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COMPUTATIONAL METHODS FOR REVERSED-FIELD EQUILIBRIUM* 

J. K. Boyd, S. P. Auerbach, P. A. Willmann, H. L. Berk, and B. McNamara 

Lawrence Livermore Laboratory, University of California, 
Livermore, CA 94550 

ABSTRACT 

Investigating the temporal evolution of reversed-field equilibrium 

caused by transport processes requires the solution of the Grad-Shafranov 

equation and computation of field-line-averaged quant i t ies . The technique for 

f ie ld- l ine averaging and the computation of the Grad-Shafranov equation are 

presented. Application of Green's function to specify the Grad-Shafranov 

equation boundary condition is discussed. H i l l ' s vortex formulas used to 

verify certain computations are detailed. Use of computer software to 

implement computational methods is described. 

INTRODUCTION 

The problem of reversed-field transport and equilibrium involves 

computating field-line-averaged quantit ies and solving the Grad-Shafranov 

equation. The methods used are described in the f i r s t part of this report and 

the software implementation in the second part . 

*Work performed under the auspices of the U. S. Department of Energy by the 
Lawrence Livermore Laboratory under contract number W-7405-ENG-48. 
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The first part describes the technique for field-line averaging, the 

tri-diaganal solution of the averaged Grad-Shairatiov equation, the Incomplete 
Cholesky Conjugate Gradient (ICCG) solution of the two-dimensional 
Grad-Shafranov equation, and the application of Green's function to obtain 
boundary conditions. The computations of field-line-averaged functions are 
verified by using the Hill's vortex, analytic, reversed-field equilibrium. 
Because the use of Hill's vortex is widespread, the analytic formulas for 
pertinent transport and equilibrium functions are presented. Graphs of these 
functions versus flux are also included. These may be compared with other 
equilibria or with a Hill's vortex after it has evolved by transport. The 
second part of this work details the use of subroutines to implement our 
computational methods. The ICCG method is generally applicable to problems 
requiring the inversion of a matrix having five or more bands. An efficient 
assembly-language version of the f've-band algorithm is available for users of 
the Magnetic Fusion Energy Computer Center's Cray 1 computer. All other 
subroutines are in FORTRAN. Severs; techniques used to reduce run time to 
one-fourth that for standard FORTRAN are discussed for the ICCG method. 

1. METHODS AND HILL'S VORTEX SOLUTION 

The central equation to be solved is Ampere's law combined with force 
balance in cylindrical coordinates. The general relation is the 
Grad-Shafranov equation, 

!\K = - 4" r" p' - W . (I) 

The toroidal, magnetic induction is f/r, and p is the pressure. Both p and f 

are functions of , where B = Vij. :•• VO + f7f'. The poloidal induction, "S , is 
2 V̂  x Vfl. The average of (1) divided by r is, 

where 
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Brackets denote an average over a [lux surface. For a general function X, 

An equilibrium is obtained when Eqs. (1) and (2) are self-consistently solved 
subject to constraints on p(|i) and (('() which enforce certain dynamical 
conservation laws. (t is then necessary to compute average quantities'; X >, 
and numerically solve (1) and (2). 

A. FIELD-LINE AVERAGE 

Let [xl = & •> df/B ; then • X • is obtained as. X^ = [v]/ [ 1 ]. It is J p 
only necessary to compute the un-normali?.ed average. The function >;, B , 
and flux, ., are specified on a rectangular grid which may be variable. The 
actu:: |xl average is calculated along a constant '.' path. On the grid this is 
approximated by examining a grid cell and taking the integration path as a 
straight line between the 1 intersections of the grid-cell sides. The '•',• 

intersection and the value of X at the intersection are obtained by linear 
interpolation. The value of X/B along the straight-1ine-integration path 
is taken to he the average of the values at the two intersections. The 
contribution of a grid cell to ['• | is the distance between .' intersections 
multiplied by the sum of >/B at these two intersections. The factor of 1/2 
is absent because • contours are assumed to be symmetric about z = 0. The 
routine assumes it is only examining grid cells for z greater than zero. The 
value of |K] is finally obtained by summing the contributions from all grid 
cells. 

The procedure just described is a good approximation to [X| except near 
the vortex point, where a 'J' contour may intersect one side of a grid cell 
twice. To resolve this difficulty (V) is defineu to be a weighted sum of the 
numerical average and the analytic average obtained by us:'ng the Hill's vortex 
formulas described in a later section: 
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a> = e'1 <;x> , . + (1 - e") « > . , ' N 'analytic 'numerical 

where i!' is the flux value at the vortex point. At and near the vortex v r 

point ( J ) is almost entirely the analytical average. For '4/ - i|i greater 
than -0.2 i,1' < x > is almost entirely the numerical average. 

B. TRIDIAGONAL SOLUTION OF THK AVKRAGEI) GRAD-SHAFRANOV EQUATION 

Equation (2) is the average Grad-Shafranov equation, with p and f 
arbitrary functions of ij1. It is iterated self-consistently with Eq. (1) to 
allow the imposition of a transport-determined flux value at the vortex 
point. To invoke adiabatic-equilibrium changes between transport steps, the 
following two relations are used: 

p(:!) = S(-j) (3) 

f(,) ^ / . q t y ) di w 

The left hand side of Eq. (2) is differenced in a conservative manner with a 

non-uniform mesh 

ii ('3) • ( ' ! " • ' ! " ' i k . i - T l ! ) k?.|,?)-T<»-l!" 
1 \ 2 1 / 1 1 

* ( f - t '!'*) •.- (5) 

The spacing between >l'.. and 'K is h. , and the spacing between 'J-1, and 
lll- + , is h ?. The T. J functions are given below: 
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(2)=i.(!i.+..y..... 
1 hl K h2 + h2 hl) 

,(3> ( ' ! -» ! ) ' . 
1 (>;>.-;>j! 

