

28
7-1-80
JUL 15
50 NTIS

ornl

OAK
RIDGE
NATIONAL
LABORATORY

OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

MASTER

ORNL/MIT-303

Reaction Modeling of an Atmospheric Fluidized-Bed Coal Combustor

J. S. Sood
S. K. Fok
J. H. Friedman

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A04; Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/MIT-303

Contract No. W-7405-eng-26

EMPLOYEE RELATIONS DIVISION

REACTION MODELING OF AN ATMOSPHERIC FLUIDIZED-BED COAL COMBUSTOR

J.S. Sood
S.K. Fok
J.H. Friedman

Consultant:
A.A. Khan

Date Published - June 1980

✓ Oak Ridge Station
School of Chemical Engineering Practice
Massachusetts Institute of Technology
K.J. Fallon, Director

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830
Operated by
Union Carbide Corporation
for the
Department of Energy

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

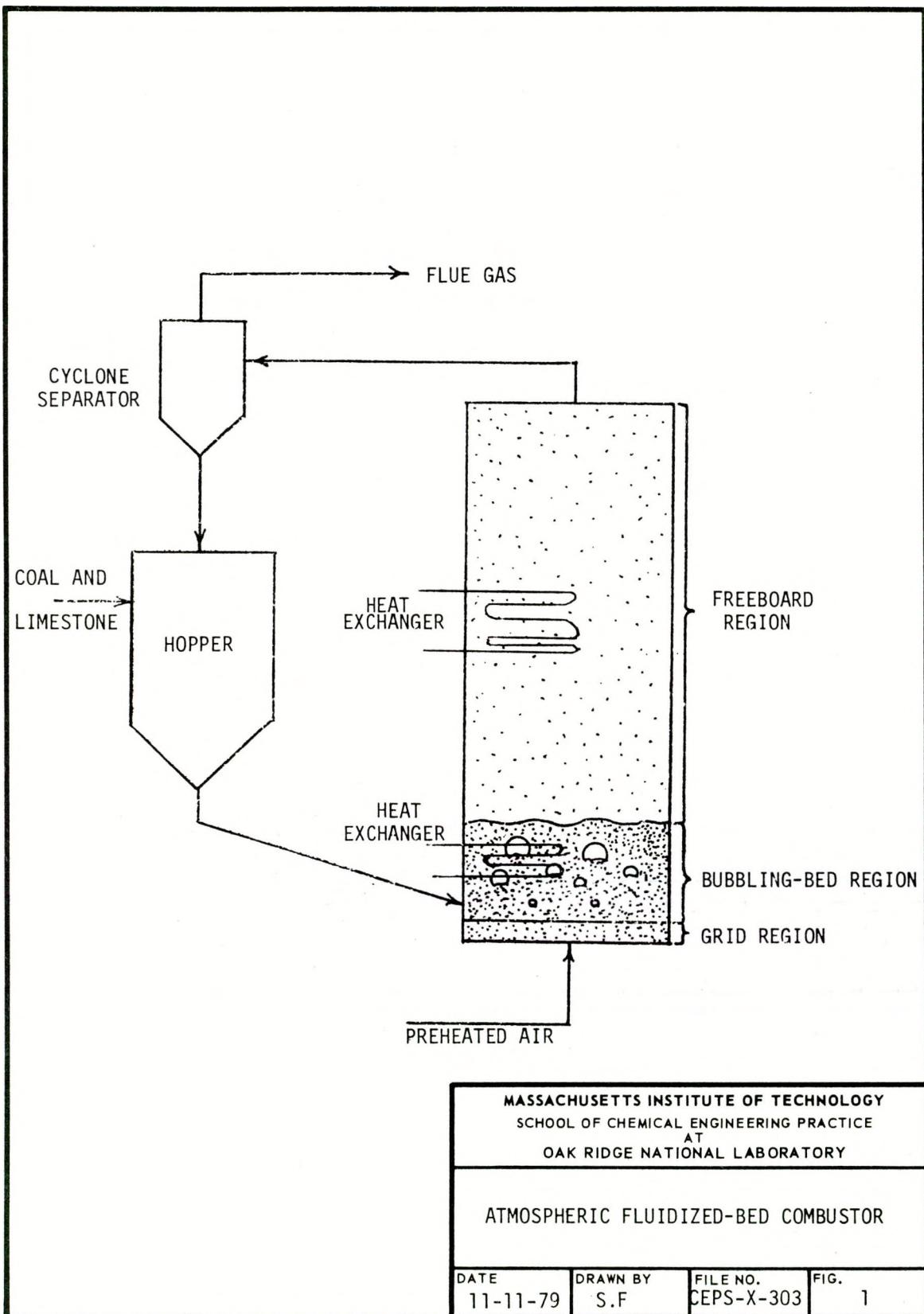
ABSTRACT

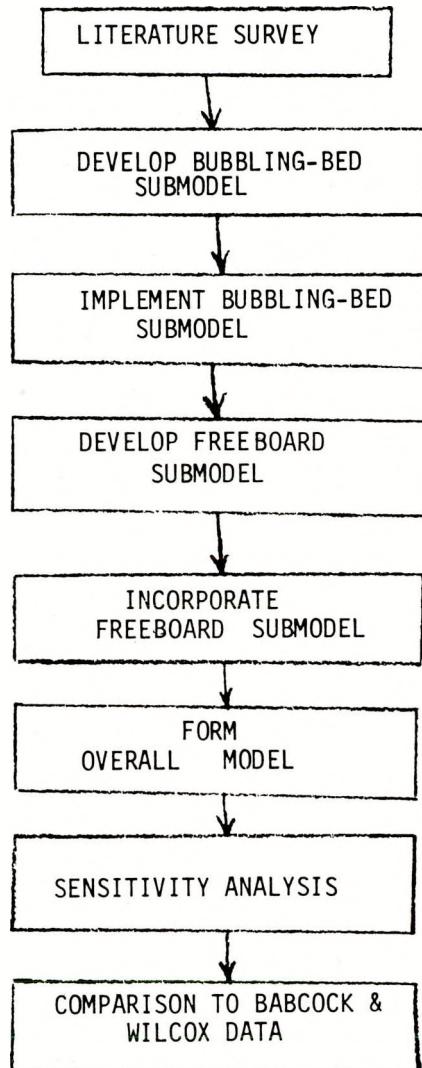
A model of an atmospheric fluidized-bed combustor of coal was developed to account for combustion in both the bubbling-bed and freeboard regions. The bubbling bed was modeled by the method of Louis and Tung, while the freeboard model assumed undispersed gas and solid phases. Comparison of feed, bed, and elutriant particle-size distributions obtained from the model indicated realistic qualitative predictions. Parametric sensitivity analyses with respect to bed temperature, superficial velocity, and coal feed rate indicated physically realistic trends. Inclusion of the freeboard region slightly increased predicted combustion efficiencies but led to values which exceeded those reported from the Babcock and Wilcox facility. On the other hand, the model underpredicted those values when the freeboard was excluded. The main weakness of the present model results from dependent inputs which must be calculated *a priori* to maintain consistency.

Contents

	<u>Page</u>
1. Introduction	1
2. Model of the Fluidized-Bed Combustor	4
2.1 Overall Structure of the AFBC Model	4
2.2 Bubbling-Bed Region Submodel	4
2.3 Freeboard Submodel	7
3. Results and Discussion	8
3.1 Model Predictions of Particle-Size Distributions	8
3.2 Sensitivity Analysis	12
4. Conclusions	14
5. Recommendations for Future Study	17
6. Acknowledgments	17
7. Appendix	18
7.1 Derivation of Bubbling-Bed Submodel	18
7.2 Derivation of the Freeboard Submodel	23
7.3 Input Specification	23
7.4 Computer Programs	30
7.5 Nomenclature	46
7.6 Program Variables	48
7.7 Literature References	50

1. INTRODUCTION


Atmospheric fluidized-bed combustors (AFBC's) of coal are being recognized as attractive alternatives to conventional boilers. Due to high heat-generation rates and high heat-transfer coefficients, these reactors are energetically efficient. In addition, high-sulfur coals can be burned without unacceptable SO_2 emissions by controlling the loading of limestone or dolomite, while NO_x formation is inhibited by the low temperature of combustion (4). The low requirement of excess air is a further advantage. In view of these merits, significant effort is being directed toward bringing this technology to commercial application.


The AFBC consists primarily of a reactor vessel and auxiliary equipment for the recycle of fines (Fig. 1). Water is passed through heat exchangers to produce steam in both the bed and freeboard region of the combustor. Crushed, screened coal and limestone are pneumatically conveyed in air to the bottom of the vessel. Preheated air in excess of stoichiometric amount is blown through a bubble-cap distributor to fluidize the solid particles.

The combustion chamber may be divided into three regions corresponding to different hydrodynamic regimes. In the "grid" region at the base of the reactor, the volatile matter near the surface of the coal particles is burned rapidly. The bubbling bed is formed above the grid where a dense emulsion phase is agitated by the rising bubbles. Most combustion of carbon is believed to occur in this region. As coal particles become smaller, their transport velocity becomes less than the superficial velocity of the air, and they are elutriated into the 'freeboard' region. Solids may also leave the bed by overflow. Any solids which are not consumed in the freeboard are separated from the flue gas by a cyclone separator and are then recycled for further combustion.

Previous studies of AFBC's have included sophisticated models developed by the MIT Energy Laboratory (6) and Oak Ridge National Laboratory (unpublished work). Most models neglect combustion in the freeboard, although a recent study by Yates and Rowe indicated the importance of this region in fluidized catalytic processes (9). It was suggested to the authors that the contribution of the freeboard to the overall performance of an AFBC might also be quite significant (3). Therefore the objective of this project was to develop a simple model which considered combustion in both the bubbling-bed and the freeboard regions.

The approach taken is summarized by the flow diagram in Fig. 2. First, a submodel was formulated to calculate combustion efficiency in the bubbling-bed region from specified input data. Another submodel was then formulated for the freeboard, and the two were incorporated to predict the overall combustion efficiency of the AFBC. Sensitivity analyses were conducted on both the bubbling-bed and the overall models to assess behavior with respect to selected input parameters. Predicted results were compared with experimental data from the Babcock and Wilcox 6'x6' pilot facility (1).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMICAL ENGINEERING PRACTICE
AT
OAK RIDGE NATIONAL LABORATORY

