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ABSTRACT

The deviatoric transformation strain of ai 

modeled by applying an equivalent distribution of dislocations along CL 

surface which exhibits a discontinuous change in the transformation 

strains. This method is applied to qualitatively model the twin 

structures generated in transformation toughened ceramics. For this 

case, the transformation shear strain of the inclusion is assumed to 

consist of a number of symmetrical pairs of (twinning) shears in a 

rectangular grain. The elastic energy is derived and expressed in 

terms of elementary functions. With one pair of shears, the 

inclusion induced toughening effect in the presence of a crack is 

calculated by applying a recent solution of the crack-dislocation 

interaction problem. Numerical results show that the toughening due 

to the inclusion (as compared to that due to dilatation) is not 

negligible if the inclusion is located within a distance equal to 

several grain sizes from the crack tip. Moreover, the toughening 

depends strongly on the orientation of the inclusion relative to the 

crack.
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1. INTRODUCTION

The martensitic transformation of tetragonal zirconia particles or 

grains has been shown to increase the toughness of both monolithic zir­

conia and ceramics containing zirconia inclusions (Becher, Swain and 

ScTmiya, 1987; Evans and Cannon, 1986; McMeeking and Evans, 1982; Rose, 

1987). Analysis of the toughening behavior indicated that the dilata- 

tional or volumetric expansion of the transformed particles is a signif­

icant contributor to the toughening. Experimental observations of the 

martensitic transformation of ZrO^ show that twin structures with dif- 

f erent variants are generated (Muddle and Hannink, 1986). The condition 

required to trigger the transformation seems to remain a subject of 

investigation, although the transformation mechanism has been shown to 

be closely related to the local shear (Chen and Morel, 1986). Questions 

have been raised (McMeeking and Evans, 1982) as to how the orientation 

of the twins may interact with the crack tip to provide further reduc­

tion in the stress intensity.

In the present study, we shall not discuss the criteria for the 

nucleation of the transformation, but only suggest a method for calcula­

ting the toughening contribution ‘ as a result of the inclusions which 

have been subjected to pairs of shear transformations. The method is 

based on the distribution of dislocations introduced to match the misfit 

or incompatible deformation along the interfaces between an inclusion or 

twin and the matrix (Bilby, Bullough and Smith, 1955; Mura, 1987). The 

twin structure is assumed to be subjected to pairs of shear transforma­

tions in a rectangular grain. The energy of the deformation twinning is 

then calculated and the results show that the elastic twin energy per



unit volume decreases as the number of pairs of twins increases. The 

transformation, therefore, leads to a reduction of the total elastic 

energy of the system. The stress is found to increase logarithmically 

as the tip is approached from the matrix side. Moreover, the toughening 

contribution of the twin.structures is analyzed by applying a recent 

solution of the dislocation-crack interaction problem. The numerical 

results show that if the twins are located near the crack tip, their 

contribution to the toughening depends strongly on their orientation and 

is not negligible as 'compared to that due to the dilatation toughening.

2. DISLOCATION DENSITY DESCRIPTION FOR INELASTIC INCLUSION

A dislocation density tensor is used to represent the incompatible 

or misfit deformation across the boundary between an inclusion and the 

surrounding matrix. It is also used to model the nonuniform inelastic 

transformation strain within the inclusion. This formulation enables 

one to solve the inclusion problem with nonuniform transformation strain 

in terms of the solution of an equivalent dislocation problem.

Let u^ and u£ denote Cartesian components of the displacements due

to elastic and plastic deformations, respectively. The elastic distor-

6 „ . Ption 8^ anc* plastic distortion are defined, respectively, as the

gradients of the displacements, 

e

8
3u

ik ~ 3x

3u
8- ik 3x.i

(2.1)

(2.2)

where (i = 1, 2, 3) are the Cartesian coordinates. Since the plastic



distortion, appears repeatedly in the following text, we shall use the

notation 6 without superscript for brevity. The Burgers vector b is2.K.

defined as a contour integral along a Burgers circuit L with respect to 

a line segment of a dislocation loop,

bk * Bik dxi (2,3)

The above line integral can be transformed to a surface integral 

according to:

{ 8ik dxi = / ei]
38 rak

L ‘ 8 3X1

32 UP
dS. = / e . 1 -—r~ dS.i ilm 3x 3xn xS ml

(2.4)

where e^m is the permutation tensor. If u^ were continuous and differ­

entiable , then we should have:

32 u£ 32 u?