The right hand ;ide of Eq. (2) is written below 

4 " YS •• -^(sr-wsf'* ?v dV 

i * I - l f^^ * a -2'1--
dV dV dV 

q _ d \ r 2 / dj; 
7 I V 2 dV dV 

Define, 

4n «(sr*?n(- 2 2 
h. h„ + h. h„ 

4.1 ">v \ d v / 
16* g d_q 161' q_ d \ r , 
7 T V dv ~7T\ 2 dv" 

2 2 

then, 

R. = (- h. o. - h? v . h t ( - h . a . + h„2 v . v , 
l \ 1 i 1 i ' i+l \ 2 i 2 i / i - l 

[ ( h i t h z ) 0 L + ( h i - h i ) v J " i 
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Using Eqs. (7) , (8) , and (9) in (5) yields, 

l 1+1 i i l i - l (10) 

where 

A. - T U ) • T ( 3 ) h? U a , + h* v. , i l l 1 1 l 1 l 

• . - ! " ( 4 - ' : ) • ' ! " • * ! " - ( > . " J • . • ( ' I - ' ! ) • > • 

C . T 1 2 ' - h? T»» . . , - . - h? v. 
i i 2 i 2 I 2 i 

J-I Equation (10) is homogeneous, because nonlinear terms such as (d'l'/dV) are 

treated a? a product of two terms at different i terat ion levels, 

\ dV ) \ dV / \dM I 

(Siven i' boundary values at the vortex point and separatrix, Eq. (10) is solved 
in the usual fashion: 

i+L l i i ' 

E. = - C./ A. E. + B. i-l I ' l l I. , 

i-l A. F.I A. E. + B. I I i \ i i i) 

The function K has a logarithmic singularity at the separatrix. To avoid an 
infinity in the T. function one point from the separatrix, V. , + K. 

i i+l I 

is replaced by K. i .., obtained from a fit of interior K values assuming the 
following functional form, 
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K = a V + a2V + /a V + a^2\ 5n A - V̂  

j 

+ A . sin j i V /c.V + d.V 2) , 

where V is normalised to the separatrix volume, and typically I = 4. The 

analytic derivative of this formula is ujed for dK/dV to obtain a smoot'i 

function that properly represents the 1/(1—V) singular i ty . 

C. ICCG SOLUTION OF THE GRAD-SHAFRANOV EQUATION 

The Grad-Shafranov equation in cyUndrical coordinates is given below in 
i 

Gaussian units, 

, 2 r "r -,2 c <r 'z 

where 

J = c rp' *^(V . 

The i|' derivatives of pressure and toroidal flux are obtained by using Eqs. (3) 

and (4): 

P dV \d\ll ^ \dv] d v 2 

c , 4TT2 Idq dV d 2* 1 d \ r 

2 1 As suggested by Grad, d i|)/dV is expressed in terms of first derivative 
quantities by using the average equation and (6): 

file:///d/ll
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djfc 
dV 2 

dK djj 
dV dV 

- 4it 
dS M\ 
dV \iVl 

Ibv" _ dijj | d<i 
TV q dV I dV " 

D = K + 4n Y S ( J ) ^ • 16,4 J, 
2 

Applying c e n t r a l d i f f e r e n c e s to Eq. (11) on a v a r i a b l e mesh y i e l d s 

i. . '!'. . + t . • + P- • 'i'. , • + T. . '!'• • + A .. I!J i j I + I , j i j i j i - l , j i j ij+1 i j i j -1 

= A . . r . J . . 
c i j l I J 

(1?) 

where the coefficients for an r ,z mesh are given below: 

i j 
- 2 | A r . + A r l / R . 

|K) 2 ^>i+i) 2 h 

- 2 \ t , z . + Az. . / T . 
-1 

. . . = .*•.. 2A r . /R . - (Ar. i " / b . 
I J I J [ l i \ i' i 

3 . . = o \ . TAr. , /R . + Ar. / S . l j l j | l+ l l i i ' i 

Y. . = <$. . 2 A Z . / T . 
i j i j J J 



A.. = «.. 2,\z..tf. 

V K J 2 ^ * K) 2 * r i + i 

S. = r . R. 
1 1 i 

vhHi'Vhfv 
• Z . = Z • " 7. . , 

J J J - l 

Ar. - r. - r , • 
I i i - l 

The so lu t ion of the d i f ference Eq. (12) i s equivalent to the inversion 

of a matr ix having f i ve bands. The so lut ion is obtained using a modi f icat ion 

of the Incomplete Cholesky Conjugate Gradient Method (ICJCG) devised by D, S, 

Kershaw. The problem reduces to f ind ing v given A and J in Eq. (13), 

A , = - — rJ . (13) 
= - c 

After a lower, upper, t r iangu lar decomposition of matrix A, Eq. (13) becomes 

'•" i D jy £ = - - r J . (14) 

The L, U, and U matrices in Eq. (14) are given below: 

i - l 

j i rfji k t \ j k Ki kk 

L L 

J . . = A. . - T L., U, . t),, , i j i j ^ lk kj kk 

( 1 5 ) 

(16) 

D.. = ( U . f 1 . (17) 
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The grid is M by N, and the matrices are M * N by M * N. The five point 
difference scheme results in A having five bands. The bands are cn«n: 

L. . = A. . . , (18) 
i,i-l 1,1-1 

i,l-M i,i-M 

.. - I.. . U. . . , D. . , - I. . U. u . D. . , (20) n li-l 1-1,1-1 1-1,1-1 i,i-M i-M,i l-M.i-M 
L.. « A.. - I.. , U 11 

(J.. = L.. , (21) 
n ii 

(J. = A.. . , (22) 
i,i+l n + 1 

U i , i + M = A i , 1 + H ' ( 2 3 ) 

It is only necessary to compute L.., Eqs, (18) to (23) are used in the 
algorithm below: 

S° = - — rJ - A ji (24) 

I = A T (L D U) T (L D U ) ' 1 S° , (25) 

j(L D U)" 1 s \ (L D U)~l S l ] 
a ' = J „_ . , . . . „„—: J. (26) 

(p , p ) 

i i + l - i 1 • a1 p 1 , (27) 

S X + I = S 1 - a A £

l , (28) 
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( L D U ) " 1 S i + 1 , (L D U ) " 1 S i + l 

( u uf1 s1, ( u u)"1 s1 
(29) 

^ . ^ ( L D U f V D u f V ^ b V 
•1 c i 

(30) 

Operations such as z = (L D U) S l are performed by using tridiagonal 
back substitution in three steps as follows: 

Ls = S l , 

Dy = x , 

Uz 

The algorithm is iterated from Eq. (26) f.o Eq. (30) until the residial S is 
sufficiently small. 

