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COMPUTATIONAL METHODS FOR REVERSED-FIELD EQUILIBRIUM*

J. K. Boyd, 8. P. Auerbach, P. A. Willmaon, H. L. Berk, and B. McNamara

Lawrence Livermore Laboratory, University of California,
Livermore, CA 94550

ABSTRACT

Investigating the temporal evolution of reversed-field equilibrium
caused by transport processes requires the solution of the Grad-Shafranov
equation and computation of field-line-averaged quantities. The technique for
field-line averaging and the computation of the Grad-Shafranov equation are
presented. Application of Green's funcrion to specify the Grad-Shafranov
equation boundary condition is discussed. Hill's vortex formulas used to
verify certain computations are detailed. Use of computer software to

implement computational methods is described.

INTRODUCTICN

The problem of reversed-field transport and equilibrium involves
computating field-line-averaged quantitics and solving the Grad-Shafranov
equation. The methods used are described in the first part of this report and

the software implementation in the second part.

*Work performea under the auspices of the U, §, Department of Energy by the
Lawrence Livermore Laboratory under contract number W-7405-ENG-48.
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The first part describes the technique for field-line averaging, the
tri-diagonal.solution of the averaged Grad-Shafranov equation, the Incomplete
Cholesky Conjugate Gradient {1CCG) solution of the two~dimensional
Grad-Shafranov equation, and the application of Green's Eunction to obtain
boundary conditicus. The computations of field-line-averaged functions are
verified by using the Hill's vortex, analytic, reversed-field equilibrium.
Because the uce of Hill's vortex is widespread, the analytic formulas for
pertinent transport and equilibrium functions are presented. Graphs of these
functions versus flux are also included. These may be compared with other
equilibria or with a Hill's vortex after it has evolved by transport. The
second part of this work details the use of subroutines to implement our
computational methods. The ICCG method is generally applicable to problems
requiring the iuversion of a watriz having five ur more bands. An efficient
assembly-language version of the [ive-band algorithm is available for users of
the Magnatic Fusion Energy Computev Center's Cray 1 computer. All other
subroutines are In FORTPAN. Severa. techniques used to reduce run time to

one-fourth that for standard FORTRAM are discussed for the ICCG method.

L. METHODS AND HILL'S VORTEX SOLUTION

The central equation to be solved is Ampere's law combined with force
balanze in cylindrical coordinates. The general relation is the

Grad-Shafranov equation,
2
. N RN § (1)

The toroidal, magnetic inductlon is f/r, and p is the pressure, Both p and f
are functions of ;| where B = Vo= V6 + £0°, The poleidal induction, B | s
p

Y x VA. The average of (1) divided by r2 is,

dv dv

K= ﬂ‘2'y>
r

v

9—-(K@>--w pr-te {5y o

where
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Brackets denote an average over a flux surface, For a general function X,

_ df d!
s /Xa_/f“s' '
P P

An equilibrium is obtained when Eqs. (1) and (2) are self-consistently solved
subject to constraints on p({) and f(y) which enfor-e certain dynamital
conservation laws.1 [t is then necessary to compute avz:rage quantities¢ X5,

and numerically solve (1) and (2).
A, FIELD-LINE AVERAGE

Let [x] = d“/BP; then - X is obtained as. xy = [x}/[1]. Tt is
only necessary to compute the un-normalized average. The function y, BP,
and flux, ., are specified on a rectangular grid which may be variable, The
actu:. |¥| average is calculated along a constant © path. On the grid this is
approximated by examining a grid cell and taking the integration path as a
straight line between the Y intersections of the grid-cell sides, The @
intersection and the value of ¥ at the intersection are obtained by linear
interpolation. The value of X/Bp along the straight-line~integration path
1s taken to be the average of the values at the two intersections. The
contribution of a grid cell to [*]| is the distance between o intersections
mltiplied by the sum of E/Bp at these two intersections. The factor of 1/2
is absent because ¢ contours are assumed to be symmetric about z = 0. The
routine assumes it is only examining grid cells for 2 greater than zero. The
value of [X] is finally obtained by summing the contributions from all grid
cells.

