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Summary

Wa deacribe » method to compute invariant tori in phase
space for ¢latsicn) non-integrable Hamiltonian systems. Our
procedure i to solve the Hamilton-Jacoli squation stated an
& pystem of aquations for Fourier coefficlents of the genezating
function. The system is truncated to a finite number of Fourier
modea and solved nuroerically by Newton's method, The re-
sulting canonical transformation sarves to reduce greatly the
non-integrable part of the Humiltonian. In examples studied
to date the canvergence properties of the method are axcellent,
even nexr chaotic regions and on the separatrices of jsolated
broad resonances. We propose a criterion for breakup of in-
variant suslaces, namely the vanishing of the Jacobian of the
canonical transformation to new angle variables. By compar-
ison with results from tracking, we find in an example with
two neatly overlapping resonances that this criterion can be
implemented with sufficient accuracy to determine critical pa-
r?m-u;; for the breakup {‘transition to chaos') to un accuracy
of §-10%,

The Hamilton-Jacab! Equation

Wa present results for a aystem with one dejree of freedom
having & periodic time-dependent Hamlltonian. The general-
ization to higher dimensions will be obvious. In angle-astion
varisbles the Hamiltonian is

H(e.J,0) = Ho(J) + V($,.0), 6}]

where # Is the machine azimuth of ‘time’, and the perturba-
tion V I periodic in # with period 2. We eeek & canonical
stamaforeation (@, J) ~— (¥, K} in the form!

J =K +Gyld, K. 6) @

y=¢+ GK(‘lku') ' (3)

such that the new Humiltonian becomen & function of K alone.
Subscripts denote partial derivatives. The Hamilton-Jacobi
equation to determine the generator G is the requirement that
the new Hamiltonian H indeed depend only on K'; namely

Ho(K + Gef + V(K + G ) +Go = H(K}. (%)

We are interested in periodic solutions of (4} with the Fourier
development

Gl K.9) =) gmai K} 5]
ma

We reatrange (4) by adding and subtracting termu so as to
isolate terma linear in Gy and Gy, We then take the Fourier
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transform for m # @ to cast Eq. {4) in the jorm
s=4Alg).
where g = [guma] is & vector of Fourier coefficients and

{s)

ir iv
[ 1 —ilmé=
Ansl8) = Rty | [ 440710
["(¢'k+ G‘o‘] - Hn[K] - H(K)G‘l ymPED, ’
where (K} = dHp [OK. To truncate the system (6) for nu-

merical solution we restrict {inn) to some bounded st B of
integera, with m 5# 0, and put

T impmal )

(me)eR

Gy = ©

In =n iterative solution of (6} the set B in aelected so that at
iterate (p + 1) all Amn(g'*}) with (m,n) € B are greater than
some preassigned small number; here g'#) ls the p'* iterate.
Only the amplitudes gma for m # 0 are required to caleulate
Gy; the m = 0 amplitude and aleo the function Hi(X) nre deo-
termined from (4) o poateriori, Once G, ia known, J[4,6) may
be plotted from Eq. (2). The action X is an input paramater.

The eguation in the form (6) is snitable for the sxamples
treated below, but not for typical aceelerator problems invelv.
ing short nonlinear initice elements, For the latter, the Fourier
analysis in @ has slow eonvergence and should ba svoided,
Retsining the Fourler anslysis in ¢, and using the perladic
Green function for the operator imy + 3/58, we can find an
integral equation for the amplitudes gm(K;8). The system
can be discretized to provide an equation for the variables
Gn(FC:0;), m 2 1, wheve the §; are mesh points located only
in the nonlincar elements of the Inttice. The sojution is auto-
matically periodic in 8. An alternative procedure Is to treat
the equation as a system of differential equations in 8. The
equation must be [ntegrated only once aronnd the accelerator
with periodicity achieved by iteration, in anslogy to nonlinear
closed orbit calculations.