The five band ICCG method, Eqs. (IS) to (30), is a mathematical 
operation and is therefore applicable to other physical situations in addition 
to the equilibrium problem. It may also be generalized to cases involving 
nine or more bands in the A matrix. 

D. BOUNDSY CONDITION 

The specification of the solution of Eq. (1) requires a boundary 
condition. A Green's function technique is used to obtain the boundary 
condition by summing the flux due to currtnt rings. Each grid point where the 
current is norrzero is considered to be a current ring. The flux due to a 
current ring is given by Eq. (31): 

iKr.z) = \ \ dr' dV G(r', z \ r,z) J , (31) 

where 
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G(r \ z \ r, z) = £ 

k 2 = 4_r_;_r 

( r 1 + r ) 2 + (z - z ' ) 2 

and K(k) and E(k) are e l l ipt ic integrals of the first and second kind, 

respectively. The analytic formula in Eq. (31) is approximated below: 

v(r,z) - \ £ [J. . G(r., t., r , t ) • J . ^ . G f r ^ , z. , r,« ) 
* J * 

+ J. . , C(r., z. , i ,z) + J. . . , G/r. . , z. . , r ,zl Ar. Az. . 
i , j - l l i J-l ' •«•-1,J-1 I l-l J-l /J i J 

The Green's function, G(r., z. , r ,z ) , must be computed for each grid 

point, for all r,z where a boundary condition is required. Because it is 

necessary to read G from a disk, the change of the z = 0 boundary point is 

monitored during solution iteration, and all boundary values are recomputed 

only if there is a significant change at z - 0. Because of ymmetry the actual 

Green's function used for computation is G(r', z ' , r,z) + G(: ' , - z 1 , r , z ) . 

E. HILL'S VORTEX FORMULAS 

4 
The Hil l ' s vortex model has been used to verify the ICCG solution of 

Eq. (1) and the computation of field-line averages. Relevant transport and 

equilibrium functions are given below in terms of the Hill model to allow 

comparison with other equilibria or with a Hill 's vortex after it has evolved by 

transport. 

The flux is expressed as a polynomial in r and z: 

(..-I? ( B - Y z 2 - ^ r 2 ) . (32) 

The vortex point radius r , flux at the vortex point v , and total volume 
within the separatrix, V , may be calculated by using Eq. (32). 

H> 1) K(k) - E(k) 
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-.•(?r 
3 r 
4 ' 

1/2 
r ' 

The volume as a function of flux V(:,'), the average quantities, and their 
derivatives are obtained as trigonometric integrals which are evaluated 
numerically by usi lg Simpson's rule. For the average functions the following 
relation is used: 

£ _ _dr 
B = .r- " ' " . 2""~l'l/2 ' P v, (2, + , r ' I r ) 

The analytic Hill formulas are given below with small b expansions (benc.itli 
1/2 each formula) where b = (1 - ;,7ij; ) . The separatrix corresponds to 

b = 1 and the vortex point corresponds to b = 0. 

3V b 
s 

1,1 0 

V(0) = / dfi cos M l - b cos ?.)112 (3:0 / 

32 b ) V(b * 0) - — V ( b 2 + •?, b " | ( 3 4 ) 
H/2 S ^ 
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3V 
d 2 v ( b , 0 ) = _ ^ , ( ^ , ^ b 2 

da. 
32/2 * 2 ^ 1 2 8 

v 

(38) 

7 1 2 
djj. _ / d t \ J d_0 
dV 2" Uv) d v 2 

(39) 

« - > - ? ' S ' '40) 

^ J + * dj: d^dj/ 
dV [< 3 / dV V d V ^ 2 

r 2 / 16!|' r 2 d V / (1 - b cos 
/ v v U 

3/2 

(41) 

(4?.) 

(43) 

/ l \ djji dV / l \ _ 9^ 2 j _ /dj \ 2 /" dO cos H 
V 7 " dV2 d'-" V / M 7 V b W "J (1 -"b cos 0) 

d / l \ ,w ~ M 2 l / 2 1 /, 251 , 2 \ 
d V < 7 > ( b a 0 ) = - F — l ( L + - 4 8 b ) 

\ / s rv 

5/2 (44) 

(45) 

2, s 3 d!j> r 7 1 PP""* b ^<= e ) 1/2 
(46) 

2 .. ^ . , dt|) \ 3TI / b

2 

(47) 

d 2 dV d 2^ , 2, _/dv i 2 V s 3 1 r d 
r • =^—2 < r ' (dv) r 4 7~;; 5 - / — 

ill D/8 ^ (1 + 
v 0 

d8 cos 6 
dV dV b cos 0) 1/2 ,- (48) 



