIN (MILSIIN) . . 

. . 

. . FIGURE 8-7. S t ress -S t ra i n  Curves For Standard 90+% A1203 
Dense Re f rac to r y  Concrete. 



STRAIN (MILS/IN) . . , 

FIGURE 8-8. S t r e s s - S t r a i n  Curves f o r  LITECAST 75-28 
Insu l a t i on  Castable .  



FIGURE B-9. creep Curves For 90 RAM HS and 90% A1203 . 
Generic Phosphate Bonded Rammin.g Mix. 

. . 

4 0 , 0 0 0 r  (4.0%)** 

30,000 

- 90 RAM I-S (181 PCF)* and 90% ~1 203 Generic Ramming Mix (188 PCF) . . 

- - - - 90% A12C3 Generic Ramming Mix (187 PCF)  With 10 Hour Hold a t  1800 F.  
-p' ' 

r 

- (?'.O%) 
. * (Densi ty  of specimen) . ' 

*?(% Deformation) Both F a i l e d  i n  12-14 Minutes 
r L '  

S F  

a t  2000°F and 1000 p s i  s t ress .  
\ 
E 
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I 
0 = 20,000 - (2.0%). 
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. . -. . 1800" F 

-- -- 01- -- 1000 p s i  f o r '  - R.T. 10 hrs.  
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Spe'ci mqn 
,250 F- Dr ied Density - ,175.8 PCF . . 

( 1 "  x 1" x 6" ~ 1 z e J '  . . 

. - 

FIGURE B-10. U n i t  Creep Curves For Modi f ied  90+% A1 O3 . . 

.' Dense Generic Concrete (9.0% Mix water?.. , .  

Tested a t  1 0 0 0 . p s i .  . . . . .  . . .  
. . .  . .  : . . .... . .,:.'. : .:, .?-.?. :1;'. .L . . . 

. . - 

. .,. 
F w -  V- R.1 . .  v- 
I , .  1 I 1 I 1 

' -1.50 . : -1.00 -0.50 0.00 1.50 1.00 1 i50 

Log Time  o ours) . . 
. . 



1.50 -1.00 -0.50 0.00. 0.50 1.00. 1.50 

I.ng Tim6 (Hours) 

FIGURE B-11 Un i t  Creep Curves For Modi f ied 90+% A1 O3 
Dense ~ e n e r i c  Concrete (9.0% Mix ~ a ' t e r f  
Tested a t  3300 ps i .  

'+ 





. . 
APPENDIX C . . 

Weight Loss Vs. ~ i m e  Curves for Pore pressure Calculations 



V) 
200 -  D DIAMETER X 6"LONG 

2000 G SAMPLES 
lo%, 1000°F - 125OF/HR 

cn' 140-  
V) - - - -  w IO%,50O0F 

IIO°F/HR 

k 100 - 7,5%,500° F 
I 
a 80 - - llO°F/HR - 

H 
7.5 %, 250°F 

I 100 F/HR 

1 I ' 23 24 

Figure  C-1. Weight Loss vs Time Curves o f  As-Cured 
S o l i d  Cy l inders  o f  ERDA 90 a t  D i f f e r e n t  

' Water Levels .and Heat-up Rates 



 D DIAMETER X  LONG 
16156 SAMPLES 
7.5%H20 

140 100' FIWOUR RATE 

T I M E ,  HOURS 

Figure  C-2. Weight Loss vs Time Curves o f  As-Cured 
Sol i d  Cy l inders  o f  KAOCRETE XD 50 (Mix 36C) 

. . 



V) x 
200- 3" DIA. x 6" LONG - 
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I ,H 500°F 

- 0 - 1  [---I 250°F 
/ -  

0 
I 
P k x 80  - 

a* - 

+ 
23 24 

T I M E ,  HOURS 

Figure  C-3. Weight Loss vs Time Curves o f  As-Cured 
S o l i d  Cy l inders  o f  LITECAST 75-28 



APPENDIX D . . 

Tensile strength and Shrinkage 'of Linings 



TABLE D-1. Crack Widths and Shrinkage ~ leasu remen tson  t h e  
Hot Face o f  L i n i n q  #9 A f t e r  Heat-up t o  1850°F- 

. . 

V e r t i c a l  Cracks Sum o f  Cracks, 
' ' Locat ion* i n .  

15" .013 ( 2 )  Average = .006 
Sum = .014 

30" .314 ( 3 )  C i  rcumference = 11 5.9 
Shrinkage = .012% 

4.5" .012 (2 )  

Hor i zon ta l  Cracks 
. : Locat ion*" 

Hot Face Diameter 
Shrinkage 

Average = .. 004 
S U I ~  = .. 0125 

He igh t  = 48 
Shrinkage = .026% 

Consider s t w i  nkage over  
t o t a l  5 f t  .. he.i y h t  0.f: 1 i n i n g .  
Shrinkage val'ue .is closer., t o  
t h a t  o f  c i rcumference value, 
0.021%. 