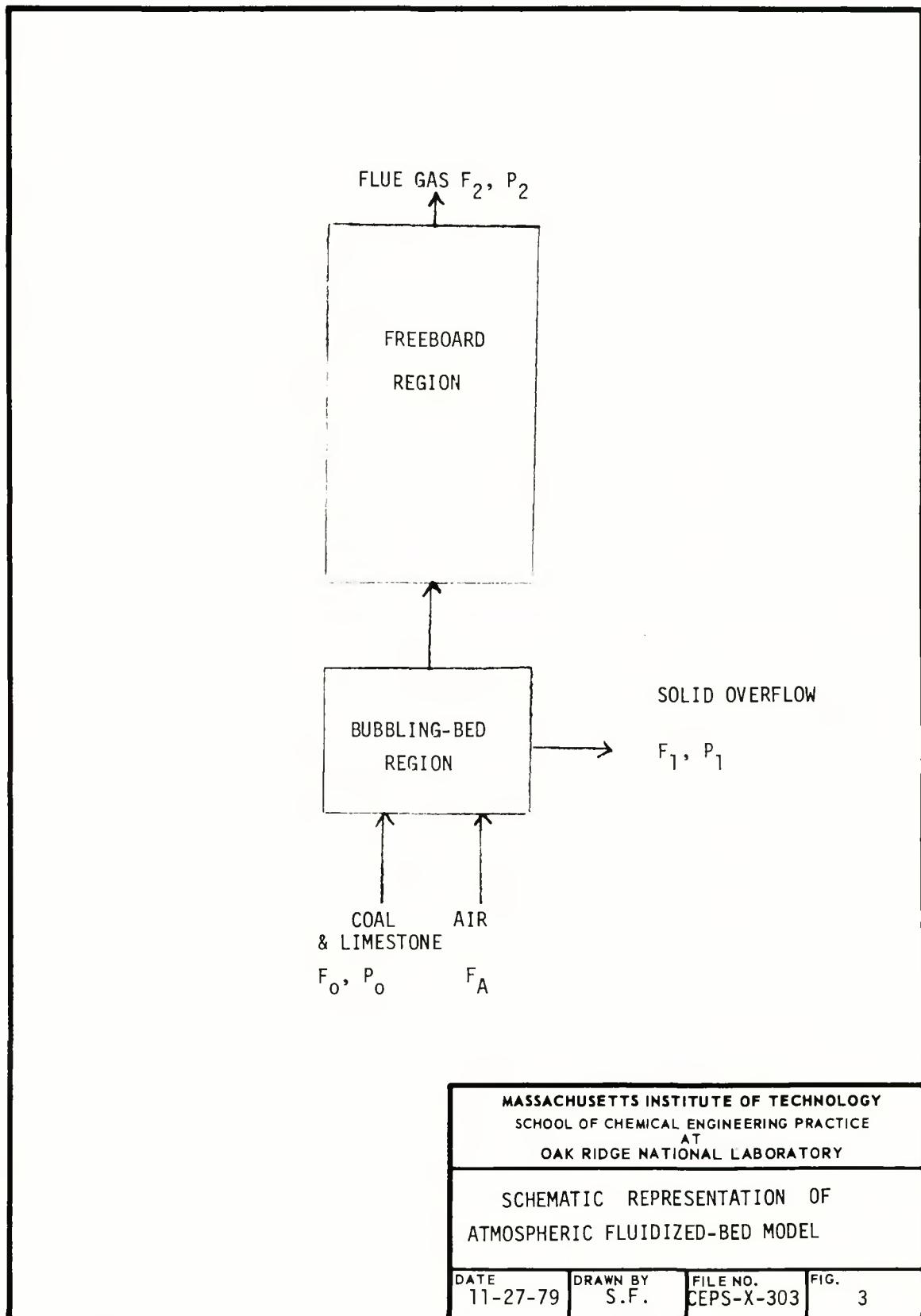
FLOWCHART OF THE METHOD OF
APPROACH

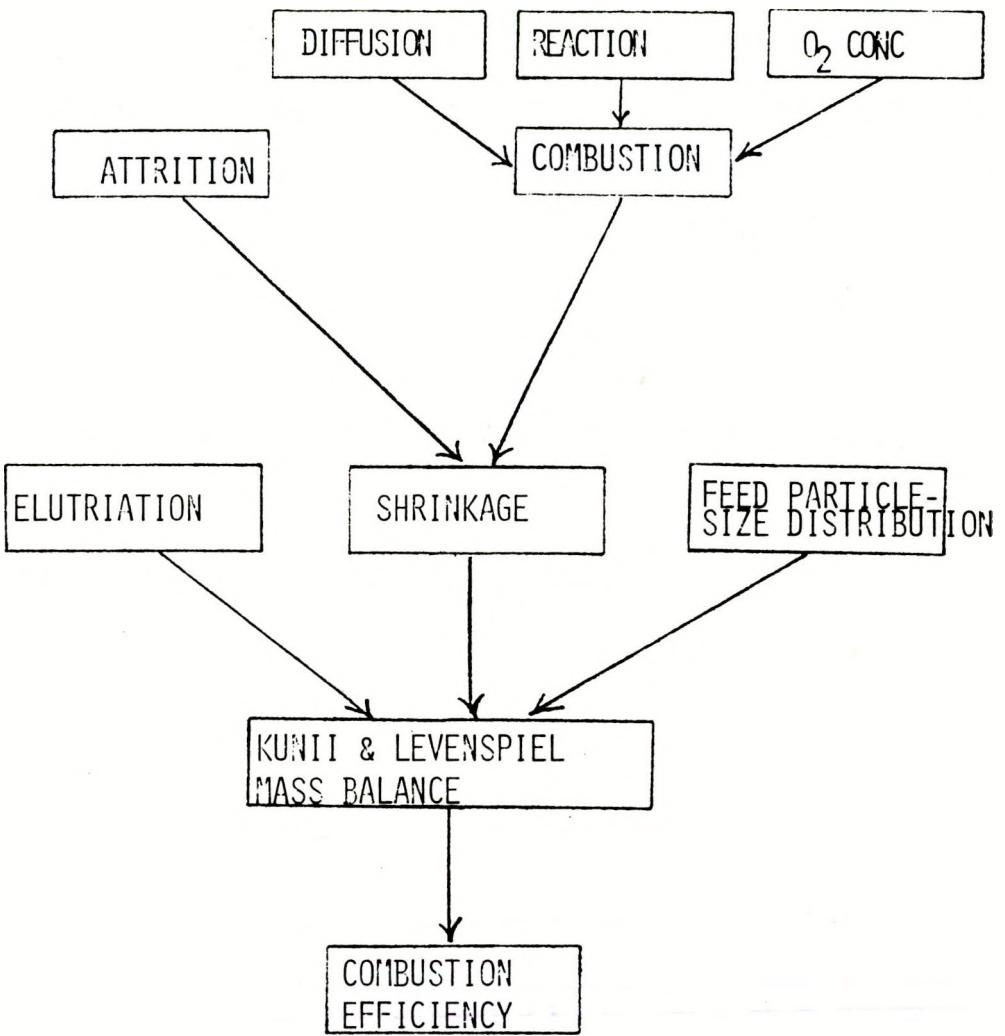
DATE 11-27-79	DRAWN BY S.F.	FILE NO. CEPS-X-303	FIG. 2
------------------	------------------	------------------------	-----------

2. MODEL OF THE FLUIDIZED-BED COMBUSTOR

2.1 Overall Structure of the AFBC Model

A conceptual model of the AFBC is presented in stages for the bubbling-bed and freeboard regions (Fig. 3). The major input parameters included characteristics of the solid and air feeds (Table 1 in Sect. 2.2), while the outputs from the model primarily included characterization of solids in both the overflow and the flue-gas streams. From these parameters, the combustion efficiency was calculated.


For simplicity, the recycle of fines was ignored. In addition, many simplifying assumptions were made for the hydrodynamics in the combustor. These are explained in the following sections.


2.2 Bubbling-Bed-Region Submodel

We based the bubbling-bed submodel on the work of Louis and Tung (6), who modeled this region as two phases. Bubbles which rise through the bed and agitate the emulsion phases were assumed to be in plug flow, while the emulsion phase itself was treated as a continuous stirred tank. The growing bubbles were approximated by an intermediate bubble size of diameter equal to the tube spacing of the heat exchanger. Since all coal particles are in the dense phase and since previous investigators believe that combustion occurs primarily at the surface of the particles (2), we assumed that the combustion reaction occurred only in the emulsion phase.

The interactions of all the physical phenomena considered in this model are illustrated in Fig. 4. At the center of the bubbling-bed submodel is the mass balance proposed by Kunii and Levenspiel, who treated particle shrinkage over a wide particle-size distribution of feed (5). The overall mass balance accounts for coal burned in the bed, transported in the overflow, and carried over by elutriation. A differential mass balance which accounts for shrinkage in and out of particle-size intervals is integrated over the particle-size distribution and is incorporated into the overall mass balance.

Correlations from the literature were used to model particle-size distribution, particle shrinkage, and elutriation. A modified Rosin-Rammler distribution function (8) was fitted to sieve-analysis data of Babcock and Wilcox (1), which contained a wide range of particle sizes to characterize the coal feed (see Appendix 7.3.1). Particle shrinkage depends on both attrition and combustion. Attrition can result from thermal effects as well as from collisions of particles with one another and with heat-exchanger tubes. The phenomena were modeled by using a Merrick-Highley correlation (see Appendix 7.1). The rate of combustion is a function of the oxygen concentration in the emulsion phase, the rate of oxygen diffusion to the surface of the particle, and the rate of surface

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 SCHOOL OF CHEMICAL ENGINEERING PRACTICE
 AT
 OAK RIDGE NATIONAL LABORATORY

OVERALL STRUCTURE OF THE
 BUBBLING-BED SUBMODEL

DATE 11-15-79	DRAWN BY S.F.	FILE NO. CEPS-X-303	FIG. 4
------------------	------------------	------------------------	-----------

reaction. Beer (3) developed an expression for shrinkage rate which we incorporated into the present model. Elutriation occurs when the required transport velocity of the shrinking particle becomes less than the superficial gas velocity. We also used the Merrick-Highley (7) correlation to treat this process (Appendix 7.1).

The inputs and outputs of the bubbling-bed submodel are listed in Table 1. Detailed calculations of the input parameters, which may be found in Appendix 7.3.2, correspond to Babcock and Wilcox pilot-plant operation.

Table 1. Input and Output Parameters of the Bubbling-Bed Submodel

Inputs:	bed dimensions
	coal feed rate and size distribution
	coal composition
	air feed rate
	air superficial velocity
	bed temperature
	physical properties of coal and gas
Outputs:	elutriant particle-size distribution
	overflow rate

2.3 Freeboard Submodel

The extent of the combustion of the coal particles elutriated from the bubbling bed is calculated in the freeboard submodel. The inputs and outputs of the submodel are shown in Table 2, and a detailed derivation of the mathematics is given in Appendix 7.2.

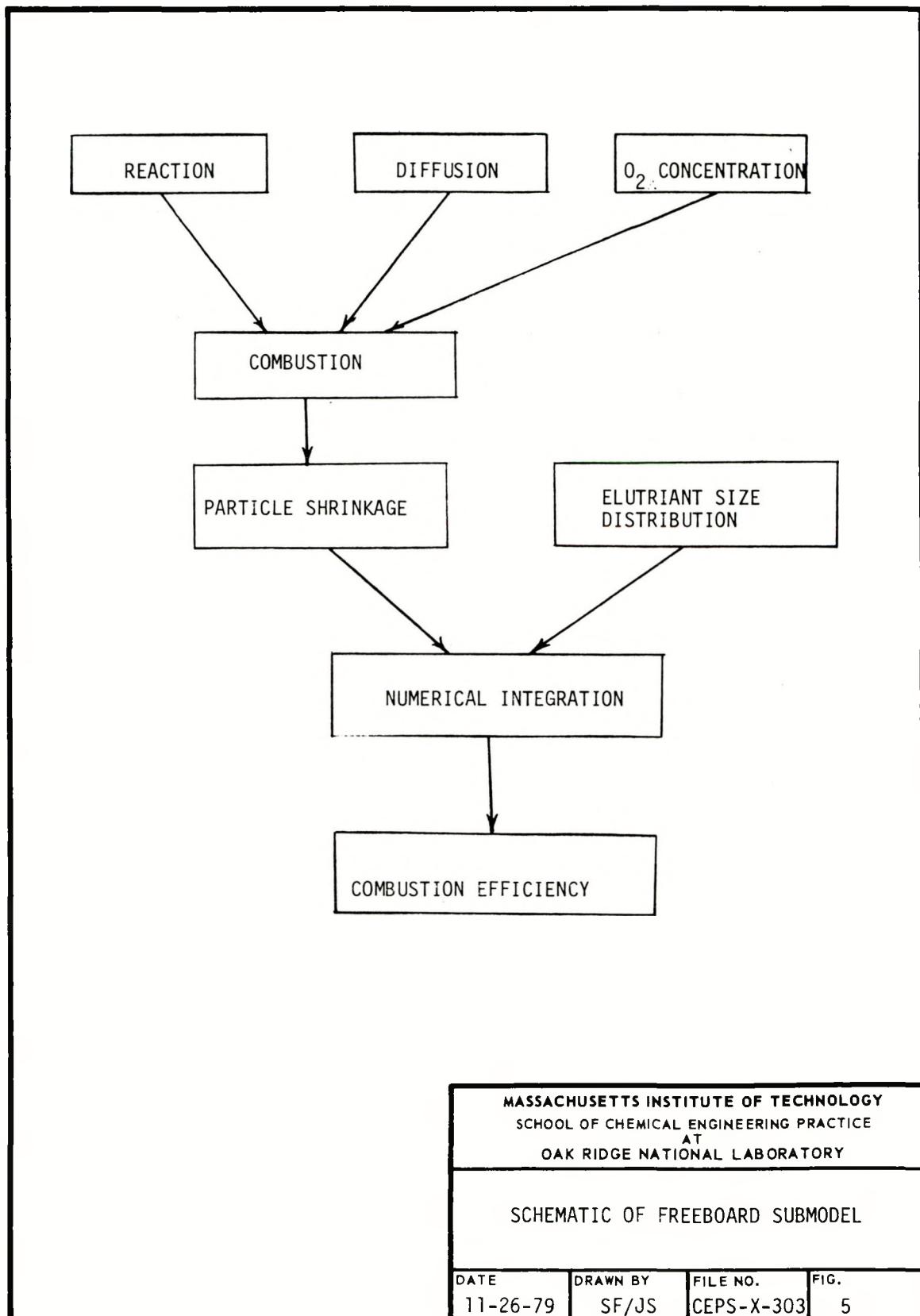
Table 2. Input and Output Parameters of the Freeboard Submodel

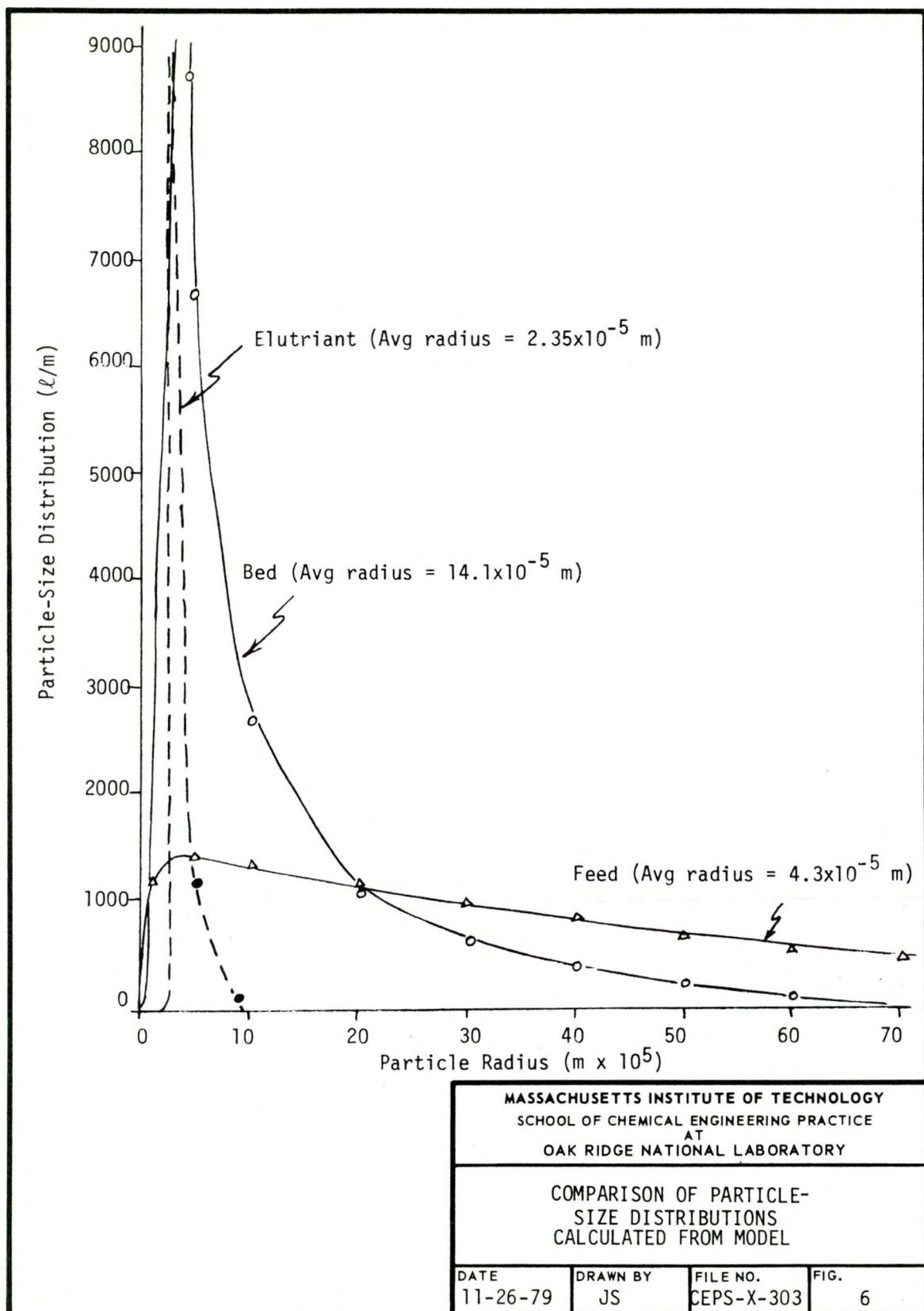
Inputs:	elutriant particle-size distribution
	physical properties of coal and gas
	coal composition
	bed temperature
	temperature at freeboard heat exchanger
	freeboard dimensions
Outputs:	extent of combustion in the freeboard