- 1 5 -

dv 

s 3- 1 ] 15 ?\ 

,r - 77 u + us b 

v 

Let 

r- = vTT-V—-«* + Ul + b cos 9) J!?(l <• b cos 0) 2 

^ • ' • f e 
1/2 d, /* 7 ' do_ 

d V ^ (1 + b cos A ) 1 ' 2 {r2 - 2y ijj I 
2 7 2y ijj b s in fi) v 

,1/2 
( b , 0 ) - 2 , ( L ) | ± ( i ^ 8 + O . 3 8 3 4 9 + 0 . 2 b ^ 2 / ^ v ' - U - I dV « V .2 

d / 1 \ dV d , / 1 1/2 , , ,2 

d V V / dVdV2 V / 

/ " — 
. . b cos P) ( r 2 - 2y .;; b 2 s i n 2 fl)2 

0 V 

d A 

COS 
- 1/2 2(1 + b cos b > 1 

+ (1 + b cos fl)1/2 

e-» i b 2 s i n 2 e 
v / 

£ 2jjM/jg ^ 

2 (1 + b cos p ) 2 J 

__26/3g 
T + b cos P 2b 'i - 4b Y v s in 9 v d6 

d v V 
(b * 0) £ dJl A X 21 /2_\1 /2 aV /-4. 

' # d V 2 V / B W' d M ~ 
-4 .7496 + 0.4 b 

<B ; 2- . /di|/ 

• ( * ) ' 
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dV - B > ~ \ i v ) dV 2 R d V ~ 2 
(55) 

The magnitude of the magnetic field |B| around a flux surface is computed by 
obtaining the distance along a flux surface I, and using the definition of 
JBl below. 

j j .stf. ,(„., ,«.{,« 1/2 
(56) 

The trigonometric integral for /d£ has an integrable singularity at fl = ,T 

which causes numerical diff iculty. To resolve this problem fdf is -omputed in 

two par t s . The f irst part of the integral is irt z, 

1/2 

f \ , . f Y 2* + 3 r 2 & 4 

i n f r 2 \ 2 2 6 
d2 , (57) 

with 

4-|(l- 2(2 z 
2 

6 
+ 3 ^ 

1/2 I 
d 

used in Eqs. (56) and (57). Th« second pa.t of j'd? is an angular integral 

5n 2 
<W 

with 

(2yP) 1 /V n (1 + b cos 6 —172 ̂  - H r * Sln ?l (58) 

r 2 = # (b cos P + 1) 

used in Eq. (56). 
Functions given by Eqs. (33) to (56) are plotted in Figs. 1 to 10 for 

three aspect ratios with \|i = -1 and r = 1/72. The flux ranges from 
-1 to 0 from the vortex point to the separatrix, and fy is zero at r = 1 and 
i = Q. For all cases f, = 8, and f = 48 in Eq. (32). Plots with three curves 
labelled k, B, C refer to -y =• 4, 8, and lb, respectively. These values of y 

correspond to a ratio of radial to axial separatrix distance squared, E, equal 
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of 0.5, 1 and 2. To avoid singularities the range of j' is restricted to -0.95 

to -0.05. 

figures la, b, and c are contour plots showing the different geometries 

for the three E values. Case A, Fig. la, is prolate; case B, Fig. lb, is 

spherical; and case C, Fig. lc, is oblate. 

The volume, V(\|0, is plotted in Fig. 2a. The prolate geometry, case A, 

has the greatest volume at any value of flux. The oblate case, C, has the 

least volume and the spherical case, B, is intermediate between these two 

extremes. The volume derivative of i|', dWdV is plotted in Fig. 2b. The 

greatest to least diJj/dV occur for the oblate, spherical and prolate cases, 

respectively. Each curve would plunge to zero at ll1 = 0, the separatrix, if 

the plotting range were extended. This sudden change in value is a 

consequence of the logarithmic singularity of K mentioned o.arlier and the fact 

K dil'/dV is proportional to the total enclosed current. Because the total 

current is finite and K is singular, dv/dV must go to zero. Figure 2c, 

d i!)/dVz, dramatically illustrates the sudden rate of change of the slope 
2 2 of di''/dV near :i> = 0. The relative magnitude of d 'J'/dV for the three 

cases is prolate, spherical and oblate. This is the opposite of the ordering 
for di|f/dV. 

Figure 3a is a plot of (,1/r ) {$). This function goes tj infinity at 

'I' = 0; and consequently d/dV (1/r ) in Fig. 3b and d/dij' <l/r 2) in Fig. 3c 
2 2 

rise sharply near I|I = 0. Figures 3a and 3c show •( 1/r ) and d/dt (1/r ) 

are both independent of E for Hill's vortex. 

Figures 4a, b, and c are plots f Kd,'.), dK/dV, and dK/d:l', respectively. 

The greatest to least value at a given flux occurs for prolate, spherical and 

oblate geometry for each plot. The weak singularity at i1 = 0 is illustrated 

by the rapid increase of dK/dV or dK/di/- near v = 0. because the poloidal 

field is zero at the vortex point, K = 0 at 'I1 = -1, as shown in Fig. 4a. 
2 ,2 9 

Figures 5a, b, and c are plots of (r ) , C/dV (x ) and d/di)' <r ), 
2 2 

Figures 5a and 5c show that <r ) and d/di!/ (r > do not depend on E. This 
is consistent with Eqs. (46) and (48). The greatest to least magnitude of 2 d/dV ;r ) at fixed t|i occurs for prolate, spherical and oblate geometry, 
respectively. 

2 
Figure 6a is a plot of • l/'B )as a function of flux. Because |B| is 

2 zero at the vortex point <;l/B ) goes to infinity at ty = -1 as indicated. 
2 i 

As the proximity of d/dV (1/B ) to aero in Fig. 6b shows, <1/B > is 
relatively constant for -0.8 < ;: < 0. The greatest to least magnitude of 
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2 

\ l /B \ at constant t|i occurs for prolate , cpherical and oblate geo.netry, 
2 respectively. Figure 6b shows d/dV <V1/B >̂ has a very weak dependency on E. 

2 Figure 6c shows a crossover point for d/diii <(1/B .). For I|J less than -0.2 the 

greatest to least value occurs foi oblate, spherical and prolate geometry. 

