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Summary 
We describe a method to compute invariant tori in phase 

epaee for classical non-integreble HimiUonian W k m Onr 
procedure b to solve the HamiHon-Jecobi equation stated as 
a system of equations for Fourier coefficients of the generating 
function. The system is truncated to a finite number of Fourier 
modes and salved numerically by Newton's method. The re­
sulting canonical transformation serves to reduce greatly the 
non-integrable part of the Hamiltoaian. In examples studied 
to date the convergence properties of the method are excellent, 
even near chaotic regions and on the generatrices of isolated 
broad resonance*. We propose a criterion tor breakup of in­
variant surfaces, namely the vanishing of the Jacobian of the 
canonical transformation to new angle variables. By compar­
ison with results from tracking, we find in an example with 
two nearly overlapping resonances that this criterion can be 
implemented with sufficient accuracy to determine critical pa­
rameters for the breakup (transition to chaos') to an accuracy 
ofS-10%. 

The Hamilton-Jacobl Equation 

Wt present results for s system with one decree of freedom 
having a periodic time-dependent Hamlltonian. The general­
ization to higher dimensions will be obvious. In angle-action 
variables the Hemiltonian is 

H(*.J,l) = Ha{J) + Vfr,J,9), (!) 
where * is the machine azimuth or 'time', and the perturba­
tion V is periodic in • with period tv. We seek a canonical 
transformation [it, J) >- {tt>.K) in the (own1 

0 = * + t7,r(«v,if,»j, 
m 
(3) 

such that the new Hamiltonlan becomes a function of K alone. 
Subscripts denote partial derivatives. The Hamilton-Jacob) 
equation to determine the generator C is the requirement that 
the new Hamiltonian it indeed depend only on K; namely 

HtiK-r<:t) + Vl+,K + <!t.0i+G, = 0iiK). (4) 

We a n interested in periodic sold (ions of (4) with the Fourier 
development 

<?{*#.*] =J2*-*iXr#m*-'*i • w 
We rearrange (4) by adding and subtracting terms so as to 
Isolate terms linear in Gs and G,, We then take the Fourier 

* Work supported by the Department of Energy, contracts 
DE-AC0S.76SFOOSlSand DE-ACOMeSFOWKS. 

transform form ft 0 to cast Eq. {4) in the form 

» = >•(•). (6) 

where j = (oau) is a vector of Fourier coefficients and 

&-&&=*& U«™++ * ) , 

\H(*. * + Gt,9) - BB[K) - u[K]at] , w * 0 
m where u{K) = dtt^fSK. To truncate the system («) Cor nu­

merical solution we restrict {m,n} to some bounded set B of 
integers, with m 9* 0, and put 

C # = £ immm{Ity%n*-*l . (8) 

In an iterative solution of (6) the set B is selected so that at 
iterate (p + 1) all •4n n(ff<'') with (m,n) € B are greater than 
some preassjgned small number; here jM Is ths p' k Itsrate. 
Only the amplitudes fan for m ?* 0 are required to calculate 
Gt; the m = 0 amplitude and alio the function Hi[K) are de­
termined from (4) a pulen'orf. Once 0+ is known, j ( i ,0) nuy 
be plotted from Eq. (2). The action K is an Input parameter. 

The equation in the form (6) is suitable for the examples 
treated below, but not for typical accelerator problems Invelv. 
ing short nonlinear lattice elements. For the latter, the Fourier 
analysis in 9 has slow convergence end should be avoided. 
Retaining the Fourier analysis in d>, and using the periodic 
Green function for the operator imu + dj69, wa can find an 
integral equation for the amplitudes fJ[K\t). The system 
can be d'ttcretircd to provide an equation for the variables 
B„[K;ti), «n > 1, where the i , are mesh points located only 
in the nonlinear elements of the lattice. The solution is auto­
matically periodic In 9. An alternative procedure is to treat 
the equation as a system of differential equations in 9. The 
equation must be Integrated only once around the accelerator 
with periodicity achieved by iteration, in analogy to nonlinear 
closed orbit calculations. 