The procedure just described is a good approximation to [¥] except near
Lhe vortex point, where a ! contour may intersect one side of a grid cell
twice, To resolve this difficulty (v is defined to be a weighted sum of the
numerical average and the analytic average obtained by us'ng the Hill's vortex

formulzs described in a later section:
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o]
+(I-e) <X

numerical '’

&X>analytic

where wv is the flux value at the vortex point. At and near the vortex
point (¥ > 1is almost entirely the analytical average. For ¥ - wv greater

than -0.2 wv‘ {x%is almost entirely the numerical average,

B. TRIDIAGONAL SOLUVION OF THE AVERAGED GRAD-SHAFRANOV EQUATION

Equation (2) is the average Grad-Shafranov equation, with p and f
arbitrary functions of ¥, It is iterated self-consistently with Eq. (1) to
allow the imposition of a transport-determined flux value at the vortex
point, To invoke adiabatic-equilibrium changes between transport steps, the

following two relations are used:

pC) = 8(j) (dv ) , (3)
) = _F% q(¥) df
£(1) i d\? . (4)
i)
r

The left hand side of Eq, (2) is differenced in a conservative manner with a

non-uni form mesh

d qu((1> (3) z)‘ (3)(2_2_,(2)_(1; .
] (Kdv) LR LY FTO T L U hl) N

(2 2.3
+(Ti - )‘”1-1 . (5)

The spacing between mi~l and V. is hl’ and the spacing between Wi aand

wi+l is h2. The TEJ) functions are given below:

2
.M Ea "1) :
L N 7y

by by Py *hy hl)
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The right hand :ide of Eq. (2) is written below:

_MYS(E‘L)

Define,

dy I~
1, = S {— - —m--- )
r'i 41 Y§ (dV) + T X h2 . hz : , (7)
2 172 12
r i

then,
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Using Egs. (7), (8), and (9) in (5) yields,

SRR S (10)
where
A= TFl) + T(3) h2 +h O 4 h2 v,
i i 1 1 11 11

2y (D () ) 2.2y
By = T ("2 m)-no T (hl”‘z “'i*(hz*“L)‘i’

@ 2.3 RN
P T TR T e Y

Fquation (10} is homogeneous, because nonlinear terms such as (dh/av) "L are

treated as a product of two terms at different iteration levels,
(ﬂ/ﬂ= (ﬂ_wzn(ﬂ)Ml
v ) v ) av :
Given U boundary values at the vortex point and separatrix, Eq. {10) is solved

in the usual fashion:

Tl 11 i

T3
n

TCA B ),

=]
n

- A F.l/(A.L E, + ui) .

The function K has a logarithmic singularity ar the separatrix. To avoid an
infinity in the Tgl) function one point from the separatrix, ?i+1 + K.

i
is teplaced by Ki+1/2’ obtained from a fit of interior K valuec assuming the

following functional form,



7=

- 2 - vl
K=aV+ aV+ (a3v +aV ) n (1 V/

{
L 2
+ _sin jnV (c.V +d.\V ) s
=1 ] J
where V is normalized to the separatrix volume, and typically & = 4, The
analylic derivative of this formula is used for dK/dV to obtain a smoot™

function that properly represents the 1/(1-V) singularity.
C. 1ICCG SOLUTION OF THE GRAD-SHAFRANOV EQUATION

The Grad-Shafranov equation in cylindrical coordinates 1s given below in
]

Gaussian units,

R _ _]: N:‘ . '\Z(VU N A_‘r‘

7 Tt 2 c ()
r z

[l

1
~
[

where
_ c
J=crp'+ T £’

The ' derivatives of pressure and toroidal flux are obtained by using Eqs. (3)

and {4):

dv dzw d r2

2
4n ldq s qVdy 1 LA
PN G B AR N

2 2

r r

As suggested by Grad, dzw/dvz is expressed in terms of first derivative

fl

quantities by using the average equation and (6):


file:///d/ll

ady | aK 4y 88 (dw )"'1

77 | Tway T v \dv

av

1
lor’ dq . 1 1
< > 9 dV dV <1>dv b

D—K+‘HYS( +16ﬂ<§

Applying central differences to Eq. (11) on a variable mesh yields

P T PR T SO I AL

l1J itl,j llj ij Jl'l,j YIJ T1j+l * 1] ij-1

SR S T (n
¢ 1) i 7ij

where rhe coefficients for an r,z mesh are given below:

o= 1-72]A A
Lij ’ 2[ ri+ ri+1]/Ri

+ [(Arijz - ;Ari+l]2]/si

-1
- 2[1‘1.] + Az, +1l/ )

P S
ST [2 rifk - (o /bi]

. 2
Bij = 61j lAriH/Ri + (Ari) /Si'

y.. =28, 2z2./T,
iy i 1]
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$. = r.R

1 1 1
T. = /\, 2 A + Y ? #\7

j “Lj+l’ azj (hzi' 214y
2, =2, = 2

7o) i-1

fr.=r. -1
i

The solution of the difference Eq. (12) is equivalent to the inversion
of a matrix having five bands. The solution is obtained using a modification
of the Incomplete Cholesky Conjugate Gradient Method (ICCG) devised by D. S,

Kershaw‘z The problem reduces to finding v given Aand J in Eq. (13),
A=) (13

After a lower, upper, triangular Jecomposition of matrix A, Eq. (13) becomes

%EEE“EQ- (14)
fhe L, U, and U matrices in Eq. (14) are given below:
i-1
TR 2_; Lo Ui D (19
k=1
i-1
Ui = Ay k;l Lo Y5 Ve (16)