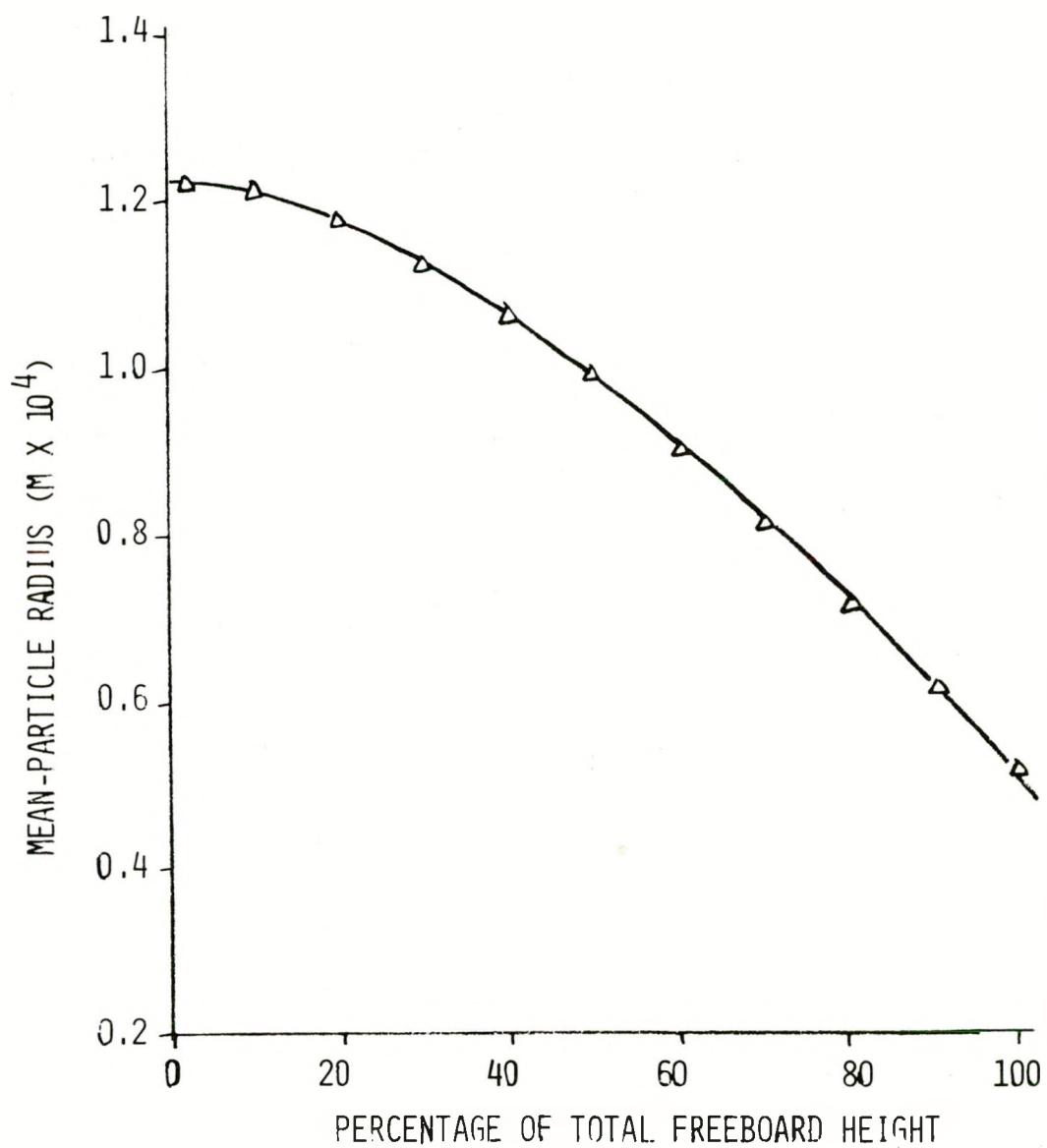
We assumed that all particles in the freeboard were transported without backmixing at the same velocity. The oxygen concentration can be considered

constant, because the volume of gas in the freeboard is large relative to the amount of combustion occurring there. The particle-combustion model is identical to the one used in the bubbling-bed region (Appendix 7.1). The rate of particle shrinkage is considered only as a function of temperature, oxygen concentration, and particle radius. These parameters can describe the particle in the freeboard environment as well as in the emulsion phase of the bubbling bed. Because the number of particles in the freeboard is low relative to the volume, there is little interaction between particles, and attrition may be neglected. The interaction between the segments of the freeboard submodel are shown in Fig. 5.

3. RESULTS AND DISCUSSION


3.1 Model Predictions of Particle-Size Distributions


By using the input data shown in Table 3, model predictions of bed and elutriant particle-size distributions were compared with the feed distribution (Fig. 6). The feed contained a wide distribution with an average particle radius of 431 μm . The bed distribution, with an average radius of 141 μm , was more sharply peaked and skewed toward the y-axis. Elutriated particles were nearly uniform at a radius of 23.5 μm . The results seem physically cogent since particles shrink in the bed until they are elutriated as fines. No experimental data were available to confirm these predictions.


Table 3. Input Parameters - Base Case

Air feed rate	2.264 kg/s
Coal feed rate	1.084 kg/s
Bed height	1.22 m
Bed temperature	1144 K
Superficial velocity	2.5 m/s
Excess air	0.18
Void fraction in bed	0.45
Bed weight	3500 kg

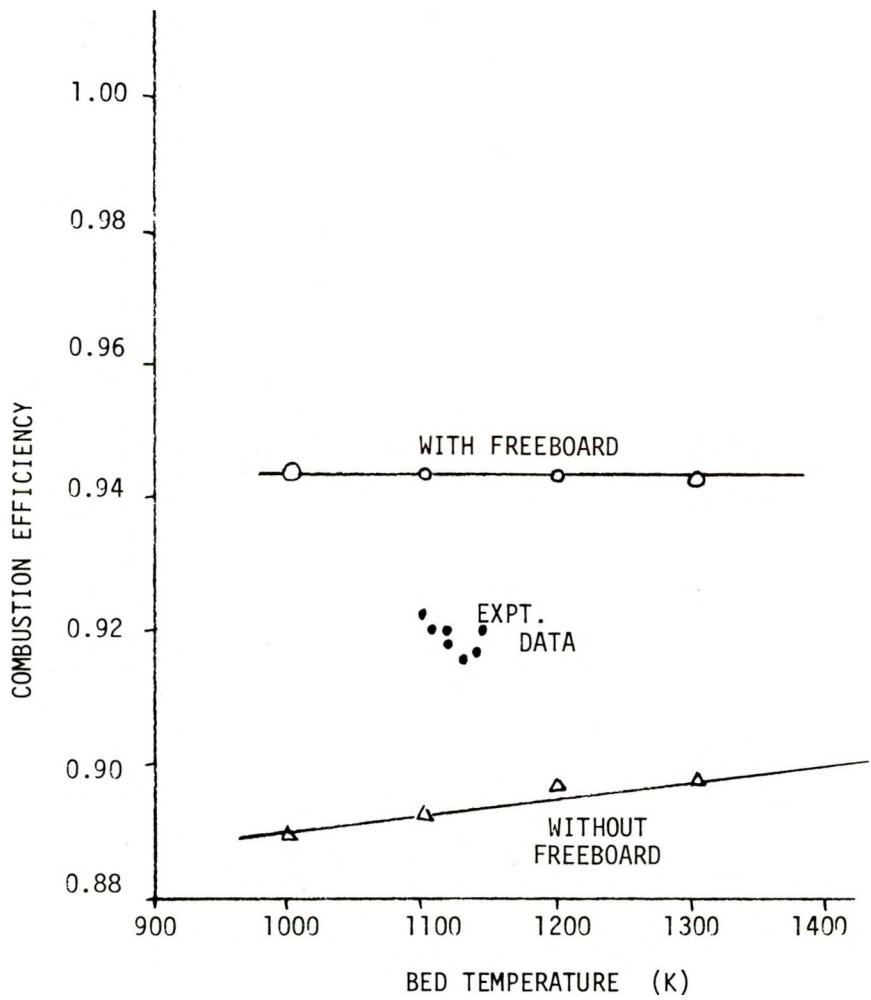
In the freeboard region of the model, the mean-particle radius was monitored as a function of height in the freeboard (Fig. 7). The mean-particle size was reduced dramatically with height, which indicated that the freeboard significantly contributed to particle shrinkage.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMICAL ENGINEERING PRACTICE
AT
OAK RIDGE NATIONAL LABORATORY

MEAN-PARTICLE RADIUS VERSUS
PERCENTAGE FREEBOARD HEIGHT

DATE	DRAWN BY	FILE NO.	FIG.
11-26-79	S.F.	CEPS-X-303	7

3.2 Sensitivity Analysis


The combustion efficiency predicted by the model was tested for sensitivity with respect to three input parameters: gas temperature, gas superficial velocity, and coal feed rate. Input parameters which were representative of the Babcock and Wilcox combustor operation were selected for a base case around which the test parameters were individually varied. All cases were run both with and without the freeboard submodel to isolate its effects on the combustion efficiency prediction. Experimental data from Babcock and Wilcox pilot plant (1) were compared with the model predictions.

The present structure of the model does not guarantee internal consistency because it is possible to specify physically intractable combinations of inputs. The interdependencies of input parameters for which the model does not account are shown in Table 4. For the sensitivity analysis, input parameters were varied in ranges where the interactions should not seriously affect model performance. Coal feed rate is the most independent parameter. The superficial velocity only shows the relative influence of the freeboard model; an absolute comparison of the curves may not be valid because u_0 was varied independently. Finally, the insensitivity of the model to temperature suggests the need to account for input interactions.

Table 4. Input Parameter Interaction Not Considered in Model

	Volumetric Air Flow Rate	Expanded Bed Height	Gas Temperature	Molar Density of Incoming Air
Volumetric air flow rate		x		
Gas temperature		x		x
Mass density of incoming air			x	x
Gas diffusivity			x	
Gas viscosity			x	
Superficial velocity	x	x	x	x
Amount of excess air	x			
Height of freeboard		x		

The sensitivity of combustion efficiency to gas temperature, which was varied between 1000 and 1300 K, is shown in Fig. 8. Without the inclusion of combustion in the freeboard, a slight linear increase in efficiency was approximately constant at 0.943. Higher temperatures decrease

(Operating Conditions
given in Table 3.)

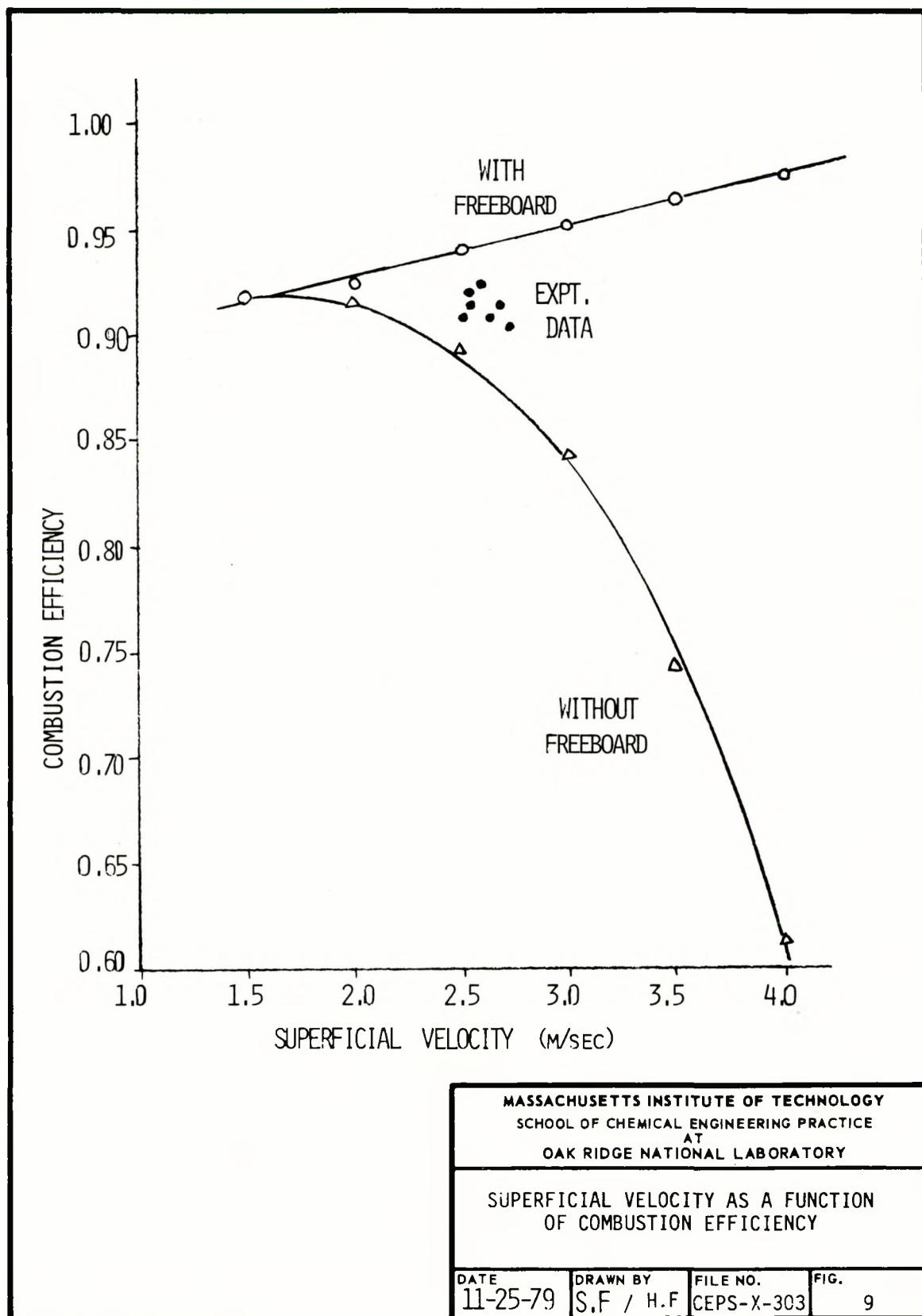
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMICAL ENGINEERING PRACTICE
AT
OAK RIDGE NATIONAL LABORATORY

