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TUBE VIBRATION I N  INDUSTRIAL SIZE 

TEST HEAT EXCHANGER 

by 

H. Halle and M. W. Wambsganss 

ABSTRACT 

Tube v i b r a t i o n  d a t a  from t e s t s  of a s p e c i a l l y  b u i l t  and 

instrumented, indus t r i a l - type ,  shell-and-tube hea t  exchanger 

a r e  repor ted .  The hea t  exchanger i s  nominally 0.6 m (2 f t )  i n  

diameter and 3 . 7  m (12 f t )  long. Both f u l l  tube and no-tubes- 

in-window bundles were t e s t e d  f o r  . i n l e t / o u t l e t  nozzles  of d i f -  

f e r e n t  s i z e s  and w i t h - t h e  tubes  supported by seven, equally-  
. . . . .  . . .  . . 

spaced, single-segmental b a f f l e s .  P r i o r  t o  water f low t e s t i n g ,  

n a t u r a l  f requencies  and damping of r e p r e s e n t a t i v e  ' tubes were 
. . 

measured i n  a i r  and water .  Flow t e s t i n g  w a s  accomplished by 

inc reas ing  t h e  flow r a t e s  in stepwise fashion and a l s o  by 

sweeping through a s e l e c t e d  range of flow r a t e s .  The primary 

v a r i a b l e s  measured and repor ted  a r e  tube a c c e l e r a t i o n s  and/or 

. . . . . . . . . . . .  . . . . .  displacements .and. .pressure  .drop. . through. t h e  bundle. . . .  T e s t s .  . of . 
. , . .  . . . . .  ... . . . . . .  . . . . 

t h e  f u l l  tube bundle conf igura t ion revealed tube " ra t t l ing1 '  

t o  occur a t  intermediate flow r a t e s ,  and f l u i d e l a s t i c  I n s t a b i l i t y ,  

wi th  r e s u l t a n t  tube impacting, t o  occur when the flow r a t e  

exceeded a threshold  l e v e l ;  p r i n c i p a l l y ,  t h e  four-span tubes 
. . . .  . . . .  . . . . . . .  

were involved in t h e  regions  immediately adjacent  t o  t h e  b a f f l e  

c u t .  For t h e  range of flow r a t e s  t e s t e d ,  f l u i d e l a s t i c  i n s t a b i l i t y  

was not  achieved i n  t h e  no-tubes-in-window bundle; i n  t h i s  

conf igura t ion t h e  tubes  are supported by a l l  seven b a f f l e s  and 

are, cheref o r e ,  st i f  f e f  . 



I. INTRODUCTION 

Tube v i b r a t i o n s  in hea t  exchangers have plagued indus t ry  f o r  yea rs .  

Flow-induced v i b r a t i o n s  have r e s u l t e d  in tube f a i l u r e  due t o  mechanical 

wear, f r e t t i n g  cor ros ion ,  and f a t i g u e  cracking.  The de t r imenta l  e f f e c t s  

of tube v i b r a t i o n  f a i l u r e s ,  inc luding c o s t l y  p l a n t  shutdowns, have moti- 

va ted  numerous i n v e s t i g a t i o n s .  While i n s i g h t s  and understanding of b a s i c  

phenomena a r e  being achieved from labora to ry  s t u d i e s ,  t h e  design c r i t e r i a  

developed . a re  considefed €6 Be 'fnadequace in  p r e d i c t h g  fPbw l l~duced ,vili'a- 

t i o n  problems i n  r e a l  hea t  exchangers. A s  a consequence, t h e  indust ry  i s  

o f t e n  faced with high u n i t  c o s t s  and i n e f f i c i e n c i e s  r e s u l t i n g  from t h e  

need t o  r e s o r t  t o  over ly  conservat ive  design t o  ensure t h a t  p o t e n t i a l  tube 

v i b r a t i o n s  w i l l  be avoided. To eva lua te  and improve p r e d i c t i o n  methods and 
. . .  . . . . . . 

design c r i t e r i a ,  d a t a  obtained under c o n t r o l l e d  cond i t ions  s imula t ing t h e  

flow cond i t ions  i n  an a c t u a l  hea t  exchanger a r e  required .  Furthermore, a s  

an a i d  t o  understanding hea t  exchanger tube v i b r a t i o n s ,  and t o  enable  f u r t h e r  

eva lua t ion  of e x i s t i n g  and new methods f o r  p r e d i c t i n g  tube v i b r a t i o n ,  f i e l d  

experience i s  requ i red  from heat  exchangers which have experlel~cerl Iailures, 

and from u n i t s  which a r e  opera t ing  s a t i s f a c t o r i l y .  

The a c q u i s i t i o n  of tube  v i b r a t i o n  dara was a resea rch  recomeadat  ion . . . . . . . . .  . . . .  . . .  . . .  . . . . .  

of a 1976 Heat Exchanger Tube Vibra t ion Workshop. The workshop was organized 

and conducted by H e a t  Transfer  Research, Inc .  (HTRI) f o r  t h e  Divis ion of 

Conservation Kesearch and Technology of the U.S. Energy Research and 

Development Administrat ion  (ERDA) . An o b j e c t i v e  of t h e  workshop was t o  
. . .  . . . . .  . . .  . . .  . . . . . . 

identify t h e  most promising a r e a s  of needed resea rch  in flow-iriduced vibra-  

t i o n  i n  i n d u s t r i a l  shell-and-tube hea t  exchangers. An i n t e r n a t i o n a l  panel  

of 14 v i b r a t i o n  e x p e r t s ,  r ep resen t ing  ongoing resea rch ,  presented t h e i r  

eva lua t ion  of t h e  s ta te-of- the-ar t  and p a r t i c i p a t e d  wi th  o t h e r  a t t endees  

in d i scuss ions  and formulat ion of r esea rch  recommendations. The r e s u l t s  

of t h e  d i s c u s s i o n s ~  were published by Chenoweth Ell. 



Based, i n  p a r t ,  on t h e  r e s u l t s  and recommendations from t h i s  workshop, 

a  heat  exchanger tube v i b r a t i o n  program was e s t a b l i s h e d  a t  Argonne National  

Laboratory (ANL). The o b j e c t i v e s  a r e  (1) t o  ob ta in  t u b e ' v i b r a t i o n  d a t a  

under con t ro l l ed  condi t ions  from t e s t s  of s p e c i a l l y  b u i l t  and instrumented, 

indus t r i a l - type ,  shell-and-tube hea t  exchangers, (2)  t o  ob ta in  tube vibra-  

t i o n  d a t a  from f i e l d  experiences c o l l e c t e d  and subsequently entered i n t o  a 

d a t a  bank, and (3 )  t o  use t h e  above d a t a  t o  f u r t h e r  t h e  understanding of 

tube-excitat ion mechanisms and t o  eva lua te  and improve cur ren t  p r e d i c t i v e  

methods and design guidel ines .  This r e p o r t  is  concerned wi th  t h e  f i r s t  of 

t h e  above o b j e c t i v e s  and p resen t s  t h e  des ign,  procurement, and i n i t i a l  

t e s t i n g  of a  test heat  exchanger. E f f o r t s  t o  d a t e  t o  e s t a b l i s h  a tube 

v i b r a t i o n  d a t a  bank ( the  second of t h e  above ob jec t ives )  are repor ted  in 
. . . . . . .  . . . .  . . . .  

Ref. 2 .  The d a t a  eva lua t ion  e f f o r t  has  not  been formally s t a r t e d .  

This r epor t  covers  t h e  design and t e s t i n g  of a  segmentally-baffled 

s h e l l  and tube heat  exchanger. The test hea t  exchanger , i s  . designed t o  

permit ready disassembly and reassembly t o  ob ta in  t h e  conf igura t ions  neces- 

sary  t o  provide va r ious  test parameters a f f e c t i n g  tube n a t u r a l  frequency, 

flow condi t ions ,  and tube  p a t t e r n .  The i n i t i a l  conf i g u r a t  ion ,  repor ted  

he re in ,  c o n s f s t s  of e i g h t  crosspasses .  The test procedure includes  determina- 

t i o n  of t h e  v i b r a t i o n  response of t h e  tubes  a s  a funct ion of t h e  s h e l l s i d e ,  

water flow r a t e .  O f  p a r t i c u l a r  importance is  t h e  i n v e s t i g a t i o n  of t h e  

c r i t i c a l  flow r a t e ,  a t  which a f  l u i d e l a s t i c  i n s t a b i l i t y  s u b j e c t s  groups 

of tubes  t o  l a r g e  amplitude v i b r a t i o n ,  impacting, and damage p o t e n t i a l .  

Pressure  drop a c r o s s  va r ious  reg ions  of t h e  .test hea t  exchanger is  a l s o  

measured. The t a p e  recorded test d a t a  a r e  processed, most o f t e n  by means 

of s p e c t r a l  a n a l y s i s  f o r  v i b r a t i o n  amplitudes and frequency, and t abu la ted  

f o r  purpose of subsequent comparison and a n a l y s i s .  



11. DESCRIPTION 

A. Test Heat Exchanger 

A design study performed wi th  t h e  a i d  of c o n s u l t a t i o n s  wi th  Heat 

Transfer  Research, Inc . (HTRI) , an a p p l i c a t i o n s  o r i en ted  resea rch  organi- 

za t ion  i n  t h e  f i e l d  of hea t  t r a n s f e r ,  r e s u l t e d  i n  t h e  s e l e c t i o n  of a  nominally 

0.6 m (2 f t )  diameter ,  3.7 m (12 f t )  long, test  hea t  exchanger. The i n i t i a l l y  

procured conf igura t ion  i s  shown on Fig.  1. Table 1 p r e s e n t s  a  genera l  

d e s c r i p t i o n  of t h e  shell-and-tube type  test heat  exchanger. The seven 

s i n g l e  segmental b a f f l e s l e i g h t  c rosspass  arrangement con ta ins  t h r e e  d i f f e -  

r e n t  tube support conf igura t ions  wi th  four, equal  spans, f i v e  unequal spans, 

and e i g h t  equal  spans,  r e s p e c t i v e l y  . 
Upon f a b r i c a t  ion ,  t h e  test  heat '  exchanger was i n s t a l l e d  and connected 

. . . . . . . . .  

t o  t h e  Flow-Induced Vibra t ion Test F a c i l i t y  (FIVTF) a t  ANL as shown on Fig. 2. 

The i n l e t  connection ( l e f t  c e n t e r  of photo) provides more than 12 diameters 
. .  . . . . . 

of s t r a i g h t  p ipe  t o  reduce extraneous prior- to-entrance e f f e c t s .  A closeup 

of t h e  flow e x i t  end is shown on Fig. 3. 

. Plow-lnduced Vibra t ion Test F a c i l i t y  

The Flow-Induced Vibra t ion Test F a c i l i t y  has  four  pumps wi th  flow r a t e s  

3 of 0.032, 0.063, 0.16, and 0.25 m /s (500, 1000, 2500, and 4000 gpm) a t  

1.0 MlPa (150' p s i g )  d ischarge  p ressure  .'   he pumps discharge  ind iv idua l ly  

through t h e i r  own c o n t r o l  and by-pass va lves ,  flowmeters and p ip ing  ( inclu-  

d ing pressure  and temperature Ind ica to r s )  to  an accumularor. Thus, the  

3 flow can be va r ied  t o  provide d i s c r e t e  and s t a b l e  water f low from 0.003 m /s 

3 (50 gpm) t o  a maximum of 0.50 m /s (8000 gpm) by opera t ing  comb inat ions  of 

t h e  pumps and valving.  To a l low ease of opera t ion by t h e  experimenter, a l l  

pumps and va lves  a r e  operated remotely from t h e  e x i s t i n g  d a t a  a c q u i s i t i o n  

f a c i l i t y  v i a  a c o n t r o l  console.  

