

DR# 2042-7

BMI/ONWI-5001

DO NOT MICROFILM
COVER

**Petrographic Report on Clay-Rich Samples From
Permian Unit 4 Salt, G. Friemel #1 Well, Palo Duro Basin,
Deaf Smith County, Texas: Unanalyzed Data**

Technical Report

September 1983

**Larry M. Fukui
of
Bendix Field Engineering Corporation**

prepared for

**Office of Nuclear Waste Isolation
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201**

MASTER

ONWI
Office of Nuclear Waste Isolation

BATTELLE Project Management Division

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BMI/ONWI-5001
Distribution Category UC-70

BMI/ONWI--5001

DE84 005109

Petrographic Report on Clay-Rich Samples From Permian Unit 4 Salt, G. Friemel #1 Well, Palo Duro Basin, Deaf Smith County, Texas: Unanalyzed Data

Technical Report

September 1983

**Larry M. Fukui
of
Bendix Field Engineering Corporation**

prepared for

**Office of Nuclear Waste Isolation
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201**

The content of this report was effective as of June 1983. This report was prepared by Bendix Field Engineering Corporation under Subcontract E511-13730 with Battelle Project Management Division, Office of Nuclear Waste Isolation under Contract Nos. DE-AC06-76RL01830 and DE-AC02-83CH10140 with the U.S. Department of Energy.

888
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Unanalyzed Data

ABSTRACT

This report presents the results of mineralogic and petrographic analyses performed on five samples of clay-rich rock from salt-bearing Permian strata sampled by drill core from G. Friemel #1 Well, Deaf Smith County, Texas. Five samples of clay-rich rock from depths of about 2,457, 2,458, 2,521, 2,548, and 2,568 feet were analyzed to determine the amounts of soluble phase (halite) and the amounts and mineralogy of the insoluble phases. The amounts of halite found were 59, 79, 47, 40, and 4 weight percent, respectively, for the samples. The insoluble minerals are predominately clay (20 to 60 volume percent) and anhydrite (up to 17 volume percent), with minor (about 1.0 percent) and trace amounts of quartz, dolomite, muscovite, and gypsum. The clays include illite, chlorite, and interstratified chlorite-smectite.

The results presented in this petrographic report are descriptive, uninterpreted data.

Unanalyzed Data

TABLE OF CONTENTS

Introduction	1
Procedures	1
Sample Preparation.	1
Chemical Analyses	2
Explanation of the Appendices.	2
Table 1. Percent Insoluble Residue.	4
References	5
Appendix A - Petrographic Descriptions	6
Table 2. Point Count Data	23
Appendix B - X-ray Diffraction Charts for Clay Mineralogy.	25
Appendix C - Rock Slab Photographs	31

Unanalyzed Data

INTRODUCTION

This report presents the results of mineralogic and petrographic analyses performed on samples of salt-bearing rock from a potential repository site in the Palo Duro Basin, Texas. The samples are from Permian Unit 4 salt, Lower San Andres Formation, G. Friemel #1 well, Deaf Smith County, Texas.

The mineralogic and petrographic data were obtained from polished thin sections cut parallel to the axis of the core for each sample. The polished thin sections were examined in order to determine the abundances of soluble (halite, polyhalite) and insoluble components (anhydrite, clay, dolomite, quartz, gypsum, etc.). The information reported includes mineral associations (detrital, authigenic, cement, alteration, etc.), texture, grain size, and sedimentary fabrics. This report also includes representative photomicrographs with bar scales. Photomicrographs of polished thin sections have the up-core direction, or when up-core direction was unknown, the core axis direction, designated. X-ray diffraction was used for identification of soluble and insoluble minerals.

PROCEDURES

This section describes the procedures used to obtain mineralogic and petrographic data. Detailed descriptions of these procedures may be found in the Bendix Field Engineering Corporation (BFEC) Petrology Laboratory Preliminary Procedures Manual (PLPPM) or Fukui (1982).

SAMPLE PREPARATION

Drill core samples from the G. Friemel #1 borehole were received February 15, 1983, and prepared for chemical and petrographic analyses. In general, these samples consisted of one quarter of a 4-in. core, 0.2 to

Unanalyzed Data

0.4 ft long. One or two polished thin sections were prepared from vertical slabs of each sample.

Hand specimen descriptions were prepared for each sample according to procedures in the PLPPM. These descriptions are presented with each petrographic description.

Drill core samples were cut in a saturated calcium chloride brine to prevent the loss of water-soluble phases and to prevent contamination of samples by hydrocarbon-based cutting oils. Calcium chloride solution was used in drilling the borehole. Portions of each sample were removed for chemical analysis, polished thin section preparation, and grinding for X-ray studies.

Procedures for Thin Section Preparation, Petrographic Description, Bulk Rock X-Ray Diffraction, and Clay Separation and Analysis by X-ray Diffraction can be found in the PLPPM. These procedures can also be found in previous BFEC Petrographic Reports to NWTS (Fukui, 1982).

CHEMICAL ANALYSES

Portions of the same intervals sampled for polished thin sections were submitted to the BFEC Chemistry Laboratory for analysis of the water-soluble and insoluble fractions of the rock. The soluble fraction was leached using deionized water. Table 1 lists the weights of the fractions and the calculated weight percents of insoluble residue. The insoluble residues were returned to the Petrology Lab in case any additional mineral identifications were necessary. The insoluble residues will be retained for possible future analysis by the Chemistry Lab.

EXPLANATION OF THE APPENDICES

Petrographic descriptions, point count data (Table 2), and representative photomicrographs are in Appendix A of this report. X-ray diffraction

Unanalyzed Data

charts for clay mineralogy are in Appendix B. Portions of each sample removed for thin section preparation were photographed using positive/negative black and white Polaroid film. These photographs show a ruler for scale, and arrows to designate the up-core, or when up-core direction was unknown, the orientation of the core axis. Photographs of samples are in Appendix C.

TABLE 1

PERCENT INSOLUBLE RESIDUE

BFEC SAMPLE TICKET NUMBER	AASSN	WEIGHT LEACHED	WEIGHT INSOL. RESIDUE	WT. PERCENT INSOL. RESIDUE	VOL. PERCENT INSOL. RESIDUE*
MMP-243	82413	20.5	6.0	29.3	40.8
MMP-244	82414	23.6	8.8	37.3	20.7
MMP-245	82415	30.6	8.8	28.8	52.8
MMP-246	82416	32.2	24.5	76.1	59.5
MMP-247	82417	31.7	28.8	90.9	95.3

*By the point count method
All weights are in grams

Unanalyzed Data

REFERENCES

Bendix Field Engineering Corporation Petrology Lab Staff, 1982, Petrology laboratory preliminary procedure manual, 14 p.

Fukui, L.M., 1982, Petrographic report: Insoluble residue analysis, Permian Cycle 5 salt, G. Friemel #1 and Detten #1 wells, Palo Duro Basin, Texas: BFEC Petrology Lab report to NWTS, 92 p.

Unanalyzed Data

APPENDIX A

PETROGRAPHIC DESCRIPTIONS

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-243

Sample Information:

Rock Name: Clayey Evaporite (Chaotic Halite-Claystone)

NWTS Palo Duro Drill Core G. Friemel #1

NWTS Sample No.: None

BFEC Sample No.: MMP-243

Depth of Polished Thin Section Coverage: 2457.5 to 2457.7 ft
(Two polished thin sections)

BFEC Petrology Request No.: 600164

BFEC Project No.: 7N0130

Petrologist: L. M. Fukui

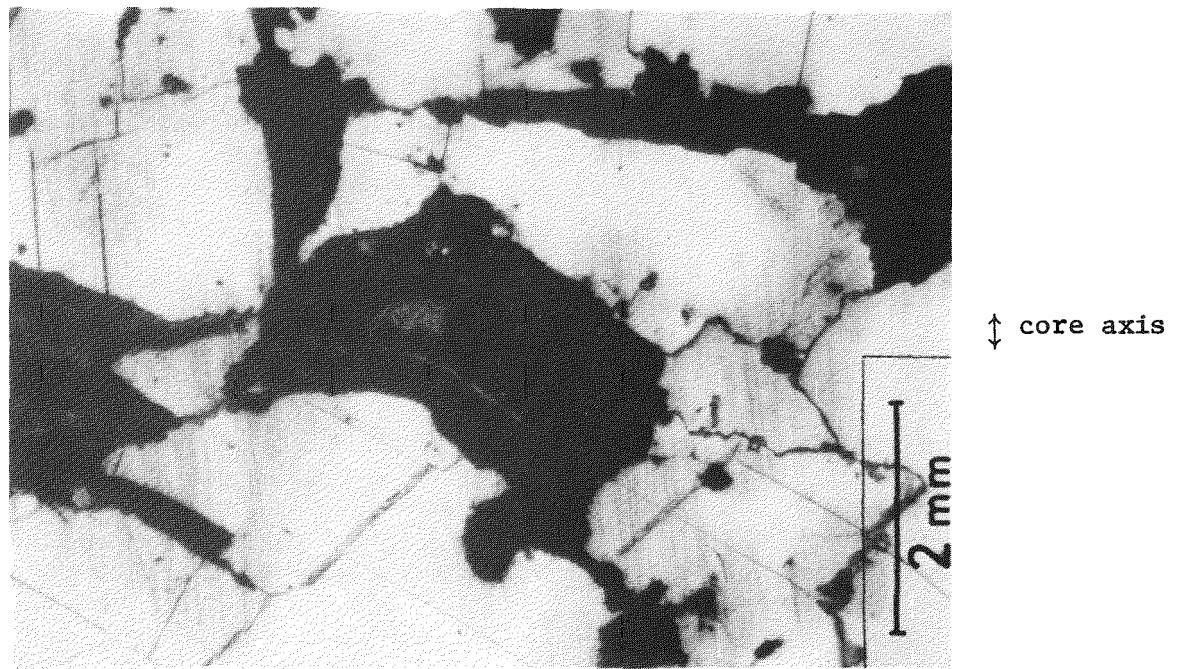
Hand Specimen Description of Drill Core: The quartered four-inch core is 0.20 foot long. Both ends have broken along partings in clay laminae. No up-core direction is designated on the core. The sample consists of one major piece with clay partings (pieces) from the two clay laminae. The salt is medium- to coarse-grained (1.1 cm maximum). The sample is a chaotic halite-mudstone. Few euhedral halite crystals are evident on the sample surfaces. Clay laminae/beds range up to 1.5 cm thick, although the laminae/beds at each end of the core are incomplete. Color of the salt is grayish red (5R4/2). Claystone laminae/beds are medium light gray (N/6). The clay intergranular to halite is finely laminated (<0.1 to 0.25 cm) with contorted laminations. This clay/detritus is medium dark gray (N4), medium light-gray (N6), light brownish gray (5YR6/1), and brownish gray (5YR4/1). Moderate reddish orange (10R6/6), fibrous halite occurs as a fracture-filling in one clay lamina/bed.

Salt Mineralogy: Halite was identified using X-ray diffraction for both the grayish red salt and the moderate reddish orange, fibrous fracture-fillings.

Clay Mineral Analysis: The clay minerals are randomly interstratified chlorite-smectite (dominant), illite (moderate), and 2:1 regularly interstratified chlorite-illite (minor to moderate).

Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Soluble Phases		
Halite	59	Medium- to coarse-grained (14 mm maximum), anhedral to subhedral. Microcrystalline inclusions observed.
Polyhalite(?)	tr	Very fine-grained (0.03 mm maximum), subhedral. Inclusions in halite with inclined extinction.
Insoluble Phases		
Continued next page		


Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-243 (Continued)

Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Insoluble Phases		
Clay	29	Iron-stained. Occurs intergranular to halite and as discontinuous laminae up to 9 mm thick. Usually finely mixed with anhydrite. Also occurs as claystone clasts up to 2 mm in clay matrix.
Anhydrite	11	Three textures: Finely mixed with clay, as clasts consisting of mosaics of micro-crystalline anhedral up to 1.64 mm in clay, and as very fine-grained (0.04 mm maximum) euhedral inclusions in halite.
Quartz	1	Two textures: detrital up to 0.1 mm (very fine sand), occasionally occurs as lenses of detrital quartz up to 2.89 mm in clay; and as authigenic(?) euhedral grains up to 0.24 mm, occurring at halite-halite grain boundaries.
Carbonate	tr	Fine-grained (up to 0.35 mm), euhedral. Occurs at halite-halite grain boundaries. Dolomite confirmed using X-ray diffraction.

PHOTOMICROGRAPH OF SAMPLE MMP-243

Intergranular clay patches are present in the chaotic halite-claystone. The photomicrograph was taken in plane polarized light with a magnification of 16x. The blue-colored fracture-filling material is the impregnating epoxy.