Dii = (Uii) . (17
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The grid is M by N, and the matrices are M X N by M X N. The five point

difference scheme results ia A having five bands. The bands are tnen:

L, . =4 . , (18}

L. .., =A (19)

Lig * A% 7 Yot Yien,imt Dienien T M iew Viewy i Diewyien 0 (20
U, =L, (21)
11 11
Uil T Aia o 2
Ui ™ A g (23)
It is only necessary to compute Lii' Eqs. (18) to (23) are usad in the
algorithm below:
S_°="éf1‘_{‘ﬁ‘l‘ (24)
-1
pP=h (LDD) Twon's®, (25)
(O w st wo g)'l stl
al = _::‘;_'I"T:;';—-" , (26)
G, p)
£1+1 . El , (27)
v . i .
§1+l - El —a A El , (28)
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_ [(L D u)'1 , (LD 0’ ”1]
R TV S — (29)
I(L ) U\ (L B Uy T
Ei+1 T T (Lo . §i+1 . bip_i ' (30)

H

Operations such as z = (L D U) Ll are performed by using tridiagonal

back substitution in three steps as follows:

Lx =8 ,
Dy = x
Uz =y

The algorithm is iterated from Eq. (26) to Eq. (30) until the residial st is
sufficiently small.

The five band TCCG mechod, Eqs. (18) to (30), is a mathemarical
operation and is therefore applicable to other physical situations in addition
to the equilibrium problem. It may also be generalized to cases involving

nine or more bands in the A matrix.
D. BOUNDsRY CONDITION

The specification of the solution of Eq. (1) requires a boundary
condition, A Green's function technique is used to obtain the boundary
condition by summing the flux due to current rings. Each grid point where the
current is nomzero 15 considered to be a current ring. The flux due to a

current rin33 is piven by Eq. (31):
Wlr,2) = ] f dr' dz' G{r', z', r,2) T , (31)

where



~
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-1
4 v'r 1 2
G{r', 2', r, z) == " — {1t - = k" | K(k) - E(k)
(r', 2', r, z " { kz [( 3 ) l

2 4 r'r
ko= 7 3
(r' + ) +(z- 2"

and K{k) and E(k) are elliptic integrals of the first and second kind,

tespectively. The analytic formula in Eq. (31) is approximated below:

ylr,z) = % :;; !Jij G(ri, 2 r,z) + Ji-l,j G(ri-l‘ 2 r,z)

, r,z) +J G(ri-l’ 2 1 r,z)! hri hz.

+ 4., 0 Glr., z. . .
JI)J—I ( 1 -1 1,31 ] 1

The Green's function, G(ri, 2y r,2), must be computed for each grid

point, for all r,z where a boundary condition is required, Because it is
necessary to read G from a disk, the change of the z = 0 boundary poin: is
monitored during solution iteratiom, and all boundary values are recomputed
only if there is a significant change at z = 0. Because of ymmetry the actual

Green's function used for computation is G(r', z', r,2) + G(:', - 2", r,z).
E. HILL'S YORTEX FORMULAS

The Hill's vortex model4 has been used to verify the ICCG solution of
Eq. (1) and the computation of field-line averages. Relevant transport and
equilibrium functions are given below in terms of the Hill model to allow
comparison with other equilibria or with a Hill's vortex after it has evalved by
transport.

The flux is expressed as a polynomial in r and z:

UJ=—§E B-Yzz-gr2>. (32)

The vortex point radius L flux at the vortex point ¥,» and total volume

within the separatrix, VS, may be calculated by using Eq. (32).
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v
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"
(= =]

4
J—
N
—

The volume as a function of flux V(;), the average quantilies, and their
derivatives are obtained as trigonometric integrals which are evaluated
numerically by usiag Simpson's rule. For the average functious the following

relation 1s used:

dr

w‘r;.

IRt
ST 1

o=l

The analytic Hill formulzs are given below with small b expansions (bencath

each formula) where b = (1 - :;/u',rv)l/z. The separatrix corresponds to

b = | and the vortex point corresponds to b = C,

W b 1l
V() = - 2. f d cos & (1 - b cos 9)1/2 (33)
2)”2 0
W= 0) = 2 (bz + %2 b“) (34)
8/ °
W,y f S SO (35)
i 16 Yy 0 (1 -b cos 9)1/2
dv I VS 3b”
E(b%0)=-4—-—(1+TE- (36)
’ B»FZ l‘l‘l

)372

2 3V .
8y, s 1 f 40— 808 (37)
0 (1-bcos®



o
(1 - b cos ﬂ)3/2
b2+_1_3_1bb)

__dlcos b

" df cos ©
1 +Dbcos 9)1/2

N 572
(1 - b cos 0)5/

(38)