A n Integrable Example 

We show results bom solving (6) - (8) by Newton's method, 
starting bom p = 0. Our first example is a locally integrable 
case in which some of the invariant •ariaces may be expressed 
analytically, namely the 4 M order isolated resonance model 
with 

B(4,J,6) = i*J + aJ*f! 4- tJ1 cesf.44 - S) , {9) 

whece an, ct, and c are constants. We have succstifully cal­
culated a variety of qualitatively different curves (surfaces of 
section at fixed () for various choices of the parametsrs. For de­
tails about accuracy, rate of convergence, etc, tee Ref, 2. The 
most difficult curves to compute are the stparatilces around 
wide islands. The method works surprisingly well even for 
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such curves, as is seen in Figures 1 and 2. Fig.. 1 shows sepa-
ratrices computed in it iterations with 31 modes in the set B. 
The points in Figs. 1 and 2 arc plotted in normalised phase 
space (V7cos4 vs. ves ta l ) at * = 0. The inner separatrix 
(almost a square) and the outei separatrbc (four lobes inter-
netting at Tight angles) are from two different calculations for 
two different values of K, Fig. 2 is a plot of curves from the 
exact analytic formulas for comparison. Similar results are ob­
tained for noninlegrable Hamllloniens, in a region sufficiently 
close to a single resonance. 

The Two Resonance Model 
Cur second example Is nonintcgreble, and contains all the 

generi- phenomena of nonlinear mechanics in 11 or 2 dimen­
sions. In a restricted region of phase space it should describe 
the essential features of one dimensional betatron motion in the 
presence of nonlinearities. The example is the two-resonance 
model with the Hamlltonian 

H - ^J+ioJ J+«iJ s/ 5£os(5«-3#)+«sJ'cr»(etf-3ff). (10) 

For small perturbation strengths <t .<» w* compute an invariant 
curve (section of invariant surface at 9 = 0) for a tune equal 
to the golden mean c> » [\/S - l)/3, which is between the 
two resonances. Here we refer to the exact perturbed tune 
v. = dHi/dK, not the unperturbed tune v = n> + aK. To 
maintain the perturbed tune at a preassigned value, we include 
the equation f. = tHijdK as a constraint in the iteration (see 
Ref. 2). Having found an initial curve we then increase (1,(2 
(arbitrarily taxing «i * 2o) and look for the transition to 
chaotic behavior. 

We choose i/0 = O.S, a m 0,1, and consider a sequence of 
three cases with strengths and resonance widths AJi, AJ» as 
follows: 

(i) £> = 2ij = 6 X 10"s, AJ t = 0.049, AJi = C.CJ4; 
(it) (1 = 2c, = 10"*, SJi m 0.063, £>Jt = 0.070; 

(m) i] = 2t, = U S X ID-*, AJi = O.0WI, AJj = a078; 

By the Chirikov resonance overlap criterion,3 the correspond­
ing invariant curves should be close to breakup, since the res­
onance separation it J,, - J f , = 0.25. 

To identify the transition to chaos as the <*« are increased, 
we propose the criterion that the Jaeobian of Eq. (3) vanish 
at some (a\ a): 

3tt>/dt~l + GK4=dJfdK=0. (11) 

At such a point it is in general impossible to solve uniquely 
for $ as a function of <p. Since Sip/difi = dJ/OK the heuristic 
picture is that two curves, differing infiniteslmally in their K 
values, make contact one with the other. 

In Figure 7, 9 and 11 wa show the Invariant curves in 
Cartesian plots o f / (*, S • 0) for cases (i), (It) and (iii) respec­
tively, while in Figures 8,10, and 12 we give the corresponding 
plots of dJjdK{4>, 8 = 0). The latter quantity allows us to test 
condition (11), since the minimum valves of dJ/dK are quite 
insensitive to *. The anticipated zeros of 6JfdK are on the 
verge of appearance in Fig. 12. 