3 - The 30 m (8000 g a l )  accumulator a t  t h e  ent rance  t o  t h e  test  l e g s  has  

a maximum. turnover r a t e  of once per minute a t  t h e  h ighes t  f low rate. This  
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TABLE 1. General Features and Basic Dimensions 
of Test  Heat Exchanger 

- 

Shel l s ide  f l u i d  

Tube s ide  

S h e l l  (S ta in less  s t e e l ) ,  I.D. 

She l l ,  ins ide  length  (tubesheet 
spacing) 

Modular s h e l l  const ruct ion 

Nozzles 

Nozzles a L  s l ~ e l l  lolclspar~ 

Tube bundle 

Tubesheet s 

Water 

No f l u i d ,  open tubes ,  ready i n se r t i on  
of instrumentat ion 

0.59 m (23.25 in . )  

3.58 m (140.75 in . )  

F l e x i b i l i t y  t o  change nozzle o r i e n t a t  ion 

In se r t i on  of p iping t o  reduce ins ide  
diameter poss ible  
Maximum ins ide  diameter: 0.34 m (13.25 in . )  

Obscrvat ion ports o r  a l t e r n a t e  flow 
rou te  (e.g., d i r e c t  crossflow) 

Removable u n i t ,  ready assembly / 
disassembly 

One s t a t i ona ry  , one f l o a t i n g  ; spec i a l  
double tubesheet  const ruct ion t o  contain  
O-rings t o  seal tubes  

Tie  b o l t s  S t a in l e s s  steel rods  in tube loca t ions  
Secure and space tubesheets  on both 
ends of heat  exchanger 
Compress double tubesheets  on each end 
t o  seal O-rings 

Tie  ba r s  Secure and space b a f f l e  p l a t e s  

Tube (Admiralty b r a s s ) ,  0.D . 19.1 mm (0.750 i n . )  

Tube, wal l  th ickness  1.2 mm (0.049 in . )  



'I; 

FQ. 2. Test heat mccbnger hstal lat ion 

- - 

Fig. 3. End view of test heat exchanger 



turnover r a t e ,  along with internal  baff l ing and the s m a l l  height-to-diameter - 
r a t i o ,  tends to  i so la te  the pump supply from the t e s t  item. The pump supply 

tank is constructed of concrete t o  reduce vibration and has a large volume 
-? --7, 

8 ,  
-3=w -.- - 

3 -jjg? -7- -3 
(Q 38 m (10,000 gal)) t o  accokoaa& bagfig; &a wate+-co%itioning equip- 1 
ment. The conditioning equipment is used t o  maintain the temperature level  

and resistance of the water so tha t  the transducers for  the data acquisition 

system w i l l  not be adversely affected by variable water conditions. 

C. Tube Identif icat ion 

The scheme t o  identify tube location is i l lus t ra ted  in Fig. 4. The 

27 transverse rows are designated by l e t t e r s  from A t o  AA, and the tubes in 

eny row a r e  numbered, odd or even, from 1 t o  47, with number 24 located on 

. the heat exchanger center l ine .  

D . Test Configurations 

The different  heat exchanger configurations to  be tested a re  charac- 

ter ized by combinations of various parameters. Table 2 presents these 
,- 

parameters fo r  thetestsperformed t o  date and also for  future tests, which 

eventually w i l l  require new tubesheets, new baff les ,  and/or reorientation of 

in le t /out le t  nozzles. A s  the program proceeds, the most promising parameter 

combinations w i l l  be selected t o  be tested. Possible future developments of 

f ube vibration prevention designs w i l l  also be considered. 

This report covers a l l  tes t ing  performed with the eight crosspass, 

4 
seven uniformly spaced baff le  csnf iguration. A f u l l  rube bundle was tested 

I 

with a l l  three, and a no-tubes-in-window (NTIW) bundfle with two, of the 

' i n l e t  lout le t  diameter nozzles l i s t ed .  

For the f u l l  tube bundle configuration, it is seen from Fig. 4 tha t  the 

four span, f ive  span, and eight  span tubes, are located in rows V through AA, 

A through F, and H through T, respectively. Since the baff les  are cut along 

the centerline of rows U and G, the tubes in  these rows have a special 



@ TUBE WITH SIGNIFICANT VIBRATION 
TIE BOLT (I I LOCATIONS) 
TIE BAR (8 LOCATIONS) 

BA FFCE (NO. I, 3.5 AND 7 )  
C 

NEAR WINOOW_ BAFFLE (NO. 2.4 AND 6) 
- 

Fig. 4 .  Tube layout 1 



TABLE 2. Test Parameters 

A. Parameters fo r  I n i t i a l  Set of Tests 

Tube pa t te rn  Triangular, one s ide  of equ i l a t e ra l  
t r i ang le  perpendicular t o  -flow 
("30 O " or ien ta t ion)  

Pitchldiameter r a t i o  

Baffle (brass) thickness 

1.25 

9.5 mm (0.375 in.)  

Tubelbaf f l e  hole clearance 0.4 mm (0.016 in.) minimum 

Cut of s ingle  segmental ba f f l e s  25.5 percent 

Baffle arrangement 

Baffle spacing 

Tube bundle con£ igurat  ions 
14 inch s i z e  
12 inch s i z e  
10 inch s i z e  

8 crosspasses 
7 ba f f l e s  

444 mm (17.5 in. ) nominally uniform 

337 mm (13.25 in.)  
283 nrm (11.38 in. ) 
243 mm (9.56 in.) 

B. Parameter Variations fo r  Future Tests 

Baffle spacing Uniform; asymmetric 
6 ,  4 crosspasses* 
7, 5 crosspasses 

Baff le  cu t  

Tube 

Tubelbaffle hole clearance* 

Pitchldiameter (PID) * 
Baffle thickness* 

I n l e t  conditions* 

Triangular (60 3 
Square (45", 90") 

Impingement p l a t e s  

* 
Parameter var ia t ions  require  new tubesheets, new ba f f l e s ,  and/or reorienta- 
tion, of i n l e t l o u t l e t  nozzles. 



saddle type support which provides a "o~e-way" four o r  f i v e  span configura- 

t i on ,  respect ively,  i n  the  plane of the  a l t e rna t ing  flow around the  ba f f l e s .  

I n  a l l  other d i rec t ions ,  these tubes are generally supported by a l l  seven 

ba f f l e s ;  however, it should be noted t h a t  flow d i rec t ion  displacement can 

3 ,  1 - 
a l t e r  transverse-to-flow support. 

The NTlW configuration w a s  obtained by removing a l l  f i v e  and four  span 

tubes in  rows A t o  F and V t o  AA, respectively.  The saddle rows G and U 
. 6 

were l e f t  in place. To prevent leakage, the- unused tubesheet and b a f f l e  

p l a t e  holes  had t o  be sealed o r  covered, respect ively.  Fig. 5 shows the  

NTIW bundle on a spec ia l ly  b u i l t  t ransporter  p r io r  t o  i n se r t i on  in to  t he  

s h e l l  and p r io r  t o  the  assembly of addi t iona l  ex te rna l  back-up p l a t e s  (seen 

- on Fig. 3) t o  strengthen the  tubesheets fo r  s a t i s f ac to ry  O-ring sealing.  



.*.p 
@ a  - -a', %ig. 5 .  T e s t  heat exchanger in no-tubes-in-window can£ iguration 

% . -  - 
\ ' 

F i g .  6 .  Electrodynamic vibrator for internal-to-tube mounting s 



III. TEST PARAMETERS/INSTRUMENTATION/DATA PROCESSING 

The p r i n c i p a l  t e s t  parameters which c h a r a c t e r i z e  t h e  f low cond i t ions  

and s t r u c t u r a l  response of t h e  hea t  exchanger a r e  presented below. Also 

described a r e  t h e  measurement methods, ins t rumenta t ion,  and d a t a  process ing 

employed t o  acquire  these  parameters. Spec i f i c  ins t rumenta t ion i t e m s  

u t i l i z e d  a r e  l i s t e d  in Appendix A. 

A. Flow Rate 

The water flow r a t e  through t h e  test heat  exchanger was measured wi th  

t u r b i n e  f lowmeters. Each of t h e  four  pumps i n  t h e  loop is equipped with 

an ind iv idua l  meter. S ignal  pu l ses  from t h e  flowmeters a r e  recorded on 

t ape  and a r e  usua l ly  converted t o  d.c. vo l t ages  by means of a r a t e  i n d i c a t o r  

t o  f a c i l i t a t e  t h e  subsequent d a t a  aAalyses. 

B. Water Velocity . . 

The c r o s s f l o w .  v e l o c i t y  in t h e  gap between t h e  tubes  is  one of t h e  

most s i g n i f i c a n t  parameters inf luencing t h e  v i b r a t i o n  performance of a hea t  

exchanger. However, measurement of t h e  magnitude and d i r e c t i o n  of t h i s  gap 

v e l o c i t y  r e q u i r e s  a c c e s s i b i l i t y ,  evaluat ion t o  determine t h e  mean t ransverse-  

to-tube v e l o c i t y  wi th in  a gap, and a n a l y s i s  of measurements taken a t  v a r i o u s  

l o c a t i o n s  i n  t h e  test hea t  exchanger. s u b s t a n t i a l  instrumentat ion problems 

would have t o  be overcome. The in t roduc t ion  of phys ica l  probes w i l l  a f f e c t  

t h e  flow p a t t e r n  wi th in  the  gaps. The use of unobtrusive l a s e r  anemometry 

r e q u i r e s  v i s u a l  access .  The use of u l t r a s o n i c  techniques o r  o t h e r  methods 
. 8 . .  . , ,  

( f o r  example, measuring ' t h e  time delay  of s i g n a l  between two s t a t i o n s )  .could 

probably be developed; however, t h e  e f f o r t  required  f o r  such development and 

c a l i b r a t i o n  was considered t o  be beyond t h e  scope of t h e  present  program. 

,For t h e  present  a n a l y s i s ,  t h e  crossf low v e l o c i t y  i s  computed from t h e  

o v e r a l l  flow r a t e  through t h e  heat  exchanger by means of t h e  HTRI computer 

program ST-4. The c a l c u l a t i o n  is  influenced by the f low d ive r ted  from t h e  



sub jec t  tube  gaps due t o  leakage through var ious  bypass paths :  around t h e  

tube  bundle, and through t u b e l b a f f l e  hole  and b a f f l e / s h e l l  c learances .  

The.se leakage f lows depend on t h e  p ressure  drops experienced a c r o s s  t h e  

v a r i o u s  i n t e r n a l  s e c t i o n s  of t h e  hea t  exchanger. The measurement of such 

p ressure  drops is p a r t  of t h i s  t e s t  work. 