(39)

140)

(41)

(47)

(43}

(44)

(45)

(46)

(47)

———7> (48)



Let

. L I 8
3(1+bc350) (1+bcos)

1 ; M2y 7 dn
R e e
B ™) 0 (1+bcosd)' ¢ S U, b sin” @)
12

LN ey = (L) L2318 sa30 4 0.2 b2 (51)

7 V¥ e\ 7

B b

2

dV d AN Y

1
{ (1 + b cosf) ((2-271,‘\:“ b2 sin2 9)2

----- SN (cz -2 i, 6 sin e)

/

'
#(1+bcos ﬂ)l/z 2r (E - —~—Z—M/~’i§————) cos

7 (1L +bcosa)

: . _ . . 2
e 26 L,v 4b y v, sin 97 [dé (52)

2
d 1 dv a0 /1
—_— - (b=0) = — =— — +
dv <}Z> I de <12>

2
2 iy
(B "(dv) K, (54)

mrN

2 V2 ay -4, 7096
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2
4 gty s (W J!EL‘E .
T (dv) RS b (55)

The magnitude of the magnetic field ]Bl around a flux surface is computed by

obtaining the distance along a flux surface 9, and using the definition uf

{B| below.
2,2 /2
' &
(8] = (%" ‘Z‘) +y (211; vl - r“) : (56)
r

The trigonometric integral for f[d¢ has an integrable singularity at £ =~

(=Y Pty

which causes numerical difficulty. To resolve thig problem [df is computed in

two parts. The [irst part of the integral is in z,

3 2
(250

0 0 .

1/2
AR ]
fd9=f AR J iz (57)

with

2 8wl (ﬁ,\;z_z_)ﬂﬁ. V2l
L ! 772 i ¢

used in Egs. (56) and (57). The second part of fd¢ is an angular integrai,

¢
2
7. 112
jf 4 = - —---mf ----------- 72 (CZ -y b sin o / ., (58)
. (2vF) (1 +#bcost)
1
with
r2 = %ﬁ (b cos 0 + 1)

used in Eq. (56).

Functions given by Egs. (33) to (58) are plotted in Figs. | to 10 for
three aspect ratios with wv =-landr = 1//2. The Flux ranges from
-1 to 0 from the vortex point to the separatrix, and § is zero at r = | and
z = 0. For all cases £ =8, and & = 48 in Eq. (32). Plots with three curves
labelled &, B, C vefer toy = &, 8, and 1b, respectively, These values of Y

correspond to & ratio of radial to axial separatrix distance squared, E, equal
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of 0.5, 1 and 2. To avoid singularities the range of ' is restricted to -0.93
to -0.05,

Figures 12, b, and ¢ are contour plots showing the different geometries
for the three E values, Case A, Fig. la, is prolate; case B, Fig. lb, is
spherical; and case C, Fig. lc, is oblate,

The volume, V({), is plotted in Fig. 2a. The prolate geometry, case A,
has the greatest volume at any value of flux. The oblate case, C, has the
least volume and the spherical case, B, is intermediate between these two
extremes. The volume derivative of !, d0/dV is plotted in Fig. 2b. The
greatest to least di/dV occur for the oblate, spherical and prolate cases,
respectively. Each curve would plunge to zero at y = 0, the separatrix, if
the plotting range were extended. This sudden change in value is a
consequence of the logarithmic singularity of K mentioned carlier and the fact
K d¥/dV is proportional to the total enclosed current. Because the total
currsnt is finite and K is singular, d¥/dV must go to zero. Figure 2c,
dZW/dvi, dramztically illustrates the sudden rate of change ot the slope
of d¥/dV near # = 0. The relative magnitude of dz'JJ/dV2 for ihe rthree
cases is prolate, spherical and oblate. This is the opposite of the ordering
for dp/dv.

Figure 3a is a plot of <1/r2) (V). This function goes t, infinity at
= 0; and consequently d/dV <l/r2> in Fig, 3b and A4/di (l/r2> in Fig. 3¢
rise sharply near ¢ = 0. Figures 3a and 3¢ show (l/r2> and d/dt <1/r2)
are both independent of E for Hill's vortex.

Figures 4a, b, and ¢ are plots f K(y;), dK/dV, and dK/d¥, respectively.
The greatest to least value at a given flux occurs fer prolate, spherical and
oblate geometry for each plot. The weak singularity at 1 = 0 is illustrated
by the rapid increase of dk/dV cr dK/d¢ near v = 0. J3ecause the poloidal
field is zero at the vortex point, K = 0 at ¥ = -1, as shown in Fig. 4a.