3x 3xn 3x, 3xml 1 m
(2.5)

and Eq. (2.4) would be zero. However, Eq. (2.5) is not satisfied every­

where within S due to the disturbance of the u? field induced by the 

dislocation loop which passes through S. In order to satisfy Eq. (2.3) 

for a single dislocation line, we must have:

38.
e. ink
ilm 3x, vi • (2.6)

In the above equation, 6(5) is the two dimensional 6-function and is 

the normal direction of the surface S such that:

f v 5(5) dS. = 1 . (2.7) 
S

In Eq. (2.6), the discrete Burgers vector b^ may be viewed as a distri­

bution of Burgers vectors with the distribution function b^ 5(5). 

Therefore, given more dislocation lines passing through S, we may use



Eq. (2.6) to define a distribution of dislocations. This yields :

38 mk—0 —— 
ilm 3x1

(2.8)

where represents the k-th component of the total Burgers vector 

per unit area that has a unit normal v. along the i-th direction, ct is
i. XK.

a tensor quantity because it is composed of two vectors b and v. A. phy­

sical view of the distribution of dislocations is to smear out the dis­

crete dislocation lines and to replace them by the equivalent continuous 

distribution.

It is seen from the above equation, Eq. (2.8), that a vanishes if 

every derivative of the plastic distortion 8 ^ does. Suppose that the

derivatives of 8^ are nonzero only along certain surfaces in three dimen- 

sional space, or lines in two dimensional space. This means that the 

inelastic strain is uniform everywhere except along these surfaces.

Then it is more convenient to represent the inelastic strain field by the

discontinuities of 8's across these surfaces. This is shown in the fol­

lowing.

In Eq. (2.8), maY be interpreted as the divergence of a flux

vector S-Qjjj 8^ with i = 1, 2, 3 as its three components. Suppose that

the flux vector is discontinuous across a surface where n^ is the direction 

cosine n and the quantity [ 8 , ] is the discontinuity across the sur-

face. We may prescribe a thin layer At across the surface and apply the

divergence theorem to obtain:

a' = lim a,. At = —e
DISCLAIMER

(2.9)

United States Government or any agency thereof.



From the above equation, a', is defined as the surface dislocation den-
1K,

sity as a result of the discontinuity [8 , ]. Therefore, an equivalentmK

distribution of surface dislocations can be used to represent the dis­

continuous change of 8 , across the surfaces and the solution of themk

inclusion problem with nonuniform transformation strain can be reduced 

to that of an equivalent dislocation problem. We shall formulate the 

problem more specifically in the next section.

3. TWO DIMENSIONAL INCLUSION

For a two dimensional inclusion, a direct application of Eq. (2.9) 

leads to :

where s is the tangent vector along the interface of discontinuity 

[8]. For example, the change in 8n component becomes:

[8ll]=8ii — 8n (3.2)
if 8^ and 0^ are the plastic distortions of the matrix and the inclu­

sion, respectively.

The above representation suggests that we may define a complex sur­

face dislocation density a" by :

+ i ag (3.3)

and rewrite equation (3.1) as :



(3.4)

2a' ~([0
dz

11- 122 J } di-” ( Ceil] “ CS n22j) ds

i ([0121 — [Sail) ds" — 1 ( fs 12 ] + [321 ] ) ds

where z = + 1x2. The first two terms in Eq. (3.4) are the effect due 

to uniform stretching and the last two terms simple shear. By using the 

complex dislocation density, Eq. (3.4) , we have an advantage in calcula­

ting some of the contour integrals.

The above description of surface dislocations can be used to calc­

ulate the stress distribution as a result of the misfit deformation 

along a certain surface provided that we know the stress functions due 

to one single edge dislocation. For an edge dislocation at in an 

isotropic and elastic medium with shear modulus u and Poisson's ratio v, 

the stress potentials are :

4>(z) = B a -----------
r 2 — Z j

_ i zi
<p(z) - —B a ------- r---- 1- B a —------z — z,

1 (z -

where B is a material constant,

(3.5)

(3.6)

^ 4iri( 1 — v) (3.7)

The solutions of two dimensional inclusion problems can be expressed in 

terms of the line integrals of equations (3.5) and (3.6) along the 

inclusion surface with appropriate boundary conditions. Functions <j>(z) 

and ijj(z) for an inclusion of a general shape in an infinite medium are 

shown in Appendix A.