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-244

Sample Information:

Rock Name: Clayey Evaporite (Chaotic Halite-Claystone)

NWTS Palo Duro Drill Core G. Friemel #1

NWTS Sample No.: None BFEC Sample No.: MMP-244

Depth of Polished Thin Section Coverage: 2458.1 to 2458.33
(Two polished thin sections)

BFEC Petrology Request No.: 600164 BFEC Project No.: 7N0130

Petrologist: L. M. Fukui

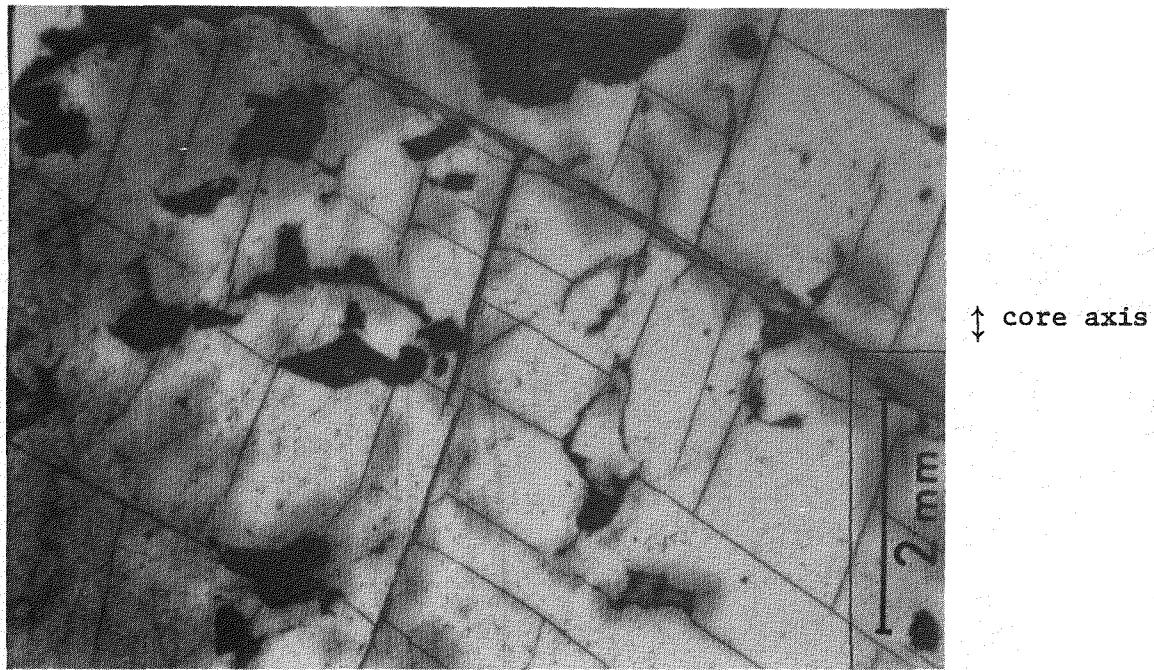
Hand Specimen Description of Drill Core: The quartered four-inch core is 0.23 foot long. Both ends have broken along intergranular clay. No up-core direction is designated on the sample. The sample consists of one major piece with small pieces of clay from the intergranular material. The sample is a chaotic halite-claystone. The salt is medium- to coarse-grained (2.2 cm maximum). Clay fills intergranular patches up to 3.8 cm and forms discontinuous laminae/beds up to 2.5 cm thick. The salt is predominately anhedral to subhedral. Color of the salt is clear to blackish red (5R2/2). Color of the clay is grayish red (4R4/2). Moderate reddish orange (10R4/6), fibrous halite occurs as a fracture-filling phase in the intergranular clay.

Salt Mineralogy: Halite was identified using X-ray diffraction.

Clay Mineral Analysis: The clay minerals are randomly interstratified chlorite-smectite (dominant), illite (subdominant to moderate), and a 2:1 regularly interstratified chlorite-illite (minor to moderate).

Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Soluble Phase		
Halite	79	Medium- to coarse-grained (up to 18 mm), anhedral to subhedral. Abundant micro-crystalline inclusions. Recrystallized; former grain boundaries defined by anhydrite/clay stringers and planar arrangements of elongate fluid inclusions.
Insoluble Phases Continued next page		


Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-244 (Continued)

Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Insoluble Phases		
Clay	20	Iron-stained. Intergranular to halite and as discontinuous laminae up to 7 mm thick. Finely mixed with anhydrite.
Anhydrite	tr	Three textures: finely mixed with clay intergranular to halite and in discontinuous laminae; as clasts up to 0.7 mm composed of a microcrystalline mosaic of anhedral; and as very fine-grained, euhedral inclusions in halite.
Carbonate	tr	Fine-grained (up to 0.35 mm), euhedral. Occurs at halite-halite grain boundaries.
Quartz	tr	Two textures: as detrital grains up to 0.04 mm (silt) in clay and as authigenic(?) grains up to 0.22 mm at halite-halite grain boundaries and at clay-halite boundaries.
Muscovite	tr	Detrital. Up to 0.13 mm (fine sand). Thin flakes in clay.

PHOTOMICROGRAPH OF SAMPLE MMP-244

Clay patches, which were formerly intergranular to fine- to medium-grained halite, are now inclusions in recrystallized, coarse-grained halite in the chaotic halite-claystone. The photomicrograph was taken in plane polarized light with a magnification of 16x.

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-245

Sample Information:

Rock Name: Clayey Evaporite (Claystone Beds and Chaotic Halite-Claystone)

NWTS Palo Duro Drill Core G. Friemel #1

NWTS Sample No.: None

BFEC Sample No.: MMP-245

Depth of Polished Thin Section Coverage: 2521.2 to 2521.3 and 2521.4 to 2521.5 ft. (Two polished thin sections)

BFEC Petrology Request No.: 600164

BFEC Project No.: 7N0130

Petrologist: L. M. Fukui

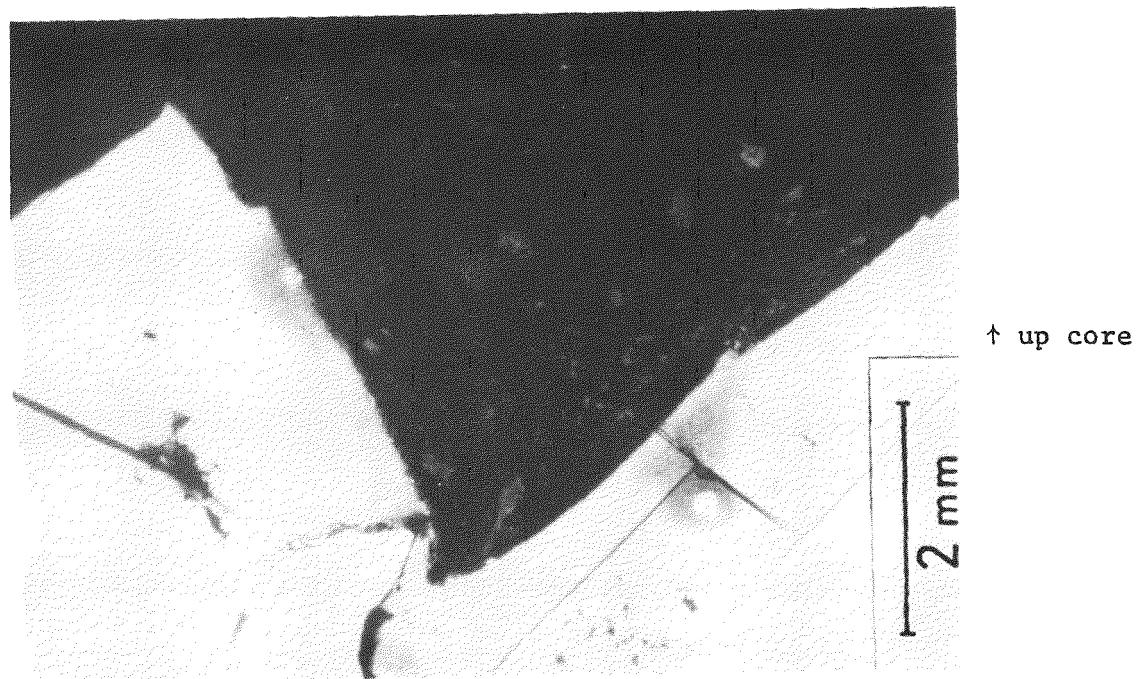
Hand Specimen Description of Drill Core: The quartered four-inch core is 0.38 foot long with both ends broken along clay partings. The up-core direction is assumed from numbers on the outer surface of the core and the orientation of chevrons in halite below a claystone-anhydrite bed. The sample is in one piece covering the interval 2521.2 to 2521.58 feet depth. The interval 2521.20 to 2521.27 is a grayish red (10R4/2) claystone laminae. The interval 2521.27 to 2521.30 feet is predominately clear to blackish red (5R2/2), medium- to coarse-grained (1.5 cm maximum), subhedral to euhedral halite with zones of chaotic halite-claystone. Intergranular clay is grayish red (10R4/2). The interval 2521.30 to 2521.31 is a grayish red (10R4/2) clay lamina. The interval 2521.31 to 2521.36 is clear to blackish red (5R2/2), coarse-grained (2.1 cm maximum) salt with trace amounts of intergranular clay. The interval 2521.36 to 2521.43 feet is a grayish red (5R4/2) to pale red (5R6/2) clay bed. The bottom of this bed is very light gray (N8) anhydrite which conforms to the shape of halite crystals (chevrons) below the bed. The interval 2521.43 to 2521.58 feet is massive, clear to blackish red (5R2/2), medium- to coarse-grained (1.9 cm maximum) salt with a discontinuous lamina (0.1 to 0.2 cm thick) of anhydrite and clay at 2521.46 feet.

Salt Mineralogy: Halite was identified using X-ray diffraction.

Clay Mineral Analysis: The clay minerals are chlorite (dominant), illite (subdominant), and randomly interstratified chlorite-smectite (minor to trace).

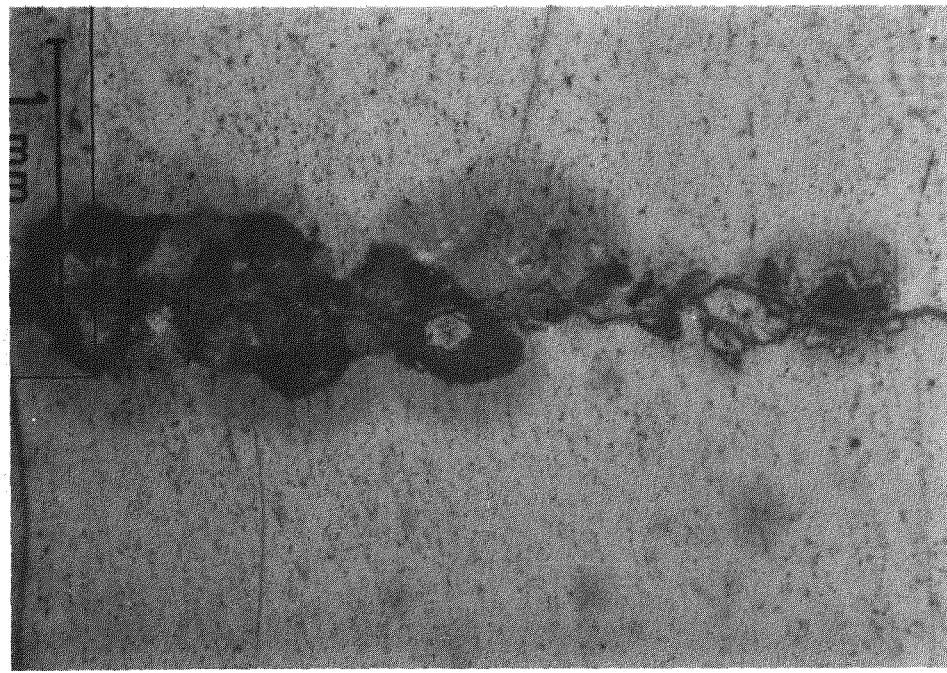
Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Soluble Phases		
Halite	47	Medium- to coarse-grained (14 mm maximum), anhedral to euhedral. Microcrystalline inclusions observed. Fluid inclusions up to 0.16 mm and negative crystals up to 0.24 mm observed.
Soluble Phases		
Continued next page		


Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-245 (Continued)

Thin Section Description:


MINERAL/COMPONENT	%	COMMENTS
Soluble Phases		
Polyhalite(?)	tr	Very fine-grained (up to 0.05 mm), anhedral to subhedral. As inclusions in halite.
Insoluble Phases		
Clay	42	Iron-stained. Occurs as beds up to 17 mm thick, intergranular to halite, and as inclusions in halite.
Anhydrite	10	Three textures: finely mixed with clay; as clasts up to 0.53 mm composed of a mosaic of microcrystalline anhedra; and as subhedral inclusions in halite up to 0.12 mm.
Carbonate	1	Fine-grained (up to 0.53 mm), anhedral to euhedral. Occurs at halite-halite grain boundaries as clusters and single grains as inclusions in halite.
Quartz	tr	Mostly as detrital grains up to 0.05 mm (silt). Few authigenic grains up to 0.08 mm, euhedral at halite-clay boundaries.
Additional Detrital Components	tr	Component and maximum grain size: Muscovite (0.1 mm); hematite/goethite (0.04 mm).
Gypsum(?)	tr	A 0.20 mm patch of microcrystalline anhedra in clay. May be a clast.