Figures 5a, b, and ¢ are plots of <r2>, afdv (f2> and d/d¥ <r2>.
Figures 5a and 5c show that (rz) and d/dy <r2> do not depend on E. This
is consistent with Eqs. (46) and (48). The greatest to least magnitude of
d/av Qr2> at fixed { occurs for prolate, spherical and oblate geometry,
respectively.

Figure 6a is a plot of '1/82) as a function of flux. Because |B| is
zern at the vortex point <1/Bz) goes to infinity at ¥ = -1 as indicated.

As the proximity of d/dv (1/32> to zero in Fig. 6b shows, (1/32> is

relatively constant for -0,8 < = < 0. The greatest to least magnitude of
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(1/52> at constant {' occurs for prolate, cpherical and oblate geometry,
respectively, Figure 6b shows d/dV (IIBZ> has a very weak dependency on E.
Figure 6¢ shows a crossover point for d/dy (l/BZ). For ¢ less than -0,2 the
greatest to least value occurs for oblate, spherical and prolate geometry.
For (' greater than -0.2 the order becomes rrolate, spherical and oblate.

Figure 7a shows <52)>uith the preatest to least value occurring for
oblate, spherical and prolate geomctry, respectively. Because [B[ is zero at
the vortex point (B2> is also zero at y = -1 as indicated by Fig. 7a. The
existence of a maximum value of (BZ> for each E value leads to a crossover
point for d/dV (B2> and d/du.<Bz) as shown in Figs. 7b and 7c. For v < -0.11
the greatest to least valve of the derivative occurs for oblate, spherical,
and prolate geometry, respectively. For g > =0.1l the order becomes prolate,
spherical, and oblate.

Figures 8, 9, and 10 are plots of |B! as a function of distance around a
flux surface beginning at z = 0 below the vortex point. The main features of
[B] for Hill's vortex are the positions where {B/ = 0 at the vortex point and
separatrix, and the |B] maximums above and below the vortex point. On a
particular flux surface |B| has the same value at the two radial positions at
z = C. The basic feature of !Bi shown in Fige. 8, 9, and 10 is the existence
of two minimums and two maximums around a flux surface, For the prolate
geomet:; Fig. B, the spherical geometry Fig. 9, and the oblate geometry Fig.
1%, |Bl is plotted for ¥ = ~0.8, =0.6, -0.4, and _10-&. The important
difference between these plots is the ratio of max‘mum to minimum jB], R,
summarized for various ratios of radial to axial separatrix distance squared,

E, and flux below.

E
¢ 0.5 1.0 2.0
-8 2.84 2.06 1.48
-6 2,97 2.29 1.58
-4 3.26 2,38 174
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At constant E, R increases as y increases, moving from the vortex poiat
toward the separatrix. The minimum |B] exactly on the separatrix is zero, so R
goes to infinity at ®» = 0. This accounts for the large R values for # = -0.0001,
For a fixed value of flux, R decreases as E increases. The oblate geometry

has the smallest values of R.

I1. COMPUTATIONAL IMPLEMENTATLON

A. FIELD-LINE AVERAGE

The |y operation discussed in Sec, 1A is performed by subroutine

FLINAV. The calling sequence is given below:
CALL FLINAV (SI, F, IR, IZ, IRD, TRZ, R, Z, HTS, N, XINT).

The subroutine computes N averages of [unction F and retuias values inm
array, XINT. Function F is considered to be the entire ial.grand, i.e.,
X/B_ for the average of Sec. 1A, Computation proceeds on & rectangular grid
bounded by Z(1), to 2.IZ) and R(1) to R(TR}. Averaging is assumed to be done
on flux heights symmetric about z = 0, An explanation of the calling

ire yments follows:

1. SI(IRD, 1ZD) Array of flux valves. Averages are performed
along constant SI heights. (INPUT)

2. F(IRD, 1zD) Artay of function values to be averaged.
(INPUT)

3.OIR The maximum radial index over which averaging
occurs, This must be less than or equal to
IRD. (INPUT)

4, 12 The maximum axial index over which averaging
occurs, This must be less than or equal to
1ZD.  (INPUT)

5. IRD First dimension of arrays F and SI. (INPYT)

6. 2D Second dimension of arrays F and SI. (INPUT)
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7. R{IR) Array of radial grid positions, (INPUT)
8, z(1Z) Arcay of axial grid positions. (INPUT)
Y. HTS(N) The heights along which averages are computed,
(INPUT)
10, W The number of averapes to be computed. (INPUT)
1l XINT(N) Array of average values, (QUTPUT)

B. FIVE BAND ICCG

The solution of Eq. (12) is obtaiued by using six subroutines SETICL,
CORICC, BACKL, BACKU, DINV, and MATMUL. The user need only call subroutines
SETICC and CORILC. Subroutine SETICC is called once to compure band 3 given
in Eq. (20) and to compute the initial vectors S and P given by Eqs. (24) and
(25}, Subroutine CORICC performs one loop through the ICCG algarithm given by