C.  Pressure  Drop and Level 

A s  mentioned above, t h e  knowledge of p ressure  drops between va r ious  

s e c t i o n s  of t h e  hea t  exchanger provides  input  t o  computer programs. Pres- 

s u r e  t a p s  a r e  provided a t  t h e . i n l e t ,  t h e  o u t l e t ,  t h e  ,center  nozzle and a t  

s i x  l o n g i t u d i n a l  l o c a t i o n s  on t h e  su r face  of t h e  s h e l l  in t h e  h o r i z o n t a l  

p lane .  The p ressure  t a p s  (which can be seen on Figs.  2 and 3 )  a r e  connected 

wi th  tubing v i a  a manifold and va lves ,  a s  appropr ia te ,  t o  a d i f f e r e n t i a l  

pressure-  t ransducer  t o  determine . t h e  pressure  . d i f f e r e n c e  . to - t h e  hea t  ex- 

changer o u t l e t  o r '  t h e  c e n t r a l  t ap .  

The gage p ressure  of t h e  heat  exchanger o u t l e t  was measured by means 

of a  d i f f e r e n t i a l  p ressure  t ransducer .  I n  a d d i t i o n ,  a  s t r a i n  gage p ressure  

t ransducer  was i n s t a l l e d  f l u s h  wi th  t h e  i n t e r n a l  s h e l l  surface  i n  t h e  region 

of t h e  f i r s t  turnaround. This  p ressure  t ransducer  had s u f f i c i e n t  frequency 

response t o  measure pressure  f l u c t u a t i o n s .  

D. Tube Vibra tor  

An i n t e r n a l  tube v i b r a t o r  was developed t o  provide v i b r a t i o n  e x c i t a t i o n  

of m i n s t a l l e d  tube  . . by means of sine sweep frequency tests f o r  t h e  detertnina- 

t i o n  of (1) t h e  fundamental a s  w e l l  a s  t h e  higher n a t u r a l  f requencies  and 

(2)  damping a t  cons tan t ,  though moderate, amplitude l e v e l s .  A s  shown on 

Fig. 6 t h e  v i b r a t o r  f e a t u r e s  a magnet c o i l  which i s  spr ing  suspended in t h e  

f i e l d  of a permanent magnet. Alternating c u r r e n t  of c o n t r o l l e d  magnitude 

and frequency d r i v e s  t h e  c o i l  i n t o  v i b r a t i o n .  The r e a c t i o n  fo rce  between 

t h e  c o i l  support and tube  provides  a forced e x c i t a t i o n .  The e n t i r e  assembly 



can be located  and secured deep i n s i d e  a 16.6 mm. (0.652 in . )  I .D .  tube by 

means of a s p l i t  c o l l a r  t h a t  is  expanded aga ins t  t h e  i n t e r n a l  tube wa l l  by 

means of a nut  and tapered surfaces .  Coincidence of the  v i b r a t o r  frequency 

wi th  one of t h e  tube  n a t u r a l  f requencies  e x c i t e s  t h e  tube t o  moderate v ibra-  

t i o n  l e v e l s .  

E . Tube Accelerat ion and Displacement 

Tube response was genera l ly  measured by means of minia ture  accelerometers 

placed on s p e c i a l  mounts i n s e r t e d  through the  open ends of t h e  tubes .  The 

long i tud ina l  loca t ion  i n  the  tube w a s  chosen t o  provide optimum amplitude 

response t o  fundamental ( f i r s t )  mode v i b r a t i o n .  The i n i t i a l l y  used r i g i d  

accelerometer mounts were secured t o  t h e  tube (by t h e  method a lso- .used f o r  

t h e  v i b r a t o r ,  see Fig. 6 )  and t h e  accelerometers were a t tached by a s u i t a b l e  
. . . .  . . .  . . . . . . . . . .  . . . . .  . 

adhesive,  usua l ly  d e n t a l  cement. This  accelerometer/mount combination pro- 

vided high frequency response and functioned proper ly  a s  long a s  no impacting 

of tubes  occurred. However, upon tube impacting t h e r e  were two de t r imenta l  

e f f e c t s :  (1) t h e  no i se  generated by t h e  high frequency s i g n a l s  s a t u r a t e d  

t h e  e l e c t r o n i c s  and rendered s i g n a l  processing f u t i l e  and (2) t h e  impact 

f o r c e s  caused a number of t h e  d e l i c a t e  accelerometers t o  be  shaken loose 

from t h e i r  mounts and t o  be severe ly  damaged from bouncing a g a i n s t  t h e  tube- 

wa l l s .  

Test  work wi th  t h e  f u l l  tube bundle indicated  t h a t  t h e  v i b r a t i o n  f r e -  

quencies of p r a c t i c a l  s ign i f i cance  were less than 60 Hz. To reduce o r  

e l imina te  t h e  above problems it was decided t o  cushion t h e  accelerometers 

i n  foam mounts t h a t  would mechanically f i l t e r  t h e  h igh frequency accelera-  

t ions  and prevent  damage. P r i o r  t o  i n s t a l l a t  ion ,  t h e  accelerometer/mount 

assemblies were t e s t e d  on a s m a l l  test shaker and t r a n s f e r  func t ions  were 

obtained u t i l i z i n g  a standard accelerometer. The lowest n a t u r a l  frequency 

of t h e  accelerometer/mount combination was 400 Hz o r  more, and t h e  response 



w a s  p r a c t i c a l l y  l i n e a r  t o  100 Hz. For t h e  subsequent t e s t i n g  of t h e  s t i f f e r  

NTIW conf igura t ion ,  accelerometer  mounts u t i l i z i n g  a r i g i d  foam p l a s t i c  were 

developed and comparison t e s t e d  t o  provide a v a l i d  frequency response t o  

400 Hz. 

A f a s t  Four ier  t ransform (FFT) spectrum analyzer  was employed t o  ob ta in  

power s p e c t r a l  dens i ty  (PSD) curves  from the  a c c e l e r a t i o n  s i g n a l s .  Each 

a c c e l e r a t i o n  PSD was div'ided by a funct ion p ropor t iona l  t o  t h e  f o u r t h  power 
. . 

of t h e  frequency t o  o b t a i n  t h e  corresponding displacement PSD. Subsequently, 

t h e  rms value  of t h e  displacement was obtained by t ak ing  t h e  square r o o t  

of t h e  a r e a  under t h e  i n t e g r a l  of t h e  PSD curve wi th  respec t  t o  frequency 

wi th in  the  bandwidth under cons ide ra t  ion .  

I n  order  t o  make unobtrusive displacement measurements through t h e  
. . . .. 

. e n t i r e .  range of tube . v i b r a t i o n ,  an o p t i c a l  b i -ax ia l  displacement fol lower 

system was procured and used on a s e l e c t e d  tube dur ing t h e  l a s t  test runs  

wi th  t h e  f u l l  tube  bundle. Addi t ional ly ,  high speed motion p i c t u r e s  were 

taken of v i b r a t i n g  tubes .  



IV. NATURAL FREQUENCY AND DAMPING 

In  theory ,  the  tubes  a r e  modeled a s  s t r a i g h t  beams, r i g i d l y  clamped 

a t  t h e  ends with in termedia te ,  p e r f e c t l y  a l igned ,  f r i c t i o n l e s s ,  p ivoted 

supports .  I n  p r a c t i c e ,  t h e  tubes  a r e  s l i g h t l y  bowed, usua l ly  bea r ing  

a g a i n s t  t h e  i n t e r n a l  w a l l  of t h e  overs ize  (c learance)  h o l e s  in t h e  b a f f l e  

p l a t e s .  Focusing i n i t i a l l y  on t h e  f u l l  tube bundle, Fig. 7 p resen t s  t h e  

r e s u l t s  of a t h e o r e t i c a l  c a l c u l a t i o n  [3 ]  of t h e  n a t u r a l  f requencies  and 

mode shapes of i d e a l  four  and f i v e  span tubes  i n  s t i l l  water f o r  t h e  f i r s t  

s i x  modes. The f requencies  a r e  based on an  added mass c o r r e c t i o n  f a c t o r  

of 2 .97 which t a k e s  i n t o  account t h e  proximity t o  surrounding tubes  i n  the  

tube bundle. 

Natural  f requencies  of t h e  tubes  were determined by two d i f f e r e n t  
. . 

methods: (1) a s p e c i a l l y  developed electrodynamic v i b r a t o r  (Fig. 6 j , 

mounted i n t e r n a l  t o  t h e  tube and exc i t ed  t o  provide a s i n e  sweep through 

t h e  frequency range of i n t e r e s t  - t h e  r e s u l t i n g  accelerometer response i s  

p l o t t e d  a s  a funct ion of frequency; and (2) impact e x c i t a t i o n  (usual ly  a 

mallet blow s t ruck  aga ins t  t h e  e x t e r n a l  s h e l l  su r face )  - t h e  t r a n s i e n t  

a c c e l e r a t i o n  response is captured and processed f o r  frequency content  on 

a frequency opcctrum analyzer .  !Cl~ese LesLs were performed i n  alr ( i . e . ,  

with an empty hea t  exchanger) and wi th  t h e  heat  exchanger f i l l e d  wi th  s t i l l  

water. The d i r e c t i o n  of vibration e x c i t a t i o n  and s e n s i t i v i t y  of t h e  

accelerometers was .usua l ly  t r ansverse  t o  t h e  plane of t h e  subsequent flow. . . . . .  . . .  

A. F u l l  Tube Bundle Configuration 

Typical  frequency response curves f o r  t h e  e x c i t a t i o n  of tube  V24 in a i r  

and water a r e  given on Fig. 8. In Table 3 test  d a t a  f o r  two t y p i c a l  four- 

span tubes ,  V24 and AA23, a r e  presented.  Only t h e  p r i n c i p a l  f requencies  a r e  

l i s t e d  i n  Table 3. It should be noted,  as can be seen from Fig. 8 ,  t h a t .  

o t h e r  frequency peaks a r e  a l s o  p resen t .  A s  indica ted  above, the  t h e o r e t i c a l  



4 SPANS (1/4,1/4,1/4,1/4) 5 SPANS (1/8,1/4,1/4,1/4,1/8) 

n n A fi n n n 

_X______-----I_ _. - ... 
Fig.  7. Theore t i ca l  tube f requencies  wi th  water on s h e l l  s i d e  
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: Fig. 8 .  Natural frequency determination v ia  sine sweep, Tube V24 



TABLE 3 .  Natural Frequencies (fn) and Damping ( 5 ) n of Four . Span Tubes .. 

(fn) , Hz < g> (f n) , Hz 
air air water 

Mode 
("water 

n Theory V24 AA23 V24 AA23 Theory V24 AA23 V24 AA23 



va lues  in water. a r e  computed assuming an added mass f a c t o r  of 2.97, which 

accounts f o r  the  proximity of adjacent  tubes  i n t e r n a l  t o  t h e  bundle. Tube 

AA23 is on t h e  periphery of t h e  bundle and would be expected t o  have a 

smaller  added mass f a c t o r  and hence higher n a t u r a l  f requencies  in water 

than t h e  t h e o r e t i c a l  p red ic t ions  and measured va lues  f o r  tube V24; t h i s  is  

t h e  case  a s  shown in Table 3 .  Tube AA23 in a i r  gave t h e  c l e a r e s t  r e s u l t s ,  

more than e i g h t  modes could be observed a t  times. Other four-span tubes  

(e  .g., V24) d i d  not  respond a s  we l l .  For a tube "saddled" in t h e  b a f f l e  

c u t  row and f o r  a f i v e  span tube ,  t h e  s i t u a t i o n  was no t  as c l e a r ,  a s  some 

of t h e  expected lower mode f requencies  w e r e  not  d i s t i n c t i v e l y  exc i t ed ;  i n  

e f f e c t  t h e  "saddled1' tube responded l i k e  an e i g h t  span tube as noted f u r t h e r  

below. 
. . 