PHOTOMICROGRAPH OF SAMPLE MMP-245



Euhedral halite grains point upward; the claystone bed was deposited on top of the halite. The photomicrograph was taken in plane polarized light with a magnification of 16x.

PHOTOMICROGRAPHS OF SAMPLE MMP-245
(CONTINUED)

↑ Up Core

A cluster of fine-grained carbonate grains is present at a grain boundary between two halite grains. The upper photomicrograph was taken in plane polarized light; the lower with polarizers crossed. The magnification of these photomicrographs is 40x.

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-246

Sample Information:

Rock Name: Clayey Evaporite (Claystone and Chaotic Halite-Claystone)

NWTS Palo Duro Drill Core G. Friemel #1

NWTS Sample No.: None BFEC Sample No.: MMP-246

Depth of Polished Thin Section Coverage: 2548.1 to 2548.5 ft.
(Two polished thin sections)

BFEC Petrology Request No.: 600164 BFEC Project No.: 7N0130

Petrologist: L. M. Fukui

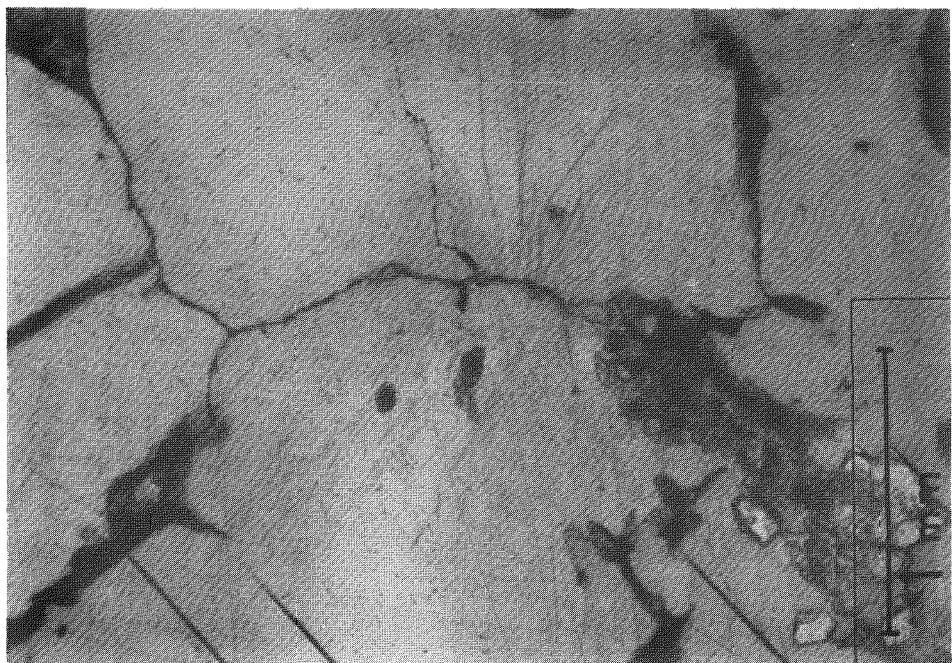
Hand Specimen Description of Drill Core: The quartered four-inch core is in one major piece (0.22 foot long) and many small clay partings. No up-core direction is designated on any portion of this sample. The interval covered (2548.1 to 2548.5 feet) is predominately a claystone bed of unknown thickness. The color of the claystone is mottled pale red (5R6/2) and grayish red (5R4/2). The largest coherent piece of this sample is in part a claystone bed; the remainder of the piece is chaotic halite-claystone. The salt in this piece is medium- to coarse-grained (1.5 cm maximum), anhedral to euhedral, and blackish red (5R2/2) in color. The clay in this piece is pale red (5R6/2).

Salt Mineralogy: Halite was identified using X-ray diffraction.

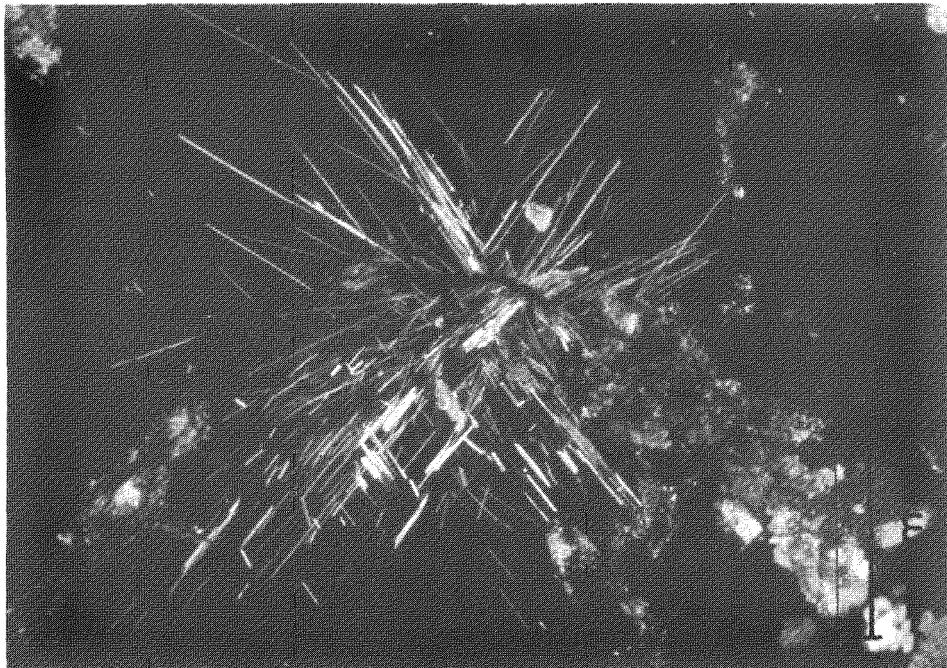
Clay Mineral Analysis: The clay minerals are illite (codominant), chlorite (codominant), randomly interstratified chlorite-smectite (minor to moderate), and a 2:1 regularly interstratified chlorite-illite (minor to moderate).

Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Soluble Phase		
Halite	40	Medium- to coarse-grained (12 mm maximum), anhedral to euhedral. Local concentrations of anhydrite inclusions.
Insoluble Phases		
Continued next page		


Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-246 (Continued)


Thin Section Description:

MINERAL/COMPONENT	%	COMMENTS
Insoluble phases		
Clay	48	Iron-stained. Occurs as claystone beds of unknown thickness, intergranular to halite, and as inclusions in halite.
Anhydrite	10	Three textures: finely mixed with clay, mosaics of microcrystalline anhedral as inclusions in halite, and as very-fine to fine-grained (0.91 mm maximum) inclusions in halite. The inclusions are tabular, and as slender elongate needles arranged radially.
Quartz	1	Two textures: very fine-grained (up to 0.16 mm) euhedra occurring at halite-halite grain boundaries and halite clay boundaries; detrital, up to 0.05 mm (silt). Detrital fraction is present in the claystone bed.
Carbonate	tr	Fine-grained (up to 0.31 mm), subhedral to euhedral. Occurs at halite-halite grain boundaries. Tends to form clusters.

PHOTOMICROGRAPHS OF SAMPLE MMP-246

↑ Core Axis
↓

A radial cluster of anhydrite needles is present at the boundary between two halite grains in the chaotic halite-claystone portion of the sample. The upper photomicrograph was taken in plane polarized light; the lower with polarizers crossed. The magnification of these photomicrographs is 40x.

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-247

Sample Information:

Rock Name: Shale

NWTS Palo Duro Drill Core G. Friemel #1

NWTS Sample No.: None

BFEC Sample No.: MMP-247

Depth of Polished Thin Section Coverage: 2568.2 to 2568.5 ft
(One polished thin section)

BFEC Petrology Request No.: 600164

BFEC Project No.: 7N0130

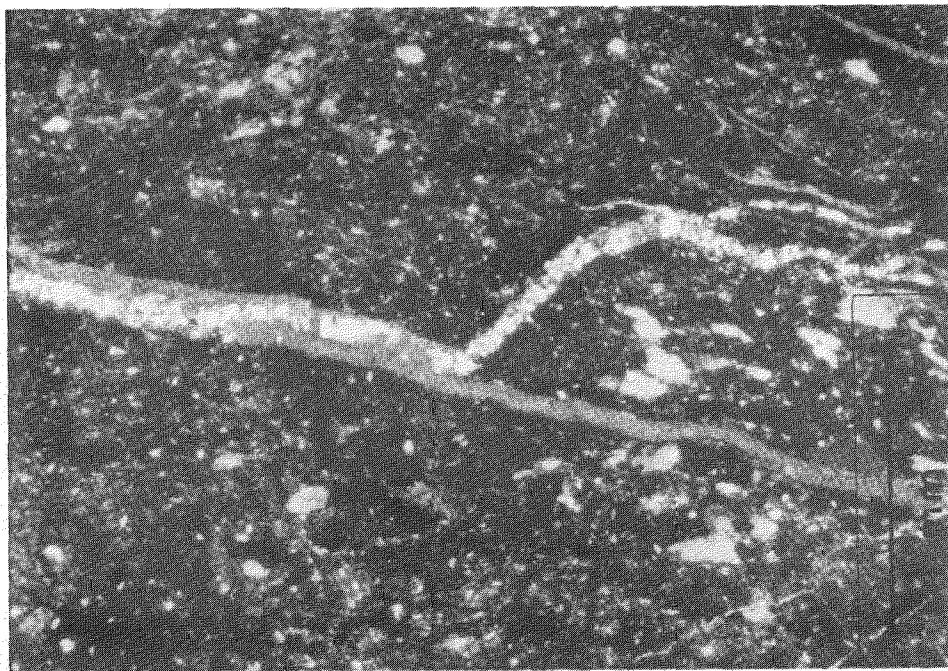
Petrologist: L. M. Fukui

Hand Specimen Description of Drill Core: This sample consists of many clay partings with no up-core direction designated. The sample is a claystone or shale, grayish red (10R4/2) in color. The clay is cut by veinlet/fracture-fillings of moderate reddish brown (10R4/6) halite. The halite is fibrous (columnar) with the fibers oriented perpendicular to the veinlet/fracture walls.

Salt Mineralogy: Halite was identified, using X-ray diffraction, as a component of the claystone and as the veinlet/fracture-filling phase.

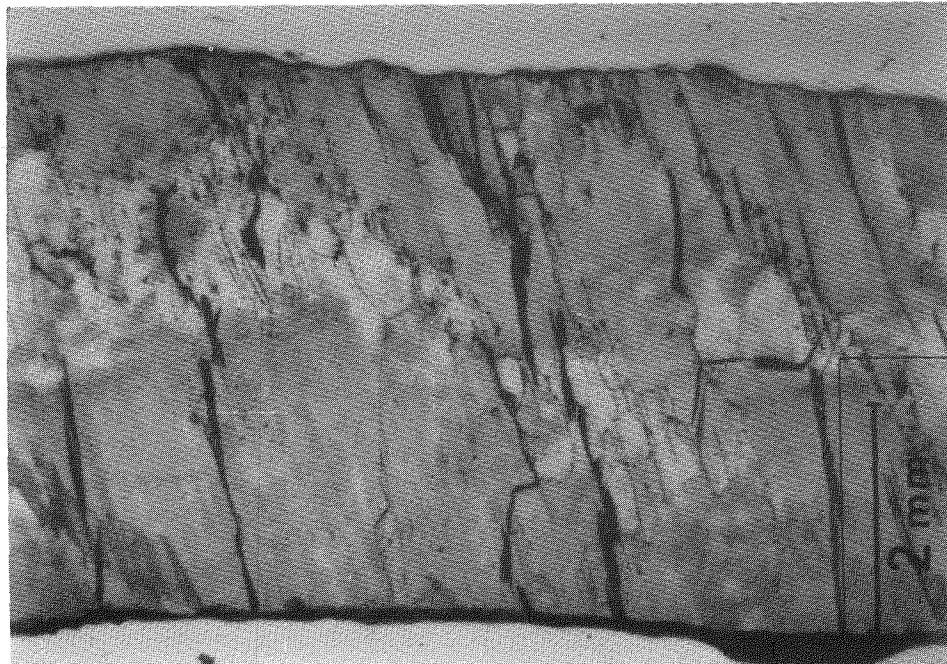
Clay Mineral Analysis: The clay minerals are illite (dominant), chlorite (subdominant), randomly interstratified chlorite-smectite (moderate), and a 2:1 regularly interstratified chlorite-illite (minor to moderate).