Eqs. (26) to (30). Assume the equation to be solved is
Ax=y . (59)

where the five bands o. matrix A are as unowrn in Fig. 11. The z,r grid is
dimensioned IZDIM by IRDIM as shown in Fig. 12. The main diagonal of matrix A
has a lenpth equal to the number of grid points, IZDIM timas IRDIM,

Vactor x elements then refer to grid points [z(1), RE1) , . . . =z(1),
RCIRDIM)T, . o . [2(2), R(D)], . . . [2{2), R(IRDIM)], In other words, x
consists of consecutive colvmns of the grid. Before discussing the calling
arguments of SETTICC and CORICC it is necessary to describe he construction of
the five bands, and the y vector of Eq. (59). The description is given in
terms of qij’ Bij’ Yij' lij’
values denoted wb' Assume arrays Al, A2, A3, A4, A5 X and Y are

dimensioned I[RDIM by IZDIM,

and 6ij of Eq. (12) and grid boundary
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Eind 1

Interior grid points,
Al (i, ) = Aij+1 1= 2, IRDIM-1
j =1, 12DIM-1

Axis grid points,
Al (1, 1) =0 j =1, IZDIM

Boundary at maximum radial position,

Al (1RDIM, }) = 0 7=1, 12DIM

Boundary at maximum axial position,

Al (1, 1ZDIM-1) = 0 i=2, [RDIM-1
ggnd 2

Interior grid points,
A2 (i, j) = Bi+1,j i =1, IRDIM-1
j =1, 1ZhIM-1

Axis grid points,

A2 (IRDIM, j) = 0 j =1, 12DIM-1

Boundary at maximum radial positjon,

A2 (IRDIM-1, j) = 0 i =1, IZDIM

Boundary at maxinum axial position,

A2 (i - 1, [ZDIM) = O 1 =2, I[RDIH-1

Premultiply band times axis boundary condition, where
Wb (1, j) =0,
A2 (1, ) =0 J =1, 1Z2bin-1
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Rand 3
Al (i, j) =1 i=1, TRDIM
j =1, 1ZDIM
Band 4
Intertor grid points,
A (i, §) = “ i=2, IRDIM
j=1, IZDIM
Axis grid points,
A4 (1, j) =0 j=1, TZDIM
Boundary at maximum radial position,
A4 (TRDIM, j) =0 j=1, LZDIM
Boundary at maximum axial position,
A4 (i, 1ZDIM) = 0 1=2, IRDIM - |

The band times the boundary condition is premultipl-ed and put on the

right hand side so,

A4 (TRDIM-1, j) = 0. j= 1, 1DIM ~ 1
Band 5
Interior grid points,
A5 (i, )= %5 i=2, IRDIM
' j=1, LN
Axis grid points,
a5 (1, 33 =0 j =1, IZDIM
Boundary at maximum radial position,
AS (IRDIM, j) = 0 3=1, [ZDIM
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The band times the boundary cendition is premultiplied and put on the

right hand side so
AS (i+ 1) T2himM-1) = 0. it =1, TRDIM ~ 2

Right hand side,
Y (i, §) = - 47fc ol i=2 IRDIM - 1
j=1, izpm

Axis grid points,

YL = (L j= 1, LZDIM

Boundary at maximum radial position,

Y (L2DINM, j) = vy (IRDIM, i) j =1, 1ZDIM

Boundary at maximum axial position,

Y (i, [ZbIM) = 5 (i, IZDIM) 1= 2, IZDIM - 1

b

Note the following step of putting band times boundary conditio: .n the right

hand side must be performed prior to zecroing bands 2, 4, and 5.

z (IRDIM-1, j) =¥ (IRDIM - 1, j)

- A4 (IRDIM-1, j)
+ z(IRDIM-1, j) j=1, Iipin - 1

Y (IRDIM-1, })

z (i + 1, 12DIM-1) =Y (i + 1, TZDIM-1)

i=1, IRDIM - 2

il

Y (i + 1, 1ZDIM-1) = z (i + 1, IZDIM-1)
- A5 (i + 1, TZDIM-1) Y (i + 1 + IRLIM,
1Z2D1M-1) i=1, IRDIM-2
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The calling sequence and arguments for subroutines SETICC and CORICC are now

given:
CALL SETICC (Al, A2, A3, A4, A5, B, P, R, TL, T2, U3, X, Y, MN, M).

Subroutine arguments Al, A2, A3, A4, A5, P, R, Tl, T2, U3, X, and Y are
one~dimensional arrays of length MN, where MN is the total number of grid

points, IZDIM times IRDIM. The band 3 to band 5 offset is M which would be
IRDIM for Fig. 12.
1. - 5. The first five arguments are arrays containing

bands 1 to 5 having dimension equal to the
number of grid points of the computatinnal acea.