In Figures 3,4, and S we show enlargements or small por­
tions of the invariant curves for casts (i), f>i) and (iii), together 
with points obtained by tracking rrom initial conditions on the 
appropriate curve. An orbit from a single initial condition was 
followed through A/ turns in *, with JV = 4000, 4000, and 15D0 
for cases (i), (ii) and (iii) respectively. The good agreement 

between tracking and computed curves indicated in Figures 3 
and 4 is maintained orar the filll range of 4>. Chaotic behavior 
is evident in case (iii), but completely absent in case (it). In 
Fig. S we show an intermediate case, «i = 2<i = 1.2 x t0~4 

tracked for 3000 turns, which is ambiguous. It might represent 
chaos or merely a high-order island chain not yet filled in. We 
believe that the scatter of points In Figures 5 and 6 is genuine, 
since we have checked accuracy in integration of Hamilton's 
equations by backtracking. 

Comparing Figures 12, S and 6, on* sees that condition 
(11) is first met at roughly that perturbation strength at which 
chaotic motion appears in tracking. Actually, the Hamilton-
Jacob! results for dJjdK (but not those for J) are slightly 
ambiguous for ij = 2tj > 10"4, since at such large perturba­
tions we encounter a limitation on the number of modes that 
can be accommodated while retaining convergence of Newton's 
method. Thus we cannot say precisely where (11) is first satis-
lied. A more precise determination of the transition should be 
possible by using a second canonical transformation or a mod­
ification of Newton's method. Assessing present results from 
tracking and dJ/dK together, we estimate that the curve for 
the golden mean tune breaks up at <i « 2<j = (1.21X15) x 10~<. 

Aside from comparisons to tracking, a stringent test of the 
method is to do a second canonical transformation, call h G W, 
and see how large GL1' is in comparison to <?«. This gives a 
measure of the residual distortion of the invariant surface, a 
correction to the main distortion of harmonic oscillator behav­
ior obtained at the first step. We have computed C' 1 1 to lowest 
order, which is adequate for a good estimate. Taking absolute 
values averaged over angles, we find that {]G^'j)/(|(7*|) varies 
ftoro 2.8 x 10"8 (at «i = 2(j - 8 X 10"*) to 4.1 x 1CT3 at 
<i = 2£] = 1.2 x 10~*. Since this ratio Is so small compared to 
1, it seems that our surfaces are good approximations to actual 
KAM surfaces, even near the transition to chaos. 

A related approach under study is to construct symplec-
tic maps for tracking by solving the Hamllton-Jacobi equation 
for a nonperiodic G under the initial condition G(ei, K,0] = 0. 
Then the new variables (0,Jf) are interpreted ad initial con­
ditions (A), Jo), and Equations (2) and (3) provide a map 
($0, Jo) •-> [4, J) expressing time evolution of the system. It 
should be possible to construct a map for a full turn ia t. 

Conclusions 

We conclude that the Hamilton-Jacobi method ^.uvides 
a promising alternative to canonical perturbation theory and 
Ha modern variants. Unlike perturbation theory Ha algebraic 
complexity does not increase ss more accuracy is demanded, 
and the required computer programs ore quite simple. The 
generalization of (11) to higher dimensions, namely the con­
dition detfl -I- Oe>x) ~ 0, may provide a useful criterion for 
the transition to chaos in the full S-dimcnsiona] phase space 
of bet an on motion. In principle, successive canonical trans­
formations computed by our method on progressively larger 
mode sets should provide a KAM algorithm' with enhanced 
convergence, leading to exact KAM tori. We give an extended 
account of this work in Ref. 2. 
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Figures 1-2: Invariant curves for the 4th order single resonance model, by Newton 
solution of the Hamilton-Jacobi equation and analytic formula, respectively. 
Figures 3-6: Small segments of invariant curves compared to points from 
tracking, for increasing resonance widths. 
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Figures 7,9,11: InrariantKAMcones J{4,t « 0). 
Figures 8,10.12: The Jacob'ans 0 0 / 3 * -. dJ/dX M # - 0. 
Ctscs (f) - (iii) are for increasing resonance widths. 