Thin Section Description:


MINERAL/COMPONENT	%	COMMENTS
<u>Soluble Phase</u>		
Halite	4	Very fine- to coarse-grained (5 mm maximum), anhedral to euhedral. Occurs as a fracture-filling phase and filling pores in clay. The fracture-filling phase has two distinct morphologies: slender elongate, completely filling fractures, with the crystals perpendicular to the fracture walls, exhibiting fibrous to columnar cleavage; and discrete euhedra in open fractures. Fractures are predominately parallel to bedding.
<u>Insoluble Phases</u>		
Continued next page		

Unanalyzed Data

PETROGRAPHIC REPORT: PALO DURO SALT SAMPLE MMP-247 (Continued)


MINERAL/COMPONENT	%	COMMENTS
Insoluble Phases		
Clay	68	Iron-stained. Thinly bedded and finely mixed with anhydrite. Also occurs as rounded claystone clasts up to 0.29 mm (fine sand).
Anhydrite	17	Microcrystalline, anhedral to fine-grained (0.23 mm maximum), euhedral; finely mixed with clay. Also occurs as clasts to 0.42 mm (medium sand) and occasional euhedral inclusions in the columnar, fracture-filling halite.
Quartz	8	Clast size up to 0.09 mm (very fine sand). Angular to subangular grains.
Gypsum	2	Mosaics of microcrystalline anhedra occurring as rounded to subangular clasts up to 0.56 mm (coarse sand).
Additional Detrital Components	1	Component and maximum grain size: muscovite (0.08 mm), goethite/hematite (0.06 mm), epidote (0.03 mm), biotite (0.06 mm), K-feldspar (0.04 mm), zircon (0.03 mm), and monzaite (0.02 mm).

PHOTOMICROGRAPHS OF SAMPLE MMP-247

↑ Core Axis

Halite in fractures has two textures in the shale. This photomicrograph shows fine-grained euhedra (cubes) partially filling fractures subparallel to bedding. The photomicrograph was taken in plane polarized light with a magnification of 40x.

Non-Oriented

A portion of fracture-filling halite showing columnar cleavage and a reddish color. The photomicrograph was taken in plane polarized light with a magnification of 16x.

TABLE 2
POINT COUNT DATA

WELL NAME: G. Friemel #1
Unit 4 Salt

BFEC Sample No. Thin Section Letter Designation Depths of Thin Section coverage (ft.)	MMP-243		MMP-244		MMP-245	
	A	B	A	B	A	B
	*	*	*	*	2521.2- 2521.3	2521.4- 2521.5
Halite	228	126	239	237	102	181
Polyhalite(?)	1	-	-	-	-	-
Anhydrite	24	40	-	-	22	37
Clay	46	125	60	63	175	78
Carbonate	1	1	1	-	1	4
Quartz	-	8	-	-	-	-
Goethite/Hematite	-	-	-	-	-	-
Gypsum	-	-	-	-	-	-

*No up core designation was provided with the sample; no specific depth footages were assigned to individual polished thin sections.

Continued

TABLE 2
POINT COUNT DATA (CONTINUED)

WELL NAME: G. Friemel #1
Unit 4 Salt

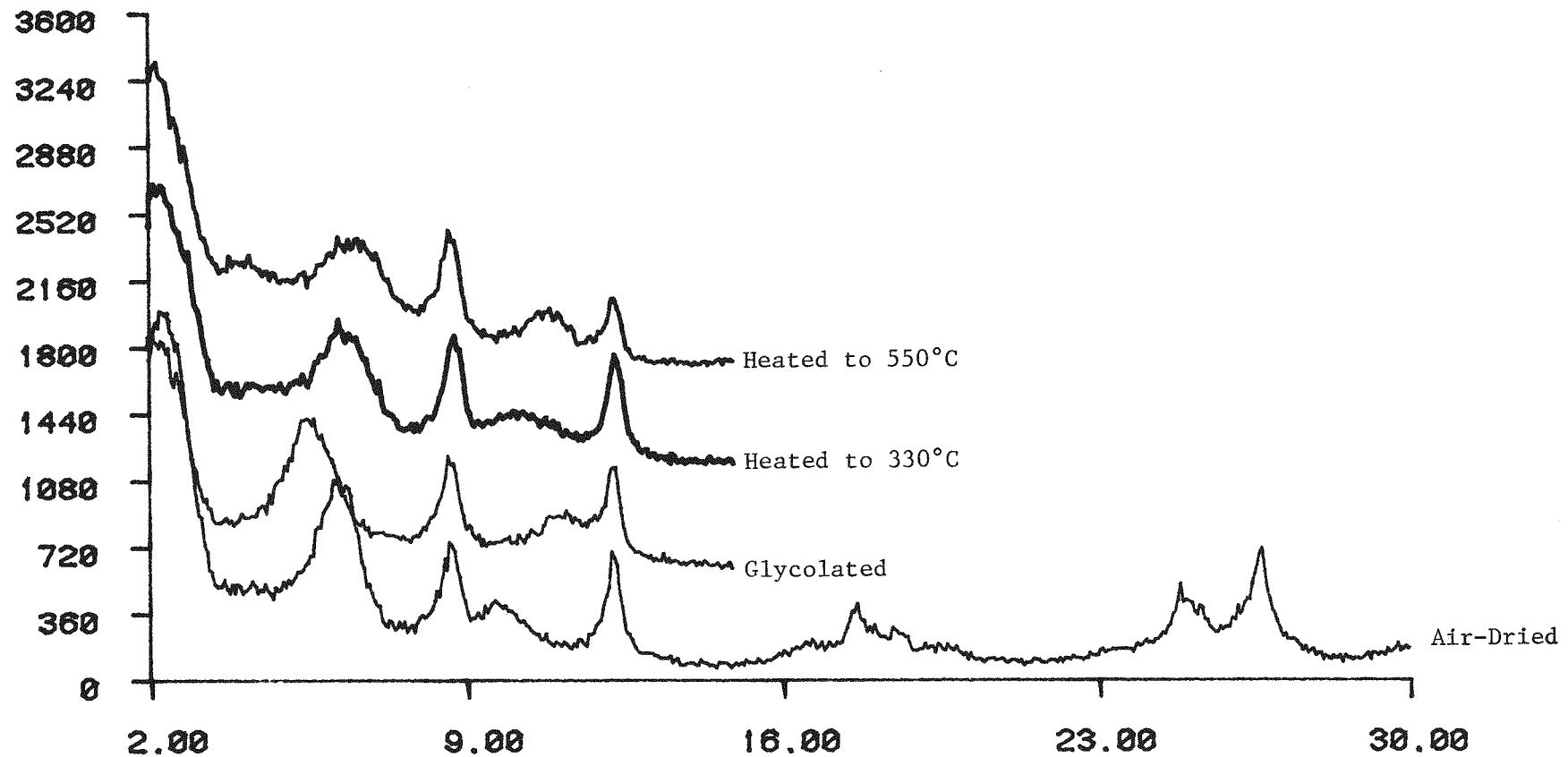
BFEC Sample No.	MMP-246		MMP-247
Thin Section Letter Designation	A	B	A
Depths of Thin Section coverage (ft.)	*	*	*
Halite	243	-	14
Polyhalite(?)	-	-	-
Anhydrite	14	43	51
Clay	41	249	204
Carbonate	2	-	-
Quartz	-	8	25
Goethite/Hematite	-	-	1
Gypsum	-	-	5

*No up core designation was provided with the sample; no specific depth footages were assigned to individual polished thin sections.

Unanalyzed Data

APPENDIX B

X-RAY DIFFRACTION CHARTS FOR CLAY MINERALOGY


File name: DF0:Z80035.RAW

File: 16-MAR-83 08:07:10

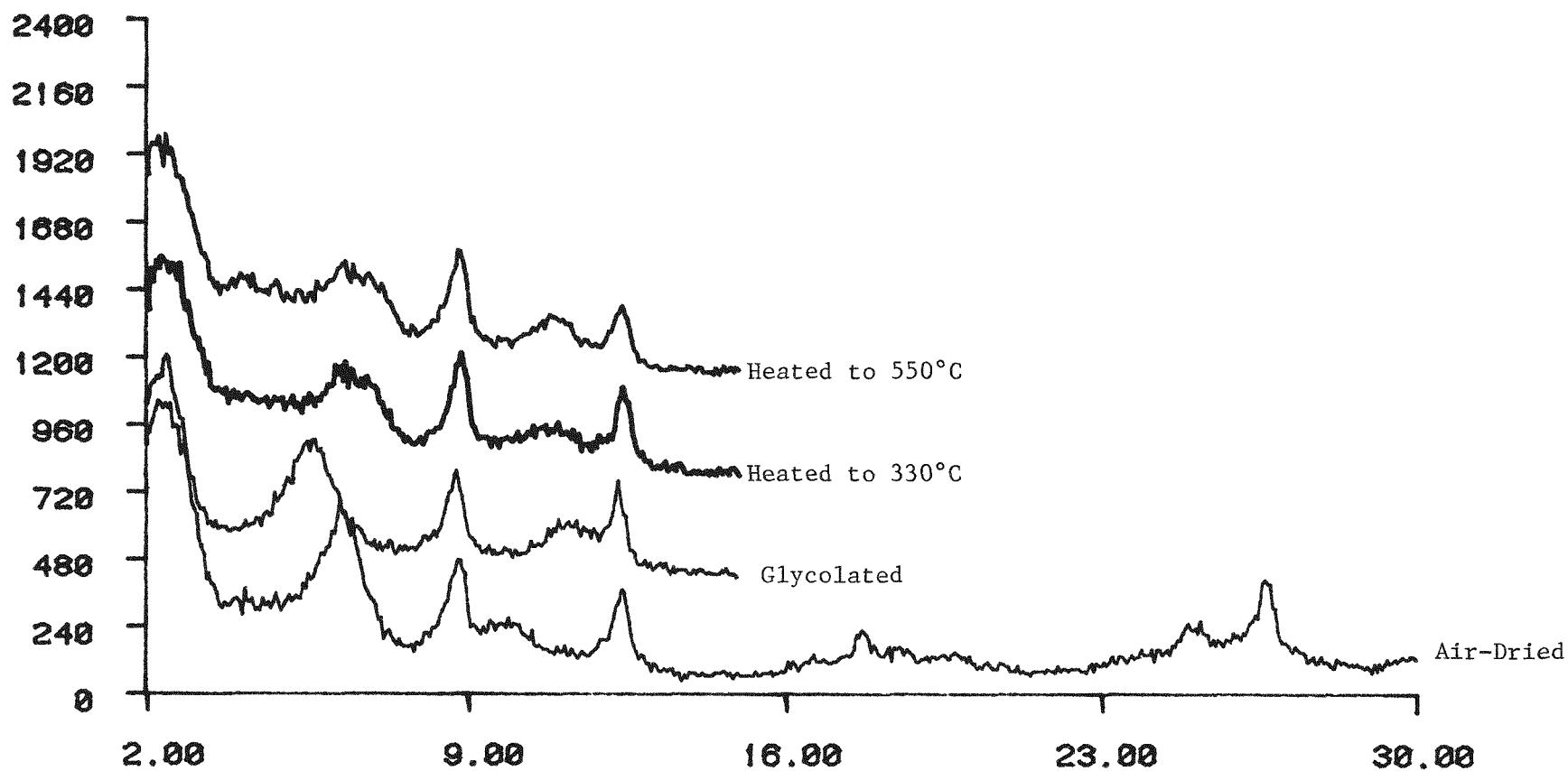
Today: 16-MAR-83 10:33:31

Sample Id: HEATED 550 MMP-243 CLAY C4 G.FRIEMEL #1

26

AIR DRIED GLYCOLATED HEATED 330 HEATED 550
1833. 1450. 1584. 1701.

