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1. Introduction

To estimate possible radioactive releases from a waste package to the near-field environment, we analyzed
pressure-driven brine migration movement! and release rates of low-solubility and readily soluble nuclides by
diffusion.? A possible pathway for radioactive release in salt repositories is interbeds and we have analyzed
the steady-state transport of species through the interbeds in which there is ground-water flow A more
realistic situation is when there is no ground-water flow in the interbeds. Here we use some results previously
obtained for transient diffusion of radioactive species from a waste cylinder intersecting a planar fracture in

rock? to the problem of diffusion from a waste cylinder intersecting an interbed in a salt repository.

2. Assumptions and Equations

The following assumptions are used.

# The crushed salt has consolidated around the waste cylinder.

® There is no ground-water flow in the interbed.

e The interbeds are planar and perpendicular to the longitudinal axis of the waste cylinder.

o The spacing between interbeds is constant.

o The waste cylinder is infinitely long. That is, end effects are ignored.

e Temperature effects are accounted for by using constant values of parameters such as diffusion coefficients,
evaluated at the highest temperatures expected.

» Radionuclides can diffuse into the salt directly from the waste cylinder. Radionuclides can also diffuse into

the interbed and then diffuse into the salt.

With these assumptions, the problem reduces to one of diffusion. Consider an infinitely long waste cylinder
with radius & intersected by a planer interbed (Figure 1). We conservatively assume there is no metallic
container and the surface concentration is the solubility limit of each species. The interbed width or thickness
is 26 and complete mixing across thc interbed is assumed. Retardation is treated by equilibrium sorption.

The mass balance for the time-dependent species concentrations in the salt and in the interbed are
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Figure 1. Waste Package Intersected by an Interbed



is the diffusive flux from the interbed to the salt through the interface [M/L3-t]
where

subscript I denotes the interbed

subscript 2 denotes the salt

N; is the liquid-phase species concentration M/L3)

D; is the species diffusion coefficient [L?/1]

Ii'.' is the species retardation coefficient

X is the decay constant {t~1]

¢; is porosity

f is the radial distance from the centerline of the waste cylinder [L]

% is the distance from the salt/interbed interface, in the direction normal to the interface L]

{ is time [t]

The side conditions are

Ni(#,0)=0, >4 4)
Na(#,£,0) = 0, #>a,:>0 (5)
N:(ﬁ,i):ﬁ', >0 (8)
where N* is the solubility of the diffusing species
KNi(o0,) =0, i>0 )
Na(a,2,1) = N*, £>0,i>0 (8)
Na(0,£,4) = 0, $>0,i>0 (9
N?(i',oai)’-:ﬁl(ivhy f'>a’{>0 (10)
ON, s g
W}_@—O, #>4,i>0 (11)
By introducing the following transformations
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~23
Az FAK (17

M(r)= —-— (18)

Na(r,z,t) = ;.i— (19)

= 4 (20)

where t is the Fourier number, eq. (1) and (2) can be made dimensionless as

N, _ A8, 0Ny

TG A - b, r>1Lt>0 (21)
8Nz _ 18 ( 8Na\ , °Ny
W‘?E(’TBT)*"&T"‘N" r>1,2>0,t>0 (22)

The full derivations and solutions are shown in Ahn et al# (for the case of & = 1). Only the analytic solution

will be given here. The normalized diffusive flux from the waste cylinder to the interbed is

it _-9;’7‘ =vaEvm 2B0.0+ 80,0+ 400, t>0 (23)

r=]1 K (\/-)

And the normalized diffusive flux from the waste cylinder directly into the salt is

i(zt) = —% . \/-KKET('\:_ - -[I (z,8) + Iy(2,t) = Ii(z,t) + Ii(2, )], z2>0,t>0 (24)
where
I(z,t) = _/0 Wi(s; 2,t) [ M"‘(’:)] (25)
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Wa(s; z,t) = ‘—llfe “lterf (m) (29)
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3. Numerical Iltusirations

3.1 Input Data

_1-P

=T
=1xP
2b
P=T-4(A - 1)s?
ul=s2A4+2
K3 =8+ 2
H(z) = e"erfc(:).