(INPUT)

6. B The numeratc: of the right side of Eq. (26).
(OUTPUT)

7. 4 The vector given by Eq. (25). (OUTPUT)

8. R The vector given by Eq. (24). (OUTPUT)

9. Tl Temporary storage.

10. T2 Temporary storage.

11. U3 Band 3 given by Eq. (21). (OUTPUT)

12, X Initial solution guess. (INPUT)

13. Y The right hand side Eq. (59). (INPUT)

4, MN The number of grid points. (INPUT)

15, M The number of radial grid points. (INPUT)

CALL CORICC (AL, A2, A3, A4, AS, B, B, R, TL, T2, U3, X, Y, MN, M, EPS).

The arguments for CORICC are the same as for SETICC with the following

exceptions:

12. X The current solution.

16. EPS The sum of the squares of residuals.
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The solution vector X typically is obtained by calling SETICC once and
then repeatedly calling CORICC until EPS is sufficiently small.

The five band ICCG algorithm consumes a large fraction of the
computational expense of solving the equilibrium problem., To implement ICCG
efficiently on the Cray 1 computer, we have written subroutines SETICC,
CORICC, BACKL, BACKU, DINV, and MATMUL in assembly language. The FORTRAN
versions of these subroutines accept any values for MN and M, provided M
exactly divides MN, mod (MN, M) = 0. The assembly language version bas the
same arguments for the user-called subroutines SETICC and CORICC, but it has
two addirional restrictions. The band-offset M must be greater than or equal
to 8 and less than or equal to 64, 8 must exactly divide M, mod (M, 8) = 0 and
mod (MN, 64) = 0. Assembly language versions of these subroutines may be
written without these restrictions; however, it is not then possible to derive
the maximum performance froem the Cray 1 hardware. The restrictions arise from
the optimization of two types of do loops. The method chosen to optimize
these do loops depends on the presence of 64 words in each Cray 1 vector
register,

The first type of do loop to be optimized is recursive and thus prevents

complete vectorization by the CFT compiler.

DO 20 [ = MN - M, L, - 1
20 X(I) = [Y(I) = A4(I) % X(I + 1) - A5(1) * X(1 + M))/A} 1)

Because array A3 (s fixed the first optimization is achieved by
replacing the div:¢e by a multiply with T4(I) = 1.0/A3(1). To allow Ffurther
partial vectarization two temporary arrays are introduced with two inner do
loops. The imnermost loop is vectorizable and the do Loop overhead is further

reduced by introducing eight statements for X(J).

DIMENSION TS(M), T6(M)

D020 I=MN-M1,-M

DO15JI=1,T~K+1, ~1

T5(1 + 1 = J) = T&(J) # [Y(J) - a5(J) * X(J + M)]
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15 Te(1 + 1 - J) = Ta(J) * A4(J)

(I = T{1 + 1 -0) ~T6 (1 +1~-0)
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Machine language programming permits careful reordering of the

1)
2}
3)
4)
5)
6)

instruction sequence, optimal use of parallel processing, and the subsequent

elimination of temporaries T3 and T6.

to 997 microseconds is achieved with MN = 4096, M = 64.

An overall run time reduction from 4459

The second type of do loop to be optimized is not vectorizable by CFT as

written below.

§=0

DO 20 1 =1, N

20 § =5+ X(1) * X(1)

To permit vectorization this do loop is split into three loops cs

follows.
DIMENSEON TEMP(64)
§=20
DO ST =1, 64
5 TEMP(1) = X(I) * X(1)

DO 15 L = 65, N, 64
DO 15 J = 1, 64

15 TEMP(J) =
DO 30 J =1, 64

30 § = § + TEMP(J)

TEMP(J) ¢ X(1 + J = 1) *# (L +J - 1)
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Only the last do loop does not vectorize. When the above FORTRAN is
coded in assembly language, TEMP(I) is eliminated and an overall run time

reduction from 1859 to 90 microseconds is achieved with N = 4096.
C. BOUNDARY VALUE GREEN'S FUNCTION

Tha Green's function is computed by subroutine GREENF. The Green's
function over the entire grid for a given point is evaluated by a single call
to GREENF. Symmetry across z = 0 is assumed and the Green's function is used
with the right hand side of Eq. (1) so the output of GREENF is [G(r', z', r,z)
+ 6(r', - 2', r,z)I/r" with G(r', 2z', r,z) given by Eq. (31). The IMSL
library or an equivalent must be invoked since this routine requires functions
MMDELK and MMDELE tc compute elliptic integrals of the first and second kind.