BENDIX


Unanalyzed Data

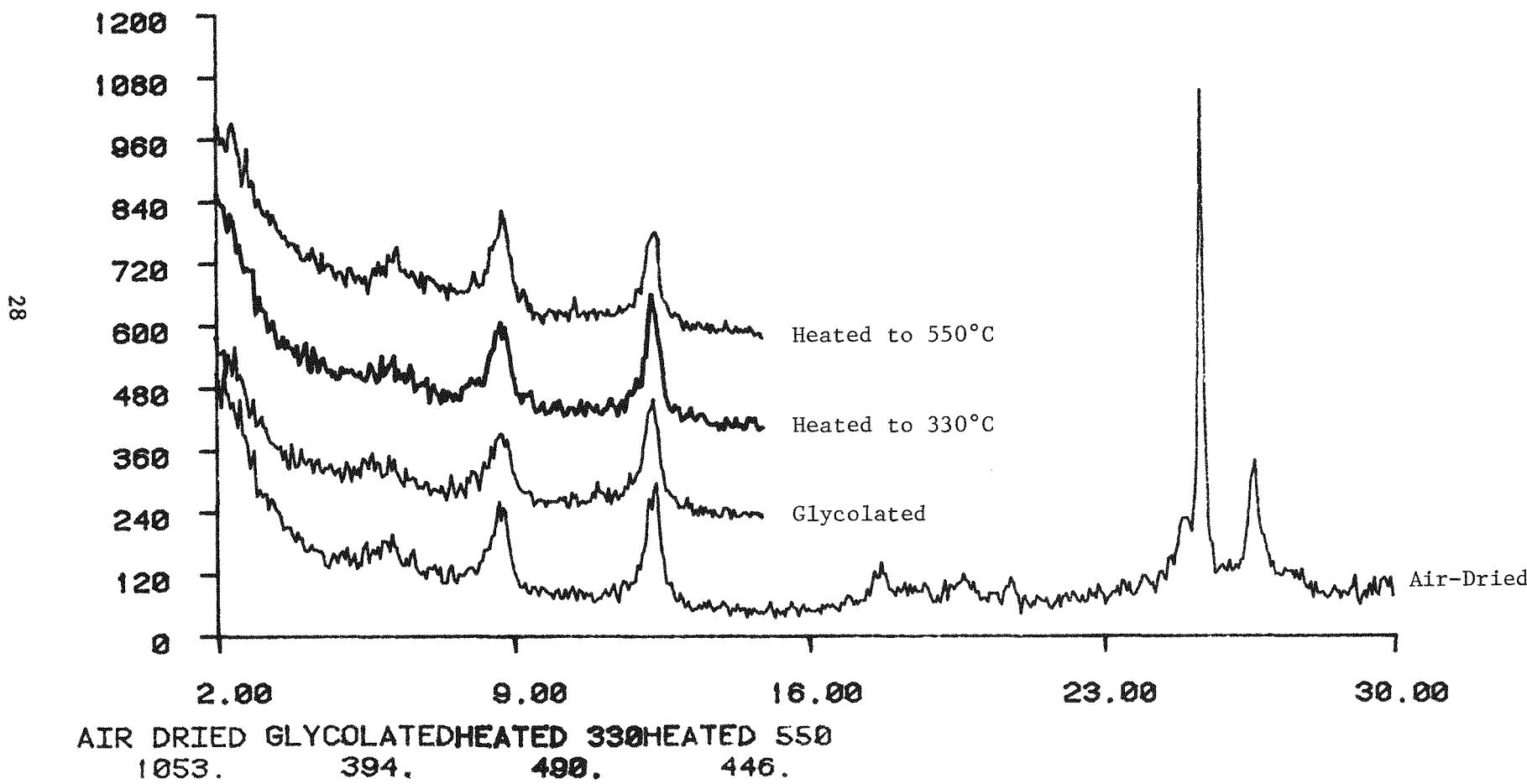
File name: DF0:Z80036.RAW

File: 16-MAR-83 08:26:11
Today: 16-MAR-83 10:44:05

Sample Id: HEATED 550 MMP-244 CLAY C4 G.FRIEMEL #1

27

AIR DRIED GLYCOLATED HEATED 330 HEATED 550
1036. 839. 823. 907.


BENDIX

File name: DF0:Z80037.RAW

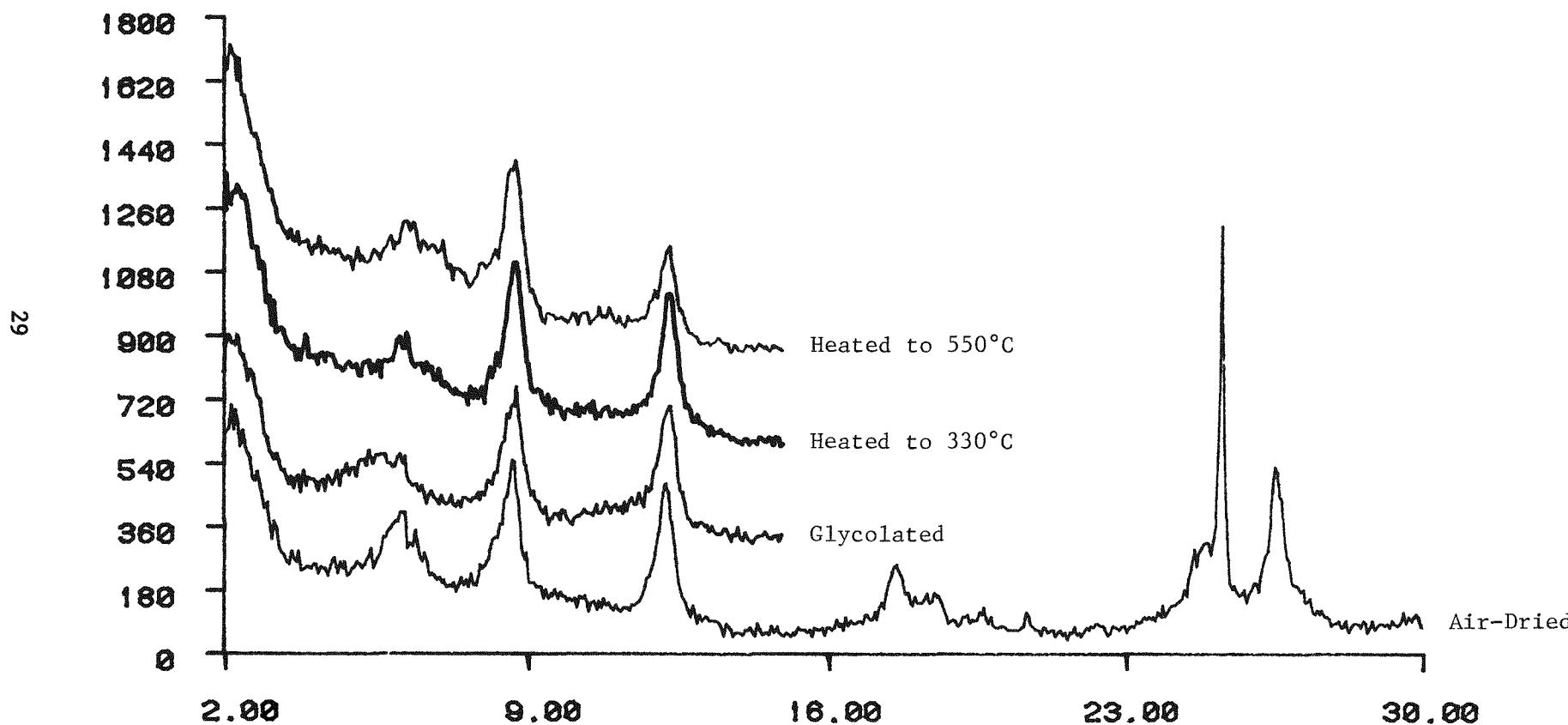
File: 16-MAR-83 08:34:00

Today: 16-MAR-83 10:55:17

Sample Id: HEATED 550 MMP-245 CLAY C4 G.FRIEMEL #1

BENDIX

Unanalyzed Data


Unanalyzed Data

File name: DF0:Z80038.RAW

File: 16-MAR-83 08:44:00

Today: 16-MAR-83 11:48:31

Sample Id: HEATED 550 MMP-246 CLAY C4 G.FRIEMEL #1

AIR DRIED GLYCOLATED HEATED 330 HEATED 550
1214. 634. 818. 914.

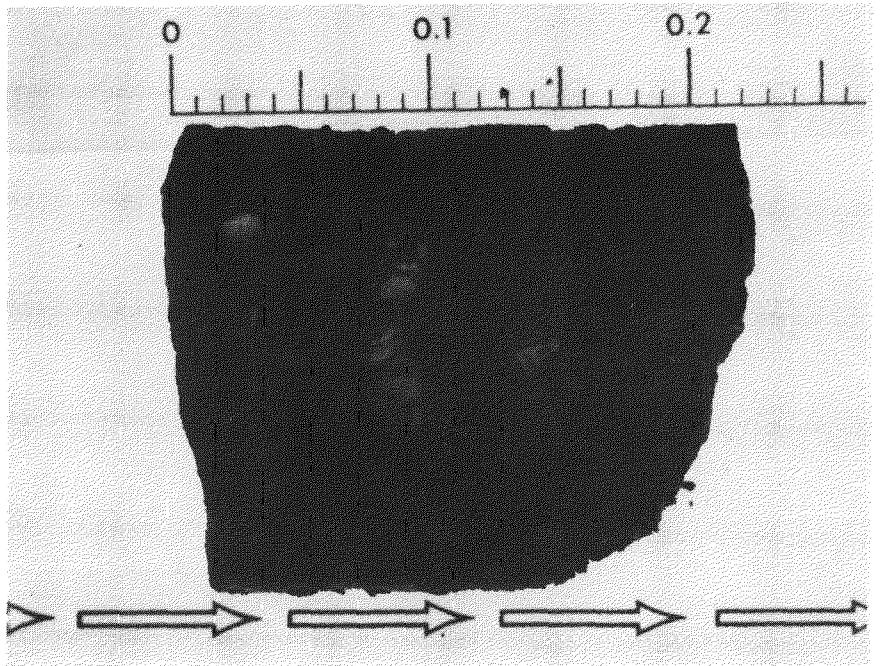
BENDIX

File name: DFB:Z80039.RAW

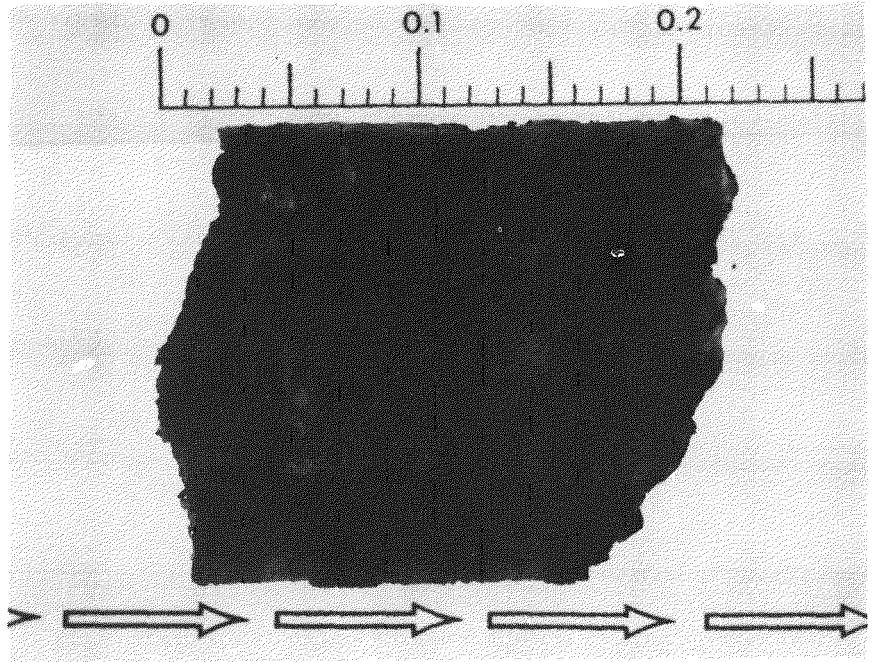
File: 16-MAR-83 09:01:14

Today: 16-MAR-83 11:56:54

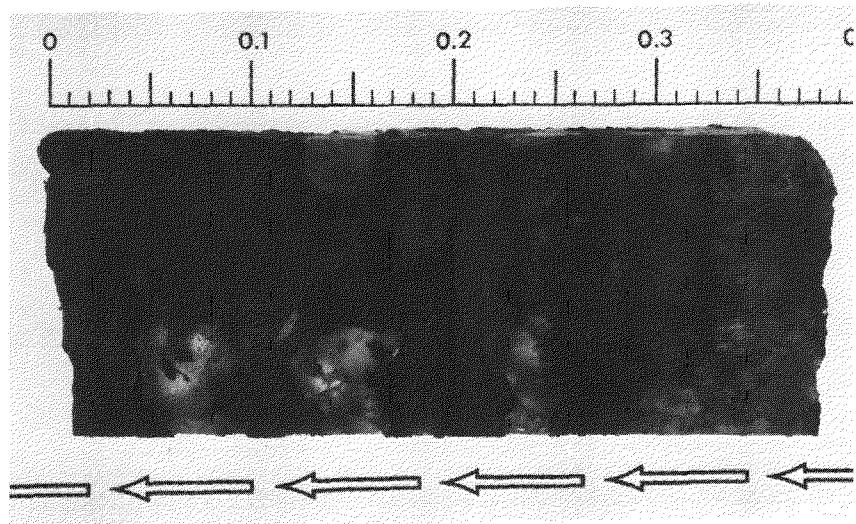
Sample Id: HEATED 550 MMP-247 CLAY C4 G.FRIEMEL #1