(31)

(32)

(33)
(34)
(33)

(36)

We will now illustrate the above solution for a salt repository of nuclear waste. These parameter values are

used. The waste cylinder is 0.31 m in radius.

Table 1. Salt Properties
Parameter Units Salt Interbed

Diffusion coefficient cm?/s 10-7 10-7

Porosity 0.001 0.01%

Interbed half-width m 0.01

Table II. Nuclide Properties
Decay Constant | Retardation Coeflicient | Retardation Coefficient
(C] in Salt in Interbed

U-234 2.81 x 10—¢ 20 1
Np-237| 3.24x10-7 20 1
Pu-239 2.84 x 108 20 1

Some sensitivity analysis will be done.

In terms of the dimensionless quantities in eq. (13) to (17), we have

A=DK,

JDa By = 20,

5

3=0.0161



3.2 Results: Flux into the interbed

We first calculate the mass flux into the interbed. Figures 2 and 3 show the dimensionless flux into the
interbed as a function of the Thiele moduius, which is a dimensionless paramenter for radioactive decay,
and at various Fourier numbers, which is dimensionless time. In Figure 2, at early times such as ¢=0.1 or
about 600 years on the real-time scale, the fluxes into the interbed of all species are about the same, except
for extremely short-lived ones. At larger ¢, such as =10 or 100, long-lived species show markedly lower
dimensionless fluxes. This is because for shorter-half-life species radioactive decay serves as an additional

sink, increasing the gradient for dissolution.

Figure 3 shows the dimensionless flux into the interbed as a function of the Fourier number or dimensionless
time for Pu-239 and U-234, These two long-lived species show identical mass fluxes up to ¢ of about 20, then
the shorter half-life of Pu-239 makes its flux slightly higher than that of U.234, The dimensionless fluxes of

both species into the intetbed reach steady state at about the time they diverge.
3.3 Results: Flux directly to the salt

Figures 4 to 6 show the dimensionless flux directly from the bare waste cylinder into the salt, as given by
eq. (24). Figure 4 shows the dimensionless flux into the salt as a function of distance from the interbed/salt
interface for different Fourier numbers. At {=0.1, the dimensionless flux in the vicinity of salt/interbed
interface is smaller than that further away from the interface. This is due to the diffusion from the interbed
to the rock matrix. Because the porosity in the interbed is higher than the porosity in the salt while the
diffusion coefficient has been held constant, there is greater diffusive flux of the species in the interbed. The
diffusion of the species from the interbed into the salt reduces the gradient for diffusion from the waste
cylinder directly into salt, hence the lower flux closer to the salt/interbed interface. As time increases this

region influenced by the interbed expands as shown in Figure 4.

Figure 5 shows the dimensionless flux as a function of the Fourier number for different Thiele moduli at a
specific location, z = 1. At early time, all species show the same flux, but at later times, radioactive decay
creates different gradients. The difference has been illustrated for three hypothetical species with Thiele

moduli from 10-2 to 10—4.

Figure 6 shows the effect of variation in interbed diffusion coefficient. For A = Dy R,/D:K; and for a
specific species with a fixed K3/K), A is an indication of the effect of varying ;. As shown in Figure 6,
the higher the interbed diffusion coefficient the higher the diffusion from the interbed into the salt, resulting

in lower flux directly from the waste cylinder into the salt.
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3.4 Results: Fractional release rate into the Interbed

The dimensional form of the mass flux, from eq. (23}, can be expressed as

a@d =225 @37

a

Then the total mass flux from a single wasie package to an interbed of thickness 2k

Jia,d) = 4xab x 225 (38)

é

where the upper case J refers to a mass release rate with dimensions of mass per time. To calculate the
fractional release rate of a speciss, we assume that the species k is released congruently with release of the

matrix, and the matrix mass release rate can be calculated using eq. (38). Then, using the following equation

of congruency
jl-b(a’t‘) = '&:{E(t) (39)
Jl.m(&vi) Mm(i)

where

J1,m(6,%) is the matrix mass release rate, [M/t]
J1k(@,7) is the species mass release rate, [M/t]
M, (%) is the matrix inventory at time £, [M]
M ({) is the species inventory at time Z, [M]
subseript k refers to the species