These expressions for <j> and have been applied to circular and 

elliptic inclusions and the well-known solutions of the inclusion prob­

lems (Mura, 1987) were confirmed.

4. TWIN STRUCTURE IDEALIZED AS PAIRS OF SHEAR TRANSFORMATIONS

It is assumed that the twin structure generated by the phase trans­

formation can be represented qualitatively by pairs of inelastic shear 

deformations in a rectangular grain, as shown schematically in Fig. 1.

Each pair consists of a positive shear S at the right half and a 

negative shear -S at left,

3u2
S12 = v— = S right half

dX j

= — S left half.
(4.1)

The other components of g are zero, including 82i» The matrix is 

assumed to deform elastically. By applying equation (3.4), the misfit 

strain between the matrix and the inclusion can be used to derive the 

equivalent distribution of edge dislocations on the top and bottom part 

of the twin. It is noted that, although there exist changes in plastic 

strain along the twin boundaries, there is no distribution of disloca­

tions along these boundaries.

Elementary calculation shows that the solution in terms of the com­

plex stress functions for the twinning deformation is :

z
— log

z — log z (4.2)



Ei/ ,ni / Zi- 2i+
(-1) -----------------------------

\zi- ~ z zi+ “ z
i=0 L

o- o+

z — z z , — z o- o+

N- N+
zN_ “ z ZN+ ~ z

(4.3)

From the potential functions cfi(z) and ip(z) shown in the above equations , 

the stress components are:

2B8
N

+ ^2 = —
12 I i Zi- - Z

2 Re j 2 > (-1) log

i=0
Zi+- 2

- log
(z0.- ~ z) (ZN- ~ z)
(Z0+“Z) (zN+ “ Z).

(4.4)

2BS
a2 ~ ffl + 2ia12

12 E
i=0

(-1)
il zl-" z zi+- 2

zi_~z -i+--z

-(
Z — z Z z \ / z.7 — z zVl —a- _ o+ 1 / N- h+
z — z z , — z o~ o+ ZN- Z ZN+

(4.5)

5. STRESS INTENSITY

From the stress distribution, Eqs. (4.4) and (4.5), we observe that 

at the ends of each twinning plane the stress tends to infinity accord­

ing to:

al ~ a2 * 4Bi 812 loS Iz “ z.J ^ for z z. i = odd
1 1+ (5.1)

+ +00 forz + z i = even
i+



Therefore the stress intensity factor is :

V 3i2
K = 4 Bi 812

IT ( 1 — V)
(5.2)

It is observed that K is linearly proportional to the shear 812 deformed 

within the twin and is independent of the dimension of the transformed 

inclusion.

6. TOTAL ENERGY

The total elastic energy due to the transformation can be calcula­

ted by applying the relation,

(6.1)

the inclusion prior to the transformation. In the present case it has a 

rectangular shape, and the transformation consists of several pairs of 

shears. It has been shown recently (Mura, Jusiuk and Tsuchida, 1985) 

that the above equation is a valid expression even if the interface 

between the inclusion and the matrix has a sliding contact boundary 

condition. The derivation is shown in Appendix B.

After some elementary calculations, we obtain the following expres­

sion of energy for the present problem.

v
1

sin 20^ dxdy . (6.2)



towhere 9 is defined as the angle between x-axis and the ray from z. 

the point (x,y). As shown in Appendix B, equation (6.2) can be fur­

ther simplified to logarithmic functions.

The numerical result shows that the energy of the two dimensional

is less than that of the three demensional counterpart (Mura, Mori and 

Kato, 1976). However, the energy of the two dimensional qualitatively 

described the physical nature exhibited by its three-dimensional counter­

part. In addition, the present transformation strain for the case of one 

pair of shears is obtained via an approximate polynomial transformation 

(Asaro and Barnett, 1975). Finally, a numerical calculation for the total 

energy was then carried out and the result is plotted as the bottom curve 

in Fig. 2. This curve shows a continuous decrease in energy as the 

number of pairs increases, provided that both the dimension of the inclusion 

and the magnitude of the shear are fixed.