Unanalyzed Data

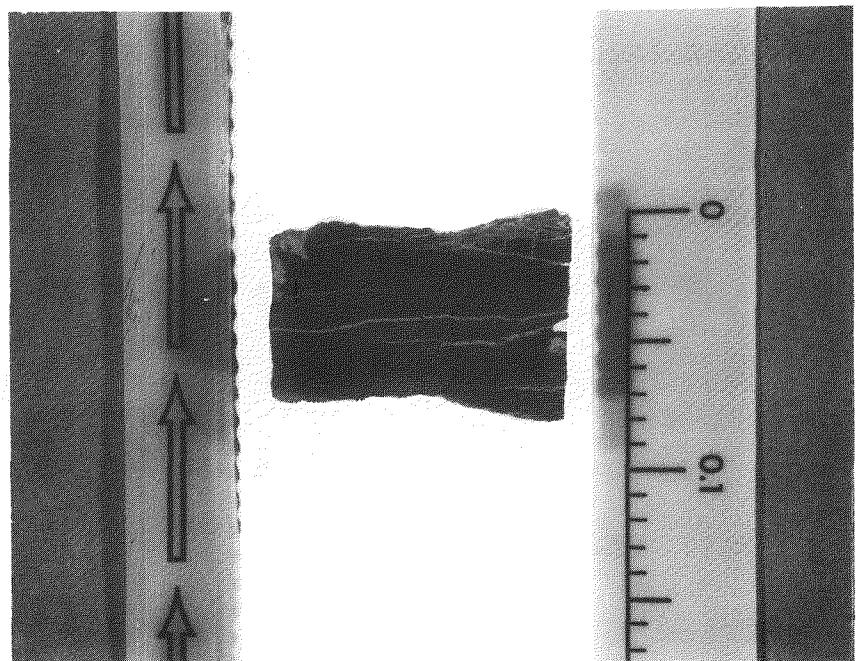
BENDIX


Unanalyzed Data

APPENDIX C


ROCK SLAB PHOTOGRAPHS


Photograph of the slab of sample MMP-243. The arrows indicate the orientation of the core axis; no up-core direction was indicated on the sample as received. The scale is in tenths of a foot.


Photograph of the slab of sample MMP-244. The arrows indicate the orientation of the core axis; no up-core direction was indicated on the sample as received. The scale is in tenths of a foot.

Photograph of the slab of sample MMP-245. The arrows indicate the up-core direction. The scale is in tenths of a foot.

Photograph of the slab of sample MMP-246. The arrows indicate the orientation of the core axis; no up-core direction was indicated on the sample as received. The scale is in tenths of a foot.

Photograph of the slab of sample MMP-247. The arrows indicate the orientation of the core axis; no up-core direction was indicated on the sample as received. The scale is in tenths of a foot.

DISTRIBUTION LIST

ACRES AMERICAN INC
 ROBERT H. CURTIS
 R. STRUBLE
ALABAMA STATE GEOLOGICAL SURVEY
 THORNTON L. NEATHERY
AMARILLO PUBLIC LIBRARY
APPLIED MECHANICS INC
 GRAHAM G. MUSTOE
 JOHN R. WILLIAMS
ARGONNE NATIONAL LABORATORY
 DAVID F. FENSTER
 WYMAN HARRISON
 J. HOWARD KITTEL
 MARTIN SEITZ
 MARTIN J. STEINDLER
ARIZONA STATE UNIVERSITY
 PAUL KNAUTH
ARKANSAS GEOLOGICAL COMMISSION
 WILLIAM V. BUSH
 NORMAN F. WILLIAMS
ARTHUR D. LITTLE INC
 CHARLES R. HADLOCK
ATKINS RESEARCH & DEVELOPMENT - UNITED KINGDOM
 T. W. BROYD
ATOMIC ENERGY CONSULTANTS
 DONALD G. ANDERSON
ATOMIC ENERGY OF CANADA LTD
 T. CHAN
BATTELLE COLUMBUS DIVISION
 JOHN T. MCGINNIS
 JEFFREY L. MEANS
 KENNETH R. YATES
BECHTEL GROUP INC
 N. A. NORMAN
BELGISCHE GEOLOGISCHE DIENST - BELGIUM
 NOEL VANDENBERGHE
BENDIX FIELD ENGINEERING CORP
 CHARLES A. JONES
 DONALD LIVINGSTON
 JOHN C. PACER
 ANTHONY ZAIKOWSKI
BERKELEY GEOSCIENCES/HYDROTECHNIQUE ASSOCIATES
 BRIAN KANEIRO
BRIGHAM YOUNG UNIVERSITY
 HAROLD B. LEE LIBRARY
BROOKHAVEN NATIONAL LABORATORY
 P. W. LEVY
 PETER SOO
BUNDESANSTALT FUR GEOWISSENSCHAFTEN UND ROHSTOFFE - W. GERMANY
 MICHAEL LANGER
 HELMUT VENZLAFF
BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES - FRANCE
 BERNARD FEUGA
 PIERRE F. PEAUDECERF
CALIFORNIA DEPT OF CONSERVATION
 PERRY AMIMITO
CALIFORNIA DIVISION OF MINES & GEOLOGY
 ROBERT H. SYDNR
CHALMERS UNIVERSITY OF TECHNOLOGY - SWEDEN
 BERT ALLARD
CITIZENS ASSOCIATION FOR SOUND ENERGY
 JUANITA ELLIS
COLORADO GEOLOGICAL SURVEY
 JOHN W. ROLD
COLORADO OUTWARD BOUND SCHOOL
 PETER ANTHONY ONEIL

COLORADO SCHOOL OF MINES
 W. HISTRULID
 DONALD LANGMUIR
COLUMBIA UNIVERSITY
 TERRY ENGELDER
CONROY ENGINEERING
 PETER CONROY
CORNELL UNIVERSITY
 ARTHUR L. BLOOM
 FRED H. KULHAWY
 ROBERT POHL
D.R.E.
 KARL J. ANANIA
DAMES & MOORE
 RON KEAR
 JEFFREY KEATON
 CHARLES R. LEWIS
DAPPOLONIA CONSULTING ENGINEERS INC
 LISA K. DONOHUE
 ABBY FORREST
 AMINA HAMDY
 PETER C. KELSALL
 CARL E. SCHUBERT
DEAF SMITH COUNTY LIBRARY
DUGOUT RANCH
 ROBERT & HEIDI REDD
DYNATECH R/D COMPANY
 STEPHEN E. SMITH
E.I. DU PONT NEMOURS & COMPANY
 D. H. TURNO
E.L.H. PUBLICATIONS - THE RADIOACTIVE EXCHANGE
 HELMINSKI & WILKEN
E.R. JOHNSON ASSOCIATES INC
 E. R. JOHNSON
 G. L. JOHNSON
EARTH RESOURCE ASSOCIATES INC
 SERGE GONZALES
EARTH SCIENCE AND ENGINEERING INC
 LOU BLANCK
EARTH SCIENCES CONSULTANTS INC
 HARRY L. CROUSE
EBASCO SERVICES INC
 ZUBAIR SALEEM
ECOLOGY & ENVIRONMENT INC
 MICHAEL BENNER
EDISON ELECTRIC INSTITUTE
 R. E. L. STANFORD
EDS NUCLEAR INC
 C. SUNDARARAJAN
EG & G IDAHO INC
 ROGER A. MAYES
 M. D. MCCORMACK
ELSAM - DENMARK
 A. V. JOSHI
 ARNE PEDERSEN
ENERGY RESEARCH GROUP INC
 MARC GOLDSMITH
ENGINEERS INTERNATIONAL INC
 FRANCIS S. KENDORSKI
ENVIROLOGIC SYSTEMS INC
 JIM V. ROUSE
ENVIRONMENT CANADA
 CLAUDE BARRAUD
ENVIRONMENTAL POLICY INSTITUTE
 DAVID M. BERICK
 FRED MILLAR
ENVIROSHERE COMPANY
 K. E. LIND-HOWE
EXXON NUCLEAR IDAHO COMPANY INC
 ROGER N. HENRY

FENIX & SCISSON INC
 JOSE A. MACHADO
 CHARLENE U. SPARKMAN
FLORIDA INSTITUTE OF TECHNOLOGY
 JOSEPH A. ANGELO, JR.
FLORIDA POWER & LIGHT COMPANY
 JAMES R. TOMONTO
FLORIDA STATE UNIVERSITY
 JOSEPH F. DONOGHUE
FORD, BACON & DAVIS INC
 DARRELL H. CARD
 BURTON J. THAMER
FOUNDATION SCIENCES INC
 LOU BATTAMS
FOX CONSULTANTS INC
 MIKE E. BRAZIE
FRIENDS OF THE EARTH
 RENEE PARSONS
GARTNER LEE ASSOCIATES LTD - CANADA
 ROBERT E. J. LEECH
GENERAL COURT OF MASSACHUSETTS
 TIMOTHY J. BURKE
GEO/RESOURCE CONSULTANTS INC
 ALVIN K. JOE, JR.
GEOLOGICAL SURVEY OF CANADA LIBRARY
GEORESULTS INC
 DAVID SNOW
GEORGIA INSTITUTE OF TECHNOLOGY
 ALFRED SCHNEIDER
 CHARLES E. WEAVER
GEOSTOCK - FRANCE
 R. BARLIER
GEOTECHNICAL ENGINEERS INC
 RONALD C. HIRSCHFELD
GEOTHERMAL ENERGY INSTITUTE
 DONALD F. X. FINN
GEOTRANS
 JAMES MERCER
GESELLSCHAFT F. STRAHLER U. UMWELTFORSCHUNG M.B.H. - W. GERMANY
 NORBERT FOCKWER
 H. MOSER
GILBERT/COMMONWEALTH
 JERRY L. ELLIS
GOLDER ASSOCIATES
 DENNIS GOLDMAN
 MELISSA MATSON
 J. W. VOSS
GOLDER ASSOCIATES - CANADA
 CLEMENT M. K. YUEN
GRAND COUNTY PUBLIC LIBRARY
GRIMCO
 DONALD H. KUPFER
GTC GELOGIC TESTING CONSULTANTS LTD - CANADA
 JOHN F. PICKENS
GULF STATES UTILITIES COMPANY
 JOHN E. BARRY
H-TECH LABORATORIES INC
 BRUCE HARTENBAUM
HAHN-MEITNER-INSTITUT FUR KERNFORSCHUNG BERLIN
 KLAUS ECKART MAASS
HALEY AND ALDRICH INC
 JANICE HIGHT
HANFORD ENGINEERING DEVELOPMENT LABORATORY
 R. L. KNECHT
HART-CROWSER AND ASSOCIATES
 MICHAEL BAILEY

HARVARD UNIVERSITY
 CHARLES W. BURNHAM
HIGH PLAINS UNDERGROUND WATER DIST
 TROY SUBLETT
HIGH PLAINS WATER DISTRICT
 DON MCREYNOLDS
 DON D. SMITH
ILLINOIS STATE GEOLOGICAL SURVEY
 ROBERT E. BERGSTROM
 E. DONALD MCKAY, III
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY - ENGLAND
 B. K. ATKINSON
INDIANA GEOLOGICAL SURVEY
 MAURICE BIGGS
INDIANA UNIVERSITY
 HAYDN H. MURRAY
 CHARLES J. VITALIANO
INSTITUT FUR TIEFLAGERUNG - W. GERMANY
 H. GIES
 KLAUS KUHN
INSTITUTE OF GEOLOGICAL SCIENCES -ENGLAND
 STEPHEN THOMAS HORSEMAN
INTER/FACE ASSOCIATES INC
 RON GINGERICH
INTERA ENVIRONMENTAL CONSULTANTS INC
 F. J. PEARSON, JR.
 LARRY RICKERTSEN
 ROBERT WILEMS
INTERNATIONAL ENERGY ASSOCIATES LTD
 BLYTHE K. LYONS
INTERNATIONAL ENERGY SYSTEMS CORP
 JOHN A. BOWLES
INTERNATIONAL ENGINEERING COMPANY INC
 TERRY L. STEINBORN
 MAX ZASLAWSKY
INTERNATIONAL RESEARCH AND EVALUATION
 R. DANFORD
INTERNATIONAL SALT COMPANY
 LEWIS P. BUSH
 JOHN VOIGT
J.F.T. AGAPITO & ASSOCIATES INC
 MICHAEL P. HARDY
JACKSON STATE UNIVERSITY
 ESTUS SMITH
JAY L. SMITH COMPANY INC
 JAY L. SMITH
JOHNS HOPKINS UNIVERSITY
 JARED L. COHON
JORDAN CORRILL ASSOCIATES
 JOHN D. TEWHY
KANSAS DEPT OF HEALTH AND ENVIRONMENT
 GERALD W. ALLEN
KANSAS STATE GEOLOGICAL SURVEY
 WILLIAM W. HAMBLETON
KARNSBRANSLESÄKERHET - SWEDEN
 LARS B. NILSSON
KELLER WREATH ASSOCIATES
 FRANK WREATH
KIHN ASSOCIATES
 HARRY KIHN
KOREA INSTITUTE OF ENERGY AND RESOURCES (KIER)
 CHONG SU KIM
KQIL
KYOTO UNIVERSITY - JAPAN
 YORITERU INOUE
LACHEL HANSEN & ASSOCIATES INC
 DOUGLAS E. HANSEN

LAWRENCE BERKELEY LABORATORY
 JOHN A. APPS
 EUGENE BINNALL
 THOMAS DOE
 NORMAN M. EDELSTEIN
 M. S. KING
 JANE LONG
 ROBIN SPENCER
 CHIN FU TSANG
 J. WANG
 PAUL A. WITHERSPOON
 HAROLD WOLLENBERG

LAWRENCE LIVERMORE NATIONAL LABORATORY
 TED BUTKOVICH
 DAE H. CHUNG
 HUGH HEARD
 FRANCOIS E. HEUZE
 DONALD D. JACKSON
 R. JEFF LYTHE
 NAI-HSIEN MAO
 LAWRENCE D. RAMSPOTT (2)
 W. G. SUTCLIFFE
 TECHNICAL INFORMATION DEPARTMENT
 L-53
 JESSE L. YOW, JR.

