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INTRODUCTION 
1 

In the fields of geotechnology and mining, seismic and, to a growing ex­
tent, higher-frequency acoustic techniques are increasingly being employed for 
site investigation, characterization, and evaluation. The promise held by 
these techniques lies in their ability to detect the presence of discontinui­
ties, to outline zones having different physical properties and to interpret 
these physical properties between boreholes or behind surface boundaries. 

The classification of rock mass quality and site evaluation by seismic 
methods have been described by Cratchley et̂  al_ (Ref.l), La Porte et̂  al (Ref.2) 
and Sjogren ejt al (Ref.3). Stephansson et_ al_ (Ref.4) have discussed applica­
tions of the seismic method to determine the depth and degree of fracturing of 
a rock mass near a free surface. Recent developments in the use of seismic 
channel waves in coal-mine exploration have been discussed by Dresen and 
Freystatter (Ref.5) and Mason (Ref.6). Of particular relevance, Mason des­
cribes a computer-aided algebraic reconstruction of the seismic velocity field 
in a coal mine panel, which is based on an algorithm similar to that developed 
for medical tomography. Buchanan et̂  a]_ (Ref.7) have described the location of 
faults in coal seams by channel-wave seismology. 

Higher-frequency acoustic techniques employed within a borehole have been 
described by Geyer and Myung (Ref.8), Myung and Baltosser (Ref.9) and King et̂  
al (Refs.10,11). The applications of acoustic borehole logs in detecting frac­
tures, for rock classification, and in determining the in situ elastic proper­
ties of rock have been discussed by these workers, and by Carroll (Refs.12,13) 
and Coon and Merritt (Ref.14). 

The use of acoustic measurements between boreholes for geotechnical pur­
poses has been described by Price ejt al (Ref.15), McCann ejt al (Ref.16), and 
Ault (Ref.17). Price e£ al employed the results of their study to determine 
the optimum rock-bolt pattern to stabilize a rock mass. McCann ejt al used the 
between-holf; technique to delineate interface between homogeneous media and to 
detect localized, irregular features. They also discussed a means for inter­
preting their data to estimate the degree of fracturing in the rock mass. Auld 
has described instrumentation for, and presented field results of, between-hole 
acoustic measurements which he then used to determine the elastic properties of 
the rock mass. 
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Computer-aided algebraic reconstruction of the seismic velocity and atten­
uation fields from detailed between-hole measurements are described in Lytle 
(Ref.18). Potential contributions to the three-dimensional characterization of 
rock masses from medical imaging techniques are discussed by Johnson et al 
(Ref.19). 

The purpose of this technical note is to present preliminary results of 
an acoustic monitoring study performed as part of a comprehensive rock mechanics 
and geophysics research program (Ref.20) associated with large-scale heater 
tests in an abandoned iron-ore mine in central Sweden. 

EXPERIMENTAL PROCEDURES 

The investigation was performed in a fractured granitic rock mass at a 
sub-surface depth of 340 m, in a drift adjacent to the original iron-ore mine 
workings. Acoustic monitoring took place between four empty, dry, vertical 
boreholes of 10 m depth spaced in the vicinity of a vertical heater borehole 
in the floor of a drift, a plan of which is shown in Figure 1. Small volumes 
of water were found continually to seep into the four boreholes, but they were 
blown out regularly to keep them dry. Oriented core from a large number of 
vertical and horizontal instrumentation boreholes drilled in the vicinity of 
the heater provide excellent control of the structural geology and fractures 
within the volume of rock monitored (Ref.2). 

A block diagram of the equipment is shown in Figure 2 (Ref.22). Separate 
compressional (P) and shear (S) wave transducers of nominal 200 kHz resonant 
frequency are used as transmitters and receivers of pulses of acoustic energy 
in boreholes of 56 mm diameter. The transducer holders are jacked mechanically 
against the borehole wall at the required depth. The P- and S-wave received 
signals are displayed on an oscilloscope screen and recorded in analogue form 
on an instrumentation tape recorder for later harmonic analysis in the labora­
tory. Typical oscilloscope traces for boreholes 2.8 m apart are illustrated 
in Figure 3. It will bo observed that both P- and S-wave arrivals are sharp 
and may be picked precisely. 

The acoustic monitoring tests referred to fall into three categories: 
(1) between-borehole surveys, for which the transmitter and receiver were 
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positioned at the same depth in a pair of boreholes and then moved down to­
gether at 0.25 m intervals between each reading; (2) between-hole monitoring, 
for which the transmitter and receiver were positioned in each pair of boreholes 
at the level of the heater midplane, as indicated in Figure 4; and (3) computer-
aided reconstruction of the P- and S-wave velocity and attenuation fields be­
tween a pair of boreholes 4.2 m apart, with velocity and attenuation measure­
ments made over the paths shown in Figure 5. 