For i|j greater than -0.2 the order becomes prolate , spherical and oblate . 
2 

Figure 7a shows (B )wi th the greatest to least value occurring for 

Oblate, spherical and prolate geometry, respectively. Because | B | is zero at 
2 the vortex point <B ) is also zero at y = -1 as indicated by Fig. 7a. The 

2 
existence of a maximum value of (B ) fo>- each E value leads no a crossover 

point for d/dV (B > and d / d ' | ( B ' ) a s shown in Figs. 7b and 7c. For y < -0.11 

the greatest to least value of the derivative occurs for oblate, spherical , 

and prolate geometry, respectively. For iji > -0.11 the order becomes prolate, 

spherical , and oblate. 

Figures 8, 9, and 10 are plots of | B | as a function of distance around a 

flux surface beginning at z = 0 below the vortex point. The main features of 

!fl| for H i l l ' s vortex are the positions where jB; = 0 at the vortex point and 

separatrix, and the |B| maximums above and below the vortex point. On a 
particular flux surface IB] has the same value at the two r?dial positions at 
z = C. The basic feature of ;B| shown in Figf. 8, 9, and 10 is the existence 
of two minimums and two maximums around a flux surface. For the prolate 
geomet:'/ Fig. 8, the spherical geometry Fig. 9, and the oblate geometry Fig. 
10, |B| is plotted for i|> = -0.8, -0.6, -0,4, and -10 "\ The important 
difference between these plots is the ratio of maximum to minimum jBJ, R, 
summarized for various ratios of radial to axial separatrix distance squared, 
E, and flux below. 

0.5 1.0 2.0 

8 2.84 2.06 1.48 

6 2.97 2.29 1.58 

4 3.26 2.38 1.74 

0001 30.7 20.0 19.8 
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At constant E, R increases as y increases, moving from the vortex point 
toward the separatrix. The minimum |jij exactly on the separatrix is zero, SO R 
goes to infinity at d = 0. This accounts for the targe R values for ty - -0.0001, 
For a fixed value of flux, R decreases as E increases. The oblate geometry 
has the smallest values of R. 

II. COMPUTATIONAL IMPLEMENTATION 

A. FIELD-LINE AVERAGE 

The 1x1 operation discussed in Sec. IA is performed by subroutine 
FL1NAV. The calling sequence is given below: 

CALL FL1NAV [SI, F, IR, IZ, IRD, T.RZ, R, Z, HTS, N, XINT). 

The subroutine computes N averages of function F and returns values in 
array, XINT. Function F is considered to be the entire inf. ̂ rand, i.e., 
X/B for the average of Sec. 1A. Computation proceeds on a rectangular grid 
bounded by Z(l), to Zv.IZ) and R(l) to K(T?.!'. Averaging is assumed to be done 
on flux heights symmetric about z = 0, An explanation of the calling 
]r"4tnents follows: 

1. Sl(lRD, IZD) Array of flux values. Averages are performed 
along constant SI heights. (INPUT) 

2. F(IRD, IZD) Array of function values to be averaged. 
(INPUT) 

3. IR The maximum radial index over which averaging 
occurs. This must be less than or equal to 
IRD. (INPUT) 

4. IZ The maximum axial index over which averaging 
occurs. This must be less than or equal to 
IZD. (INPUT) 

5. IRD First dimension of arrays F and SI. (INPUT) 

6. IZD Second dimension of arrays F and SI. (INPUT) 
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7. R(IR) Array of radial grid positions. (INPUT) 

a. ZUl) Array of axial grid positions. (INPUT) 

9. HTS(N) The heights along which averages are computed. 
(INPUT) 

10. N The number of averages to be computed. (INPUT) 

11. XINT(N) Array of average values. (OUTPUT) 

B. FIVE BAND ICCG 

The solution of Eq. (12) is obtained by using sin subroutines SKI'ICC, 
CORICC, BACKL, BACKU, DINV, and MATMUL. The user need only call subroutines 
SETICC and CORICC. Subroutine SETICC is called once to compute band 3 given 
in Eq. (20) and to compute the initial vectors ^ and P given by Eqs. (2k) and 
(25). Subroutine CORICC performs one loop through the ICCG algorithm given by 
Eqs. (26) to (30). Assume the eqiation to be solved is 

» x = j , (59) 

where the five bands Oi matrix A are as oiiowr. in Fig. 11. The z,r grid is 
dimensioned IZDIM by IRDIM as shown in Fig. 12. The main diagonal of matrix A 
has a length equal to the number of grid pciuts, IZDIM timss IRDIM, 

Vector x elements then refer to grid points (z(i), R(l) , . . . z(l), 
R(IRI)IM)], . , . [z(2), R(l)], . . . [z(2), R(IRDIM)], In other words, x 
consists of consecutive cohmns of the grid. Before discussing the calling 
arguments of SETICC and CORICC it is necessary to describe he construction of 
the five bands, and the ^ vector of Eq. (59). The description is given in 
terms of ft.., 6.., "(. ., ) . . . , and & • • of Eq. (12) and grid boundary 

Ĵ *J *J -̂J '•J 
values denoted l/i. , Assure arrays Al, A2, A3, A4, A5, ;<, and Y are 
dimensioned IRDIM by IZDIM. 
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Inter ior grid points, 