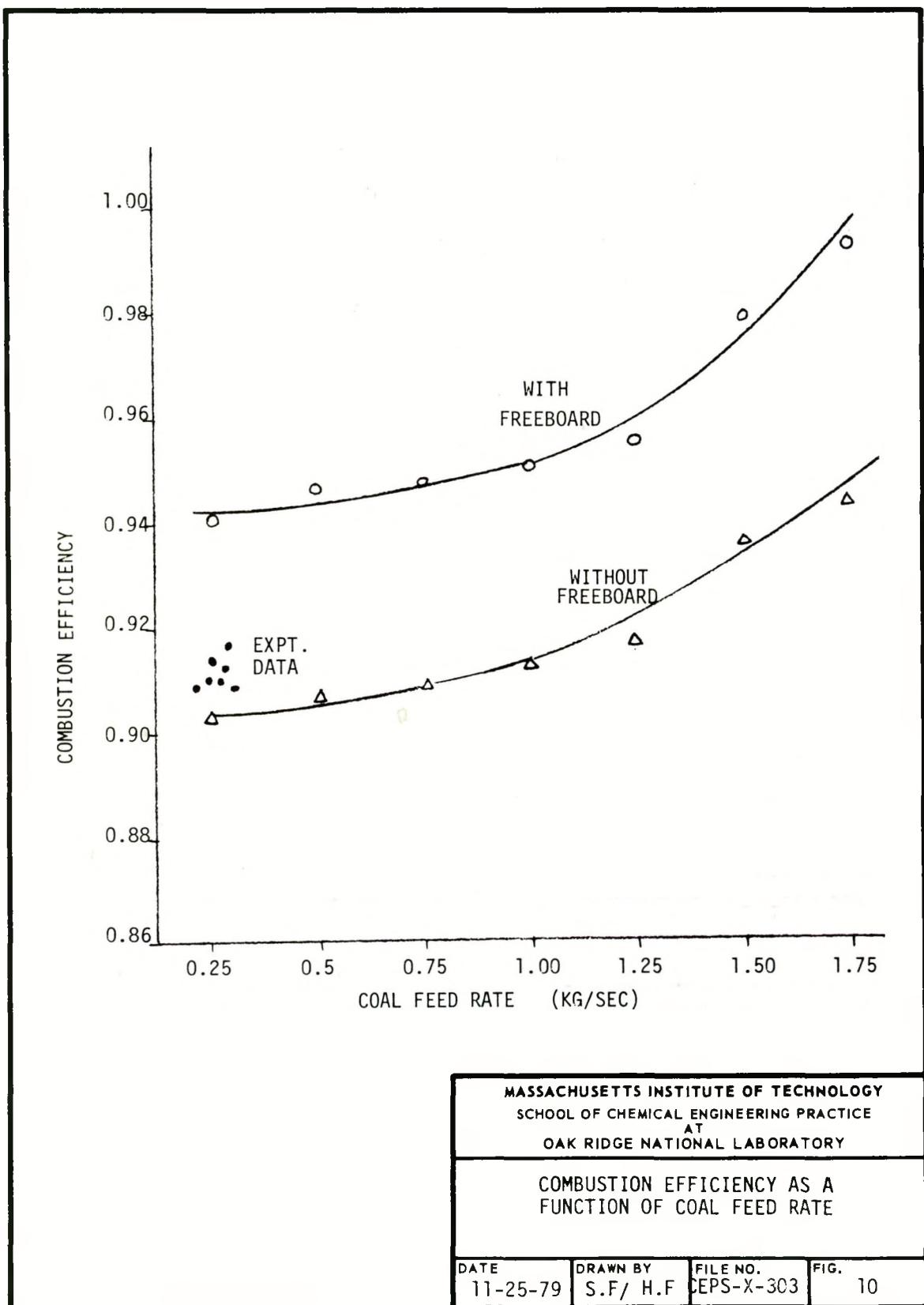
COMBUSTION EFFICIENCY AS A
FUNCTION OF BED TEMPERATURE

DATE 11-25-79	DRAWN BY S.F/ H.F	FILE NO. CEPS-X-303	FIG. 8
------------------	----------------------	------------------------	-----------

particle burning time, which decreases elutriation and increases efficiency. The freeboard model has a dampening effect on the elutriation term, which accounts for the nearly constant efficiency with the freeboard.

These variations are very small because the present model only accounts for the kinetic effects of temperature, while it ignores variations in physical properties. For example, increasing temperature and decreasing density will increase superficial velocity, bubble size, and bed height. Elutriation will also increase, with a negative effect on efficiency. However, the larger bed height and bubble size should enhance the available oxygen concentration, which would result in higher efficiency. The net effect on combustion efficiency may be either positive or negative.


The relationship between bed combustion efficiency and superficial velocity is shown in Figure 9. When freeboard combustion was neglected, the model predicted a sharp drop in efficiency with increasing velocity, as would be expected, since elutriation varies directly with superficial velocity. However, inclusion of the freeboard model resulted in a linear increase in efficiency. The highly efficient model for freeboard combustion simulated burning above the bed of most of the elutriant. Higher superficial velocity also reduces carbon loading in the bed, which increases efficiency. Thus, the net effect on combustion efficiency is positive rather than negative. This result may indicate that the freeboard combustion model is too efficient.


Freeboard combustion increased total combustion by about 4% over the entire range of coal feed rates introduced to the model (Fig. 10). In addition, the extent of combustion increased with increasing coal feed rates. Solid loading of the bed increases less than proportionately with coal feed rate. Since elutriation and overflow rates are direct functions of carbon loading, they will increase less than proportionately, which causes combustion efficiency to increase. This effect becomes more pronounced at higher feed rates. In practice, these curves would be limited by oxygen availability and bed volumetric capacity. The steeper slope predicted by including the freeboard model is due to highly efficient freeboard combustion; thus, the effect of increased elutriation is counteracted.

The experimental data do not manifest discernible variations since pilot-plant operating parameters were kept relatively constant and combustion efficiency varied over a small range. While our model predictions ranged from 0.60 to 0.94 without the freeboard and 0.89 to 0.99 with the freeboard, the Babcock and Wilcox data fall between 0.94 and 0.97 and consistently between the two model curves. Again, this result may indicate an excessively efficient freeboard routine.

4. CONCLUSIONS

1. Our model predictions of combustion efficiency are close to data obtained from the Babcock and Wilcox pilot plant.

2. The freeboard model slightly increases the prediction of combustion efficiency.

3. The experimental data lie between predictions made with and without the freeboard. Therefore, the freeboard model efficiency predictions are too high.

4. Calculated changes in efficiency with superficial velocity, bed temperature, and coal feed are physically cogent.

5. RECOMMENDATIONS FOR FUTURE STUDY

1. The model should be modified to provide for interaction of input parameters to prevent over-specification.

2. The model predictions should be compared with those of more complex models. The MIT and ORNL systems are likely candidates for this work.

3. The freeboard submodel should be further refined and tested. The temperature profile and particle combustion mechanism are of particular interest.

4. Model predictions should be compared with more extensive experimental data.

6. ACKNOWLEDGMENTS

We express our gratitude to our consultant, A.A. Khan, for his insight and direction throughout the project. We also acknowledge Profs. Beer and Tung, upon whose work much of our bubbling-bed submodel was based.

7. APPENDIX

7.1 Derivation of Bubbling-Bed Submodel

The interactions between the segments of the bubbling-bed submodel are shown in Fig. 5. The function of this appendix is to provide a mathematical treatment of the segments of the submodel. First, the mass balance of Kunii & Levenspiel is discussed, followed by a discussion of elutriation and particle shrinkage. Finally, combustion efficiency is defined. A discussion of the feed particle-size distribution is treated separately in Appendix 7.3.1.

7.1.1 Mass Balance

The submodel was constructed around the particle-shrinkage model of Kunii & Levenspiel (5). The mass balance was performed on the carbon particles throughout the bed. It consisted of an overall mass balance and an incremental balance on size intervals of coal particles.

The overall mass balance was of the form:

$$F_0 = F_1 + F_2 + \text{rate of coal burned in the bed} \quad (1)$$

where F_0 is the solid feed rate (kg/s), F_1 is the solid overflow rate (kg/s), and F_2 is the solid elutriation rate. The incremental mass balance was performed for particles in the radius interval r to $r+\Delta r$:

$$F_0 p_0(r) - F_1 p_1(r) - W K(r) p_1(r) - W \frac{d[R(r) p_1(r)]}{dr} + \frac{3W}{r} p_1(r) R(r) = 0 \quad (2)$$

where

$p_0(r)$ = feed particle-size distribution

$p_1(r)$ = overflow particle-size distribution

W = bed weight, kg

$R(r)$ = shrinkage rate = dr/dt , $\mu\text{m/s}$

$K(r)$ = elutriation rate constant, $\text{kg/m}^2\text{-s}$

The first three terms of the equation correspond to particles entering the vessel as feed or leaving it by overflow or elutriation. The remaining terms account for net shrinkage from the particle-size interval and particle shrinkage within the interval. Proper manipulation of Eqs. (1) and (2) yields the size distribution and flow rates of the outflow streams.

Louis and Tung (6) present a derivation of the performance equations from the above mass balances. The primary equations are as follows:

$$p_b(r) = \frac{F_0 I(r, \infty)}{W |S_t(r)|} \int_r^\infty \frac{p_0(r_0) dr_0}{I(r_0, \infty)} \quad (3)$$

$$\frac{W}{F_0} = \int_0^\infty \frac{I(r, \infty)}{|S_t(r)|} dr \int_r^\infty \frac{p_0(r_0) dr_0}{I(r_0, \infty)} \quad (4)$$

where $I(r, r_0)$ is the performance function and is defined according to:

$$I(r, r_0) \equiv \exp \left(- \int_r^{r_0} \frac{\frac{F_1}{W} + K(r) + \frac{[3S_c(r)]}{r}}{|S_t(r)|} dr \right) \quad (5)$$

where

$p_b(r)$ = bed particle-size distribution

W = weight of carbon in the bed, kg

$S_c(r)$ = particle shrinkage rate due to combustion, $\mu\text{m/s}$

$S_t(r)$ = total particle shrinkage rate, $\mu\text{m/s}$

Equations (3) through (5) formed the basis for the prediction of combustion efficiency.

7.1.2 Elutriation

Elutriation is incorporated into the model through the performance equation derived from the mass balance, Eq. (5). The rate of elutriation of solids of size r is characterized by a net upward flux and can be expressed mathematically as:

$$(\text{rate of elutriation of solids of size } r \text{ per area of bed}) = K(r) \left(\frac{\text{fraction of bed particles at size } r}{\text{total bed particles}} \right) \quad (6)$$

The Merrick-Highley correlation (7) was used to determine the value of the elutriation constant $K(r)$:

$$K(r) = 130 F_a \exp \left[-10.4 \left(\frac{u_t}{u_0} \right)^{0.5} \left(\frac{u_{mf}}{u_0 - u_{mf}} \right)^{0.25} \frac{28.84}{A} \right] \quad (7)$$

where

$$\begin{aligned} F_a &= \text{air feed flow rate, kg/s} \\ u_t &= \text{terminal velocity, m/s} \\ u_0 &= \text{superficial gas velocity, m/s} \\ u_{mf} &= \text{minimum fluidizing gas velocity, m/s} \\ A &= \text{cross-sectional bed area, m}^2 \end{aligned}$$

7.1.3 Particle Shrinkage

Total shrinkage of particles is due to both attrition and combustion:

$$S_t(r) = S_a(r) + S_c(r) \quad (8)$$

The rate of particle shrinkage due to attrition was derived from a correlation presented by Merrick and Highley (7):

$$S_a(r) = \frac{K_a}{3} (u_0 - u_{mf})(r) \quad (9)$$

where K_a is the attrition constant.

Shrinkage due to combustion was modeled as a function of the amount of available oxygen, the rate of diffusion of oxygen to the particle surface, and the rate of combustion at the particle surface. The development of the particle shrinkage is taken from Louis and Tung (6).

The particle shrinkage rate is given by:

$$S_c(r) = \frac{dr}{dt} \quad (10)$$

so that the consumption of moles of carbon N is:

$$\frac{dN}{dt} = \frac{\rho_c}{12} (4\pi r^2) S_c(r) \quad (11)$$

where ρ_c is the apparent density of coal. The change in moles can also be expressed by the oxygen that diffuses to the particle surface:

$$\frac{dN}{dt} = 2\pi r Sh D (C_p - C_s) \quad (12)$$

where Sh is the Sherwood number, D is the diffusivity of oxygen, C is the oxygen concentration in the bulk gas and at the surface. Rearrangement of these expressions yields:

$$S_c(r) = \frac{6 Sh D}{\rho_c r} C_p \left(1 - \frac{C_s}{C_p}\right) \quad (13)$$

If the quantity C_s/C_p is substituted by the kinetic expression,

$$\frac{C_s}{C_p} = \frac{1}{1 + \frac{82.06 K_s r T}{600 Sh D}} \quad (14)$$

where T is the gas temperature and K_s is the combustion rate constant ($\text{g}/\text{cm}^2\text{-s-kPa}$). The overall equation describing particle shrinkage due to combustion becomes:

$$S_c(r) = \frac{C_p}{\rho_c} \frac{1}{\frac{100}{82.06 K_s T} + \frac{r}{6 Sh D}} \quad (15)$$

In this overall expression, K_s is described by an Arrhenius equation:

$$K_s = A_0 \exp(-E/RT) \quad (16)$$

where A_0 is a pre-exponential factor ($57.3 \text{ g}/\text{cm}^2\text{-s-kPa}$), and E is the activation energy ($37,500 \text{ J/mol}$). The Sherwood number is calculated from an empirical correlation by Ranz and Marshall which considers mass transfer of a component from a fluid to a free-falling solid particle (5):

$$Sh = 2 + 0.6(Re)^{0.5} (Sc)^{0.33} \quad (17)$$

where

$$Re = \text{Reynolds number} = \frac{2r u_o \rho_m}{\mu}$$

$$Sc = \text{Schmidt number} = \frac{\mu}{\rho_m D}$$

From Eq. (15), the shrinking rate is a direct function of the concentration available in the emulsion phase, C_p . The separate contributions of reaction and diffusion to the shrinking rate are represented by the two terms of the denominator.

Two limiting cases of particle shrinkage can be considered. For particles of radius greater than 100 μm , the shrinking is diffusion-limited and the reaction term in Eq. (15) may be neglected:

$$S_c(r) = \frac{6 C_p D Sh}{\rho_c r} \quad (18)$$

For particles of radius less than 50 μm , the reaction at the surface is the rate-limiting mechanism, and Eq. (15) becomes:

$$S_c(r) = \frac{0.82 C_p K_s T}{\rho_c} \quad (19)$$

The model primarily uses the expression in Eq. (15), which includes both reaction and diffusion contributions to particle shrinkage.