. ,,, 

L i n e a r  shr inkage c a l c u l a t i o n s  assume summation o f  crack w id ths  accounts f o r  ' . 

shri.nkage i n  v e r t i c a l  and h o r i z o n t a l  d i r e c t i o n s .  

* 
Measured a t  d i s tance  o f  15, 30 and '45 inches from top o f  1 i n i n g .  

** 
Measured a t  v e r t i c a l  l i n e s  l o c a t e d  a t  45Q a p a r t  around circumference 
o f  l i n i n g .  

 umber o f  cracks measured. 



TABLE 0-2. C r a c k w i d t h s  and shr inkage Measurements on the. ' 

. . ,Ho t  Face o'f L i n i n g  #7.and #8(7A) A f t e r . T e s t i n g  

#7 # 7 #7 #8(7A) 

Vers ical  Cracks 1 s t  1700°F Test 2nd 1700°F. Test . 1850"'~ Test 2 Tests t o  1700°F 
Location* Sum of Cracks. j n . Sum o f  Cracks, i n .  .Sum o f  Cracks . i n .  ' Sun o f  Cracks . in, 

15" ,1045 (12) .078 (9 )  . .117 (13) 
,. ... . . . 

-122 (11) 
30" . I19 (8) .' . I14 (10) . I61 (9)  . , . . . , . I65 (10) 
45" .097 (9) .086 (11) 1 3 4  '(10) . I54 (10) ' . , 

Average = .012 Average = .009 ~ v e r a g e  = .013 . ' Average t. .014 
Sum = .I07 Sum =. ;093 Sum = .I37 Sum = .I47 

Circumference = 115.9 Circumference = 11.5.9 Circumference = 115.9 . Circumference = 115.9 
' Shrinkage = .09% Shrinkage = .08% Shrinkage =. .12% Shrinkage = .I272 

Hor izontal .  Cracks. 
Location** 

w - . .  I 
0 O .068 (6) . / o .057 (8) .078 ( 9 j  :.. . - , .051, (6) 

90 O . 046 (5 )  . '  .047 (7) .058 (6) . . .058 ( 4 )  

180 o .056;(8) , . . . .051 (5)  . . .075 (5.j : .. . 084 (6 )  
. . 270' .038 (4)  .061 (7). .074 -(7)  .077 .(4) 

Average = .008 , Average = .008 Average = .011 Average = .014 
Sum = .052 Sum = .054 Sum = .071 . Sum = .068 

Height = 48 Height = 48 Height = 48 Height = 48 
. . . . Shrinkage = .11% Shrinkage = :11% . Shrinkage = .15% Shrinkage = .142% 

. . 

Hot Face Diameter 
Shrinkage . . .25% .38%. . .38% .38% . 

% . .  AS= .2% . AS= .13%. . . AS = 0% AS =-OX 
' a  . . . . 

' I  . . .  Shrinkage values deterrnined'from as-cast condit ion. 

L inear shrinkage ca l cu la t i ons  assume sumat ion  o f  :rack widths accounts f o r  shrinkage i n  v e r t i c a l  and horizonta1,direct. ions. 

*pleasured a t  distance o f  15, 30 and 45 inznes from :op o f  l i n i n g .  ** 
Peasured a t  v e r t i c a l  1 ines located 45' a s r t  ar0un.j circumference o f  1 in ing .  

 umber o f  cracks measured. 



FIGURE D-1. Tensile Strengths of Dense Castables Used in Linings #I-#7  
(Diametral Compression Test). 



APPENDIX E 

Seminar Agenda and L i s t  of .At tendees . . . 



A Seminar 
on 

M o n o l i t h i c  Refractory L i n i n g  Design f o r  Process Vessels 
w i l l  bc h c l d  a t  the  Research & Development D i v i s i o n  

Babcock & Wilcox 
a t  

Lynchburg, V i r g i n i a  on September 17-18, 1980 

Babcock & W i  1 cox Company has been under c o n t r a c t  t o  the'  ~ e ~ a r t m e n t  o f  ~ n e r ~ ~  
i n  a m u l t i - y e a r  s tudy  t o  develop improved mono l i t h i c  r e f r a c t o r y  l i n i n g  designs, 
m a t e r i a l s  and opera t ing  procedures f o r  coa l  g a s i f i e r s .  Trans fer  ' o f  t he  techno1 ogy 
t o  t h e  app rop r ia te  i n d u s t r i e s  w i l l  be accomplistied through a seminar planned a t  
t h e  Babcock & Wilcox'Cornpany Lynchburg Research Center i n  Lynchburg, V i r g i n i a .  
The one-and-one-half day .seminar i s  planned f o r  Uednesday and Thursday, Septem- 
ber  17-18, 1980. 