Al U , j) = A i j + 1 
i = 2, IRDIM-1 

j = 1, IZDIM-1 

Axis grid points, 

Al (1 , j) = 0 j ' l , IZDIM 

Boundary at maximum radial position, 
Al (1RDIM, j) = 0 j * 1, IZDIM 

Boundary at maximum axial position, 
Al (i, IZDIM-1) = 0 i = 2, IRDIM-1 

Band 2 

Interior grid points, 

A 2 ( i , j) = 6 i + 1 ( j i = 1, IRDIM-1 

j = 1, IZDIM-1 

Axis grid points, 

A2 (IRDIM, j) = 0 j = 1, IZDIM-1 

Boundary at maximum radial position, 

A2 (IRDIM-1, j) = 0 j = 1, IZDIM 

Boundary at maximum axial position, 
A2 (i - 1, IZDIM) = 0 i = 2, IRDIM-1 

Premultiply band times axis boundary condition, where 

* b (1. J) = 0, 
A2 (1, j) = 0 j = 1, IZDIM-L 
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A3 (i, j) = 1 i = 1, IRDIM 
j = I, IZDIM 

Band 4 

Interior grid points, 
A4 (i, j) = if. . i = 2, IRDIM 

ij 
j = 1, IZDIM 

Axis grid points, 
A4 (1, j) = 0 j = 1, IZDIM 

Boundary at maximum radial position, 
A4 (IRDIM, j) = 0 j = 1, IZDIM 

Boundary at maximum axial position, 
A4 (i, IZDIM) = 0 i = 2, IRDIM - 1 

The band times the boundary condition is premultipl;ed and put on the 
right hand side so, 

A4 (IRDIM-1, j) = 0. j = 1, IZDIM - I 

Band_5 

Interior grid points, 
A5 (i, j) = y. . i - 2, IRDIM 

j = I, IZDIM 

Axis grid points, 
A5 (1, j) = 0 j = 1, IZDIM 

Boundary at maximum radial position, 
A5 (IRDIM, j) = 0 j = 1, IZDIM 
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The band times the boundary condition is piremultiplied and put on 

right hand side so 

A5 (i + !, i:',!UM-l) = 0 . i •- 1, IRDIM - 2 

Righ-t hand side, 
Y (i, j) = - 4 "A 'i^i-'ij i = 2, IRDIM - 1 

j = 1, IZDIM 

Axis grid points, 

y (1: j) = !i'b (1, j) j = 1, IZDIM 

Uoundary at maximum radial position, 
y (IPDIM, j) = :;fa (IRDIM, j) j = 1, IZDIM 

Boundary at maximum axial position, 
Y (i. IZDIM) = V (i, IZDIM) i = 2, IZDIM - 1 

Note the following step of putting band times boundary conditio'.' .n the 
hand side must be performed prior to zeroing bands 2, 4, and 5. 

z (IRDIM-1, j) = y (IRDIM - 1, j) 

Y (IRDIM-1, j) = - A4 (IRDIM-l, j) 
+ z(IRDIM-1, j) j = I, IZDIM - 1 

z (i + 1, IZDIM-1) = Y (i + 1, IZDIM-1) 

i = 1, IRDIM - 2 

Y (i + I, IZDIM-1) = z (i + 1, IZDIM-1) 
- A5 (i + 1, IZDIM-1) Y (i + 1 f IRDIM, 
IZDIM'l) i = 1, IRDIM-2 
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The calling sequence and arguments for subroutines SETICC and CORICC are now 
given: 

CALL SETICC (Al, A2, A3, A4, A5, B, P, R, Tl, T2, L'3, X, Y, MN, M). 

Subroutine arguments Al, A2, A3, A4, A5, P, R, Tl, T2, U3, X, and Y are 
one-dimensional arrays of length MN, where MN is the total number of grid 
points, IZIDIM times IRDIM. The band 3 to band 5 offset is M which would be 
IRDIM for Fig. 12. 

1. - 5. The first five arguments are arrays containing 
bands 1 to 5 having dimension equal to t'-e 
number of grid points of the computational area. 
(INPUT) 

6. B The numerate :jf the right side of Eq. (26). 

(OUTPUT) 

The vector given by Eq. (25). (OUTPUT) 

The vector given by Eq. (24). (OUTPUT) 

Temporary storage. 

Temporary storage. 

Band 3 given by Eq. (21). (OUTPUT) 

Initial solution guess. (INPUT) 

The right hand side Eq. (59). (INPUT) 

The number of grid points. (INPUT) 

The number of radial grid points. (INPUTJ 

CALL CORICC (Al, A2, A3, A4, A5, B, P, R, Tl, T2, U3, X, Y, MN, M, EPS). 

The arguments for CORICC are the same as for SETICC with the following 
exceptions: 

12. X The current solution. 

7. P 

8. R 

9. Tl 

10. T2 

11. U3 

12. X 

13. Y 

14. MN 

15. M 

16. EPS The sum of the squares of residuals. 
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The solution vector X typically is obtained by calling SETICC once and 
then repeatedly calling CORICC until EPS is sufficiently small. 

The five band ICCG algorithm consumes a large fraction of the 
computational expense of solving the equilibrium problem. To implement ICCG 
efficiently on the Cray 1 computer, we have written subroutines SETICC, 
CORICC, BACKL, BACKU, DINV, and MATMUL in assembly language. The FORTRAN 
versions of these subroutines accept any values for MN and M, provided M 
exactly divides MN, mod (MN, M) = 0. The assembly language version has the 
same arguments for the user-called subroutines SETICC and CORICC, but it has 
two additional restrictions. The band-offset M must be greater than or equal 
to 8 and less than or equal to 64, 8 must exactly divide M, mod (M, 8) = 0 and 
mod (MN, 64) = 0. Assembly language versions of these subroutines may be 
written without these restrictions; however, it is not then possible to derive 
the maximum performance from the Cray 1 hardware. The restrictions arise from 
the optimization of two types of do loops. The method chosen to optimize 
these do loops depends on the presence of 64 words in each Cray 1 vector 
register. 

The first type of do loop to be optimized is recursive and thus prevents 
complete vectorization by the CFT compiler. 