An Integrable Example

We show results from solving (6) - {8) by Newton's method,
starting from g = 0. Our fimst example is a locally integrable
case in which some of the invatiant suclaces may be expressed
analytically, namely the 4 order isolated tesonance madel
with

H(d,2,0) = wod + oS /2 4+ «J  con(dé - 9] , )]
wheze vy, a, and ¢ are ts. We have fully cal-
culated a varlety of qualléatively different curves {surfaces of
section at Exed 8) for various choices of the parsmsters. For de-
tails about ascuracy, rate of convergence, ei¢., see Refl, 2, The
most difficult eurves to compute are the separatziess around
wide islands. The method warks surprisingly well even for
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such curves, as is seen in Figures 1 and 2. Fig. 1 shows sepa-
TRtrices computed in 9 iterations with 31 mades in the set B.
‘The points in Figs. 1 and 2 are plotted in normolized phase
space (VT cosé vs. vJalng) at & = 0. The inner separatrix
(almost 2 square) and the outer separatrix (four lobes inter
secting at right angles) are from two different calculations for
two different values of F(, Fig. 2 is a plot of curves from the
exacl analytic formulas for comparison. Similar results are ob-
tained for nonintegrable Hamiltonians, in & region sufficiently
close 1o a single resonance.

The Two Resonance Model

Gur second example le nonintegrable, and ecatains all the
gereri~ phenomena of nonlinear mechanics in 13 or 2 dimen-
si~as. In a restrizted region of phase space it should describe
the esvential features of one dimensional betatron motion in the
P of nonli ities, The example is the two-resonance
model with the Hamiltonian

H= wn;.ﬁmﬂ’ 208(86-38)-+13J% cos(8¢—36). (10}

For small perturbation ateengths ¢4, ¢; wecompute an invariant
curve {section of invariant surface st & = 0) for & tune equal
to the golden mean 1. = [/ — 1)/2, which is between the
two resonances. Here wa refer to the exact perturbed tune
v, = dHy/dK, not the unperturbed tune v = 1y + oK. To
maintain the perturbed tune at a preassigned value, we include
the equation 1 = 4l /4K sa & constraint in the iteration {see
Ref. 2), Having found an initial curve we then increase ¢, ¢z
{arbitrarily taking ¢; = 2¢) and leok for the transition to
chaotic behavior.

We choose 1y = 0.5, a = 0,1, and consider a sequence of
three cases with strengthes and resonance widths AJ), AJ; as
follows:

() & =22 =6 x 1078, AJ, = 0.049, ATz = 0.064;
(%) & = 2¢a = 1074, AJy = 0,063, AJy = 0.070;
(355) & = 2¢g = 1.25 x 1074, AJy = 0.070, AJy = 0.078;

By the Chirikov resnnance overlap criterion,? the correspond-
ing invariant curves should be close to breakyp, since the res-
onance separation is Jp, — Jp, = 0.25.

To identify the teansition to cheos as the s are increased,
we propose the criterion that the Jwcobian of Eq, {3} vanish
at some (¢,7):

SYjdpm )+ Gre=8J/3K =0. {11)

At such a point it s in general impossible to solve uniquely
for ¢ as a Tunction of . Since dy/93 = 8J/BK the heeristic
picture i that two curves, differing infinitesimally in their J
values, make contact one with the other,

In Figures 7, 9 and 11 we show the invariant curves in
Cartesian plots o* J(¢,9 = 0) for cases (i), (ii) and (jii) respec-
tively, while in Figures &, 10, and 12 we give the corresponding
plots of @J/3K (9,8 = 0). The Intter quantity allows uz 1o test
candition (11), since the minimum values of 87/9K are quite
insensitive to §. The anticipated seros of 8J/@K wre on the
verge of appearance in Fig. 12.