7.1.4 Combustion Efficiency

The combustion efficiency is the output of interest from the simulation and is defined as the ratio of the rate of coal combusted to the rate of coal feed. From the overall mass balance [Eq. (1)], the rate of combustion may be expressed as:

$$\text{rate of combustion} = F_0 - F_1 - F_2 \quad (20)$$

Thus, the combustion efficiency may be described as:

$$\eta_c = \frac{F_0 - F_1 - F_2}{F_0} \quad (21)$$

7.2 Derivation of the Freeboard Submodel

The basic plug-flow equation can be applied to any particle entering the freeboard. This takes the form:

$$r_f - r_o = \int_0^{x_f} \left(\frac{dr}{dx} \right) dx \quad (22)$$

where r_f is the particle radius at the exit from the freeboard, r_o is the radius at the entrance, x is the vertical coordinate, and x_f is the freeboard height. If the particles have velocity v ,

$$r_f - r_o = \frac{1}{v} \int_0^{x_f} \left(\frac{dr}{dx} \right) dx \quad (23)$$

Averaging the conversion in the freeboard ξ_{fb} over the particle-size distribution entering the freeboard p_e gives:

$$\xi_{fb} = \int_0^{r_{max}} \left(\frac{1}{r_o v} \int_0^{x_f} \left(\frac{dr}{dt} \right) dx + 1 \right) p_e(r_o) d(r_o) \quad (24)$$

To calculate the combustion efficiency of the model including the freeboard, the elutriation term F_2 in Eq. (20) is then multiplied by ξ_{fb} :

$$\eta_C = \frac{F_o - F_1 - \xi_{fb} F_2}{F_o} \quad (25)$$

7.3 Input Specification

7.3.1 Feed Particle-Size Distribution

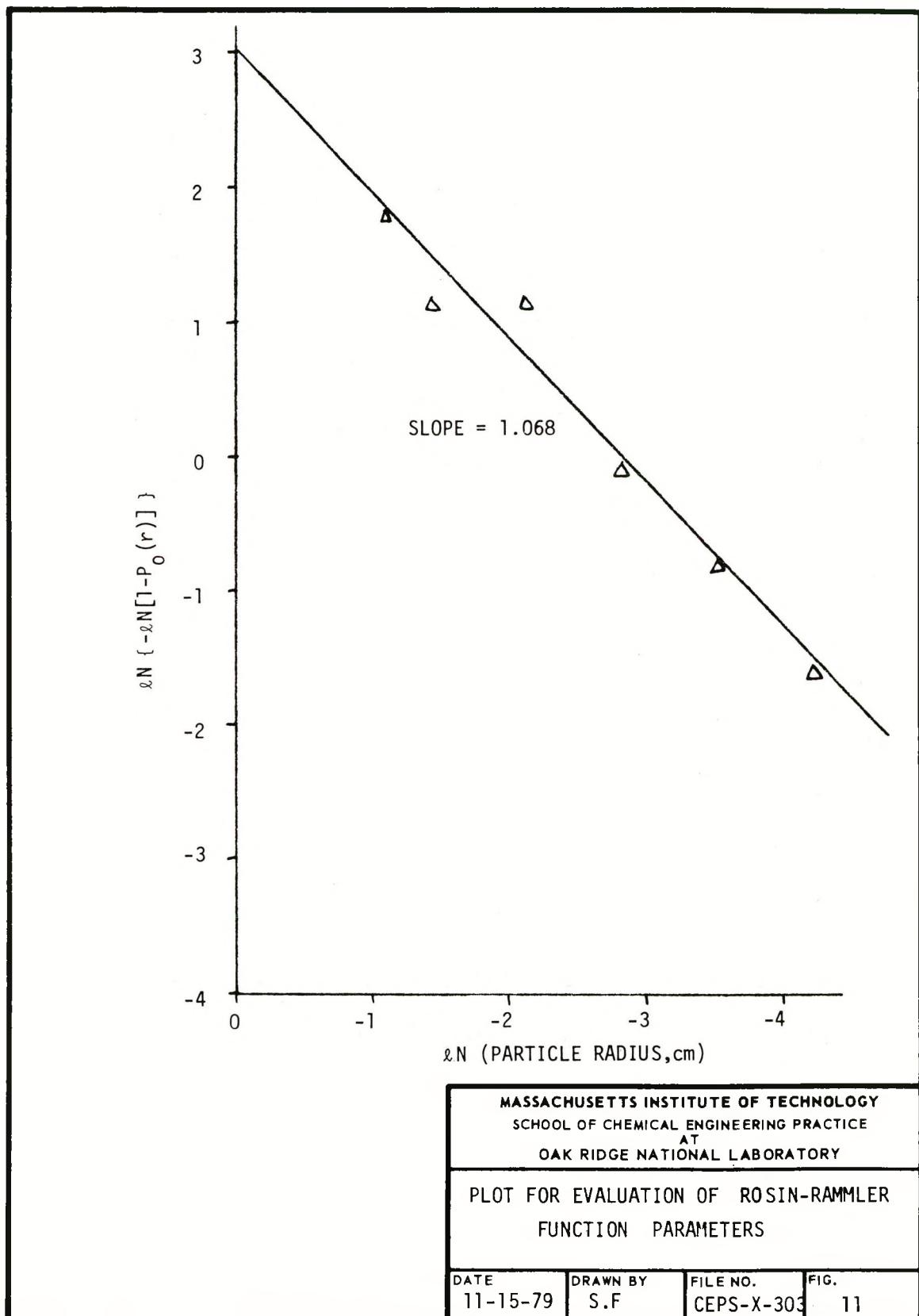
The Rosin-Rammler function was used to model the particle-size distribution of the feed (8). It is defined as:

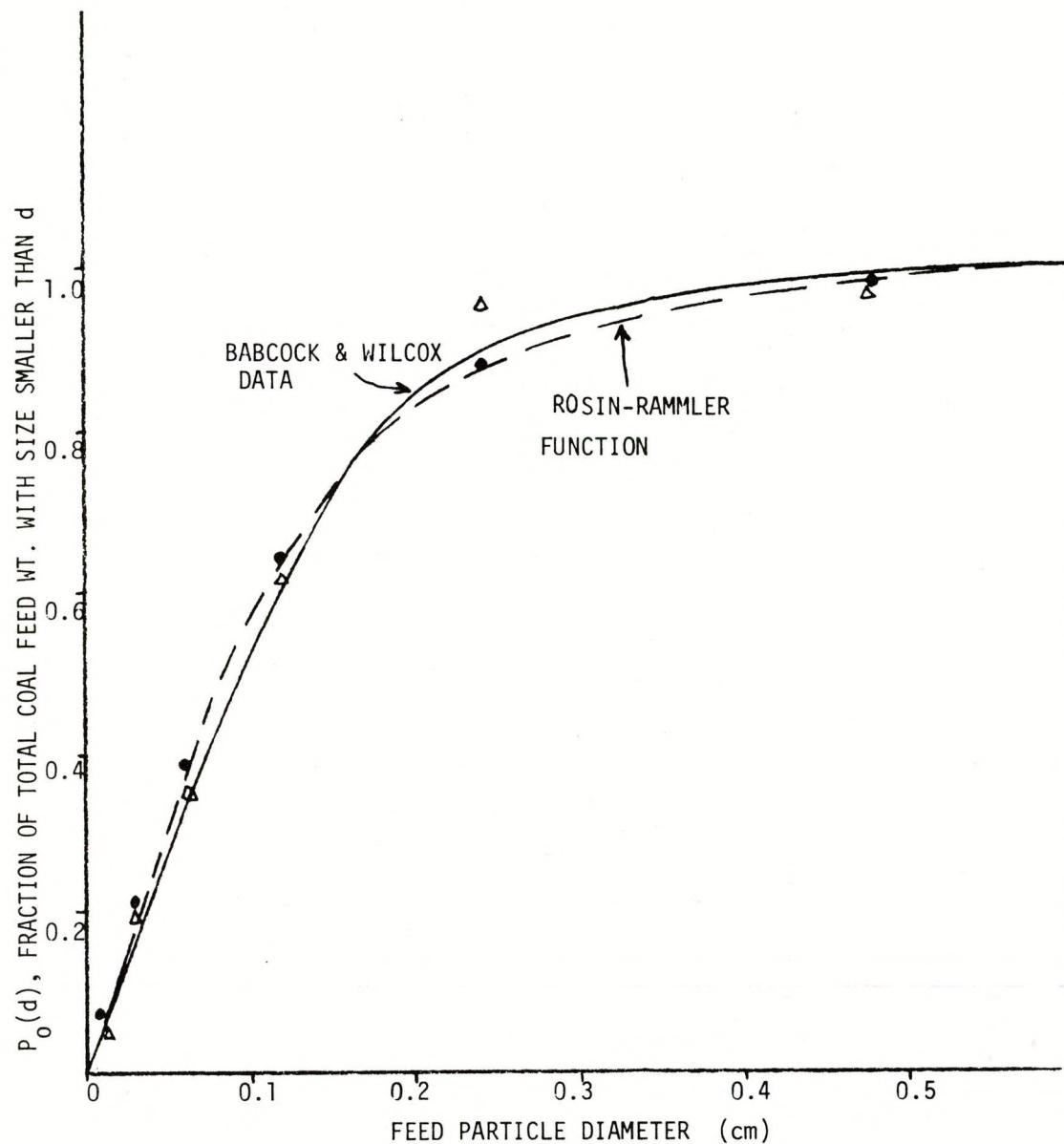
$$1 - P_o(r) = \exp\left[-\left(\frac{r}{b}\right)^n\right] \quad (26)$$

where b and n are size parameters, and $P_o(r)$ is the weight fraction

of total coal feed of particle size less than r . The size parameters for specific data can be determined from a graph of the corresponding logarithmic equation. The regressional analysis for Ohio #6 coal-sieve data is shown in Table 5.

Table 5. Regressional Analysis of Coal-Sieve Data


<u>Mesh</u>	<u>$P_o(r)$</u>	<u>r (cm)</u>	<u>$\ln[-\ln(1 - P_o)]$</u>	<u>$\ln r$</u>
0.25	0.998	0.3175	1.827	-1.14
4	0.961	0.2375	1.177	-1.43
8	0.958	0.1190	1.154	-2.12
16	0.606	0.0595	-0.071	-2.82
30	0.354	0.0297	-0.828	-3.51
50	0.190	0.0149	-1.556	-4.21
100	0.098	0.0074	-2.273	-4.89
200	0.056	0.0044	-2.847	-5.59
325	0.028	0.0022	-3.575	-6.49


The data plotted in Fig. 11 indicated a correlation coefficient of 0.9949, with values for n and b of 1.068 and 0.0599, respectively. A cumulative plot of the data and the Rosin-Rammler correlation obtained from these parameters is presented in Fig. 12.

Differentiation of the cumulative Rosin-Rammler function in Eq. (26) with respect to r yielded the incremental particle-size distribution of the feed:

$$\begin{aligned}
 v &= 100 n \frac{r^{n-1}}{b^n} \exp[-(\frac{r}{b})^n] \\
 &= 2159 (r^{0.068}) \exp[-(\frac{r}{0.0599})^{1.068}]
 \end{aligned} \tag{27}$$

where $v = \Delta \text{wt } \% / \Delta \text{radius}$. A graph of Eq. (27) is presented in Fig. 13. The Rosin-Rammler distribution curve for feed particles gave a reasonably good qualitative depiction of the sieve-analysis data taken from plant samples.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY SCHOOL OF CHEMICAL ENGINEERING PRACTICE AT OAK RIDGE NATIONAL LABORATORY			
PARTICLE-SIZE ACCUMULATIVE WEIGHT FRACTION OF COAL FEED, (ROGIN-RAMMLER FUNCTION)			
DATE 11-15-79	DRAWN BY S.F.	FILE NO. CEPS-X-303	FIG. 12

7.3.2 Calculation of Other Input Parameters

Estimates of values for the various input parameters were based on two sources. Coal and air feed rates were chosen to be comparable to rates reported by Babcock and Wilcox (1). Values of hydrodynamic properties were calculated as suggested by Louis and Tung (6), although constant values were employed for temperature (1144 K), pressure (1.01 kPa), and feed values of the base case (see Table 3). These calculations are summarized below. The symbols in parenthesis indicate the corresponding variables used in the computer parameter.

7.3.2.1 Diffusivity of Air (DG)

$$DG = (5.187 \times 10^{-4})(T)^{1.5}/P$$

At $P = 1.013 \times 10^5$ Pa and $T = 1144$ K,

$$DG = \frac{(5.187 \times 10^{-4})(1144)^{1.5}}{1.013 \times 10^5} = 2 \times 10^{-4} \text{ m}^2/\text{s}$$

7.3.2.2 Air Molar Density (RHOM)

$$RHOM = \frac{P}{RT} \text{ (assuming ideal gas)}$$

$$= \frac{1 \text{ atm}}{(82 \text{ atm-cm}^3/\text{g mol-K})(1144 \text{ K})}$$

$$\approx \frac{10^3}{82(1144)} = 1.07 \times 10^{-2} \text{ kg mol/m}^3$$

7.3.2.3 Mass Density of Incoming Air (RHOG)

$$\begin{aligned} RHOG &= RHOM(29 \text{ kg/kg mol}) = (1.07 \times 10^{-2})(29) \\ &= 0.3094 \text{ kg/m}^3 \end{aligned}$$

7.3.2.4 Mass Exchange Coefficient Between Bubble and Phase (KBP)

$$KBP = 4.5 \frac{u_{mf}}{d_b} + \frac{5.85(DG)^{1/2}(g)^{1/4}}{(d_b)^{5/4}}$$

where

u_{mf} = minimum fluidization velocity (m/s)

d_b = bubble diameter (m)

DG = diffusivity of O_2 in N_2 (m^2/s)

g = gravitational acceleration (m/s^2)

To estimate u_{mf} ,

$$u_{mf} = \frac{\sqrt{\beta - G}}{2B}$$

where

$$B = \frac{1.75}{\phi_s \epsilon_{mf}^3} \left(\frac{d_p \rho_g}{\mu} \right)^2$$

$$\phi_s \approx 0.65$$

$\epsilon_{mf} \approx 0.45$ = void fraction in emulsion phase

$d_p = 2380 \mu m$ = acceptor mean particle size

$\rho_g = 0.3094 \text{ kg/m}^3$ = mass density of incoming air

$$\mu = \frac{(1.09875 \times 10^{-6}) T^{1/2}}{(0.9183 - 9.08 \times 10^{-5} \times T)} = 4.5631 \times 10^{-5} \text{ N-s/m}^2 \text{ at } 1144 \text{ K}$$

$$G = \frac{150(1 - \epsilon_{mf})}{\phi_s^2 \epsilon_{mf}^3} \left(\frac{d_p \rho_g}{\mu} \right)$$

$$\beta = G^2 - 4BC$$

$$C = -d_p^3 \rho_g (\rho_a - \rho_g) g / \mu^2$$

$$B = 7696.2$$

$$G = 34,580$$

$$C = -29,904$$

Therefore,

$$u_{mf} = 0.7422 \text{ m/s}$$

If it is assumed that $d_b = 0.122 \text{ m}$, then

$$KBP = 4.5 \frac{0.7422}{0.122} + \frac{5.85(2 \times 10^{-4})^{1/2}(9.81)^{1/4}}{(0.122)^{5/4}} = 29.41 \text{ s}^{-1}$$