DO 20 [ = MN - M, 1 , - 1 
20 X(I) = |Y(I) - AMI) * X(I + 1) - A5(I) * X(l + M))/A3(I) 

Because arr'.y A3 is fixed the first optimization is achieved by 

replacing the divi'.'a by a multiply with T4(I) = 1.0/A3(l). To allow further 
partial vectorization two temporary arrays are introduced with two inner do 
loops. The innermost loop is vectorizable and the do Loop overhead is further 
reduced by introducing eight statements for X(J). 

DIMENSION T5(M), T6(M) 
DO 20 I = MN - M, 1, - H 
DO 15 J = I, I - M + 1, - 1 
T5(I + 1 - J) = T4(J) * [Y(J) - A5(J) * X(J + M)] 
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15 T6(I + 1 - J) = T4(J) * AAU) 

DO 20 J = 1, [ - M + I, - 8 
X(J) = TMl + 1 - J) - T6 (I + 1 - J) * X(J + 1) 
X(J - 1) = T5 (I + 1 - J - 1) - T6 (I + 1 - J - 1) * X(J) 
X(J - 2) = T5 (I + 1 - J - 2) - T6 (I + 1 - J - 2) * X(J - 1) 
X(J - 3) = T5 U + 1 - J - 3) - T6 (I + 1 - J - 3) * X(J - 2) 
X(J - 4) = T5 (I + 1 - J - 4) - T6 (I + 1 - J - 4) * X(J - 3) 
X(J - 5) = T5 U + 1 - J - 5) - T6 (l + 1 - J - 5) * X U - 4) 
X(J - 6) = T5 (I + 1 - J - 6) - T6 (I + 1 - J - 6) * X(J - 5) 

20 X(J - 7) = T5 (I + 1 - J - 7) - T6 U + I - J - 7) * X(J - 6) 

Machine language programming permits careful reordering of the 
instruction sequence, optimal use of parallel processing, and the subsequent 
elimination of temporaries T5 and T6. An overall run time reduction from 4459 
to 997 microseconds is achieved with MN = 4096, M = 64. 

The second type of do loop to be optimized is not vectorizable by CFT as 
written below. 

S = 0 
DO 20 I = 1, N 

20 S = S + X(I) * X(l) 

To permit vectorization this do loop is split into three loops i-s 
follows. 

DIMENSION TEMP(64) 
S = 0 
DO 5 I = 1, 64 

5 TEMP(I) = X(I) * X U ) 
DO 15 I = 65, N, 64 
DO 15 J = 1, 64 

15 TEMP(J) = TEMP(J) + X(I + J - 1) * X<I + J - 1) 
DO 30 J = 1, 64 

30 S = S + TEMP(J) 
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Only the last do loop does not vectorize. When the above FORTRAN is 

coded in assembly language, TEMP(I) is eliminated and an overall run time 
reduction from 1859 to 90 microseconds is achieved with N = 4096. 

C. BOUNDARY VALUE GREEN'S FUNCTION 

Th.2 Green's function is computed by subroutine GREENF. The Green's 
function over the entire grid for a given point is evaluated by a single call 
to GREENF. Symmetry across z = 0 is assumed and the Green's function is used 
with the right hand side of Eq. (1) so the output of GREENF is [G(r', z', r,z) 
+ G(r', - z', r,z)]/r' with G(r', z', r,z) given by Eq. (31). The IMSL 
library or an equivalent must be invoked since this routine requires functions 
MMDELK and MMDELE tc compute elliptic integrals of the first and second kind. 
The calling sequence and explanation of arguments follows, 

CALL GREENF (RFAC, ZFAC, R, IRDIM, Z, IZDIM, GREENS) 

1. RFAC Radial position r of Eq. (31) . (INPUT) 

2. ZFAC Axial position z of Eq. (31). (INPUT) 

3. R(IRDIM) Radial grid array. (INPUT) 

4. IRDIM Number of radial grid points. (INPUT) 

5. ZUZDIM) Axial grid array. (INPUT) 

6. IZDIM Number of axial grid points. (INPUT) 

7. GREENS (IRDIM, Array of Green's function vai; ;es divided 
IZDIM) by R for (RFAC, ZFAC) at grid positions 

given by arrays R and Z. Uue to symmetry 
the Green's function at + Z are combined. 

Values of flux are computed by using trapezoidal integration by 
subroutine GREENG. The current is assumed to be symmetric about Z = 0, so 
the Green's function combined by GREENF is appropriate. The calling 
sequence and arguments follow. 
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CALL GREENG (SI, GREENS, ROB, XJTHET, IRDIM, IZDIM). 

1. SI 

2. GREENS (IRDIM, 
IZDIM) 

3. RD8 (IRDIM, 
IZDIM) 

4. XJTHET 
(IRDIM, IZDIM) 

5. IRDIM 

6. IZDIM 

Value of r 1 ux ;ir r,z position used to compute 
Green's function array. (OUTPUT) 

Array of Green's function values combined for 
+ z and divided by r as computed by GREENF. 
(INPUT) 

Array of grid cell areas in square centimeters. 
RDB(i, j) = [R(i + 1) - R(i)l 
• lz(j + 1) - z(j)l. (INPUT) 

Array of 4TT r/c times the current in statamps. 
(INPUT) 

Number of radial grid points. (INPUT) 

Number of axial grid points. (INPUT) 

The Green's function at z divided by r at a single point is computed by 
subroutine GREENH. For a fixed point RFAC, ZFAC this is the routine 
repetitively called by GREENF to get the Green's function over the entire 
grid. The calling sequence and arguments are below. 

CALL GREENH (G, RFAC, ZFAC, R, Z). 

1. G 

2. RFAC 

3. ZFAC 

4. R 

5. Z 

1/R [G(R,Z, RFAC, ZFAC) + G(R, - Z, RFAC, 
ZFAC)]. (OUTPUT) 

Radial position r of Eq. (31). (INPUT) 

Axial position z of Eq. (31). (INPUT) 

Radial current position. (INPUT) 

Axial current position. (INPUT) 

A boundary point value is computed by first calling GREENF and then 
calling GREENG with 471 r/c times the current. For a typical 64 * 64 grid 
there are 520,000 Green's function values. 
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D. HILL'S VORTEX 

The Hill's vortex formulas are computed by calling subroutine HILLSl. 
Values are communicated through common block HILLV. The calling sequence and 
definitions of common block elements are given below. 