~ v e n  though t h e  support cond i t ions  are not  p e r f e c t ,  and some coupling 

wi th  adjacent  tubes  ' a d  s u p p o r t s  is  no doubt p resen t ,  t h e  ' n a t u r a l  £requency 

determination tests of s e v e r a l  four  span tubes  i n  a i r  ind ica ted ,  t o  varying 

degrees,  reasonably good agreement wi th  t h e o r e t i c a l  values.' This  impl ies  

t h a t  t h e  assumption of knife-edge suppor ts  a t  t h e  b a f f l e s  is  reasonable and 

agrees wi th  t h e  conclusion of o the r  i n v e s t i g a t o r s  [4,51. 

I n  water  t h e  n a t u r a l  frequency determination of any tube was compli- 

ca ted  by t h e  v i b r a t i o n  coupling wi th  neighboring tubes .  Theore t i ca l ly  , i f  

t h e r e  a r e  k i n t e r a c t i n g  tubes ,  t h e r e  w i l l  be 2k coupled mode f requenc ies  

corresponding t o  each . frequency . of a s i n g l e  .. . tube 161 . , Upon . .  t e s t i n g  . ... .. .a l imi ted  . . 

n~tmher of f requencies  w e r e  prominent; f o r  example, see t h e  in-water response 

curve in Fig. 8. For a given tube t h e  coupling could be a t t enua ted  by 

loading t h e  surrounding tubes  t o  decrease t h e i r  n a t u r a l  frequency and 

l o c a l l y  detune t h e  bundle. However, it was no t  poss ib le  t o  i d e n t i f y  t h e  

ind iv idua l  mode f requencies  , p a r t l y  because these  f requencies  are located  

f a i r l y  c l o s e  together  (in groups of four  f o r  t h e  four  span tube) on t h e  



frequency spectrum.. Even among t h e  four  span tubes  t h e r e  w e r e  d i f f e r e n c e s  

depending on t h e  locat ion:  whether t h e  tube was saddled i n  t h e  b a f f l e ,  

loca ted  on t h e  per iphery ,  o r  i n  t h e  i n t e r n a l  region of t h e  bundle. For 

example, a s  expected,  and a s  shown in Fig. 8, t h e  n a t u r a l  f requencies  f o r  

tube  V24, completely surrounded by o t h e r  tubes ,  were lower than f o r  tube 

AA23, a t  t h e  per iphery  of t h e  bundle. 

Damping, a s  expressed by t h e  equivalent  v iscous  damping r a t i o ,  5, was 

determined, where poss ib le ,  from t h e  frequency response curves using the 

bandwidth method. Typical  r e s u l t s  f o r  tubes  V24 and AA23 are given in 

Table 3 .  Because of uncer ta in  f a c t o r s  such a s  (a)  dev ia t ion  from viscous  

assumptions, (b) presence of nearby n a t u r a l  frequency con t r ibu t ions ,  (c)  ampli- 

tude  dependence, and (d) probable opera t iona l  a l t e r a t i o n  due t o  water  f low 
. . . . .  

and tube - v i b r a t i o n  e f f e c t s ,  these  damping d a t a  should be used wi th  d i s c r e t i o n .  

B. No-Tubes-in-Window Configurat ion 
. . 

In gefleral, t h e  above p resen ta t ion  i s  a l s o  app l i cab le  t o  t h e  subse- 

quent n a t u r a l  frequency ' t e s t i n g  of t h e  NTIW ' conf igura t ion  conta in ing only 

e i g h t  span and saddled tubes .  Table 4 p r e s e n t s  t h e o r e t i c a l  and experimental  

d a t a  f o r  internal-to-the-bundle, eight-span tubes  T24 and H24, and f o r  t h e  

saddled tube U 5 ,  l oca ted  on t h e  per iphery  and corner of t h e  bundle. Again 

. t h e  higher in-water f requencies  of t h e  l a t t e r  p e r i p h e r a l  tube a r e  ev5don.t. 

By examining t h e  phase d i f f e r e n c e  between t h e  v i b r a t i o n  e x c i t e r  vol tage  

input  and accelerometer  s i g n a l  output  some d i f f e r e n t i a t i o n  between odd and 

even v i b r a t i o n  modes was poss ib le .  Damping determination was p o s s i b l e  only 

in a few ins tances .  



TABLE 4 .  Natural Frequencies (f ) and Damping (5,) of Eight Span Tubes 
n 

(fn) . Hz t rn) (f  n ) Hz t Cn) 

Mode a i r  a i r  water water 

n Theory T24 H.24 US T24 . H24 U 5  Theory T24 H24 U5 T24 H24 U5 

T24, H24 - Interne1 Tubes 

US - Saddled Tube on Periphery 
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V. now TESTS 

A. F u l l  Tube Bundle Configurat ion 

The e i g h t  c rosspass ,  f u l l  tube bundle hea t  exchanger was flow t e s t e d  

wi th  t h r e e  d i f f e r e n t  i n l e t  /out l e t  nozzle diameter conf igura t ions ,  designated 

Cases 1-3 and included i n  t h e  l i s t i n g  on Table 5. Except f o r  v i s u a l  observa- 

t i o n ,  it w a s  not  p r a c t i c a l l y  poss ib le  t o  monitor t h e  v i b r a t i o n  performance 

of a l l  488 tubes.  Consequently, only a few of t h e  tubes  were s e l e c t e d  t o  

be  instrumented. Sj,nce experience (confirmed by t h e  test resu1.t d )  ia.dica.ted 

t h a t  t h e  four  span tubes  were t h e  most suscep t ib le  t o  v i b r a t e ,  most of t h e  

a v a i l a b l e  ins t rumenta t ion w a s  mounted wi th in  these  tubes.  Location of t h e  

ins t rumenta t ion w a s  changed from time t o  time; improvements w e r e  i n s t i t u t e d  

a s  t h e  t e s t s  proceeded'. Up t o  e i g h t  minia ture  accelerometers were used. 
. . . . 

A conventional  accelerometer  was i n s t a l l e d  on t h e  s h e l l  (near p ressure  t a p  

"B") and another one on t h e  t i e  b o l t  in l o c a t i o n  214, s e n s i t i v e  i n  the a x i a l  
. . . . 

d i r e c t i o n .  A l l  accelerometer  as w e l l  a s  t h e  flowmeter and t iming s i g n a l s  

were cabled t o  FM o r  PCM recording channels. The t e s t s  w e r e  performed i n  

two d i f f e r e n t  ways: ' (1) a  constant  flow r a t e  l e v e l  was e s t a b l i s h e d  and the 

instrumentat  ion  s i g n a l s  were recorded f o r  a time s u f f i c i e n t  f o r  subsequent 

frequency and amplitude a n a l y s i s ,  (2 )  t h e  flow r a t e  was va r ied  (scanned) 

through a range t o  determine t h e  flow r a t e  a t  t h e  i n i t i a t i o n  and terminat ion 

of ( a )  r a t t l i n g  and (b) f  l u i d e l a s t i c  i n s t a b i l i t y .  

Thc tcst  history on Tahlc 6 l ists the  p r i n c i p a l  fu l l ,  tube bundle f low 

test runs  conducted f o r  t h i s  program. After  some in i t ia l  trials, t h e  

genera l  test sequence was t o  increase  t h e  f low r a t e  stepwise from run t o  

run u n t i l  t h e  i n s t a b i l i t y  was reached and then t o  perform a scan wi th  a 

maximum v e l o c i t y  a t  o r  s l i g h t l y  above t h e  c r i t ica l  in order  not  t o  d i s t u r b  

t h e  tube bundle support condi t ions .  The recorded d a t a  were analyzed and 

s tud ied .  To i n v e s t i g a t e  t h e  r e p e a t a b i l i t y  of t h e  d a t a ,  and t o  gain  confidence 



TABLE 5. Flow Tested Tube Bundle/Nozzle Size Combinations 

Average Nozzle 
Nozzle Size ,  Nominal (Average) Entrance Velocity per 

Nominal Pipe Size ,  Ins ide  Diameter, 0.0631 m3/s (1000 gpm) Used f o r  
Case Description . . m ( in . )  m / s  ( f t l s e c )  . .Test  Runs: 

1 14 in . ,  Schedule '30, 0.337 (13.25) 0.709 (2.33) 1-29 
nozzles a t tached - to  
s h e l l  during fabr i -  
c a t  ion 

2 12 in . ,  Schedule 80, 0.288 (11.328) 0.970 (3.18) 30-43 
i n l e t  / e x i t  i n s e r t s  

3 10 in . ,  Schedule 80, 0.241 (9.500) 1.38 (4.53) 44-55 
i n l e t  / ex i t  i n s e r t s  

4 10 i n . ,  Schedule 80, 0.241 (9.500.) i .38 (4.53) 1-14 
i n l e t  / ex i t  i n s e r t s  

5 14 in., Schedule 30, 0..337 (13.25). 0.709 (2.33') 15-2 7 
(no i n s e r t s )  

Cases 1-3: Fu l l  Tube Bundle 

Cases 4 and 5 : No-Tubes-In-Window Configuration 



TABLE 6. Test History - Fu l l  Tube Bundle 

Test Date Flow Rate 
1979 Case Run No. (ga l /mg)  Comment s 

- 1 - var ious  I n s t a b i l i t y  a t  3230 

517 1 2400 

2 2 790 

3 3230 

5 18 4 3 190 Repeat Run 3 

5 Scan Twice i n  and out  of M s t a b i l i t y  a t  3250 

76 0 I n i t i a t e d  use of dynamic pressure  
transducer 

- Flow changed from 2000 during run 

2 180 

2390 

2590 ' ' 

. . 

2 790 

Scan 2400 - 2.800 - 1,000 

830 

16 12 10 

1 7  ,, 16 1.n 

18 SC& 790 - 1850 - and down 

19 Scan I620 - 2800 - and down 

2 0 19 70 

21 2410 

2 790 

3 140 

scm 

Scan 

Misc . 
2 920 

2920 

Scan 

In  and out of i n s t a b i l i t y  near  3250 

In and out of i n s t a b i l i t y  near 3250 

Demonstration, 5 span rube impacting 
at  3600 

Noisy loop 

Repeat Run 26 

Invest igated i n s t a b i l i t y  of 5 span 
tubes ,  t e s t e d  t o  3620 
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TABLE 6. Test History - F u l l  Tube Bundle (Contd. ) 

Test Date Flow Rate 
19 79 Case. Run No. (gal/min) Comments 

Scan Inves t iga ted  i n s t a b i l i t y  of 5 span 
tubes ,  t e s t e d  t o  3910 

2000 and Inves t iga ted  nozzle flow wi th  p i t o t  tube 
2800 

3300 High speed movies, V24 region 

3380 High speed movies, V6 region 

10 30 

1390 

1800 

2210 

2590 

2 780 

3000 

3 7 3190 S t a r t e d  impacting dur ing run 

38. .  Scan 1900 - 3500 - 2000. 