As discussed earlier, (Evans and Cannon, 1986) the criterion 

for the nucleation of the twin structure may be related to the minimum 

total energy of the system. It is possible that an additional energy 

contribution may come from other sources in which the surface energy 

along the interface of the discontinuous shear deformation may be a dom­

inant quantity. It is not known how large the surface energy should 

be. We calculated! a series of curves by assigning a range of surface

energies. The results are plotted as a series of curves in Fig. 2. 

Each of these curves has a minimum value. The number of pairs which are 

required to reach the minimum decreases as the magnitude of the assigned 

surface energy increases.



7. DISLOCATION AND CRACK INTERACTION

In the preceding sections, we have discussed the use of dislocations 

to model the misfit created by the inelastic transformation of the 

inclusion against the matrix. The stress field generated as a result of 

the misfit, however, depends on the constitutive properties of the 

inclusion as well as the matrix. At present, we shall assume that both 

the inclusion and the matrix have the same isotropic elastic constants.

In order to calculate the toughening effect, we need an explicit 

solution of the dislocation-crack interaction problem. There are 

several ways to derive the solution (Thomson, 1986). At present, a two- 

dimensional solution is described in Appendix C. The problem is form­

ulated by invoking a distribution of (virtual) dislocations to model the 

displacement of the crack surface. The edge dislocation which induces 

the solution is located near the crack with the complex coordinate 8 . 

The problem is schematically shown in Fig. 3 in which a complex coordi­

nate is chosen so that the negative x-axis coincides with the semi- 

inf inite crack surface and the crack tip is located at the origin. Any 

point in the two-dimensional body is represented by the coordinate z = x 

+ iy.

As shown in Appendix C, . the complex stress intensity K (K = +

iKo) induced by an edge dislocation which is located at the complex 

coordinate 8 with a complex Burgers vector b has the expression:

K AIE 11 (l + fi) + £ u - f>
/S 2 e

3

(7.1)

where and K9 are the mode I and mode II stress intensities, respect­

ively , and the complex constant a has been defined in Eq. (3.7).



The distribution function, also complex-valued, is:

X“pAttZ-x
B (x-8)'

from which we obtain K by taking the limit :

K = limx_^o/?ir Air /-x f (x). (7.3)

The real part of the function f(x) denotes the mode I component of the 

distribution function and the imaginary part of f(x), the mode II compo­

nent. The complex displacement for the crack surface is :

u = b f° f(x) dx (7.4)
o ^ x

where b0 is the magnitude of the Burgers vector for the (virtual) dis­

location. The above expressions are valid for b not necessarily 

parallel to 8« For b // 8 , K reduces to :

K * --------------------  cos ~ [3 sin 0 + i (3 cos 9 - 1)] . (7.5)
2/lrivr (1-v)

8. INCLUSION INDUCED TOUGHNESS

It has been illustrated earlier that the transformation strain for 

an inclusion consisting of pairs of shears can be represented by a dis­

tribution of dislocations along the inclusion boundary. In the follow­

ing calculations, the deformation misfit is modeled approximately by a 

discrete number of edge dislocations.

At present we only use four dislocations to represent the transfor­

mation of one pair of shears. The arrangement of the dislocations is



schematically shown in Fig. 4. It represents an inclusion which has a 

rectangular shape of 2Ax by Ay in dimension and has been subjected to a 

pair of shears. For the purpose of comparison, a dilatational transfor­

mation is approximately represented by a circular arrangement of four 

dislocations.

The stress intensity induced by a symmetric pair of inclusions, 

each consisting of a single pair of shear deformations, is calculated 

and the result is shown in Fig. 5 where the directions of the shears to 

the horizontal axis are Tr/2 and tt. The induced which has a negative 

value indicates a toughening effect for the crack tip region.

To estimate the overall K effect on the crack growth, two lines of 

inclusions are assumed as shown in Fig. 4. The arrangement is similar 

to that of some known models (Weertman, Lin and Thomson, 1983; L.R.F.

Rose, 1987). The double line model shows a change in toughness as the 

crack grows. It approximately represents the R-curve, or the crack 

growth resistance curve. The numerical values of these R-curves are 

plotted in Fig. 6. It is shown that each of the curves varies signifi- 

cantly only near the crack tip region and that the effect is short-ranged. 

However, since the transformations are induced by the crack tip stress 

and the density is relatively large near the crack tip region, the local 

influence on the crack propagation may not be totally discounted. 