7.3.2.5 Air Flow in Emulsion Phase (EMFLOW)

$$\begin{aligned} EMFLOW &= (\text{minimum fluidization velocity})(\text{cross-sectional bed area})(\text{air molar density}) \\ &= (0.7422 \text{ m/s})(3.34 \text{ m}^2)(\text{kg mol/m}^3 0.0107) \\ &= 0.0026 \text{ kg mol/s} \end{aligned}$$

7.3.2.6 Transport Air Flow Rate (CLFLOW)

$$\begin{aligned} CLFLOW &= (3800 \text{ lb/h})(0.45 \text{ kg/lb})(1/3600 \text{ h/s})(1/28 \text{ kg mol/kg}) \\ &= 1.7 \times 10^{-2} \text{ kg mol/s} \end{aligned}$$

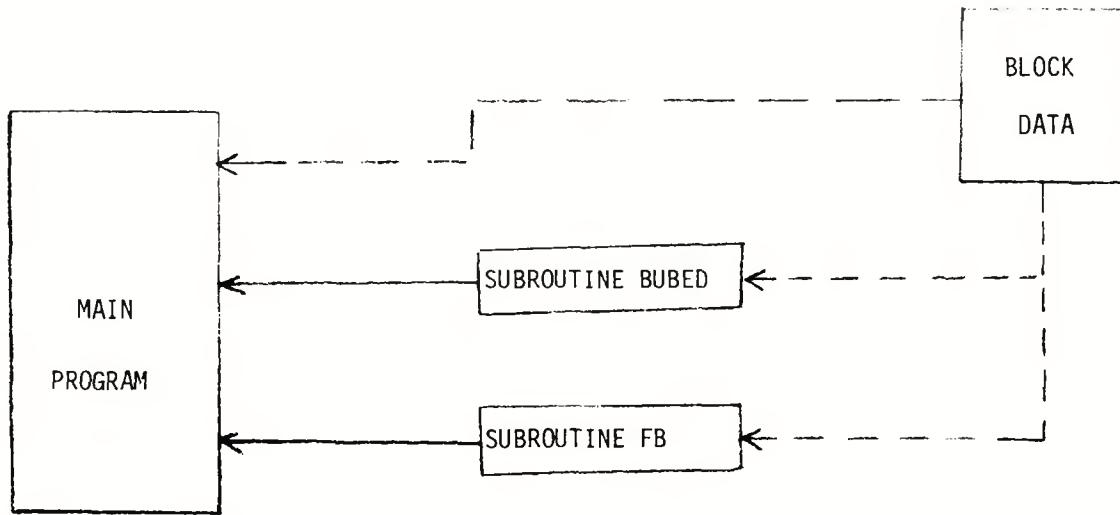
7.3.2.7 Air Flow in Bubble Phase (BUFLOW)

$$\begin{aligned} BUFLOW &= (\text{air feed rate}) + (\text{transport air flow rate}) \\ &\quad - (\text{air flow rate in emulsion phase}) \\ &= (2.3) + (1.7 \times 10^{-2}) - (2.6 \times 10^{-2}) \text{ kg mol/s} \\ &= 2.29 \text{ kg mol/s} \end{aligned}$$

7.3.2.8 Weight of Inert in Bed (WEIRT)

$$\begin{aligned} WEIRT &= (\Delta P_{\text{bed}})(\text{cross-sectional area of bed}) \\ &= 10,458 \text{ N/m}^2 (3.34 \text{ m}^2) (\frac{1 \text{ kg}}{\text{N}}) = 3.5 \times 10^3 \text{ kg} \end{aligned}$$

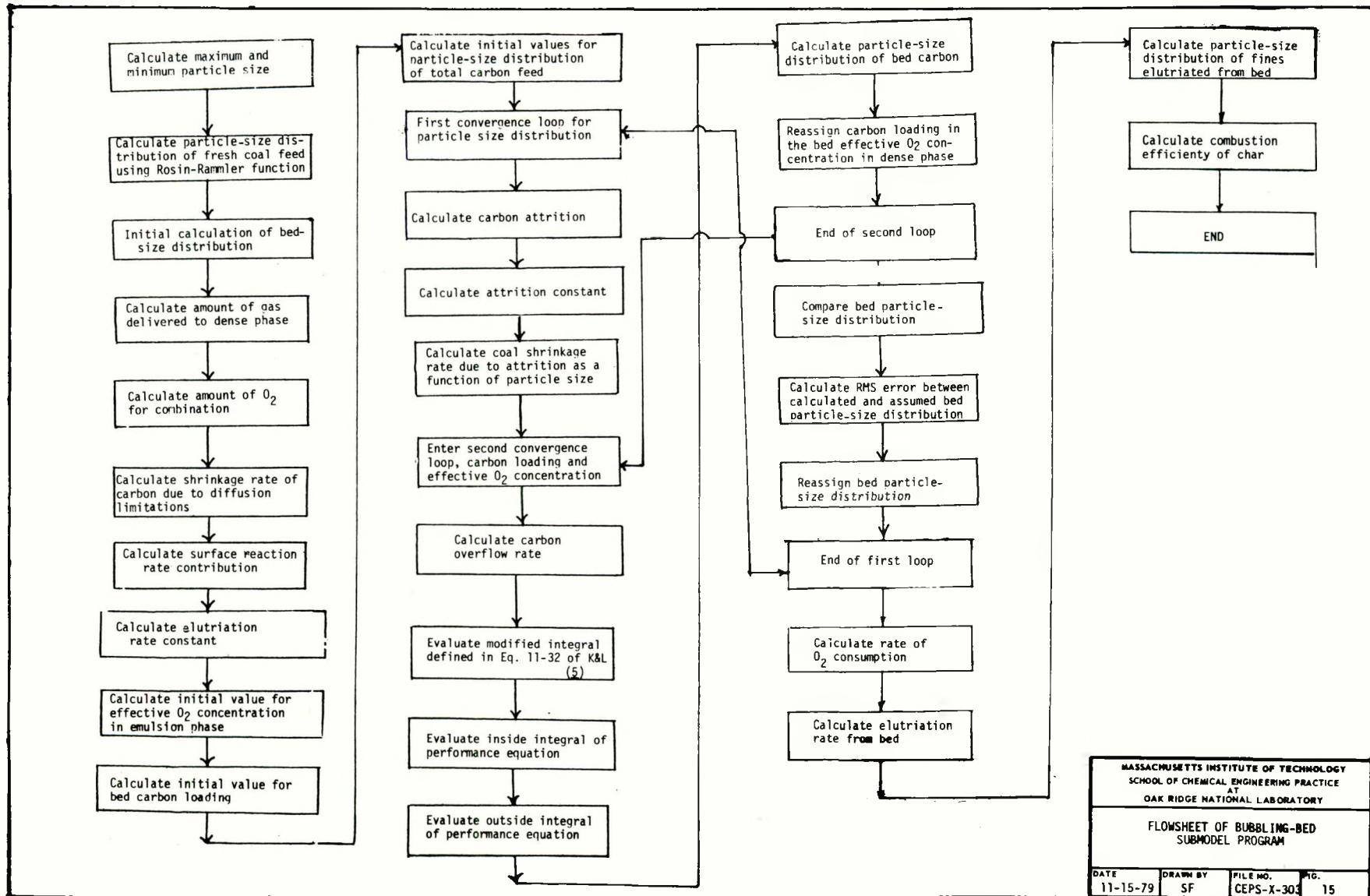
7.4 Computer Program

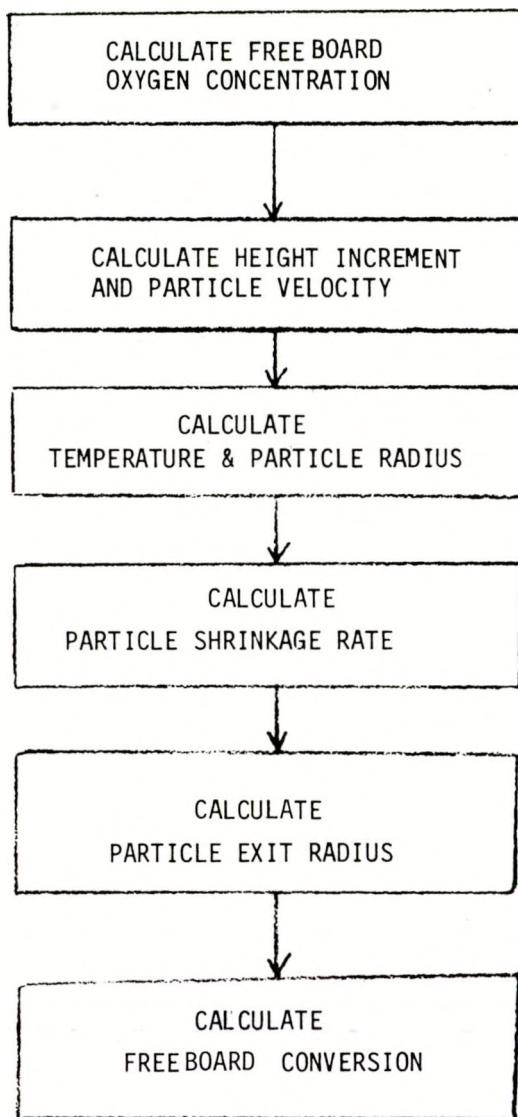

7.4.1 Program Description

In implementing the model into the PDP-10 computer system, the bubbling-bed and the freeboard region submodels were treated as the subroutines BUBED and FB, respectively. Each subroutine was called from the main program. Initial values of all the input and internal parameters were assigned through a block data subroutine and transmitted between subroutines by COMMON. Detailed calculations of the input parameters are given in Appendix

7.3.2. A flow diagram of the overall program structure is given in Fig. 14. A program listing is given in Appendix 7.4.2.

After the bubbling-bed subroutine divides the empirical correlation of the feed distribution into 60 intervals, the particle shrinkage of each interval is calculated for both combustion and attrition. The major outputs of the subroutine are the particle-size distribution of the elutriated solid and the mass flow rate of the bed overflow (Table 1). The main program then uses these outputs to calculate the combustion efficiency. A detailed flowsheet is shown in Fig. 15 and the listing of subroutine BUBED in Appendix 7.4.2.


The model of the freeboard region is implemented in the subroutine after the effective oxygen concentration, particle velocity, and height increment are calculated. Two nested loops are entered which correspond to the integrals in Eq. (24) (Appendix 7.2.3). The integration subroutine TRAP is used to evaluate the integrals. A flowsheet for the freeboard region model is shown in Fig. 16.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMICAL ENGINEERING PRACTICE
AT
OAK RIDGE NATIONAL LABORATORY

OVERALL PROGRAM STRUCTURE

DATE 11-26-79	DRAWN BY S.F.	FILE NO. CEPS-X-303	FIG. 14
------------------	------------------	------------------------	------------

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
SCHOOL OF CHEMICAL ENGINEERING PRACTICE
AT
OAK RIDGE NATIONAL LABORATORY

FLWSHEET OF FREEBOARD SUBMODEL
PROGRAM

DATE 11-27-79	DRAWN BY S.F.	FILE NO. CEPS-X-303	FIG. 16
------------------	------------------	------------------------	------------

7.4.2 Program Listing

```

00100  C*****+
00200  C
00300  C      MAIN PROGRAM FOR SIMULATION OF AN ATMOSPHERIC
00400  C      FLUIDIZED BED COAL COMBUSTOR
00500  C
00600  C*****+
00700  C
00800  C      INITIALIZE COMMON VARIABLES
00900  C
01000  C      COMMON /INPUT/ AIRF,COALF,COVFL
01100  C      COMMON /COAL/ XC,XS,XH,XO
01200  C      COMMON /TRANS/ R(61),PE(61),DELTR,ELTOT
01300  C
01400  C      CALL BUBBLING BED SUBROUTINE
01500  C
01600  1      CALL BUBED
01700  C
01800  C      CALL FREEBOARD SUBROUTINE
01900  C
02000  C
02100  C      CALL FB(XFB)
02200  C
02300  C      CALCULATE THE COMBUSTION EFFICIENCY
02400  C
02500  C      COMEF=(COALF*(XC+XS+XH-XO/8.0)-ELTOT*XFB-COVFL)
02600  1      /COALF*(XC+XS+XH-XO/8.0)
02700  C
02800  C      OUTPUT COMBUSTION EFFICIENCY
02900  C
03000  C      WRITE(5,10) COMEF
03100  10     FORMAT(E15.4)
03200  C      STOP
03300  C      END
03400  C*****+
03500  C
03600  C
03700  C      INTEGRATION SUBROUTINE--TRAPEZOIDAL RULE
03800  C
03900  C*****+
04000  C
04100  C      SUBROUTINE TRAP(FUNCT,DELTR,AAA,BBB,OUT)
04200  C      DIMENSION FUNCT(100)
04300  C      MIN=AAA
04400  C      MIN=MIN+1
04500  C      MAX=BBB
04600  C      SUM=0.
04700  C      MM=MAX-1
04800  C      DO 1 I=MIN,MAX
04900  1      SUM=SUM+FUNCT(I)
05000  C      OUT=DELTR/2.0*(FUNCT(MIN)+2.0*SUM+FUNCT(MAX))
*
```

```

P
05000      OUT=DELTR/2.♦(FUNCT(MIN)+2.♦SUM+FUNCT(MAX))
05100      RETURN
05200      END
05300      C
05400      C
05500      C*****+
05600      C
05700      C      BUBBLING BED SUBROUTINE
05800      C
05900      C*****+
06000      C
06100      C
06200      C      DIMENSION AND COMMON INITIALIZATION
06300      C
06400      C      SUBROUTINE BUBED
06500      REAL LATRI,MU,IRM(61),KBP
06600      DIMENSION SC(61),FR(61),SR(61),FUNCT(61),EL(61),
06700      1 CELUT(61),WC(61),PBC(61),SH(61),CS(61),
06800      2 PF(61),PB(61),OPF(61),OPE(61),OPB(61)
06900      C
07000      COMMON /INPUT/AIRF,COALF, COWFL
07100      COMMON /DIST/ RDS1,RDS2
07200      COMMON /FBOP/BEDH,BEDA,TGAS,WIERT
07300      COMMON /PHYS/ RHOA,RHOC,RHOM,RHOG,DG,MU
07400      COMMON /COAL/ XC,XG,XH,XO
07500      COMMON /AIR/ UD,UMF,EXAIR,EMFLOW,CLFLOW,BUFLW
07600      COMMON /BUB/ KBP,EMF,HT
07700      COMMON /MISC/ ATRIT,ACPT
07800      COMMON /TRANS/R(61),PE(61),DELTR,ELTOT
07900      C
08000      C      SET INITIAL CONVERGENCE TOLERANCE AND CALCULATION CODE
08100      C
08200      TOLER=100.
08300      COIJIM=-123456.
08400      C
08500      C      CALCULATE INITIAL GAS VELOCITY AND OXYGEN CONCENTRATION
08600      C
08700      UF=UMF
08800      COIN=.21♦RHOM
08900      COE=COIN♦EXAIR/(1.+EXAIR)
09000      C
09100      C      CALCULATE MINIMUM AND MAXIMUM PARTICLE RADII
09200      C
09300      RMIM=.005♦RDS2
09400      RMAX=2.♦RDS2
09500      C
09600      C      CALCULATE PARTICLE RADII
09700      C
09800      DELTR=(RMAX-RMIN)/60.
09900      R(1)=RMIN
♦