In Figores 3, 4, and 6 we show enlargements of small por-
tions of the invariant curves for caees (i), (1) nnd (iii), together
with points obtained by iracking from initia) conditions on the
appropriate curve. An orbit from s single initial condition was
followed through N turns in ¢, with N = 4000, 4000, and 1500
for cases (i), (ii) and (iii) respectively. The good agreement

between traczing and ccinpuled corves indicated in Figores 3
and 4 i= maintained over the full range of $. Chaotic hehavior
is evident in case (ifi), but completely absent in case {ii). In
Fig. 5 we show an intermediate case, ¢; = 262 = 1.2 x 10™*
tracked for 3000 turne, which is ambiguous. It might represent
chaos or merely & high-order island chain not yet filled in. We
believe that the scatter of points in Figures § and 6 is genuine,
since we have checked accuracy in integration of Hamilton's
equations by backtracking.

Comparing Figures 12, 8 and 8, one sees that condition
(11) is first met at roughly that perturbation strength at which
chaotic motion appears in tracking. Actually, the Hamilton-
Jacobi results for 3J/8K (but not these for J) are slightly
ambiguous for ¢; = 2¢3 > 104, since at such large perturba-
tions we encounter a {imitation an the nymber of modes that
can be accommodated while retaining convergence of Newton's
method. Thas we cannot say precisely where (11) is first satis-
fied. A more precise determination of the transition should be
possible by using a second canonical trancformation or a mod-
ification of Newton's method. Assessing present results from
teacking and J/HK together, we estimate that the curve for
the golden mean tune breaks up at ¢; = ¢z = (1.2£.056] x 101,

Aside from comparisons 1o tracking, 8 stringent test of the
method is to do & secand canonical ransformation, call it G13),
ard see how large G‘(," is in comparison t¢ G4. This gives a

e of the residual distortion of the invariant surface, a
correcticn to the main distartion of harmonic oscillator behaw-
for obtained at the first step. We have computed G 1o lowest
order, which is adequate for a good estimate. Taking abzolute
values averaged over angles, we find that (|G |)/(IGy|) varies
from 2.8 x 1078 fat ¢ = 2¢g = 8 x 10™%) to 4.1 x 1077 &L
€ = 2¢7 = 1.2 x 10~1, Since this ratio |s so small compared to
1, it seems that our surfaces are good approximations to actual
KAM surfaces, even near the transition to chaos.

A related approach under study is to construct symplec-
tic maps for tracking by solving the Hamllton-Jacobi equation
for a nonperiodic G under the initial condition G{¢, K,0} = 0.
Then the new variables (v, K) are interpreted s initial con-
ditions (o, Jo), and Equations (2) and {3) provide a map
(#0,Ja) — (& J) expressing time evolution of the system. It
should be possible to construct a map for & [ul! turn in 6.

Couclusions

We conclude that the Hamilton-Jacobl methud Liuvides
a promising alternative to canonical perturbation theory and
ita modern variants. Unlike perturbstior theory ils algebraic
complexity does not increase as more accuracy is demanded,
and the required computer are quite simple. The
generalization of {11) to higher dimensions, namely the con-
dition det(1 + Gax) = 0, may provide a useful criterion for
the transition to chaas in the full 3~dimensional phase space
of betation motion. In principle, successive canonical trans-
formations computed by our method on prograssively larger
mode sets should provide & KAM algorithm® with enhanced
convergence, leading to exact KAM tori. We give an extended
account of this work in Ref. 2.
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Figures 1-2: Invariant curves for the 4** order single resonance mode), by Newton
solution of the Hamilton-Jacobi equation and analytic formula, respectively.
Figurea 3-6: Small scgments of invariant curves compared to points from

tracking, for increasing rescnance widtha.
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Figures 7.9,22: Invariant KAM curves J{d,# = 0},

0.4
»/2w

Figures 8,10,)2: The Jacobians /3¢ = 3.1/0K at # = 0.

Cases (§) - (ili) are for increasing resonance widths.
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