39 2010 S t a r t e d  use of cushioned accelerometer 
mounts 

2420 

2 760 

3000 

Scan 2500 - 3750 - 2500,. i n s t a b i l i t y  a t  3250 

800 

1200 

1580 

20 10 

2400 

2 780 

50 Scan '3000 - 3130 - 2000, i n s t a b i l i t y  a t  3130 

10 18 5 1  20 10 

5 5 Scan 3000 - 3760 - 1900, i n s t a b i l i t i e s  and 
h y s t e r e s i s  



i n  the  r e s u l t s ,  on a l a t e r  d a t e  some of t h e  previous tests were repeated  

and an a d d i t i o n a l  scan o r  two w e r e  performed t o  a f low l e v e l  w e l l  above t h e  

c r i t i c a l .  

I n  genera l ,  a s  t h e  flow r a t e  is  increased,  t h e  amplitude of tube vibra-  

t i o n  inc reases  moderately; a t  in termedia te  flow rates t h e  tubes  can be  

heard t o  r a t t l e ;  and a t  a c r i t i c a l  f low l e v e l  a f l u i d e l a s t i c  i n s t a b i l i t y  i s  

abrup t ly  i n i t i a t e d .  P r i n c i p a l l y ,  t h e  four  span tubes  a r e  involved. The 

rest r e s u l t s  i n d i c a t e  t h a t  t h e  primary c o n t r i b u t i o n  t o  t h e  v i b r a t i o n  response 

is from t h e  frequency range from 30 t o  60 Hz. However, a t  high f low r a t e s  

resonant  f requencies  i n  t h e  range of 32 t o  38 Hz a r e  usua l ly  dominant. 

R a t t l i n g  is  audible  a t  in termedia te  f low rates. A s  f low r a t e s  a r e  

increased beyond h a l f  of t h e  c r i t i c a l  va lue  f o r  i n s t a b i l i t y ,  t h e  acce le r -  

ometers begin t o  show superimposed high frequency impulses; it appears t h a t  

i n i t i a l l y  these  impulses occur occas ional ly .  A t  higher flow r a t e s  t h e  

impulses usua l ly  occur p e r i o d i c a l l y  a t  tlie ~ u b e  Vibra t ion frequencies.  It 

is surmised t h a t  t h e  r a t t l i n g  is caused by tube  movement and con tac t ing  in  

t h e  b a f f l e  c learance  holes .  Since t h e  no i se  i.s t r a n ~ m i t t e d  thsuughout: Lhe 

s t r u c t u r e ,  it is not  p o s s i b l e  t o  determine a t  which of t h e  many tvbe /ba f f l e -  

hole  combinations t h e  tubes  a r e  r a t t l i n g ,  nor  by what dynamic behavior i t  

is charac te r i zed .  

The onset  of f l u i d e l a s t i c  i n s t a b i l i t y  can r e a d i l y  be detec ted  by t h e  . 

abrupt  inc rease  i n  no i se  coming from t h e  exchnnger. Large amplitude motion 

of t h e  tubes  r e s u l t  i n  tubes  impacting wi th  one another.  Direct i d e n t i f i c a -  

t i o n  of impacting t u b e s  by means of t h e  accelerometers w a s  not  poss ib le  

because t h e  impacts a r e  t r ansmi t t ed  through t h e  s t r u c t u r e  and are ind ica ted  

as h igh  frequency no i se  even on accelerometers in tubes  t h a t  may no t  have 

impacted. However, a t  t imes more than 25 tubes  were shaken severe ly  enough 

t o  s l i d e  and move a x i a l l y  i n  t h e i r  O-ring s e a l s ,  thereby providing a reasonably 



good. ind ica t ion  where t h e  most' severe "action" took place .  A s  shown on 

Fig. 4 ,  t h e  tubes  most s t rong ly  subjected t o  t h e .  i n s t a b i l i t y  were loca ted  

(a)  i n  the  regions  where the  b a f f l e  c u t  meets the  s h e l l  and (b) in  row V 

next  t o  t h e  row saddled i n  t h e  b a f f l e  c u t .  Usually, the  hea t  exchanger was 

not  permit ted t o  remain more than 30-60 seconds at  a time i n  t h e  i n s t a b i l i t y  

condi t ion  t o  reduce t h e  p o t e n t i a l  of damage. 

During t h e  Case 2 tests t h e  r i g i d l y  mounted accelerometers were replaced 

by cushioned ones a s  d iscussed i n  Sect ion 1II.E. However, by reducing high 

frequency response s i g n a l s ,  t h e  a b i l i t y  t o  d e t e c t  r a t t l i n g  was a l s o  reduced. 

Nevertheless,  t h e  h igh frequency accelerometer mounted on t h e  s h e l l  c l e a r l y  

picked up t h e  r a t t l i n g ;  f o r  a spot  check t h e  s i g n a l  was fed  i n t o  an  audio 

speaker and t h e  r a t t l i n g  could r e a d i l y  be heard. 

Even though t h e  instrumented tubes  had genera l ly  s i m i l a r  response 

t r ends ,  t h e  performance o f .  ind iv idua l  tubes  was apparent ly  i n d i c a t i v e  of 

t h e i r  support c h a r a c t e r i s t i c s .  Under ordinary  t e s t  cond i t ions  t h e  O-ring 

s e a l s  held t h e  tubes  i n  p lace ;  however during t h e  v i o l e n t  impacting, occurr ing 

a s  t h e  r e s u l t  of f l u i d e l a s t i c  i n s t a b i l i t y ,  many of t h e  a f f e c t e d  tubes  moved 

a x i a l l y  and r o t a t e d . .  I n  some cases  these  tubes  may not  have been r e s t o r e d  

t o  exac t ly  the  i n i t i a l  support cond i t ions  p r i o t  to rhe  nexC test .  Conoc- 

quent ly  , t h e  v i b r a t i o n a l  c h a r a c t e r i s t i c s  of ind iv idua l  tubes  can be expected 

t o  vary s l i g h t l y  from run t o  run as w e l l  as within  a given run. These 

v a r i a t i o n s  could he  expected t o  show up i n  t h e  frequency response curves.  

Fo,ur tubes t h a t  were monitored during most of t h e  t e s t  runs  a r e  t h e  

/ 
four  span tubes  V6, V24, and V40, located  i n  t h e  row next  t o  t h e  row saddled 

i n  t h e  b a f f l e  c u t ,  and f i v e  span tube A23, located  i n  t h e  f i r s t  row exposed 

t o  t h e  inlet flow. I n  t h e  long i tud ina l  d i r e c t i o n ,  t h e  accelerometers were 

loca ted  a s  follows: i n  t h e  row V tubes ,  a t  approximately the  cen te r  of t h e  

f i r s t  span from t h e  'inlet (V24 and V40) o r  o u t l e t  (V6); in tube A23, midspan 



of t h e  second turnaround from t h e  i n l e t .  The accelerometers were o r ien ted  

t o  be s e n s i t i v e  i n  t h e  transverse-to-flow d i r e c t i o n .  Other tubes  ins t ru -  

mented dur ing some of t h e  tests included F6, F22, V22, W7, and AA23. 

Typical  PSD curves  of a c c e l e r a t i o n  and displacement f o r  tube V6 (Case 2,  

Run 34) are shown i n  Fig.  9.  A s  discussed i n  Sect ion I I I .E ,  displacement 

response is  ob ta ined 'by  a double i n t e g r a t i o n  technique encompassing t h e  

bandwidth of 11.8 t o  100 Hz; no s i g n i f i c a n t  a c c e l e r a t i o n s  were .measured 
. . 

below 24-Hz. However, because of t h e  inverse  t o  t h e  square of frequency 

inf luence  of t h e  double i n t e g r a t i o n  process ,  genera l  n o i s e  o r '  low l e v e l  

a c c e l e r a t i o n  could c o n t r i b u t e  s i g n i f i c a n t l y  t o  t h e  c a l c u l a t e d  displacement 

response,  p a r t i c u l a r l y  when flow and e x c i t a t i o n  l e v e l s  a r e  low o r  when 

a c c e l e r a t i o n  response is  broadband wi th  few dis t inguishab ' le  f requencies .  

RMS ampli tudes a r e  computed by i n t e g r a t i o n  of t h e  PSD curves.  I n  

Figs.  10-13 t y p i c a l  curves  of rms response, nondimensionalized by tube 

diameter., v e ~ s u s  flow r a t e  a r e  presented.  I n  these  f i g u r e s  and a l s o  on 

Figs .  14-17, flow r a t e s  a r e  given in ga l lons  per  minute; t h e  flow v e l o c i t i e s  

have t o  be ca lcu la ted .  Based nn t h e  data available a t  t h i s  time, ~11e mean 

v e l o c i t y  of t h e  crossf low through t h e  gaps between t h e  tubes  (designated 

t h e  "B"-stream i n  t h e  HTRI computer program) i s  0.895 m / s  (2.93 f t l s ec )  

3 
f o r  a nominal flow r a t e  of 0.063 m 1s (1000 gal/min) f o r  t h e  f u l l  tube 

bundle. For t h e  most p a r t ,  t h e s e  curvei dep ic t  s u b c r i t i c a l  tube v i b r a t i o n  

response up t o  the  c r i t i c a l  f low r n t c  at  which f l u i d e l a s t i c  instability is 

i n f t i a t e d .  I n  Figs.  14-17, t h e  p r i n c i p a l  f requencies  a t  which t h e  tubes  

.respond a r e  presented f o r  e x c i t a t i o n  provided by s p e c i f i c  f low rates. These 

f requenc ies  were obtained from t h e  PSD curves of tube  response. 

Tubes V6 and V40 occupy s i m i l a r  p o s i t i o n s  near t h e  s h e l l  periphery.  

Their  response is somewhat similar too ,  even though t h e  accelerometers 

were loca ted  i n  d i f f e r e n t  tube  spans. Figs.  10 and 11 show t h a t  t h e  rms 
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Fig .  11. RMS displacement, Tube V40 
(full. tube bundle, 8 crosspass) 
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Fig. 12. RMS displacement, Tube V 2 4  
( f u l l  tube bundle, 8' crosspass) 
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Fig .  13. RMS displacement, Tube A23 
( f u l l  tube bundle, 8 crosspass)  
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Fig. 14. Principal vibration frequencies, ~ u b e  V6 
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( f u l l  tube bundle, 8 crosspass) 
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: Fig. 15.  Pr inc ipal  vibration' frequencies ,  Tube V40 
( f u l l  tube bundle,  8 crosspass)  ! 
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: Fig .  16. Principal vibration frequencies, Tube V24 
( f u l l  tube bundle, 8 crosspass) 
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( f u l l  tube bundle, 8 crosspass) 



amplitude increased by a f a c t o r  of 10 a s  t h e  flow r a t e  was increased from 

1000 gallmin t o  a value  of 3250 gal/min, p r i o r  t o  i n s t a b i l i t y .  It i s  possib-- 

t h a t  these  p a r t . i c u l a r  tubes  were not  phys ica l ly  impacting upon i n s t a b i l i t y .  

The corresponding. d a t a ,  Figs.  14 and 15,  i n d i c a t e  s u b t l e  changes of t h e  

fundamental n a t u r a l  frequency between about 32 and 36 Hz. I n  a d d i t i o n ,  a 

response at  a frequency l e v e l  about 4 t o  6 Hz h igher ,  prksuinably t h e  second 

mode, is a l s o  genera l ly  observed. 