```

```

P
09900      R(1)=RMIN
10000      R(61)=RMAX
10100      DO 1 I=2,60
10200 1      R(I)=R(I-1)+DELTR
10300  C
10400  C      CALCULATE COAL FEED PARTICLE SIZE DISTRIBUTION
10500  C
10600      DO 2 I1=1,61
10700 2      PF(I1)=EXP(-(R(I1)/ROS2)**ROS1)+ROS1*R(I1)**(ROS1-1.)/
10800 1      ROS2**ROS1
10900  C
11000  C      CALCULATE INITIAL BED DISTRIBUTION
11100      DO 3 I2=1,61
11200  C
11300 3      PB(I2)=PF(I2)
11400  C
11500  C      CALCULATE OXYGEN AVAILABLE FOR COMBUSTION
11600  C
11700      TERM=-KBP*BEDH/UF
11800      IF (TERM+20.) 6,6,7
11900 7      TERM=EXP(TERM)
12000      GOTO 8
12100 6      TERM=0.
12200 8      FLOW=EMFLOW+CLFLOW+BUFLOW*(1-TERM)
12300  C
12400  C      CALCULATE CARBON SHRINKAGE RATE
12500  C
12600      C1=DG/RHOC
12700  C
12800  C      CALCULATE SCHMIDT NUMBER
12900  C
13000      SCH=MU/RHOM/28.84/DG
13100  C
13200  C      CALCULATE PARTICLE SURFACE TEMPERATURE AND
13300  C      REACTION RATE CONSTANT
13400  C
13500      TCHAR=TGAS+100.
13600      XKS=8710.*EXP(-35700./1.987/TCHAR)
13700      DO 9 J6=1,61
13800  C
13900  C      CALCULATE REYNOLDS NUMBER, SHERWOOD NUMBER, AND
14000  C      SHRINKAGE RATE
14100  C
14200      REY=RHOM*28.84*UF*R(J6)*2./MU
14300      SH(J6)=2.+6.*REY**.5*SCH**.3
14400      SC(J6)=C1/R(J6)*SH(J6)/2.*((XC+XS+XH-XD/8.)/
14500 1      (XC/12.+XS/32.+XH/4.-XD/32.))
14600  C
14700  C      CALCULATE RELATIVE RATES OF REACTION AND DIFFUSION
14800  C
*
```

```

P
14800 C
14900 9      CS(J6)=1./ (1.+ (WKS*TCHAR*R(J6)+1.3677E-1) /
15000 1      SH(J6)/DG)
15100 C
15200 C      CALCULATE ELUTRIATION RATE CONSTANT FROM
15300 C      HIGHLEY-MERRICK CORRELATION
15400 C
15500 C      CALCULATE PARTICLE TERMINAL VELOCITY AS
15600 C      FUNCTION OF RADIUS
15700 C
15800 10     DO 16 J5=1,61
15900      RCOM=.5*(90.7*MU**.667/(RHOG+RHOC)**.333
16000      IF (RCOM-R(J5)) 17,18,18
16100 18      UT=1.195*(RHOC**2./RHOG/MU)**.333**2.+R(J5)
16200      GOTO 19
16300 17      RCOM=.289*MU**.667/(RHOG+RHOC)**.333
16400      IF (RCOM-R(J5)) 20,21,21
16500 21      UT=1.19*RHOC**.667/RHOG**.333/MU**.333**2.+R(J5)
16600      GOTO 19
16700 20      UT=.5444*RHOC**4.+R(J5)**2./MU
16800 19      CONTINUE
16900      CELUT(J5)=(130.*AIRF*EXP(-10.4*(UT/U0)**.5*
17000 1      (UMF/(U0-UMF))**.25+28.84/BEDR))
17100 16      CONTINUE
17200 C
17300 C      CALCULATE INITIAL BED CARBON LOADING
17400 C
17500 1      WCOAL=WIERT*.01
17600      IF (CODJIM.GT.0.) WCOAL=.875*COALF*XC+RHOC*ROS2**2./
17700 1      6./DG/COIM/3.*EXAIR
17800 C
17900 C      ENTER BED DISTRIBUTION CONVERGENCE LOOP
18000 C
18100 1      ICO=0
18200 4      CONTINUE
18300 1      ICO=ICO+1
18400 C
18500 C      CALCULATE CARBON ATTRITION FROM HIGHLEY-MERRICK
18600 C      CORRELATION
18700 C
18800 1      FR(1)=PB(1)*DELTR
18900 1      FR(2)=(PB(1)+PB(2))*DELTR
19000 1      DO 10 J1=1,61
19100 1      IF (J1-2) 15,15,11
19200 11      CALL TRAP(PB,DELTR,1.,61.,FR(J1))
19300 15      FUNCT(J1)=FR(J1)*PB(J1)
19400 10      CONTINUE
19500 1      CALL TRAP(FUNCT,DELTR,1.,61.,C2)
19600 1      LATRI=ATRIT/C2
19700 1      DO 14 J4=1,61
*
```

```

P
19700      DO 14 J4=1,61
19800  14  SA(J4)=LATRI/3.♦FR(J4)♦(UD-UMF)♦R(J4)
19900      ICI=0
20000      C
20100      C      ENTER CARBON LOADING AND OXYGEN CONCENTRATION
20200      C      CONVERGENCE LOOP
20300      C
20400  34  CONTINUE
20500      C
20600      C      CALCULATE CARBON OVERFLOW RATE
20700      C
20800      ICI=ICI+1
20900      IF (WCOAL/WIERT-.9) .60,61,61
21000  61  COVFL=ACPTE♦WCOAL/ (.1♦WIERT)
21100      GOTO 62
21200  60  COVFL=WCOAL♦ACPTE/ (WIERT-WCOAL)
21300  62  CONTINUE
21400      C
21500      C      EVALUATE KUNII & LEVENSPIEL I-INTEGRAL (EQN 11.32)
21600      C
21700      DO 22 K2=1,61
21800      FUNCT(K2)=(COVFL/WCOAL+CELUT(K2)♦BEIA/WIERT♦RHDA/RHOC+
21900      1  3.♦SC(K2)♦COE♦(1.-CS(K2))♦R(K2))/ (SC(K2)♦COE♦(1.-CS(K2))♦
22000      2  +SA(K2))
22100  22  CONTINUE
22200      DO 23 K3=1,58
22300      RK3=K3
22400      CALL TRAP(FUNCT,DELTR,RK3,61.,RIRM)
22500      IF (RIRM-170.) 59,64,64
22600  64  RIRM=170.
22700  59  CONTINUE
22800      IRM(K3)=EXP(-RIRM)
22900  23  CONTINUE
23000      RIR59=(FUNCT(59)+FUNCT(60)+FUNCT(61))♦DELTR
23100      RIR60=(FUNCT(60)+FUNCT(61))♦DELTR
23200      IF (RIR59.GT.150.) RIR59=150.
23300      IF (RIR60.GT.150.) RIR60=150.
23400      IRM(59)=EXP(-RIR59)
23500      IRM(60)=EXP(-RIR60)
23600      IRM(61)=1.
23700      DO 57 M7=1,61
23800      IF (IRM(M7)-1.E-20) 58,57,57
23900  58  IRM(M7)=1.E-20
24000  57  CONTINUE
24100      C
24200      C      EVALUATE INSIDE OF KUNII & LEVENSPIEL INTEGRAL 11.38
24300      C
24400      DO 24 K4=1,61
24500      IF (K4-28) 26,26,27
24600  26  DO 25 K5=K4,61

```

P

```

24600 26      DO 25 K5=K4,61
24700
24800 25      FUNCT(K5)=PF(K5)/IRM(K5)
24900
25000      CONTINUE
25100      RK4=K4
25200      CALL TRAP(FUNCT,DELTR,RK4,61.,DINT)
25300      GOTO 30
25400      C
25500 27      EVALUATE OUTSIDE OF KUNII & LEVENSPIEL INTEGRAL 11.38
25600      C
25700      DINT=0.
25800 31      IF (K4.EQ.61) GOTO 30
25900 30      DO 31 L1=K4,60
26000      DINT=DINT+PF(L1)/IRM(L1)*DELTR
26100      CONTINUE
26200 24      WC(K4)=WCALF*(XC+XH+XS+XO/8.)*IRM(K4)/RBS(SC(K4)
26300      *COE*(1.-CS(K4))+SR(K4))*DINT
26400      CONTINUE
26500 35      CALL TRAP(WC,DELTR,1.,61.,WCOLC)
26600      C
26700      CALCULATE CARBON PARTICLE SIZE DISTRIBUTION
26800 35      DO 35 L5=1,61
26900      PBC(L5)=WC(L5)/WCOLC
27000      PBC(61)=1.E-5
27100      PBINT=0
27200 35      DO 35 I5=1,61
27300 5      FUNCT(I5)=PBC(I5)/R(I5)**2.**(1.-CS(I5))*SH(I5)
27400      CONTINUE
27500 35      CALL TRAP(FUNCT,DELTR,1.,61.,PBINT)
27600 35      TEST FOR CARBON LOADING CONVERGENCE
27700 35      IF (ICI-200) 42,42,32
27800 43      WRITE(5,100)
27900 43      BOMB=1.
28000 42      DIF=(WCOLC-WCOLAL)/WCAL
28100 42      IF (ABS(DIF)-.001*TOLER) 32,32,33
28200 33      CONTINUE
28300 33      C
28400 33      RECALCULATE CARBON LOADING AND OXYGEN CONCENTRATION
28500 33      WCAL=WCOLC*(1.+DIF)
28600 33      COE=COIN*((1.5*WCAL/(FLOW/C1/PBINT))+1.)
28700 33      IF (COEJIM.GT.0.) GO TO 999
28800 33      SBEDH=WIERT/RHOA/BEIDA/(1.-EMF)
28900 33      DWC=WCAL/BEIDA/SBEDH
29000 33      HST=UD/(1.5*C1*DWC*PBINT)
29100 33      TER=HT/HST*(1.-DELPL)
29200 33      IF (TER.GE.140.) TER=140.
29300 33      CPT=COIN*EXP(-TER)
29400 33
29500 33

```

```

P
29500      CPT=COIN♦EXP (-TER)
29600      COEN=CPT/(1.+ (BEDH-HT) /HST♦UD/ FLOW♦(1.-DELB))
29700      TERR=(1.-DELPL) ♦HT/HST
29800      IF (TERR.GT.140.) TERR=140.
29900      COE=COIN/(1.-DELPL) ♦HST/BEDH♦(1.-EXP (-TERR))
30000      1  +COEN♦(1.-HT/BEDH)
30100      999  CONTINUE
30200      GO TO 34
30300      32  CONTINUE
30400      C
30500      C      CHECK BED DISTRIBUTION CONVERGENCE
30600      C
30700      PB(61)=1.E-5
30800      ERR=0.
30900      TOLER=1.
31000      DO 40 M1=1,61
31100      IF (PB(M1)-PBC(M1)) 65,65,66
31200      65  PL=PB(M1)
31300      GO TO 400
31400      66  PL=PBC(M1)
31500      C
31600      C      CALCULATE DIFFERENCE BETWEEN CALCULATED AND ASSUMED
31700      C      BED SIZE DISTRIBUTION
31800      C
31900      400  ERROR1=((PB(M1)-PBC(M1))/PL) ♦♦2
32000      IF (PB(M1).LE.1.E-4.AND.PBC(M1).LE.1.E-4) ERROR1=0.
32100      40  ERR=ERR+ERROR1
32200      ERAVG=SQRT(ERR)/61.
32300      C
32400      C      CHECK SECOND LOOP COUNTER
32500      C
32600      IF (ICC=200) 44,44,45
32700      45  WRITE(NWRIT,101)
32800      BOMB=1.
32900      C
33000      C      TEST FOR CONVERGENCE OF BED PARTICLE SIZE DISTRIBUTION
33100      C
33200      44  IF (ERAVG-.001) 36,36,37
33300      37  CONTINUE
33400      C
33500      C      REASSIGN BED PARTICLE SIZE DISTRIBUTION
33600      C
33700      DO 38 L8=1,61
33800      38  PB(L8)=PBC(L8)
33900      DO 53 M8=1,61
34000      IF (PB(M8)-1.E-10) 54,53,53
34100      54  PB(M8)=1.E-10
34200      53  CONTINUE
34300      GO TO 4
34400      C
◆