PRELIMINARY RESULTS AND DISCUSSION 

Results of the between-hole surveys for boreholes M8-M6, whose profile 
passes close to the heater, are shown in Figure 6. This shows P-wave velocities 
prior to turning on the heater, 21 days, 118 days, and 342 days after turning 
on the heater, and finally 21 days after turning off the heater. The precision 
of the velocity measurements is estimated to be ±0.15%. The survey conducted 
prior to heater turn-on indicates a major velocity anomaly above the heater 
midplane. This anomaly appears to correlate with the presence of an abundance 
of calcite-filled fractures in the granite. By 21 days after heater turn-on, 
most of the velocity anomaly has disappeared. At 118 days, the velocities had 
increased slightly and were fairly uniform, except for a significant increase 
opposite the heater. Between 118 days and 342 days after turning on the heater, 
there appears to have been little change in velocity, except for a slight in­
crease at the lower end of the profile. By 21 days after turning off the heat­
er, the velocities at the upper end of the profile has returned to, or below, 
their original values prior to heater turn-on, but had not done so at the lower 
end of the profile. It is intended to interpret the acoustic survey results in 
conjunction with the measured temperature, stress, and displacement fields in­
terpolated to points on planes containing the pairs of boreholes, and with lab­
oratory velocity measurements on intact and fractured specimens of the granite 
subjected to temperatures and stresses in the range experienced in the field. 

Results of between-hole monitoring at the heater midplane level are shown 
in Figure 7, where P-wave velocities for four between-hole paths are plotted 
as a function of time after the heater was turned on. It will be observed that 
there was a sharp initial increase in velocity. The velocities then increased 
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more slowly until about 150 days after heater turn-on, after which they re­
mained fairly constant until the heater was turned off after 398 days. The 
reduction in velocity (most pronounced for path M7-M6) observed between 40 
and 100 days has not yet been explained, but preliminary laboratory acoustic-
velocity measurements indicate that this behavior is possibly due to the con­
version of water in the fracture pore space to steam over part of the travel 
path. This aspect will be studied in conjunction with the measured tempera­
ture and stress fields and results of further laboratory tests. Upon turning 
off the heater, the velocities at first fell sharply. It is yet too early to 
comment on the asymptotic values to which the velocities appear to be falling. 
It is instructive, however, to compare the behavior of the velocities as a 
function of time in Figure 7 with that of the displacement and stress measured 
in two vertical boreholes approximately 1 m from the heater, shown in Figure 8. 
In all three cases, the behavior is remarkedly similar. 

Harmonic analysis has been performed on a few selected records which have 
been digitized from the analogue tapes. Amplitude spectra of P-wave signals 
recorded over one path at three different times during the heater midplane sur­
vey are shown in Figure 9. It will be seen that there is an increase in higher 
frequency components of the signal as a function of time, indicating a decrease 
in attenuation as the rock is heated. Amplitude spectra of P-wave signals re­
corded over different paths between one pair of boreholes during a survey con­
ducted before the heater was turned on are shown in Figure 10. It will be seen 
that the higher frequency components of the signal are much lower in relative 
amplitude for the path passing through the highly fractured zone than for that 
passing through the less fractured zone. 

The results of the acoustic research program that have so fa*- been ana­
lyzed appear to indicate that the presence of fractures, particularly those 
filled with calcite, contributes significantly to reductions in the seismic 
velocities and increased attenuation observed in the unheated rock. As the 
rock mass is heated, it is clear that thermal expansion tends to close open 
fractures and to increase the normal stress across those already closed. This 
results in a considerably more homogeneous rock mass upon heating with corres­
pondingly more uniform mechanical properties. The expected reduction of elas­
tic modulus of the intact rock due to sn increase in temperature appears to be 
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overridden by the concomitant increase in modulus due to closure of fractures 
present in the rock mass. 

Tentatively, it might be concluded that the between-hole acoustic tech­
nique provides an excellent method for monitoring changes in stress and for 
detecting the presence of inhomogeneities such as fracture zones and faults. 
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Fig. 1. Sites of seismic test boreholes in heater drift. 
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Fig. 4. Between-hole monitoring configuration at heater midplane. 
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Monitoring of the P-wave velocity in the H9 heater midplane 
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Fig. 7. Compressional wave velocity as a function of time for 
heater midplane monitoring. 
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