A s  shown i n  Fig. 12, Tube V24 i n d i c a t e s  t h e  same genera l  s u b c r i t i c a l  

amplitude v s .  flow rate t rend .  However, t h e  displacement d a t a  of Fig. 12 

f o r  Ruils  3 9 4 3 ,  also Serve t o  i l l u s t r a t e  t h e  abrupt  increase  i n  response 

t h a t  is experienced when t h e  threshold  flow r a t e  is  reached. It should be 

noted t h a t  t h e  va lues  of t h e  magnitude of t h e  l a r g e  amplitude v i b r a t i o n  are 
. . . . . . . . . . 

only  es t imated values . - - '  I n  genera l ,  displacement d a t a  from accelerometer 

s i g n a l s  obta ined dur ing tube impacting are not  r e l i a b l e .  To improve 

r e l i a b i l i t y ,  e f f o r t s  t o  work wi th '  cushioned accelerometers and an o p t i c a l  

displacement t r a c k e r  a r e  cont inuing.  The frequency data (Fig. 16) aLe 

f a i r l y  s c a t t e r e d ;  t h i s  tube a l s n  showed a 24 Hn. component not ubuerved an 

any o the r  tube  t e s t e d .  A poss ib le  reason is t h a t  one of t h e  b a f f l e s  was 

no t  i n  con tac t  and a c t i v e  a s  a suppor t ,  but  t h i s  could not  be r e a d i l y  

v e r i f i e d  by simple theory.  

Analysis  of t h e  a c c e l e r a t i o n  s i g n a l s  from five-span tube A23 i n  t h e  

f i r s t  row f a c i n ~  t h e  &Let naza1.n f low indicated generally a f e w  disLlxict 

f r equenc ies  i n  t h e  low frequency region,  where t h e  lowest t h r e e  modes would 

be  expected t o  be  exc i t ed .  More d i s t i n c t  e x c i t a t i o n  occurred a t  t h e  h igher  

f requencies ,  above 140 Hz. Fig.  17 i n d i c a t e s  a s c a t t e r  of f requencies  i n  

t h e  range 140 t o  240 Hz. The amplitude d a t a  on Fig.  13, based on double 

i n t e g r a t i o n  below 100 Hz., a r e  t o ' b e  viewed wi th  d i s c r e t i o n  f o r  reasons  d i s -  

cussed previously.  An i n t e r e s t i n g  i n t e r a c t i o n . o c c u r r e d  during Run 54 and 



a t  o the r  occasions when a s p e c i f i c  e x c i t a t i o n  of . t u b e  A21 was p a r t i c u l a r l y  

noted. Run 54 d a t a  show t h a t  without t h a t  i n t e r a c t i o n  tubes  A21 and A23 

v ib ra ted  at f requencies  of 187.5 and 225 Hz, r e s p e c t i v e l y ,  both  with an 

rms amplitudeldiameter r a t i o  of about 0.00003 a t  those  frequencies.  With 

t h e  i n t e r a c t i o n  both  tubes  A21 and A23 v i b r a t e d  a t  215 Hz wi th  increased 

amplitude r a t i o s  of 0.000'5 and 0.00007, r espec t ive ly .  

Af ter  most impacting tests, t h e  tubes  shaken severe ly  enough t o  have 

s l i d  i n  t h e  O-rings o r  r o t a t e d  w e r e  noted and usua l ly  moved back. Most 

of t h e  tubes  involved were in row V ,  bu t  some of row W w e r e  o f t e n  a l s o  

e f f e c t e d .  Examination of t h e  disassembled four  span tubes  a f t e r  t h e  t e s t  

indica ted  impacting marks on most tubes  i n  rows V and W (Fig. 4 ) .  Tubes 

i n  t h e  saddled row U ind ica ted  impacting marks about 20 t o  22.5O above and1 
. . . .  . . . . . . . . . . 

o r  below t h e  .flow- d i r e c t i o n -  plane,  on t h e  surf  ace-s f ac ing .  row V. I n  genera l ,  

t h e  i n s t a b i l i t y ,  a s  evidenced by both  a s u b s t a n t i a l  increase  in aud ib le  no i se  

l e v e l  and accelerometer response i n i t i a t e d  a t  approximately 3250 gallmin f o r  

Cases 1 and 2 and, upon f low reduct ion,  ceased a t  o r  s l i g h t l y  below t h a t  

flow r a t e .  For t h e  f i v e  span tube t h e  c r i t i c a l  flow rate was about 3400 

gallmin a s  ind ica ted  on Table 7. 

For Case 3 tests wi th  10 inch diameter nozzle i n s e r t s  t h e  s i t u a t i o n  

was more complex. A s  t h e  f low r a t e  was increased a f t e r  Run 49 and again when 

formally performing scan Run 50, t h e  i n s t a b i l i t y  i n i t i a t e d  a t  3130 gal/min 

(which w a s  not  exceeded) and d i d  no t  cease u n t i l  f low was reduced t o  

2380 gal/min. During scan Run 55, t h e  c e n t r a l  tubes  in t h e  row next  t o  t h e  

row saddled i n  t h e  b a f f l e  c u t  went i n t o  impacting v i b r a t i o n  a t  3250 gallmin. 

A s  t h e  flow r a t e  was increased,  t h e  tubes  loca ted  i n  t h e  region where t h e  

s h e l l  meets the  b a f f l e  c u t  indica ted  impacting. A t  a s t i l l  higher  flow rate 

t h e  f i v e  span tubes  on t h e  i n l e t l o u t l e t  s i d e  of t h e  hea t  exchanger went i n t o  

impacting a s  ind ica ted  i n  d e t a i l  on Table 7. A s  t h e  flow rate was reduced, 



TABLE 7. C r i t i c a l  Flow Rates:. F u l l  Tube Bundle 

. . Flow Rate = (gallrnin) 

~ n l e t / O u t l e t  Nozzle Size 
Location. of Tubes 

Affected 
10 inch 

14 inch 12 inch (Case 3) 
(Refer t o  Fig. 4)  (Case 1)  (Case 2) Run 55 

S t a r t  of Far window 
i n s t a b i l i t y  (opposite nozzles)  - 
(severe v ibra t ions )  c e n t r a l  region 32 50 3 190 * 3130** 
upon increas ing 
flow Far window - 

near s h e l l  periphery 3250 3190" 3540 

Near window % 3430 3 760 

Ceasing of severe Near window - 3460 
v ib ra t i ons  upon 
flow reduction Far window - 

near s h e l l  periphery > 3100 > 3000 3160 

. . . . .Far window - 
c e n t r a l  region > 3100 > 3000 19 10 *** 

* 
Run 37, tube V6; w a s  3250 f o r  Run 43. 

'was 3510 f o r  Run 37, tube V40. 

** ' 

Run 50, w a s  3250 f o r  Run 55. 
. . *** 

Was 2389 f o r  Run 50. 

3 
Note: Computed crossflow ve loc i t y  i s  0.895 m / s  (2.94 f t / s e c )  per (7 -063 m /s 

(1000 gallmin) flow r a t e .  



t h e  tubes  went out  of i n s t a b i l i t y  in t h e  reverse  o rder ,  wi th  varying amounts 

of "hys te res i s .  " 

Case 3 r e s u l t s  ind ica te  t h a t  t h e  high v e l o c i t y  c e n t r a l  stream emerging 

from t h e  10 inch nozzle s l i g h t l y  inc reases  t h e  v i b r a t i o n  p o t e n t i a l  of t h e  

c e n t r a l l y  located '  tubes  i n  t h e  f a r  window, a t  l e a s t  compared t o  t h e  ones 

near t h e  s h e l l  periphery.  But t h e  probably more s i g n i f i c a n t  d i f fe rence  

compared t o  t h e  14 and 12 diameter nozzle test is  t h e  s u b s t a n t i a l l y  increased 

amount of h y s t e r e s i s  and t h e  poss ib le  impl ica t ions  t h i s  may have f o r  t h e  

s t a b i l i t y  of t h e  bundle aga ins t  t r a n s i e n t  d is turbances .  

Simple p i t o t  tube t r a v e r s e s  were conducted a c r o s s  t h e  14 inch diameter 

of t h e  i n l e t  nozzle,  perpendicular  t o  t h e  plane of flow i n  t h e  hea t  ex- 

changer. This w a s  done a t  two d i f f e r e n t  flow r a t e s .  The r e s u l t s  were 
. . 

rough and s c a t t e r e d ,  but  indica ted  c l e a r l y  t h a t  t h e  maximum flow v e l o c i t y  

d id  not  occur in  the  p ipe  c e n t e r ,  but  a t  in termedia te  r a d i a l  p o s i t i o n s  where 
. . 

t h e  flow apparent ly  speeded up i n  a n t i c i p a t i o n  of t h e  lowered r e s i s t a n c e  hi 

t h e  annular  c learance  space between t h e  tube bundle i n  t h e  s h e l l .  

High speed motion p i c t u r e s  taken i n t o  t h e  ends of a c l u s t e r  of back- 
'. 

l i g h t e d  tubes  during impacting turned out  t o  be  of f a i r  q u a l i t y ,  bu t  no t  

providing t h e  e x c e l l e n t  percept ion t h a t  was des i red .  This  e f f o r t  w i l l  be 

repeated  wi th  d i f f e r e n t  equipment in t h e  f u t u r e .  

B . No-Tubes-in-Window Conf iguxat  ion  

The no-tubes-in-window conf igura t ion ,  .described i n  Sect  ion  I I . D ,  con- 

tains only tubes  supported o r  saddled on a l l  seven b a f f l e s .  The photograph 

of Fig. 5 i n d i c a t e s  how t h e  l o c a t i o n s  of four  of t h e  heavy stainless s t e e l  

t i e  b o l t s  and of four  of t h e  smaller s ized  t i e  b a r s  (two of each a r e  promi- 

n e n t l y  v i s i b l e  on t h e  photo) were now. f a l l i n g  o u t s i d e  of t h e  reduced perimeter  

of t h e  bundle. These b o l t s  and bars ; .unl ike  t h e  o t h e r s  and t h e  tubes ,  a r e  

supported oi-ily by every o t h c r  b s f f  le .  Fig. 5 a l s o  i n d i c a t e s  t h a t  t h e  t i e  



ba r s ,  which hold the  b a f f l e s  i n  place and which were l a t e r  observed t o  

v i b r a t e ,  do not extend i n to  the  f i r s t  b a f f l e  crosspass  ( f a r  end of p i c tu r e )  

which comprises t he  i n l e t  end zone exposed t o  the  i n l e t  flow en te r ing  from 

t h e  nozzle. 

The NTIW bundle w a s  flow t e s t e d  with nominal 10 inch and 14 inch i n l e t /  

e x i t  nozzles designated Cases 4 and 5 ,  respec t ive ly ,  and included i n  t h e  

l i s t i n g  on Table 5. - During the  flow t e s t ,  f i v e  tubes  (G15, H24, T24, U5, 

and U13) were instrumented with i n t e r n a l  miniature accelerometers. A s  

previously,  a conventional accelerometer was i n s t a l l e d  on t h e  s h e l l  (near 

pressure  t a p  "B") and another on t he  t i e  b o l t  R14, s ens i t i ve  in the  a x i a l  

d i rec t ion .  The test procedure was e s s e n t i a l l y  the  same a s  t h a t  used f o r  t he  

f u l l  tube bundle, the  t e s t  h i s t o ry  is presented on Table 8. 
. .  . 