COMMON/HILLV/A(45) 

CALL HILLSl 

A(l) Flux value at which functions are desired. 

(INPUT) 

A(2) Volume Eq. (33). (OUTPUT) 

A(3) dii'/dV the i n v e r s e of Eq. ( 3 5 ) . (OUTPUT) 

A(4) d 2 'J)/dV 2 Eq. ( 3 9 ) . (OUTPUT) 

A(5) < l / r 2 > Eq. ( 4 2 ) . (OUTPUT). 

A(6) d/dV < l / r 2 > E q . ( 4 4 ) . (OUTPUT) 

A(7) K Eq. ( 4 0 ) . (OUTPUT) 

A(8) dK/dV Eq. ( 4 1 ) . (OUTPUT) 

A(9) < r 2 > Eq. ( 4 6 ) . (OUTPUT) 

A(10) d/dV ( r 2 > Eq. ( 4 8 ) . (OUTPUT) 

A ( U ) < l / B 2 > E q . ( 5 0 ) . (OUTPUT) 

A(12) d/dV <1 /B 2 > Eq. ( 5 2 ) . (OUTPUT) 

A(13) <B 2> Eq. (54) . (OUTPUT) 

A(14) d/dV < B 2 > E q . ( 5 5 ) . (OUTPUT) 

A(15) 2/3 6 Eq. ( 3 2 ) . This i s the va lue of the 
d i s t a n t uniform vacuum f i e l d . (INPUT) 

A(16) (6B/S)1V2 E q , ( 3 2 ) . Radia l p o s i t i o n a t which 
li = 0 a t z = 0 . (INPUT) 

A(17) 6Y/<5 Eq. ( 3 2 ) , the r a t i o of r a d i a l to a x i a l 
s e p a r a t r i x d i s t a n c e squared , E. (INPUT). 
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A( 18) The number df angular grid points used with 

Simpson's rule to compute functions. (INPUT) 

A( 19) to A(45) Working space. 

III. AVAILABILITY 

A LIB library containing FORTRAN subroutines FLINAV, SETICC, CORICC, 
DINV, BACKL, BACKU, MATMUL, GREENF, GREENG, GREENH, and HILLSI is obtained 
with the following execute line on the MFE 7600: FILEM READ .3040 
.PHYSICS EQTRAN. A LIB library containing a binary assembly language 
replacement for SETICC, CORICC, DINV, BACKL, BACKU, and MATMUL is obtained 
with the following execute line on the MFE Cray 1: RFILEM READ .1040 
.PHYSICS B1CCG. Library BICCG contains the binary file BICCG2 and the 
assembly language listing 1TCCG2. 
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Fig. 1. Flux as a function of r and 
z with distance scaled to the plasma 
radius: geometry is (a) prolate, 
(b) spherical, and (c) oblate 
corresponding to E values 0.5, 1 and 
2, respectively, 

Fig, 2. Hill's vortex volume-related 
functions vers-js flux: (a) volume, 
(b) volume derivative of flux, and 
(c) second volume derivative of flux. 
Curves A, B, and C correspond to 
prolate, spherical and oblate geometry, 
respectively. 



-33-

"[ r 

100 

80 

60 

40 

20 

0 

-0,8 -0.6 -0.4 -0.2 

i i i i 
(b) 

—^J.. 
-0.8 -0.6 -0.4 -0,2 

•0.8 -0.6 -0.4 -0,2 

1400- la) -
1200 u .-
1000 L — 
800 L 

i 
-

600- ' ' — 
400r , . -
200- • , -

L.-J.. ...J .. J. . i - . 
-0.8 -0,6 -0,4 -0.2 

800F"1" "" I l 1 H 
lb) 

600-
> 
•o 

•o 400-

200r 

6000 [-

5000-
i 

•3-4000-
•o . 

"*3000 r 
•o | 

2000 

1000 

-0.8 -0.6 -0.4 

! I I 

-0.2 

10 

-I 

j _ ^ i ± = ^ i L _: 
-0.8 -0.6 -0.4 -0.2 

Fig. 3, Hill's vortex surface 
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volume derivative of (1/r'X and (c) 
the flux derivative «f (l/r*> as a 
function of nornalized flux. Curves 
A, B, and C correspond to prolate, 
spherical and oblate geometry, 
respectively. 

Fig. 4. Hill's vortex inductance: 
(a) K, (b) volume derivative of K, 
and (c) flux derivative of K. Curves 
A, B, and C correspond to p-olate, 
spherical, and oblate geometry, 
respectively. 
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geometry, respectively, and oblate geometry, respectively. 
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(d) i|) = -0.0001 versus clockwise distince, I, around the constant iji contour 
beginning at z - 0 beneath the vortex point, for the prc.ate geometry. 
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Fig. 9. Hill's vortex |B| at (a) y - -0.8, (b) 0 = -0.6, (c) i? = -0,4, and 
(d) i- = -0.0001 versus clockwise distance, I, around the constant I|I contour 
beginning at z = 0 beneath the vortex point for the spherical geometry. 
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Fig. 10. Hill's vortex |B| at (a) i|> = -0.8, (b) * = -0.6, (c) i|> - -0.4, and 
'A) ty = -0.0001 versus clockwise distance, i, around the constant if/ contour 
beginning at z = 0 beneath the vortex point for the oblate geometry. 
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Fig. 11. Five band matrix structure. 
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Fig. 12. The 2-D grid is dimensioned 
IZDIM in the z direction and IRDIM in the 
r direction. Matrix bands Al to A5 are 
indicated on the finite difference star. 