LOCKHEED ENGINEERING & MANAGEMENT COMPANY
 STEVE NACHT

LOS ALAMOS NATIONAL LABORATORY
 P. L. BUSSOLINI
 D. G. FOSTER, JR.
 WAYNE R. HANSEN
 KURT WOLFSBERG

LOS ALAMOS TECHNICAL ASSOCIATES INC
 R. J. KINGSBURY

LOUISIANA GEOLOGICAL SURVEY
 CHARLES G. GROAT

LOUISIANA TECHNICAL UNIVERSITY
 R. H. THOMPSON

LOVE OIL COMPANY INC
 PAT ANDERSON

LUBBOCK COUNTY SOIL AND WATER CONSERVATION DISTRICT
 DON LANGSTON

MASSACHUSETTS DEPT OF ENVIRONMENTAL QUALITY ENGINEERING
 JOSEPH A. SINNOTT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 MARSHA LEVINE

MCDERMOTT INTERNATIONAL
 KAREN L. FURLOW

MEMBERS OF THE GENERAL PUBLIC
 L. ROBERT ANDERSON
 JAMES BOYD
 THOMAS G. BRADFORD
 ROGER H. BROOKS
 LAWRENCE CHASE, PH.D.
 TOM & SUSAN CLAWSON
 STEVE CONEWAY
 JIM CONKWRIGHT
 JOANN TEMPLE DENNETT
 KENNETH & ALICE M. DROGIN
 DANIELLE D. DUDEK
 CHARLES S. DUNN
 JEAN EARDLEY
 T. W. EDWARDS, JR.
 THAUMAS P. EHR
 BOB GAMMELIN
 CARL A. GIESE
 MICHAEL J. GILBERT

DOUGLAS H. GREENLEE
KENNETH GUSCOTT
 C. F. HAJEK
 A. M. HALE
ROBERT HIGGINS
KENNETH S. JOHNSON
SCOTT KRAMER
THOMAS H. LANGEVIN
HARRY E. LEGRAND
W. D. MCDOUGALD
MAX McDOWELL
JEFF MEADOWS
 A. ALAN MOGHISI
 BARBARA MORRA
 CAROLINE PETTI
SHAILER S. PHILBRICK
TOM & MARY REES
TIM REVELL
OWEN SEVERANCE
NORMAN C. SMITH
PATRICIA SNYDER
 W. LEE STOKES
 P. E. STRALEY-GREGA
MARGUERITE SWEENEY
 M. J. SZULINSKI
GORDON THOMPSON
NED TILLMAN
MARTIN & ELAINE WALTER
RICHARD J. WILLIS
LINDA WITTKOPF
SUSAN WOOLLEY
MICHIGAN DEPT OF NATURAL RESOURCES
 R. THOMAS SEGALL

MICHIGAN DEPT OF PUBLIC HEALTH
 GEORGE W. BRUCHMANN
 LEE E. JAGER

MINNESOTA GEOLOGICAL SURVEY
 LINDA L. LEHMAN
 MATT S. WALTON

MISSISSIPPI ATTORNEY GENERALS OFFICE
 MACK CAMERON

MISSISSIPPI BUREAU OF GEOLOGY
 MICHAEL B. E. BOGRAD

MISSISSIPPI CITIZENS AGAINST NUCLEAR DISPOSAL
 STANLEY DEAN FLINT

MISSISSIPPI DEPT OF ENERGY AND TRANSPORTATION
 RONALD J. FORSYTHE

MISSISSIPPI DEPT OF NATURAL RESOURCES
 CURTIS W. STOVER

MISSISSIPPI STATE BOARD OF HEALTH
 EDDIE S. FUENTE
 GUY R. WILSON

MITRE CORP
 LESTER A. ETTLINGER

MONTANA BUREAU OF MINES AND GEOLOGY
 EDWARD C. BINGLER

NATIONAL ACADEMY OF SCIENCES
 JOHN T. HOLLOWAY
 HAROLD L. JAMES

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 MICHAEL R. HELFERT
 MICHAEL ZOLENSKY

NATIONAL BUREAU OF STANDARDS
 RILEY M. CHUNG

NATIONAL HYDROLOGY RESEARCH INSTITUTE - CANADA
 DENNIS J. BOTTOMLEY
 K. U. WEYER

NATIONAL PARKS & CONSERVATION ASSOCIATION
TERRI MARTIN
NEW ENGLAND NUCLEAR CORP
CHARLES B. KILLIAN
NEW JERSEY INSTITUTE OF TECHNOLOGY
BEN STEVENSON
NEW MEXICO BUREAU OF GEOLOGY
BILL HATCHELL
NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES
FRANK E. KOTTLowski
NEW MEXICO ENVIRONMENTAL EVALUATION GROUP
ROBERT H. NEILL
NEW YORK GEOLOGICAL SURVEY
ROBERT H. FAKUNDINY
NEW YORK LEGISLATIVE COMMISSION ON SCIENCE & TECHNOLOGY
JAMES T. MCFARLAND
NEW YORK STATE GEOLOGICAL SURVEY
JAMES R. ALBANESE
ROBERT H. FICKIES
NEW YORK STATE PUBLIC SERVICE COMMISSION
FRED HAAG
NORTH CAROLINA STATE UNIVERSITY
M. KIMBERLEY
NORTH DAKOTA GEOLOGICAL SURVEY
DON L. HALVORSON
NORTHEAST UTILITIES SERVICE COMPANY
PATRICIA ANN O'CONNELL
NORTHWESTERN UNIVERSITY
BERNARD J. WOOD
NTR GOVERNMENT SERVICES
THOMAS V. REYNOLDS
NUCLEAR ENERGY AGENCY/OECD - FRANCE
ANTHONY MULLER
NUCLEAR SAFETY RESEARCH ASSOCIATION
IZUMI KURIHARA
NUS CORP
W. G. BELTER
OAK RIDGE NATIONAL LABORATORY
LESLIE R. DOLE
CATHY S. FORE
DAVID C. KOCHER
T. F. LOMENICK
STEPHEN S. STOW
OKLAHOMA GEOLOGICAL SURVEY
CHARLES J. MANKIN
ONTARIO HYDRO - CANADA
K. A. CORNELL
ONTARIO MINISTRY OF THE ENVIRONMENT - CANADA
JAAK VIIRLAND
ORANGE COUNTY COMMUNITY COLLEGE
LAWRENCE E. O'BRIEN
OTHA INC
JOSEPH A. LIEBERMAN
P.O.W.E.R.
RALPH DILLER
PACIFIC NORTHWEST LABORATORY
DON J. BRADLEY
HARVEY DOVE
FLOYD N. HODGES
CHARLES T. KINCAID
R. JEFF SERNE
PARSONS BRINCKERHOFF QUADE & DOUGLAS INC
ROBERT PRIETO
MARK E. STEINER

PB-KBB INC
JUDITH G. HACKNEY
PENNSYLVANIA STATE UNIVERSITY
MARY BARNES
DELLA M. ROY
WILLIAM B. WHITE
PERRY COUNTY CITIZENS AGAINST NUCLEAR WASTE DISPOSAL
WARREN STRICKLAND
PETTIS WALLEY
PHYSIKALISCH-TECHNISCHE BUNDESANSTALT - W. GERMANY
HORST SCHNEIDER
POINT BEACH NUCLEAR PLANT
JAMES J. ZACH
POTASH CORP OF SASKATCHEWAN MINING LTD - CANADA
PARVIZ MOTTAHED
PRESQUE ISLE COURTHOUSE
PSE & G
JOHN J. MOLNER
PUBLIC SERVICE INDIANA
ROBERT S. WEGENG
PURDUE UNIVERSITY
PAUL S. LYKOUDIS
R.J. SHLEMON AND ASSOCIATES INC
R. J. SHLEMON
RE/SPEC INC
GARY D. CALLAHAN
WILLIAM C. MCCLAIN
RED ROCK 4-WHEELERS
GEORGE SCHULTZ
RHODE ISLAND GOVERNORS ENERGY OFFICE
BRUCE VILD
RIO ALGOM CORP
DUANE MATLOCK
ROCKWELL HANFORD OPERATIONS
RONALD C. ARNETT
STEVEN J. PHILLIPS
DAVID L. SOUTH
ROCKWELL INTERNATIONAL ENERGY SYSTEMS GROUP
HARRY PEARLMAN
ROGERS & ASSOCIATES ENGINEERING CORP
ARTHUR SUTHERLAND
ROGERS, GOLDEN & HALPERN
JACK A. HALPERN
ROY F. WESTON INC
WILLIAM IVES
RONALD MACDONALD
VIC MONTENYOHL
SAM PANNO
ROBERT SCHULER
HARRY W. SMEDES
RPC INC
JAMES VANCE
S.E. LOGAN & ASSOCIATES INC
STANLEY E. LOGAN
SALT LAKE CITY TRIBUNE
JIM WOOLF
SAN JOSE STATE UNIVERSITY SCHOOL OF ENGINEERING
R. N. ANDERSON
SAN JUAN RECORD
DEBORAH A. MARCUS
SANDIA NATIONAL LABORATORIES
SHARLA BERTRAM
MARGARET S. CHU
NANCY C. FINLEY
R. W. LYNCH
NESTOR R. ORTIZ
SCOTT SINNOCK
WOLFGANG WAWERSIK
WENDELL D. WEART
WIPP CENTRAL FILES
SARGENT & LUNDY ENGINEERS
LAWRENCE L. HOLISH
SAVANNAH RIVER LABORATORY
CAROL JANTZEN
I. WENDELL MARINE
SCIENCE APPLICATIONS INC
JEFFREY ARBITAL
NADIA DAYEM
BARRY DIAL
MICHAEL B. GROSS
J. ROBERT LARIVIERE
DAVID H. LESTER
JOHN E. MOSIER
HOWARD PRATT
MICHAEL E. SPAETH
M. D. VOEGELE
KRISHAN K. WAHI
ROBERT A. YODER
SCRIPPS INSTITUTE OF OCEANOGRAPHY (A-015)
HUBERT STAUDIGEL
SENECA COUNTY DEPT OF PLANNING & DEVELOPMENT
SERATA GEOMECHANICS INC
FRANK TSAI
SHAFTER EXPLORATION COMPANY
WILLIAM E. SHAFER
SHANNON & WILSON INC
HARVEY W. PARKER
SHELL OIL COMPANY
PHILIP BERGER
SIERRA CLUB
MARVIN RESNIKOFF
SIERRA CLUB - COLORADO OPEN SPACE COUNCIL
ROY YOUNG
SLICKROCK COUNTRY COUNCIL
BRUCE HUCKO
SNAKE RIVER ALLIANCE
TIM MCNEIL
SOGO TECHNOLOGY INC
TIO C. CHEN
SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY
CANER ZANBAK
SOUTHERN STATES ENERGY BOARD
J. F. CLARK
NANCY KAISER
SOUTHWEST RESEARCH AND INFORMATION CENTER
DON HANCOCK
ALISON P. MONROE
SPRINGVILLE CITY LIBRARY
STANFORD UNIVERSITY
KONRAD B. KRAUSKOPF
IRWIN REMSON
STATE UNIVERSITY OF NEW YORK AT BINGHAMTON
FRANCIS T. WU
STATE UNIVERSITY OF NEW YORK COLLEGE AT CORTLAND
JAMES E. BUGH
STONE & WEBSTER ENGINEERING CORP
JOHN H. PECK
ARLENE C. PORT
EVERETT M. WASHER