The test hea t  exchanger w a s  exposed t o  flow r a t e s  up t o  5030 gal/min. 

This  corresponds t o  mean gap crossf  low ve loc i t y  . . of 4.70 m / s  (15.4 f . t /sec) 

based on a computer ca lcu la ted  0.934 m / s  (3.07 f t / s e c )  per  1000 gal/min 

r e l a t i onsh ip  f o r  t he  NTIW bundle. No l a rge  amplitude tube v ib r a t i ons  were 

observed even though some tubes  were noticeably quivering. The powcr 

s p e c t r a l  dens i ty  p l o t  of t h e  accelerometer s i gna l s  usual ly  indicated a 

broadband con t r ibu t ion  above frequencies of 1.1.5 and 125 Hz f o r  t h e  tubes  

located,  respec t ive ly ,  on and behind t he  bundle periphery.  Only i n  a few 

ins tances  one o r  two s p e c i f i c  f requencies  were prominently indicated.  

Ra t t l i ng  of undetermined o r i g i n  was noticed t o  start a t  flow r a t e o  of about 

3 .. 0.11 m /s (1800 gal/min). The two t i e  b a r s  ( f ron t  on Fig. 5) were observed 

through t h e  observation po r t  t o  v ib r a t e  s i g n i f i c a n t l y  a t  flow r a t e s  of 

about 3000 gallmin. A t  t he  higher flow r a t e s ,  t he  t i e  bar  v ib r a t i on  sub- 

s ided,  and almost ceased a t  5000 gal/min. Also, a t  those high flow r a t e s ,  

t he  heat  exchanger appeared t o  run smoother, even though not. necessa r i ly  

qu i e t e r .  



TABLE 8.  T e s t  H i s t o r y  - NTIW' Bundle 

Flow R a t e  
T e s t  D a t e  C a s e  Run No. ' (gal/min) Comment s 

2810 

32 10 

3620 

3980 

Scan 

4820 

4330 

3950 

Scan. . 

50 30 

12  70 

Scan 5000 - 1200 

Scan 1200 - 4000 



V I  . * PRESSURE MEASUREMENTS 

Pressure drop measurements w e r e  made dur ing flow t e s t i n g  f o r  a l l  f i v e  

of t h e  hea t  exchanger conf igura t ions  t e s t e d .  The o v e r a l l  p ressure  drop is 

p l o t t e d  f o r  t h e  v a r i o u s  c a s e s  on Fig. 18. It was measured between t h e  i n l e t  

and o u t l e t  t a p s  designated A and I on Fig. 19. There were no s i g n i f i c a n t  

differences'between t h e  measurements of Cases 1 and 2 as w e l l  a s  4 and 5. 

Fig.  19 i n d i c a t e s  t h e  l o c a t i o n s  of t h e  pressure  t a p s  l abe led  A through I 

on t h e  s h e l l ,  and a l s o  p r e s e n t s  t h e  normalized f r a c t i o n a l  d i s t r i b u t i o n  of 

t h e  p ressure  drop,  wi th  t h e  o v e r a l l  drop set equa l  t o  un i ty .  

The dynamic s i g n a l s  obtained from t h e  s t r a i n  gage p ressure  t ransducer ,  

mounted about 0.15 m (6 in.) downstream of pressure  t a p  C ,  provided no d a t a  

considered s i g n i f i c a n t  . The p r i n c i p a l  tube v i b r a t i o n  f requencies  were no t  
. . . . 

prominent. 
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Fig. 18. Heat exchanger drop (8 crosspass configuration) 



I TOP VIEW OF 
HEAT EXCHANGER 

TAPS A, E, AND I ON BOTTOM OF NOZZLE 
TAPS B,C, D, F,G, AND H ON SHELL IN PLANE OF FLOW 

. . ... . . . . . . . . . . . . . -. . . - . . - . . . 
. . 

NO TUBES- 
FULL BUNDLE , IN- WINDOW 

14 12 10 10 14 INCH NOZZLE.  
CASE I 2 3 4 5 

TAP I I I 1 

TAP LOCATION 
---- - .. 

: Fig.  19. Tap l o c a t i o n  and p ressure  drop d i s t r i b u t i o n  



V I I .  CONCLUDING REMARKS. 

The study is  motivated by t h e  need t o  ob ta in  tube v i b r a t i o n  d a t a  

from an a c t u a l  hea t  exchanger, a s  w e l l  a s  from f i e l d  experiences,  f o r  

use in eva lua t ing  and improving e x i s t i n g  p r e d i c t i o n  methods. Not unex- 

pectedly ,  the '  dynamic response of tubes  i n  an a c t u a l  u n i t  proved t o  be 

extremely complex. The complexit ies  are- assoc ia ted  wi th  t h e  tubes  not  

being p e r f e c t l y  s t r a i g h t ,  r e l a t i v e l y  s m a l l  tubelbaf f  l e  hole  c learances ,  

t h e  very l a r g e  number of t u b e l b a f f l e  . i n t e r f a c e s ,  and nonuniform flow. Lack 

of tube s t r a i g h t n e s s  coupled wi th  s m a l l  t ube lba f f l e ,  hole  c lea rances  impl ies  

t h a t  a t  the  many t u b e l b a f f l e  i n t e r f a c e s  t h e  tube support condi t ion  may 

vary from one of preload a g a i n s t  t h e  b a f f l e  t o  a f l o a t i n g  condi t ion  in 

which t h e  tube is  centered i n  t h e  b a f f l e  hole .  These cond i t ions  can be 
. . . . . . 

expected t o  vary wi th  opera t ing  cond i t ions  a s  t h e  s h e l l s i d e  flow induces 

a steady drag fo rce  on t h e  tubes  i n  t h e  flow d i r e c t i o n .  Such changes i n  

support cond i t ions  can be expected t o  e f f e c t  damping and, t o  a lesser 

degree, f requencies  and mode shape. The problem is compounded by t h e  l a r g e  

number of tubes  and t h e  p r a c t i c a l  d i f f i c u l t y  in not  being a b l e  t o  i n s t r u -  

ment a l l  tubes.  However, it w a s  poss ib le  t o  i d e n t i f y  groups of tubes  in 

s p e c i f i c  loca t ions  i n  t h e  tube bundle t h a t  were most suscep t ib le  t o  v ibra-  

t i o n  and t h a t  w e r e  among t h e  f i r s t  t o  experience f l u i d e l a s t i c  i n s t a b i l i t y .  

A t  in termedia te  flow rates, and a s  t h e  flow r a t e  was increased,  r a t t l i n g  

of t h e  tubes  wi th in  t h e i r  b a f f l e  suppor ts  was detec ted  on accelerometer 

s i g n a l s  and audibly.  The r a t t l i n g  would come and go a s  flow r a t e  w a s  

increased.  There are many f a c t o r s  t h a t  can inf luence  r a t t l i n g ,  one of t h e  

less obvious ones is  t h e  steady s t a t e  pressure  drop, t h a t  may a c t u a l l y  "seat" 

a tube at  higher flow r a t e s  and s top  r a t t l i n g  the re .  Many commercial hea t  

exchangers a r e  s a i d  t o  be opera t ing  s a t i s f a c t o r i l y  wi th  moderate r a t t l i n g ;  

however, ins tances  of f a i l u r e ,  sometimes a f t e r  many y e a r s  of service, have 



been reported.  It appears that '  more needs t o  be knowri about the  consequence- 

of r a t t l i n g .  

The onset  of f l u i d e l a s t i c  i n s t a b i l i t y  w a s  e a s i l y  detected by t he  abrupt 

increase  in audible  no ise  coming from t h e  u n i t .  From t h e  noise  alone it. 

is easy t o  understand how u n i t s  can shake themselves apa r t  in a very shor t  

per iod of time. Onset of i n s t a b i l i t y  could a l s o  be determined from the  

accelerometer s igna l s .  While t h e  c r i t i c a l  flow r a t e  could be r ead i l y  

es tab l i shed ,  t he  determination of which tubes  were undergoing la rge  ampli- 

tude motions and impacting was not so e a s i l y  made. Because of coupling 

through t h e  water and s t ruc tu r e  one could not be c e r t a i n  t h a t  a p a r t i c u l a r  

tube w a s  impacting j u s t  because t h e  accelerometer in that tube indicated 

an impacting condit ion.  Some ins igh t  could be gained by backl ight ing t he  
. . . . . . . . . . 

tube bundle and- v i s u a l l y  not ing which tubes  were v ib r a t i ng  t h e  most. - A . .  

more pos i t i ve  ind ica t ion  w a s  f o r t u i t ous ly  provided by t he  f a c t  t h a t  t he  

tubes  undergoing l a rge  motion would r o t a t e  and move a x i a l l y  thus  allow5ng 

easy i d e n t i f i c a t i o n  from t h e  end of the  bundle. By t h i s  method it w a s  

determined t h a t  t h e  four-span tubes  i n  t h e  row adjacent t o  t h e  row saddled 

i n  t h e  b a f f l e  cu t  and in t h e  region where t he  b a f f l e  cu t  meets t he  s h e l l  

experienced f l u i d e l a s t  i c  i n s t a b i l i t y .  

Since t h e  heat  exchanger i s  complex with respect  t o  s t r u c t u r e  and flow 

f i e l d ,  the  t e s t  r e s u l t s  indicated some sub t l e  and some not  so sub t l e  changes 

from t c ~ t  t o  t e a t  a~ r c f l c c t e d  in the e a s t t e r  of data seen on F igs .  10-17. 

Nevertheless, t h e  c r i t i c a l  flow r a t e  associa ted with f l u i d e l a s t i c  i n s t a b i l i t y  

of t h e  f u l l  tube bundle conf igurat ion was reasonably repeatable .  I n l e t /  

o u t l e t  nozzle s i z e s  did  not  have much inf  luence on t h e  c r i t i c a l  flow r a t e  

as flow was increased; however, once t r iggered ,  t he  tube bundle exposed t o  

t h e  10 inch nozzles d id  not  recover from the  i n s t a b i l i t y  u n t i l  . the  flow 

w a s  reduced much below the  l e v e l s  s u f f i c i e n t  f o r  t he  12 and 14 inch nozzle 



t e s t s  a s  indicated on Fig. 7.  A t  t h i s  time no explanation can be o f fe red  

forthisphenomenon; t h i s  w i l l  be of i n t e r e s t  during fu tu r e  t e s t  work. 

The use of tube v ib r a t i on  da ta ,  obtained from t h e  t e s t  heat  exchanger, 

t o  evaluate  and improve state-of-the-art p red ic t ion  methods i s  t h e  ob jec t ive  

of f u tu r e  work. Nevertheless, it is  of i n t e r e s t  t o  p re l iminar i ly  evaluate  

t h e  a p p l i c a b i l i t y  of the  cur ren t ly  used' c r i t e r i o n  f o r  es t imat ing the  onset 

of f  l u i d e l a s t  i c  i n s t a b i l i t y .  The f  l u ide l a s t  i c  mechanism of i n t e r e s t  w a s  

f i r s t  reported by Connors [7]: A tube a r ray  becomes unstable  and v i b r a t e s  

with l a rge  amplitude motion when, f o r  a given tube motion, t h e  energy input 

from the  flow exceeds the  energy d i ss ipa ted  through damping. For an 

ideal ized tube bundle exposed .to uniform crossflow, ' t he  c r i t i c a l  flow 

ve loc i t y  above which la rge  amplitude tube v ib r a t i ons  occur is  character ized 
. . . . . . 

where 

- 
U = reduced ve loc i ty  ( rec iproca l  Strouhal number) 

c r  

U = c r i t i c a l  mean flow ve loc i ty  i n  gap between adjacent tubes  
c r  

, f = tube natural frequency 

D = tube outs ide  diameter 

m = v i r t u a l  m a s s  p e r  u n i t  length of tube 
v 

8 = 21~5 = log decrement of damping 
I 

p = densi ty  of she l l s i de  f l u i d  

K = i n s t a b i l i t y  threshold constant  depending, i n  p a r t ,  on t he  layout 

of the  tube pa t t e rn .  