Moreover, results in Fig. 5 also indicate that the toughening effect due 

to the inclusions consisting of single pair of shears depends strongly

on their orientations.



For the purpose of comparison, the numerical results corresponding 

to dilatational inclusions are plotted in Fig. 7. The dilatational 

inclusions in most of the locations only result in a toughening effect, 

except in regions in front of the crack tip where they may cause an 

increase in crack tip stress intensity and enhance the crack propaga­

tion. The R-curve always shows a negative limiting value which contri­

butes to the resistance to the crack growth.

The numerical value of K for an inclusion consisting of single pair 

of shears has been expressed in terms of a non-dimensional constant:

ub (
(l-v)/h k

(8.1)

In the above equation y is the shear modulus, y is Poisson's ratio, b is 

the Burgers vector, h is a distance and Ax Is the distance between the 

two dislocations (or the grain size). For the R-curve calculation, the 

non-dimensional constant is Cjp where p is the number of inclusions per 

h along the longitudinal direction of the line of inclusions. The K 

value for the case of pairs of dilatations is plotted with the nondimen- 

sional constant;

(8.2)

which depends only on the first power of Ax/h. The numerical value of K 

due to either a pair of shears or dilatation has the same order of mag­

nitude, but the non-dimensional constants are different by a factor 

of Ax/h. It implies that the influence of a pair of shears is less than 

the influence of dilatation by the ratio Ax/h. In other words, the 

ratio of the stress intensities has the same order of magnitude as that 

of the grain size vs. the distance from the crack tip. We conclude,



therefore, that if a grain with a pair of shear transformations is loca­

ted near the crack, tip within several grain sizes, its influence to the 

K value should not be neglected as compared to that due to a grain with 

a dilatation transformation.

9. CONCLUSION AND DISCUSSION

The present investigation shows that it is convenient to use the 

method of continuous distribution of dislocations to calculate the gen­

eral inclusion-crack interaction problem. Since the method does not 

restrict the shape of the inclusion, it can be programmed into an effi­

cient numerical routine such that the more general microstructure-crack 

interaction problems can be handled.

This paper only suggests a method of calculation. The more 

difficult and fundamental problem concerning the nucleation of 

transformation twins remains intact. Important problems such as the 

determination of the transformation boundary and the density of the 

transformed grains remain unsolved. Recently, a more-than-additive 

increase in toughness was observed for some composites if the 

transformation-toughened ceramic was supplemented with whisker 

reinforcement (Becher and Tiegs, 1987). This problem seems also related 

to the criteria of transformation by which the transformation boundary 

changes substantially as a result of the second toughening mechanism.



APPENDIX A

The potentials for the inclusion problem are:

~$(z) = — ( [3n] + {$22 ^ ^ / z _ Zl — ( 1 — [622^ / z-_"-2"^

dzj
— 1 ([0121 ~ [S21I ) / z " z~- — i ([Si2l

+ [621! ) / z“— z“' (A.l)

1 ^(z) = ([Sill + 10221) / + aSlll - 10221) J ~

1 (10121 ~ [021 1 ) / z i ( [3i2] + [0211 ) / 7Tr7

~ ( [0111 + [022 1 ) /
Z1 dz1 

(z - z^2
- ([01ll “ [0221) /

z 1 dz ^

(z - z^2

z i dz j
~i ( [0123 — 10 2 11 ) / ----------—--------i ( 10 121

(z - z j )2

z 1 dz\
+ [02 ll) / -------- -----— • (A.2)

(z — z x)2

By straight forward application of Eqs. (A.1) and (A.2), the results for 

inclusion problems of circular and ellipitc inclusions subjected to uni­

form eigenstrains were confirmed.



APPENDIX B

The elastic strain energy w of the inclusion and the matrix due to 

plastic deformation of the inclusion with possible debonding is :

w - T/D "ij (“i,j £*.) dv . 
1J

(B.l)

The inclusion domain D is the sum of that for the matrix D-E and inclu­

sion £. The potential energy for the matrix is the equation when 

expressed in terms of boundary traction:

f a^. ^ u^. dv = / o.j n. u. ds — / a. . n . u, (out) ds . (B.2)
3I; ij J i, . ^ i’j 3D ^ij ^

Also, we have the elastic energy for the inclusion.