The calling sequence and explanation of arguments follows,

CALL GREENF (RFAC, ZFAC, R, IRDIM, Z, IZDIM, CREENS)

1. RFAC Radial position r of Eq. (31). (INPUT)

2. ZFAC Axial position z of Eq. (31). (INPUT)

3. R(IRDIM) Radial grid array. (INPUT)

4. TIRDIM Number of radial grid points. (INPUT)

5. Z(IIDIM) Axial grid array. (INPUT)

6. T1ZDIM Number of axial grid points. (INPUT)

7. GREENS (IRDIM, Array of Green's function vaives divided
1ZDIM) by R for (RFAC, ZFAC)} at grid positions

given by arrays R and Z. Lue to symmetry
the Green's function at t Z are combined.

Values of flux are computed by using trapezoidal integrationm by
subroutine GREENG., The current is assumed to be symmetric about Z = 0, so
the Green's function combined by GREENF is appropriate. The calling

sequence and arguments follow.
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CALL GREENG (SI, GREENS, RDB, XJTHET, IRDIM, IZDIM).

The Green's function at

subroutine GREENH. For a fixed point RFAC, ZFAC this is the routine

51

GREENS (IRDIM,
1ZDIM)

RDB (IRDIM,
12D1IM)

XJTHET
(IRDIM, IZDIM)
IRDIM

1ZDIM

Value of tinx ar r,z position used to compute
Green's function array. (OUTPUT)

Array of Green's function values combined for
* z and divided by r as computed by GREENF.
(INPUT)
Array of grid cell areas in square centimeters.
RDB(i, j) = [R(i + 1) - R(1)]

lz(j + 1) - 2(3)). (INPUT)

Array of 4y r/c times the current in statamps.
(INPUT)

Number of radial grid points. (INPUT)

Number of axial grid points. (INPUT)

z divided by r at a single point is computed by

repetitively called by GREENF to get the Green's function over the entire

grid. The calling sequence and arguments are below.

CALL GREENH (G, RFAC, ZFAC, R, 2),

2.

RFAC

ZFAC

1/R [G(R,Z, RFAC, ZFAC) + G(R, - 2, RFAC,

_ZFAC)].  (OUTRUT)

Radial position t of Eq. (31). (INPUT)
Axial position z of Eq. (31). (INPUT)
Radial current position. (INPUT)

Axial current position. (INPUT)

A boundary point value is computed by first calling GREENF and then

calling GREENG with 47 r/c times the current. For a typical 64 X 64 grid

there are 520,000 Green's function values.

Al
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D, HILL'S VORTEX

The Hill's vortex formulas are computed by calling subroutine HILLSI,
Yalues are communicated through common block HILLV. The calling sequence and

definitions of common block elements are given below.

COMMON/HILLY/A(45)
CALL HILLSI

A(1) Flux value at which functions are desired.
(INPUT)
a(2) Volume Eq. (33). (OUTPUT)
A(3) di/dV the inverse of Eq, (35). (QUPUT)
A(4) dZp/dv2 gq. (39). (oUTPUT)
A(S) {1/v?y Bq. (42). (OUTPUT).
AC6) d/av {1/r?> Eq. (44). (QUTPUT)
A7) K Eq. (40). (OUTPUT)
A(8) dK/dV Eq. (41). (OUTPUT)
A(9) (el Eq. (46).  (OUTPUT)
A(10) d/dV (rl) Eq. (48). (OUTPUT)
a(1D {1/82y £q. (50). (OUTRUT)
AC12) d/dv <1/82> Eq. (52). (OUTPUT)
A(13) (B> Eq. (54). (OUTPUT)
ACL4) d/dv (82> Eq. (55). (QUTPUT)
! ACLS) 2/3 B Eg. (32), This is the value of the

distant yniform vacuum field. (INPUT)

. A(16) (66/8)1/2 gq. (32), Radial position at which
=0 at z=0. (INPUT)

A(lD) 6Y/6 Eq. (32), the ratio of radial to axial
separatrix distance squared, E, (INPUT).
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A(18) The number of angular grid points used with
Simpson's rule to compute functions. (INPUT)

A(19) to A(45) Working space.

III. AVAILABILITY

A LIB library containing FORTRAN subroutines FLINAV, SETICC, CORICC,
DINV, BACKL, BACKU, MATMUL, GREENF, GREENG, GREENH, and HILLSI is obtained
with the following execute line on the MFE 7600: FILEM READ .3040
.PHYSICS EQTRAN. A LIB library containing a binary assembly language
replacement for SETICC, CORICC, DINV, BACKL, BACKU, and MATMUL is obtained
with the following execute line on the MFE Cray l: RFILEM READ .3040
.PHYSICS BLCCG. Library BICCG contains the binary file BICCGZ and the
assembly language listing LICCG2.
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Fig. 12, The 2-D grid is dimensioned
1ZDTY in the z direction and IRDIM in the
r direction. Matrix bands Al to A5 are
indicated on the finite difference star,