For a p a r t i c u l a r  tube bank, Eq. (1) can be solved f o r  t h e  c r i t i c a l  flow 

ve loc i ty ,  U the  tubes  w i l l  be s t a b l e  o r  unstab.le when the  a c t u a l  crossflow 
. c r  ' 

ve loc i t y  U is lower o r  h igher ,  respect ively ,  than Ucr. 



Solution.  of Eq . (1)  r e q u i r e s  knowledge of t h e  mean f low v e l o c i t y  i n  

t h e  t r ansverse  gap, damping, tube n a t u r a l  frequency, and i n s t a b i l i t y  cons tan^. 

There a r e  d i f f i c u l t i e s  a ssoc ia ted  wi th  t h e  establishment of each of these  

parameters. I n  p a r t i c u l a r ,  f o r  t h e  case  of multi-span tube a r r a y s  and 

s i g n i f i c a n t  spanwise v a r i a t i o n s  i n  flow v e l o c i t i e s  , as genera l ly  occur i n  
. . 

r e a l  heat  exchangers, it i s  necessary t o  consider an e f f e c t i v e  flow v e l o c i t y  

f o r  each mode [8 ,9] ,  obtained by weighting t h e  crossf low v e l o c i t y  wi th  
. . 

t h e  mode shape and i n t e g r a t i n g  over t h e  span length .  I n  c e r t a i n  hea t  
. . 

exchanger a p p l i c a t i o n s ,  spanwise v a r i a t i o n s  in dens i ty  can a l s o  occur and 

i n  such c a s e s  should be t r e a t e d  i n  a s i m i l a r  manner. Damping i s  d i f f i -  

c u l t  t o  measure and genera l ly  can be expected t o  be a func t ion  of flow rate 

and v i b r a t i o n  amplitude, and t o  vary from tube t o  tube.  With regard  t o  
. . . . . . . . . .  . .  

frequency and mode shape, f l u i d - s t r u c t u r e  coupling toge the r  wi th  t h e  mult i-  

s p a n  condi t ion  r e s u l t s  i n  bands of c l o s e l y  spaced f requencies ;  i t  is o f t e n  
. . . . 

d i f f i c u l t  t o  determine a p r f o r i  i n  which mode t h e  i n s t a b i l i t y  w i l l  occur. 

I n  applying Eq. (1) t o  t h e  f u l l  tube  bundle conf igura t ion of t h e  test 

h e a t  exchanger, it should be noted t h a t ,  i n  t h e  absence of measured va lues  

of flow v e l o c i t y ,  mean flow v e l o c i t y  was computed from measured f low r a t e ;  

on ly  very rough es t ima tes  of equivalent  v iscous  damping f a c t o r s  were p o s s i b l e ;  

and a t y p i c a l  tube v i b r a t i o n  frequency was assumed. Data from Run 50, 

performed wi th  10 inch i n l e t  /out l e t  nozzles ,  provide 

U = 2.80 m/s (9.20 f t / s e c )  mean gap flnw veloci- ty (cal+culatad) 
cr 

3 
based on 0 .I97 m /s (3130 gal/min) measured loop flow rate, 

f  = 37.1 Hz, t y p i c a l  tube  v i b r a t i o n  frequency, 

and D = 19.05 mm (0.625 f t )  tube  diameter ,  

r e s u l t i n g  i n  



This is the  lowest c r i t i c a l  reduced ve loc i ty  encountered f o r  t h e  8 crosspass ,  

f u l l  tube bundle; based on the  generally observed c r i t i c a l  flow r a t e  of 

3250 gal/min (Table 7) and a na tu ra l  frequency of 32.2 Hz determined in 

s t i l l  water, a 

- u = 4.74 , 
c r  

would have been obtained. - For ' t he  subject  tests, the  mass of t he  tube 

(mtube ) is 0.597 kg/m (0.0335 l b / i n . ) ,  which, with t he  added mass of t he  

.displaced water mul t ip l ied by a f ac to r  of 2.97, provides 

m = 1'.44 kg/m (0.0808 . lb/ in. .) .  v 

With d = 0.22, based on 5 = 0.035, and 

3 3 3 p = 10 kg/m (0.0361 lb / in .  ), 

the  damping parameter m 6 / p ~ 2  = 0.875. Using t = 3.96 t o  solve Eq. (1)' 
v c r  

f o r  t he  i n s t a b i l i t y  constant  ob ta ins  

K = 4.23 . . . 

Within..the scope of t h i s  ana lys i s ,  t h i s  value of K i s  considered t o  be low 

and conservative because input values  of m and 6 were taken on t he  high and v 
. . 

on t h e  low s ide ,  respect ively .  It is of i n t e r e s t  t o  note t h a t  t h i s  
c r  

value of K agrees favorably with the  value of 3.3 recommended by Pett igrew 

e t  al.. [9] as. a guideline f o r  v ib ra t ion  ana ly s i s  which allows a r e a l i s t i c  

s a f e ty  mar gin. 

The NTIW bundle was exposed t o  flow r a t e s  up t o  5030 gal/min, providing 

a computed crossflow ve loc i t y  of 4.70 m / s  (15.4 f t / s e c )  . However, with a 

na tu r a l  tube frequency (e . g., f = 119 Hz) muche higher than t h a t  of t h e  

tubes  in t h e  window of the full bundle, t he  highest  reduced flow ve loc i ry  
. . 

t h a t  could be imposed was 

not. s u f f i c i e n t  t o  induce a flow i n s t a b i l i t y  of the tubes. 



The d a t a  presented here  a r e  not  n e c e s s a r i l y  f i n a l ;  it is hoped t h a t  

t h e  planned eva lua t ion  of test  'and f i e l d  experience d a t a ,  poss ib ly  i n  con- 

junct ion wi th  more improved r e l a t i o n s h i p s  by t h e  resea rchers  in  t h e  f i e l d ,  

w i l l  provide b e t t e r  i n s i g h t s  i n  t h e  f u t u r e .  

I n  c l o s i n g ,  t h i s  e f f o r t  has ,  wi th in  t h e  l i m i t s  of t h e  experiments 

performed , provided t h e  fol lowing : 

V e r s a t i l e  test heat  exchanger a v a i l a b l e  f o r  tube v i b r a t i o n  t e s t i n g  

Observation of tube  r a t t l i n g  in b a f f l e s  i n i t i a t e d  a t  about h a l f  of 

critical t J n w  ra te  

Critical f low rate? d e t e r r n i n ~ d  fnr f v l l  tube bundla conf igura t ion 

c r i t i c a l  flow r a t e  shown t o  be not  much influenced by nozzle s i z e  

when f low 'was measured 

Small nozzle  s i z e  r e s u l t e d  i n  "hysteres is"  a s  f low was reduced 

No-tubes-in-window' conf igura t ion  d i d  no t  become unstable  wi th in  

reasonable flow r a t e s  t e s t e d  

I s o l a t e d  t i e  b a r s  of NTIW bundle can v i b r a t e  

Pressure  drop d i s t r i b u t i o n  d a t a  determined a r e  considered important 

f o r  computer program input /evaluat  ion . 

Preliminary determination of f l u i d e l a s t i c  i n s t a b i l i t y  threshold  

constant  showed t o  be i n  good agreement with recommended design 

prac t i ce  

I n  add i t  ion ,  

Data bank of f i e l d  experience d a t a  was i n i t i a t e d  [2 ]  

Program s t a f f  e s t a b l i s h e d  con tac t  wi th  hea t  exchanger . i n d u s t r y .  
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APPENDIX A 

P r i n c i p a l  Test Instrumentat  ion  

Turbine flow meters 
Foxboro 

Flow r a t e  reading u n i t s  
Flow Technology 

Programmable r a t e  i n d i c a t o r s ,  Model PRI-3 

D i f f e r e n t i a l  p ressure  t ransducers  
Via t ran ,  Model 209 
Pressure range: f 50 p s i d  b i d i r e c t i o n a l  

D i g i t a l  t ransducer i n d i c a t o r  (used with d i f f e r e n t i a l  p ressure  
t ransducer)  
Doric, S e r i e s  420 

Miniature accelerometers,  internal- to-tube mounted 
Endevco, Model 22 

External ly  mounted accelerometers 
Endevco, Model 2271A 

*, Charge a m p l i f i e r s  
Endevco, Model 2735 

Subminiature dynamic p ressure  t ransducers  
Sensotec, Type K 
Pressure range 0-200 p s i a  

Bridge condi t ioner  
Unholtz-Dickie, Model No. D22 

Fast  Fourier  t ransform analyzer 
. H e w l e t t  Packatd, Model. 5451 B 

Tape recorder  
Ampex PR-3000 



APPENDIX B 

Prepara tory  Test Work 

During t h e  e a r l y  phases of t h e  program when t h e  test heat  exchanger 

w a s  in t h e  design and f a b r i c a t i o n  s t ages ;  explora tory  bench tests were 

performed t o  determine t h e  in-air n a t u r a l  f requencies  and damping of a 

19.1  mm (0.75 in . )  O.D. nea r  p ro to typ ic  tube ,  which was mounted wi th  

O-rings i n  simulated tubesheets  spaced about 2 m (80 i n . )  a p a r t  and sup- 

por ted  by a midspan b a f f l e .  The purpose of these  tests w a s  a )  . t o - v e r i f y  

that t h e  O-ring mounting system provided tube frequency response t h a t  cor-  

responded t o  clamped r a t h e r  than simply supported end conditions and b )  t o  

i n v e s t i g a t e  t h e  e f f e c t  of b a f f l e  hole  c learance  on t h e  tube  n a t u r a l  frequency. 

The frequency response of t h e  tubes  was determined a t  t h r e e  d i f f e r e n t  

e x c i t a t i o n  input  power l e v e l s .  The tests were conducted wi th  va r ious  

c e n t r a l  s imulated b a f f l e s  providing d i f f e r e n t  tube t o  baff le-hole  c learances .  

The test  r e s u l t s  were a s  fol lows:  The n a t u r a l  f requencies  were found t o  

be near t h e  va lues  c a l c u l a t e d  from clamped end condi t ions .  The n a t u r a l  

f requencies  decreased s l i g h t l y  wi th  inc reas ing  e x c i t a t i o n ,  i.e. , v i b r a t i o n  

amplitude l e v e l s ,  and, genera l ly ,  a l s o  wi th  inc reas ing  tubelbaf f l e  c learances .  

A t  t h e  fundamental n a t u r a l  frequency, t h e  equivalent  v iscdus  damping r a t i o  

was approximately 0.03. During tests wi th  l a r g e  c lea rances ,  v i b r a t i o n s '  at  

a frequency c h a r a c t e r i s t i c s  of a s i n g l e  span, i .e., no c e n t r a l  support ,  were 

evident. 