An out1  i n e  o f  t h e  seminar f o l l ows :  

Wednesday Morninq 

- I n t r o d u c t i o n  - W.  G. Long 

- Overview o f  DOE/Fossil Energy R e f r a c t o r i e s  Development Programs - Ron 
Bradley,  Manager o f  F o s s i l  Energy M a t e r i a l s  Programs - Oak Ridge Na t iona l  
Labora tory  

- Overview of Contract  - .E .  M. Anderson 
Ed w i l l .  d iscuss t h e  o b j e c t i v e s  and scope o f  t h e  program, t h e  approach 
t o  s tudy p o t e n t i a l  improvements i n  m o n o l i t h i c  r e f r a c t o r y  l i n j n g s , .  
and t h e  r e f r a c t o r y  m a t e r i a l s  and p r o p e r t i e s  o f  i n t e r e s t .  

- S t r a i n  Gage Development - R. P. Glasser 
Dick w i l l  d iscuss  t h e  techniques used t o  measure l i n i n g  and s h e l l  
s t r a i n s  d u r i n g  t h e  l i n i n g  t e s t s .  

Wednesday Af ternoon 

D iscuss ion  o f  Acoust ic  Emission Techniques - R. W .  ' S h e r i f f  
Rob w i l l  d iscuss t h e  acous t i c  emission techniques employed t o  c o r r e l a t e  
c rack ing  i n  t h e  r e f r a c t o r y  concrete l i n i n g  w i t h  o the r  da ta  i n  t h i s  program. 

- Tour o f  Test  F a c i . l i t i e s  

- Mathematical  Model ~eve lopmen t  - Ray Best  
Ray w i l l  descr ibe  the  development o f  the 1-D and 2-D models. Comparison 
w i l l  be made w i t h  t h e  MIT model ing program. 

- Model Development a t  MIT 

- Creep T e s t i n g  a t  Iowa S t a t e  

'Thursday Morning 

- L i n i n g  Tes t  Resu l ts  - Anderson, ~ l a s s e r  and Best 
The l i n i n g  t e s t  r e s u l t s  w i l l  be presented and c o r r e l a t e d  w i t h  the  model 
p r e d i c t i o n s .  The recommended guide1 i nes  f o r  improved performance w i  1.1 
be presented. 

- 11 :00 AM ~ r a p - u p  - E. M. Anderson 
4 



LIST OF SEMINAR ATTENDEES , , 

Alcoa Research La'b - George MacZura Ralph M. parson Cb. - Lynn M c ~ a e  

B a t t e l  l e  Columbus Labs - Gene Hul b e r t  Pennwa.1.t cot-p. - Bob P,ier-ce 

Bechte l '  - Doc Lou , P l  i b r i c o  - Ken K r i e t z  

C-E Re f rac to r i es  - Edward Snajdr Pul lman Kel 1 ogg - Tom Thweatt  

Chicago Br idge 
& I ron.  Co. - Elmar Rothrock 

. . . . .  \ .  

Dept. o f  Energy - Gene. Hoffman 

Dravo Corp. - Jack Hyde . , ' 

Foster-Wheeler - Anthony Mondok 
. . 

~ 1 u i d y n e ' ~ n g :  Co. - Ron Smyth 

F luo r  Engineers & 
Constructors,  Inc .  - ~ e o r g e  Smith 

A. P. Green - Cra ig  Campbell 

G u l f  O i l  Research & 
Development Corp. - Pat Dolan 

Harbi son-Wal ke r  - Hugh Cr i ss  

Hotwork, Inc .  - Ker ry  H igg ins  

I I T  Research, I n s t i t u t e  - 
Ross F i  restone 

Iowa S t a t e  U n i v e r s i t y  - Tom McGee 

Koppers Co. - Jan Re iser  
- Paul Musiol  

Lone S t a r  LaFarge - Ken Moody. 

Davey McKee Co. - J im Cheraso 

MIT - Ora l  Buyukozturk 

Monsanto Co. - B i l l  N e t t e r  

Oak'Ridge Na t iona l  Lab - , 

Ron Bradley 
Joe 'Hammond 

She1 1 Development Corp,. - ' 

B i ' l  1 Gottenburg 

Stone & Webster - W i l l i a m  Hsu 

. .TVA'- . B i l l  Goins' 

Texaco - Don Newlin 
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UOP - .Bud Krause 

UTSI - .  Troy Shaver - 

.VPI - C u r t i s  Clar t in  

A i r  p r o d u c t s &  Chemicals, Inc .  - . 

Joe Slusser  

P&M Coal 'Min ing Co. - L a r r y  S luza l  i s  

Montana Tech - Kathy K i t t o .  

La1 Singh - Fro-Con. 

B&W 

Walt Alexanderson . 

Ed Anderson 
Ray Best  
Ted Cook 
Ted Engelder 
A l l e n  Ferguson 
D ick  Glasser 
Ron Komoros k i  
B i l l  Long 
Gene Lynch 
Dan Petrak 
Paul Prober t  
Rob S h e r i f f  
Joe Snyder 
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