SWEDISH GEOLOGICAL
LEIF CARLSSON
SYRACUSE UNIVERSITY
WALTER MEYER
J. E. ROBINSON
SYSTEMS SCIENCE AND SOFTWARE
PETER LAGUS
T.M. GATES INC
TODD M. GATES
TECHNICAL INFORMATION PROJECT
DONALD PAY
TERRA TEK INC
KHOSEW BAKHTAR
NICK BARTON
TERRAMETRICS INC
HOWARD B. DUTRO
TEXAS A & M UNIVERSITY
JOHN HANDIN
EARL HOSKINS
STEVE MURDOCK
GARY ROBBINS
JAMES E. RUSSELL
TEXAS BUREAU OF ECONOMIC GEOLOGY
WILLIAM L. FISHER
TEXAS DEPT OF HEALTH
DAVID K. LACKER
TEXAS DEPT OF WATER RESOURCES
C. R. BASKIN
TEXAS ENERGY COORDINATORS OFFICE
ARNULFO ORTIZ
TEXAS GOVERNORS OFFICE OF GENERAL COUNSEL
R. DANIEL SMITH
TEXAS HOUSE OF REPRESENTATIVES
ELLEN SALYERS
TEXAS STATE HOUSE OF REPRESENTATIVES
PETE LANEY
THE EARTH TECHNOLOGY CORP
JOSEPH G. GIBSON
FIA VITAR
MATT WERNER
KENNETH L. WILSON
THE JACKSON CLARION-LEDGER
MARK SCHLEIFSTEIN
THOMSEN ASSOCIATES
C. T. GAYNOR, II
TRU WASTE SYSTEMS OFFICE
K. V. GILBERT
TUN ISMAIL ATOMIC RESEARCH CENTRE (PUSPATI)
SAMSURDIN BIN AHAMAD
U.H.D.E. - W. GERMANY
FRANK STEINBRUNN
U.S. ARMY CORPS OF ENGINEERS
DON BANKS
ALAN BUCK
U.S. BUREAU OF LAND MANAGEMENT
LYNN JACKSON
MARY PLUMB
U.S. BUREAU OF RECLAMATION
REGE LEACH
U.S. DEPT OF COMMERCE
PETER A. RONA
U.S. DEPT OF ENERGY
CHED BRADLEY
R. COOPERSTEIN
LAWRENCE H. HARMON
CARL NEWTON
U.S. DEPT OF ENERGY - ALBUQUERQUE OPERATIONS OFFICE
JOSEPH M. MCGOUGH
DORNER T. SCHUELER

U.S. DEPT OF ENERGY - CHICAGO OPERATIONS OFFICE
PAUL KEARNS
C. MORRISON
PUBLIC READING ROOM
R. SELBY
U.S. DEPT OF ENERGY - DALLAS SUPPORT OFFICE
CURTIS E. CARLSON, JR.
U.S. DEPT OF ENERGY - GEOLOGIC REPOSITORY DIVISION
C. R. COOLEY (2)
J. FIORE
RALPH STEIN
U.S. DEPT OF ENERGY - GRAND JUNCTION OFFICE
WAYNE ROBERTS
U.S. DEPT OF ENERGY - HEADQUARTERS
PUBLIC READING ROOM
U.S. DEPT OF ENERGY - IDAHO OPERATIONS OFFICE
PUBLIC READING ROOM
U.S. DEPT OF ENERGY - NEVADA OPERATIONS OFFICE
PUBLIC READING ROOM
U.S. DEPT OF ENERGY - NUCLEAR WASTE POLICY ACT OFFICE
JANIE SHAHEEN
U.S. DEPT OF ENERGY - NWTS PROGRAM OFFICE
J. O. NEFF
U.S. DEPT OF ENERGY - OAK RIDGE OPERATIONS OFFICE
PUBLIC READING ROOM
U.S. DEPT OF ENERGY - OFFICE OF BASIC ENERGY SCIENCES
MARK W. WITTELS
U.S. DEPT OF ENERGY - OFFICE OF ENERGY RESEARCH
FRANK J. WOBBER
U.S. DEPT OF ENERGY - OFFICE OF PROJECT AND FACILITIES MANAGEMENT
D. L. HARTMAN
U.S. DEPT OF ENERGY - SAN FRANCISCO OPERATIONS OFFICE
ENERGY RESOURCES CENTER
PUBLIC READING ROOM
U.S. DEPT OF ENERGY - TECHNICAL INFORMATION CENTER (317)
U.S. DEPT OF LABOR
ALEX G. SCIULLI
KELVIN K. WU
U.S. DEPT OF THE INTERIOR
PAUL A. HSIEH
U.S. ENVIRONMENTAL PROTECTION AGENCY
JAMES NEIHEISEL
U.S. GENERAL ACCOUNTING OFFICE
WILLIAM DAVID BROOKS
CHARLES D. MOSHER
U.S. GEOLOGICAL SURVEY
VIRGINIA M. GLANZMAN
U.S. GEOLOGICAL SURVEY - COLUMBUS
A. M. LA SALA, JR.
U.S. GEOLOGICAL SURVEY - DENVER
M. S. BEDINGER
JESS M. CLEVELAND
ROBERT J. HITE
RAYMOND D. WATTS
U.S. GEOLOGICAL SURVEY - JACKSON
GARALD G. PARKER, JR.
U.S. GEOLOGICAL SURVEY - MENLO PARK
JOHN BREDEHOEFT
MICHAEL CLYNN
ARTHUR H. LACHENBRUCH

U.S. GEOLOGICAL SURVEY - RESTON
I-MING CHOU
JOHN ROBERTSON
EDWIN ROEDDER
EUGENE H. ROSEBOOM, JR.
DAVID B. STEWART
NEWELL J. TRASK, JR.
U.S. HOUSE SUBCOMMITTEE ON ENERGY AND THE ENVIRONMENT
MORRIS K. UDALL
U.S. NUCLEAR REGULATORY COMMISSION
J. CALVIN BELOTE
LEON BERATAN
GEORGE BIRCHARD
EILEEN CHEN
PATRICIA A. COMELLA
ENRICO F. CONTI
JULIA ANN CORRADO
DOCKET CONTROL CENTER
PAUL F. GOLDBERG
PHILIP S. JUSTUS
MALCOLM R. KNAPP
JOHN C. MCKINLEY
THOMAS J. NICHOLSON
EDWARD OCONNELL
JAY E. RHODERICK
R. JOHN STARMER
MICHAEL WEBER
KRISTIN B. WESTBROOK
ROBERT J. WRIGHT
UINTAH COUNTY LIBRARY
UNION OF CONCERNED SCIENTISTS
MICHAEL FADEN
UNIVERSITY OF AKRON
LORETTA J. COLE
UNIVERSITY OF ALBERTA - CANADA
J. R. BRANDT
F. W. SCHWARTZ
UNIVERSITY OF ARIZONA
JAAK DAEMEN
STANLEY N. DAVIS
SHLOMO P. NEUMAN
UNIVERSITY OF BRITISH COLUMBIA - CANADA
R. ALLAN FREEZE
UNIVERSITY OF CALIFORNIA
KRIS PRESTON
UNIVERSITY OF CALIFORNIA AT BERKELEY
NEVILLE G. W. COOK
RICHARD E. GOODMAN
BJORN PAULSSON
UNIVERSITY OF CALIFORNIA AT RIVERSIDE
LEWIS COHEN
DON STIERMAN
UNIVERSITY OF CINCINNATI
ATTILA KILINC
UNIVERSITY OF FLORIDA
DAVID E. CLARK
UNIVERSITY OF HAWAII AT MANOA
DAVID EPP
MURLI H. MANGHNANI
UNIVERSITY OF MINNESOTA
DONALD GILLIS
UNIVERSITY OF MISSISSIPPI
GEORGE D. BRUNTON
UNIVERSITY OF MISSOURI AT COLUMBIA
W. D. KELLER
UNIVERSITY OF MISSOURI AT KANSAS CITY
EDWIN D. GOEBEL
SYED E. HASAN

UNIVERSITY OF MISSOURI AT ROLLA
ALLEN W. HATHEWAY
UNIVERSITY OF NEW MEXICO
HAROLD M. ANDERSON
DOUGLAS G. BROOKINS
RODNEY C. EWING
UNIVERSITY OF NEWCASTLE UPON TYNE
-ENGLAND
I. W. FARMER
UNIVERSITY OF RHODE ISLAND
EDWARD P. LAINE
UNIVERSITY OF SOUTHERN MISSISSIPPI
DANIEL A. SUNDEEN
GARY C. WILDMAN
UNIVERSITY OF TENNESSEE AT
CHATTANOOGA
HABTE G. CHURNET
UNIVERSITY OF TEXAS AT AUSTIN
BUREAU OF ECONOMIC GEOLOGY
THOMAS C. GUSTAVSON
MARTIN P. A. JACKSON
DALE KLEIN
E. G. WERMUND
UNIVERSITY OF TOKYO - JAPAN
RYOHEI KIYOSÉ
UNIVERSITY OF TORONTO - CANADA
N. S. BRAR
UNIVERSITY OF UTAH
MARRIOTT LIBRARY
UNIVERSITY OF UTAH RESEARCH INSTITUTE
LIBRARY
HOWARD P. ROSS
UNIVERSITY OF WATERLOO - CANADA
PETER FRITZ

UNIVERSITY OF WISCONSIN AT MILWAUKEE
HOWARD PINCUS
UNIVERSITY OF WISCONSIN CENTER
LIBRARY - DOCUMENTS
UPPER PEASE SOIL AND WATER
CONSERVATION DISTRICT
W.H. MARSHALL
URS/JOHN A. BLUME & ASSOCIATES,
ENGINEERS
ANDREW B. CUNNINGHAM
UTAH DIVISION OF OIL, GAS & MINING
SALLY J. KEFER
UTAH ENVIRONMENT CENTER
JUNE WICKHAM
UTAH GEOLOGICAL AND MINERAL SURVEY
GENEVIEVE ATWOOD
MACE YONETANI
UTAH OFFICE OF PLANNING & BUDGET
RANDY MOON (25)
UTAH SOUTHEASTERN DISTRICT HEALTH
DEPARTMENT
ROBERT L. FURLOW
UTAH STATE GEOLOGIC TASK FORCE
DAVID D. TILLSON
UTAH STATE UNIVERSITY
DEPT OF GEOLOGY 07
JACK T. SPENCE
VANDERBILT UNIVERSITY
FRANK L. PARKER
VEPCO
B. H. WAKEMAN
VERMONT DEPT OF WATER RESOURCES AND
ENVIRONMENTAL ENGINEERING
CHARLES A. RATTE

VIRGINIA DEPT OF HEALTH
WILLIAM F. GILLEY
ROBERT G. WICKLINE
VIRGINIA HOUSE OF DELEGATES
A. VICTOR THOMAS
WASHINGTON HOUSE OF REPRESENTATIVES
RAY ISAACSON
WATTLAB
BOB E. WATT
WEST VALLEY NUCLEAR SERVICES CO INC
ERICH J. MAYER
WESTERN STATE COLLEGE
FRED R. PECK
WESTINGHOUSE ELECTRIC CORP
GEORGE V. B. HALL
WIPP PROJECT
WESTINGHOUSE ELECTRIC
CORPORATION
WISCONSIN GEOLOGICAL AND NATURAL
HISTORY SURVEY
MEREDITH E. OSTROM
WOODWARD-CLYDE CONSULTANTS
F. R. CONWELL (2)
ASHOK PATWARDHAN
WESTERN REGION LIBRARY
WRIGHT STATE UNIVERSITY
A. A. BAKR
WYOMING GEOLOGICAL SURVEY
JAMES C. CASE
YALE UNIVERSITY
BRIAN SKINNER

**UNANALYZED DATA REPORT
COMMENT SHEET**

To the User: The purpose of this sheet is to give you the opportunity to provide feedback to DOE on the usefulness of this report and to critique it. Please submit your comments below and return the sheet.

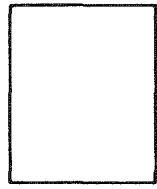
Cut here -

DO NOT MICROFILM
THIS PAGE

(Use additional sheet if necessary.)

Name _____ Date _____

Organization _____


Street

City _____ State _____ Zip Code _____

Telephone Number ()

**DO NOT MICROFILM
THIS PAGE**

Fold Here

**MANAGER, DOE/NPO
505 KING AVENUE
COLUMBUS, OHIO 43201 USA**