\ ui,] dv ■ L n. u. (in) ds .
ij j iZ *'J ~’-J 9Z

The sum of the above two equations gives:

SB "ij dv --/3I aij "j ["i] ds

(B.3)

(B.4)

where n^. = 0 on 3D and [ui] = ui (out) — ui (in).

This discontinuous [u^] is zero for a bounded interface. For the 

case of a sliding inclusion, the traction force is continuous and has no 

shear along 31. For this case cm^ nj has no tangential shear component. 

The term o\ n^ [u^ ] vanishes along the interface. Therefore, for both 

cases Eq. (B.l) becomes :

“ --1^ dij E*j dv • (B. 5)



APPENDIX C

From Eq. (4.5), we can prove that

CTi2 = Bi 012
N

2 X] (-1)1 (sin 29. — sin 29. )
L i=0 1 1+

(sin 29 — sin 29 ) - (sin 29.. — sin 29.., )0~ O-r M— jNJ-r (C.l)

Substituting the above equation into Eq. (6.1), the elastic energy

becomes:

W
N

4 2 (-D^ / o\2 312 dv
j=l v

312 E (-D:
j = l

N
/ 4Bi012 E (-1)1 sin 29. dxdy
v. i=0 x~

J

/ 2 Bi g,2 (sin 29 -f sin 29 ) dxdy

2 Bi 312 E E (-l)1+j+1 / Sin 29. dxdy 
j=l i=l v.

J

(C.2)

where we have made use of the following relation:

E / sin 290_ dx dy
j = l v

X! (-1 )^ / sin 29„ dx dy 
j=l v.

(C.3)



the integral in Eq. (C.2) can be further reduced to:

/v sin 20i_dxdy = y (x.- x±)2 log 1 + (2h)2 
U.- x. )z

1 , (2h)2
1 (xj-r l0S 1 + (x/ - x. )2

1+ Y (2h)2 log (x

j-1 i 
(x.- x.)2 + (2h)2

x )2 + (2h)2
J * -*•

(C.4)



APPENDIX D

The dislocation-crack interaction problem is solved in this 

appendix. For one edge dislocation located at g as shown in Fig. 3, we 

formulate the pileup integral equation as:

, ro f(x ) dx
A f --------------— +o+ia =0•' x - x y xy (D.l)

where f(x) is the (virtual) distribution function, A is a constant and

o+io= 0y xy x - 3
a a a (-6 + 3)

4* ————— -f-

- ^ (x - 3)2

The solution to the integral equation is:

(D.2)

:(x) = -
1 /-x'* fo (x') + io (x")] dx' o y xy

Att2/^

1

Att/-x

/

" r/3 ’'3 a Bv (x + 8) /g
3 x-8 + x_-g) + 2 (1 g) ""(x - 6)'2-

The complex stress intensity K [K = /2tt Att /-x f (x) ] is
X-K>

(D.3)
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FIGURE CAPTIONS

1. Schematic representation of the deformation twinning for an inclu­
sion consisting of N/2 pairs of shear deformations. Each pair has 
negative shear -S at left and positive shear +S at right. An 
equivalent description of the inelastic deformation is represented 
by a distribution of edge dislocations located along the top and 
bottom boundaries between the inclusion and the surrounding 
matrix. Points at the ends of the twin boundaries are labeled by 
1+, 1-, ... , N+, N—, with the complex coordinates Z^ + , Zj_, ..., 
ZN+, ZN_, respectively.

2. Total energy per unit volume of grain versus the number of pairs of 
shear deformations. (a) The curves are plotted with an incremental 
values of surface energies. The surface energy density increment is 
0.0025 along the interface of the shears and the grain is square in 
shape with volume V. (b) The grain is rectangular in shape.

3. An edge dislocation located at 3 and Burgers vector b relative to a 
semi-infinite crack which coincides with the negative real axis.

4. Two lines of inclusions located parallel to the crack surface.

5. Toughening by two symmetrically located inclusions each consisting
of one pair of shear transformations located at h and 0.8 h from the 
crack: a) direction of shear $ ~ b) direction of
shear <$1 = it .

6. R-curves generated by two parallel lines of inclusions. Each 
inclusion has one pair of shear transformations:
a) direction of shear $ = — b) direction of shear ^ = it

7. a) Toughening by two symmetrically located inclusions of dilata­
tion, located at h and 0.5 h from the crack
b) The corresponding R-curves.
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