```

```

P
34400 C
34500 C
34600 C      END OF BED PARTICLE SIZE DISTRIBUTION LOOP
34700 C
34800 36      CONTINUE
34900 C
35000 C      CALCULATE THE RATE OF OXYGEN CONSUMPTION
35100 C
35200 C      COCON=FLOW♦(CPT-COEN)♦BEDA+UD♦BEDA♦(COIN-CPT)
35300 C
35400 C      CALCULATE ELUTRIATION RATE FROM BED
35500 C
35600 C      ELTOT=0.0
35700 DO 56 M6=1,61
35800 56      EL(M6)=DELUT(M6)♦BEDA♦WC(M6)♦WIERT♦RHDA/RHOC
35900      CALL TRAP(EL,DELTR,1.,61.,ELTOT)
36000 C
36100 C      CALCULATE ELUTRIANT PARTICLE SIZE DISTRIBUTION
36200 C
36300 DO 41 I1=1,61
36400 IF(ELTOT)186,186,187
36500 186      PE(I1)=0.0
36600 GO TO 41
36700 187      PE(I1)=EL(I1)/ELTOT
36800 41      CONTINUE
36900 C
37000 C      CALCULATE AVERAGE PARTICLE RADIUS FOR FEED, BED,
37100 C      AND ELUTRIANT
37200 C
37300 DO 1717 JJ=1,61
37400 QPF(JJ)=R(JJ)♦PF(JJ)
37500 QPE(JJ)=R(JJ)♦PE(JJ)
37600 1717      QPB(JJ)=R(JJ)♦PB(JJ)
37700 CALL TRAP(PF,DELTR,1.,61.,PFSM)
37800 CALL TRAP(PE,DELTR,1.,61.,PESM)
37900 CALL TRAP(PB,DELTR,1.,61.,PBSM)
38000 CALL TRAP(QPF,DELTR,1.,61.,FAV)
38100 CALL TRAP(QPE,DELTR,1.,61.,EAV)
38200 CALL TRAP(QPB,DELTR,1.,61.,BAV)
38300 FAV=FAV/PFSM
38400 EAV=EAV/PESM
38500 BAV=BAV/PBSM
38600 C
38700 C      FORMAT SECTION FOR ERROR MESSAGES
38800 C
38900 100      FORMAT(10X,'COMB: INNER LOOP NOT CONVERGING')
39000 101      FORMAT(10X,'COMB: MIDDLE LOOP NOT CONVERGING')
39100      RETURN
39200      END
39300 C
*
```

```

P
39300 C
39400 C*****+
39500 C
39600 C      FREEBOARD SIMULATION SUBROUTINE
39700 C
39800 C*****+
39900      SUBROUTINE FB(XFB)
40000 C
40100 C      DIMENSION AND COMMON INITIALIZATION
40200 C
40300      DIMENSION R(100),SC(100),RTOP(61),FNRT(61)
40400      REAL MU
40500      COMMON /PHYS/RHOA,RHOC,RHOM,RHOG,DG,MU
40600      COMMON /AIR/ U0,UMF,EXAIR,EMFLOW,CLFLOW,BUFLOW
40700      COMMON /COAL/ XC,XS,XH,XD
40800      COMMON /FBD/ TOUT,HFB,FRACV
40900      COMMON /FBCP/ BEIH,BEDA,TBED,WIERT
41000      COMMON /TRANS/ RD(61),PE(61),DELTR,ELTOT
41100 C
41200 C      CALCULATE FREEBOARD OXYGEN CONCENTRATION
41300 C
41400      COIN=.21*RHOM
41500      COE=COIN*EXAIR/(1.+EXAIR)
41600 C      CALCULATE HEIGHT INCREMENT AND PARTICLE VELOCITY
41700      IX=HFB/100.
41800 C
41900      X=0.
42000      V=FRACV*U0
42100 C
42200 C      ENTER FIRST INTEGRATION LOOP
42300 C
42400      DO 99 K=1,61
42500      FNRT(K)=0.
42600      IF (RD(K).LE.0.) GOTO 99
42700      DO 10 J=1,100
42800      10      SC(J)=0.
42900      R(1)=RD(K)
43000 C
43100 C      ENTER INNER INTEGRATION LOOP
43200 C
43300      DO 999 I=1,99
43400 C
43500      C      CALCULATE HEIGHT, TEMPERATURE, SCHMIDT NUMBER, SHERWOOD
43600      C      NUMBER, AND REYNOLDS NUMBER
43700 C
43800      X=X+IX
43900      T=TBED+(TOUT-TBED)/HFB*X
44000      SCH=MU/(RHOM*28.84*D6)
44100      REY=RHOM*28.84*U0*R(I)*2./MU
44200      SH=2.+.6*REY**.5*SCH**.333
◆

```

```

P
44200      SH=2.+.6*REY**.5*SCH**.333
44300      SR=DG/RHOC/R(I)+SH/2.*((XC+XS+XH-XD/8.)*
44400      /((XC/12.+XS/32.+XH/4.-XD/32.))
44500      C
44600      C      CALCULATE PARTICLE SHRINKAGE RATE
44700      C
44800      XKS=8710.*EXP(-35700./1.987/(T+100.))
44900      CS=1./((1.+CXKS*(T+100.)*R(I)+1.3677E-1)*SH/DG)
45000      SC(I)=SR*COE*(1.-CS)
45100      RI=I
45200      C
45300      C      EVALUATE INNER INTEGRAL
45400      C
45500      CALL TRAP(SC,DX,1.,RI,RINT)
45600      R(I+1)=R(I)-RINT/V
45700      999      CONTINUE
45800      C
45900      C      CALCULATE EXIT PARTICLE SIZE
46000      C
46100      IF (R(100).LE.0.) R(100)=0.
46200      RTOP(K)=R(100)
46300      C
46400      C      EVALUATE OUTER INTEGRAL AND CALCULATE XFB
46500      C
46600      FNRT(K)=(R(100)/R(10))**3.*PE(K)
46700      99      CONTINUE
46800      CALL TRAP(FNRT,DELTR,1.,61.,XFB)
46900      IF (XFB.GT.1.) XFB=0.
47000      RETURN
47100      END
47200      C*****+
47300      C
47400      C      THIS SUBROUTINE PROVIDES THE INITIAL VALUES FOR
47500      C      ALL THE INPUT PARAMETERS SPECIFIED IN COMMON
47600      C
47700      C*****+
47800      C
47900      SUBROUTINE BLK10
48000      BLOCK DATA
48100      C
48200      REAL MU,KBP
48300      COMMON /INPUT/ PIRF,COALF,COVFL
48400      COMMON /DIST/ ROS1,ROS2
48500      COMMON /FBOP/ BEDH,BEDR,TGRS,WIERT
48600      COMMON /PHYS/ RHDA,RHOC,RHOM,RHOG,DG,MU
48700      COMMON /COAL/ XC,XS,XH,XD
48800      COMMON /AIR/ UD,UMF,EXAIR,EMFLOW,CLFLOW,BUFLW
48900      COMMON /BUB/ KBF,EMF,HT
49000      COMMON /MISC/ ATRIT,ACPT
49100      COMMON /FBD/ TOUT,HFB,FRACY
*
```

P
49100 COMMON /FBI/ TOUT,HFB,FRACV
49200 C
49300 DATA AIRF,CDALF/2.264,1.084/
49400 DATA RDS1,RDS2/1.068,6.E-4/
49500 DATA BEIH,BEDA,TGAS,WIERT/1.22,3.3445,1144.,3500./
49600 DATA RHOA,RHOC,RHOM,RHOG,DG,MU
49700 1 /2363.,1522.,1.07E-2,.3094,2.E-4,4.56E-2/
49800 DATA XC,XS,XH,XO/.6953,.0309,.0497,.0778/
49900 DATA UD,UMF,EXAIR,EMFLOW,CLFLOW,BUFLW
50000 1 /2.5,.7422,.18,2.6E-2,1.7E-2,2.29/
50100 DATA KEP,EMF,HT/29.41,.45,.05/
50200 DATA ATRIT,ACPT/,.005,.16/
50300 DATA TOUT,HFB/1300.,3./
50400 DATA FRACV/.6/
50500 C
50600 C
50700 RETURN
50800 END
♦

7.5 Nomenclature

A	bed cross-sectional area, m^2
A_0	pre-exponential factor, $\text{g}/\text{cm}^2\text{-s-kPa}$
b	Rosin-Rammler parameter
B	parameter used in Sect. 7.3.2
C	parameter used in Sect. 7.3.2
C_p	bulk emulsion-phase oxygen concentration, mol/m^3
C_s	surface oxygen concentration, mol/m^3
d_b	bubble diameter, m
d_p	acceptor particle diameter, m
D	gas diffusivity, m^2/s
E	activation energy, J/mol
F_a	air flow rate, mol/s
F_0	coal feed rate, kg/s
F_1	coal overflow rate, kg/s
F_2	coal elutriation rate, kg/s
g	gravitational acceleration, m/s^2
G	parameter used in Sect. 7.3.2
$I(r, r_0)$	performance equation integral defined in Eq. (5)
K_a	attrition constant
K_s	combustion reaction-rate constant, $\text{g}/\text{cm}^2\text{-s-kPa}$
$K(r)$	elutriation-rate constant, $\text{kg}/\text{m}^2\text{-s}$
n	Rosin-Rammler parameter
N	moles of carbon
P	reactor pressure, Pa
$p_b(r)$	bed particle-size distribution

$p_e(r_0)$	elutriant particle-size distribution
$p_o(r)$	feed particle-size distribution
$p_l(r)$	overflow particle-size distribution
$P_o(r)$	weight fraction of feed with particle size less than r
r	particle radius, m
r_0	particle radius entering freeboard, m
r_f	particle radius at top of freeboard, m
R	ideal gas constant, 1.987 J/mol-K
$R(r)$	particle shrinkage rate, $\mu\text{m/s}$
Re	Reynolds number, dimensionless
Sc	Schmidt number, dimensionless
Sh	Sherwood number, dimensionless
$S_a(r)$	shrinkage rate due to attrition, $\mu\text{m/s}$
$S_c(r)$	shrinkage rate due to combustion, $\mu\text{m/s}$
$S_t(r)$	total shrinkage rate, $\mu\text{m/s}$
t	time, s
T	temperature, K
u_{mf}	minimum fluidization velocity, m/s
u_o	superficial velocity, m/s
u_t	terminal velocity, m/s
v	particle velocity in freeboard, m/s
W	bed weight, kg
x	axial coordinate in freeboard, m
x_f	total freeboard height, m

Greek Symbols

β	parameter in calculating u_{mf}
ϵ_{mf}	void fraction in emulsion phase
μ	gas viscosity, N-s/m ²
η_c	combustion efficiency
ν	particle-size density function
ϕ_s	particle sphericity
ρ_c	coal apparent density, kg/m ²
ρ_g	mass density of air feed, kg/m ³
ρ_m	molar density of air feed, kg-mol/m ³
ξ_{fb}	conversion in freeboard

7.6 Program Variables

Input Variables

ATRET	Attrition constant	
ACPTE	Acceptor effluent rate	kg/s
BEDA	Bed cross-sectional area	m ²
BEDH	Expanded bed height	m
BUFLOW	Air flow in bubble phase	kg mol/s
CLFLOW	Transport air flow rate	kg mol/s
COIN	Oxygen concentration in incoming air	kg mol/m ³
DG	Gas diffusivity	m ² /s
EMF	Void fraction in emulsion phase	
EMFLOW	Air flow rate in emulsion phase	kg mol/s
HT	Transition height	m
KBP	Mass exchange coefficient between bubble and emulsion phase	s ⁻¹

MU	Gas viscosity	N·s/m ²
RHOA	Acceptor density in bed	kg/m ³
RHOC	Coal apparent density	kg/m ³
RHOG	Mass density of incoming air	kg/m ³
RHOM	Molar density of incoming air	kg mol/m ³
ROS1	Rosin-Rammler function parameter	
ROS2	Coal mean particle radius	cm
TGAS	Bed temperature	K
TOLER	Tolerance limit in convergence loop	
U0	Superficial velocity	m/s
UF	Fluidizing gas velocity	m/s
UMF	Minimum fluidization velocity	m/s
WIERT	Weight of inert in bed	kg
XC	Weight fraction of carbon in coal	
XH	Weight fraction hydrogen in coal	
XS	Weight fraction sulfur in coal	
XO	Weight fraction oxygen in coal	

Output Variables

COE	Effective oxygen concentration in emulsion phase	kg mol/m ³
CELUT	Elutriation rate constant	kg/s·m ²
COCON	Oxygen consumption rate	kg mol/s
CS	Surface oxygen concentration	kg mol/m ³
COVFL	Carbon overflow rate	kg/s
COMEFL	Combustion efficiency	
ELTOT	Elutriation rate	kg/s
LATRIT	Attrition constant	

PF	Coal particle-size distribution of feed	
PE	Coal particle-size distribution of elutriants	
PB	Coal particle-size distribution of bed	
SA	Coal shrinkage rate due to attrition	m/s
SC	Shrinkage rate of carbon due to diffusion limited	m/s
UT	Terminal velocity	m/s
WCOAL	Carbon loading in bed	kg
XKS	Surface reaction rate	mol/m ² -s

7.7 Literature References

1. Babcock & Wilcox Co., "Fluidized Bed Combustion Development Facility and Commercial Utility AFBC Design Assessment," EPRI Contract RP-718-2, June 1979.
2. Baron, R.E., J.M. Beer, G. Borghi, J.L. Hodges, and A.F. Sarofim, "A Model of Coal Combustion in Fluidized Bed Combustors," Dept. of Chemical Engineering, Mass. Institute of Technology, Cambridge, MA.
3. Beer, J.M., H.A. Becker, and B.M. Gibbs, "A Model for Fluidized-Bed Combustion of Coal," Institute of Fuel Symposium Series No. 1, p. A1-1 to A1-10.
4. Horio, M., S. Mori, and I. Muchi, "A Model Study for the Development of Low NO_x Fluidized-Bed Coal Combustors," Dept. of Iron and Steel Engineering, Nagoya University, Japan.
5. Kunii, D., and O. Levenspiel, Fluidized Engineering, Chaps. 10-11, Wiley, New York, 1969.
6. Louis, J.F., and S.E. Tung, *et al.* "A First Order System Model of Fluidized Bed Combustors," MIT Energy Laboratory, Vol. 1, Cambridge, MA, February 1978.
7. Merrick, D., and J. Highley, "Particle Size Reduction and Elutriation in a Fluidized Bed Process," AIChE Symp. Series, 70(137), 366 (1971).
8. Sharma, P.K., "Application of MIT Combustion Submodel to TVA Coal," Energy Laboratory, Mass. Institute of Technology, Cambridge, MA, May 1979.
9. Yates, J.G., and P.N. Rowe, "A Model for Chemical Reaction in the Freeboard Region Above a Fluidised Bed," Trans. Instn. Chem. Engrs., 55, 137 (1977).

ORNL/MIT-303

INTERNAL DISTRIBUTION

1. D.A. Canonico
2. H.D. Cochran, Jr.
3. J.R. Hightower
4. J.E. Jones, Jr., 9201-3
- 5-8. A.A. Khan
9. L.E. McNeese
10. G.E. Moore
11. T.W. Pickel
12. M.W. Rosenthal
13. M. Siman-Tov
14. J.W. Wells
15. W.R. Williams
16. R.G. Wymer
- 17-18. Central Research Library
19. Document Reference Section
- 20-22. Laboratory Records
23. Laboratory Records, ORNL R.C.
24. ORNL Patent Office
- 25-39. MIT Practice School, 1505

EXTERNAL DISTRIBUTION

40. J.M. Beer, MIT, Cambridge, MA
41. J.P. Longwell, MIT, Cambridge, MA
42. A.F. Sarofim, MIT, Cambridge, MA
43. S.M. Senkan, MIT, Cambridge, MA
44. S.E. Tung, MIT, Cambridge, MA
45. J.E. Vivian, MIT, Cambridge, MA
46. G.C. Williams, MIT, Cambridge, MA
47. H.M. Wood, MIT, GE, Selkirk, NY
48. Morgantown Energy Technology Center
P.O. Box 880, Morgantown, WV
49. Office Asst. Mgr., Energy R&D, DOE
- 50-76. Technical Information Center