The fractional release rate of species k directly into the interbed, based on the species inventory at 1000

years, is
J1 (8
1) = —t— 40
0] T, (1000) (40)
The inventories are
M;(1000) = NfPe1000: i=km (41)

where
Mp, is the initial inventory of the matrix [M]
Am is the decay constant of the matrix, [t

M is the initial inventory of the species [M] and
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A& is the decay constant of the species [t~1].
Substituting (39) in (40) we get
j1,m(&,i) Mfe"i"i

hi®= Mge~1000%x Ao e—Ami
or
_ jllm(&,t)e—i.(i-:orm)
fl,k(i) = M,';.e""n‘- (42)
In spent fuel we can neglect the decay of 38U and set e=*nf = 1,
The matrix inventory projected from the interbed is
M?, = 2xathp (43)

where j is the matrix density [M/L?). For spent fuel, we use a value of 4.99 x 10® kg/m® for 5 and N* of
10-3 g/m3.

Eq. (42) now becomes

j,,m(a,t)e-"-(‘-w"")

fl.l(f) = 2!&75;3 (45)
with the final result using (38)
2. DN 5 ;
fred) = —%lﬁ-—e""'("mm)h,m(t) (46)

The fractional release rate of 24U into an interbed is shown in Figure 7. This result is for comparison with
our previous steady-state result.®
3.5 Comparison with granite

Because this analysis was originally developed for transient diffusion from a waste cylinder into a rock
fracture, there is some interest in comparing the overall releases from a waste cylinder facing an interbed
in salt and a waste cylinder facing a fracture in granite. In this section, we compare the integrated releases

from a waste cylinder of length £.

The instantaneous mass flux into the interbed/fracture of thickness 2b is, using (37),
i (t) = 26 2x3ju (8, 1) = 4xaD, N* (“—",;D—‘) at) (47)
alla

and the instantaneous mass flux into the salt/rock is

. if2-b .. if2a-tfa
my(t) =2 x 2::-&/D J2(E,t)di= 4w&D2N'eg_[) Jo(z,t)dz (48)
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Figure 8 shows the total mass transfer of a stable species, from a 3.65-m long waste cylinder into salt and

granite using the following properties assumed for illustration.

Table I1I. Salt and Granite Data

Porosity  Diffusion coefficient  Retardation coefficient  Solubility
em?/s g/md
Salt 0.001 107 20 10-8
Salt Interbed 0.01 10~7 1 10-3
Granite 0.01 10-3% 500 10-3
Granite Fracture 10-% 1 10-3

Because the product of porosity and diffusion caefficient of salt is approximately 10~2 times less than that
of granite, the release rate to the surrounding salt is almost 10~3 times less than that of granite. Figure 8
shows that for a bare waste cylinder, the mass flux directly into the salt/rock is about 3 orders of magnitude
higher than that into the interbed/fracture. However, it should be observed that a more realistic situation
is for localized corrosion to expose waste only on contact with the interbed/fracture, and a partly degraded

container will effectively cover the waste cylinder where it is in direct contact with the salt/rock.

4, Conclusions

We have calculated the dimensionless diffusive mass fluxes from an infinitely long bare waste cylinder in
salt, facing an interbed. At the source a constant concentration boundary condition is imposed. If this
concentration is the solubility, then this is a conservative analysis. We have also calculated fractional release
rates into the interbed. All calculations show releases are low for the parameter values used in the numerical
illustrations. The influence of radioactive decay has been demonstrated, as well as the interplay between

diffusion from the waste cylinder directly into the salt and through the interbed into the salt.

We have also compared salt and granite as confining rocks for nuclear waste in the context of this analysis.
Because the diffusion coefficient and porosity are lower in salt, the mass fluxes are also lower from a waste

cylinder in salt.

15
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