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ABSTRACT

The deviatoric . transformation 'strain of ‘an inclusion  is
modeled by applying an equivalent distribution of dislocaﬁions along 4
surface which exhibits a discontinuous change in the transformation
strains. This method is applied to qualitatively model the twin
structures generated in tfansformation toughened ceramics. For this
case,  the transformation shear-strain of the inclusion is assumed to
consist of a number of symmetrical pairs of (twinning) shears in a
rectangular grain. The ‘elastic energy is derived and expressed in
terms of elementary functions. With one pair of shears,  the
inclusion induced toughening effect in the presence of a crack is
calculated by applying a recent solution of the crack-dislocation
interaction problem. Numerical results show that the toughening due
to the inclusion (as compared to that due to dilatation) is not
negligible if the inclusion is located within a distance equal to
several grain sizes from the crack tip. Moreover, the toughening
depends strongly on the orientation of the inclusion relative to the

crack.
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1. INTRODUCTION

The martensitic t:ansformation of tetragonal zirconia particles or
grains has been shown to increase the toughness of both monolithic zir-
conia and ceramics  containing zirconia inclusions (Becher, Swain and
Somiya, 1987; Evans and Cannon, 1986; McMeeking and Evans, 1982; Rose,
1987). . Analysis of the toughening behavior indicated that the dilata-
tional or volumetric expansion of the transformed particles is a signif-
icant contributor to the toughening. Experimental observations of the
martensitic transformation of ZrO2 show that twin structures with dif-
ferent variants are generated (Muddle and Hannink, 1986). The condition
required to trigger the transformation seems to remain a subject of
investigation, although the transformation mechanism has been shown to
be closely reléted to the local shear (Chen and Morel, 1986).  Questions
have been raised (McMeeking and Evans, 1982) as to how the orientation
of the. twins may‘interact witﬁ the crack tip to provide further reduc-
tion in the stress intensity.

In the present study, we shall not discuss the criteria for the
nucleation of the transformation, but only suggeét a method for calcula-
ting the toughening contribution =~ as a result of the inclusions which
have been subjected to pairs of shear transformations. - The method is
based on the distribution of dislocations introduced to match the misfit
or incompatible deformation along the interfaces between an inclusion or
twin and the matrix (Bilby, Bullough and Smith, 1955; Mura, 1987). The
twin structure is assumed to be subjected to pairs of shear transforma-
tions in a rectangular grain. The energy of the deformation twinning is

then calculated and the results show that the elastic twin energy per



unit volume decreases as the number of pairs of twins increases. - The
transformation, therefore, leads to a reduction‘of the total 'elastic
energy of the system. The stress is féund to increase logarithmically
as the tip is approached from the matrix side. Moreover, the toughening
contribution of the twin structures is analyzed by applying a recent

solution of the dislocation-crack interaction problem. The numerical
results show that if the twins are located near the crack tip, their

contribution to' the toughéning depends strongly on their orientation and

is not negligible as ‘compared to that due to the dilatagpion toughening.

2. - DISLOCATION DENSITY DESCRIPTION FOR INELASTIC INCLUSION

Adislocation density tensor is used to represent the ihcompatible
or misfit deformation across. the boundary between an inclusion and the
surrounding matrix. It is also used to model the nonuniform inelastic
transformation strain within the inclusion. This formulation enables
one to solve the inclusion problem with nonuniform transformation strain
in terms of the solution of an equivalent dislocation problem.

Let ui and ui denote Cartesian components of the displacements due
to elastic and plastic deformations, respectively. The elastic distor-

tion Bik and plastic distortion Bik are defined, respectively, as the

gradients of the displacenents,

Bue
K
Bk = Bx, (2.1)
i
p
Ju
X
Bk = 7% (2.2)
i

where x; (i =1, 2, 3) are the Cartesian coordinates., Since the plastic



distortion appears repeatedly in the following text, we shall use the
notation Bik without superscript for brevity. The Burgers vector b is
defined as a contour integral along a Burgers circuit L with respect to

a line segment of a dislocation loop,
b, = —f B 9% | (2.3)

The above line integral can: be transformed to a surface integral

according to:

aemk 32 ui :
b By dxy = [ ennan 985 =] ey T 9y (2.4)
L tos 1 SH A

where €i1n is the permutation tensor. If u’ were continuous and differ-

k

entiable, then we should have:

32 ui azkup
3x _dx. 9 ak ’ : (2.5)
Xm Xl Xl Xm

and Eq. (2.4) would be zero. However; Eq. (2.5) is not satisfied every~-
where within S due to. the: disturbance of the u? field induced by the
dislocation loop which passes through S. - In order to satisfy Eq. (2.3)

for a single dislocation line, we must have:

38
mk ,
eilmé—;{T -——-bk \)i 5(5) ° (2-6)

In the above equation, §(g) is the two dimensional §-function and v; is

the normal direction of the surface S such that:

é vy §(£) dsi =1 (2.7)

In Eq. (2.6), the discrete Burgers vector b, may be viewed as a distri-~
bution of Burgers vectors ‘with the distribution function bk §(E).

Therefore, given more dislocation lines passing through S, we may use



Eqe (2.6) to define a distribution of dislocations. This yields:

38
mk
ik i % T Ciin 3%, (2.8)

where aik represents the k-th component bk of the total Burgers vector

a., is
ik

a tensor quantity because it is composed of two vectors b and v. A phy-

per unit area that has a unit normal vy along the i-th direction.

sical view of the distribution of dislocations is to smear out the dis—

crete dislocation lines and to replace them by the equivalent continuous

distribution.

1t is seen from the above equation, Eqe. (2.8), that 4 vanishes if

every derivative of the plastic distortion 8 does. . Suppose that the
derivatives omek are nonzero only along certain surfaces in three dimen-
sional space, or lines in two dimensional space. This means that the

inelastic strain is uniform everywhere except along these surfaces.

Then it 1is more convenient to represent the inelastic strain field by the

discontinuities of B8's across these surfaces. This is shown in the fol-

lowing.,

In Eq. (2.8), @, may be interpreted as the divergence o6f a flux

vector e, Bmk with £ = 1, 2, 3 as its three components. Suppose that

the flux vector is discontinuous across a surface where nz is the direction

cosine nz and the quantity [Bmk] is the discontinuity across the sur-

face. We may prescribe a thin layer At across the surface and apply the

divergence theorem to obtain:

= 1lim a,, At = —e 8 1n . (2.9)
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From the above equation, agk is defined as the surface dislocation den-
sity-as’ a result of the discontinuity [Bmk]. Therefore, an equivalent
distribution of surface dislocations can be used to represent the dis-

continuous change of 8 across the surfaces and the solution of the

mk
inclusion problem with nonuniform transformation strain can be reduced

to that of  an equivalent dislocation problem.  We shall formulate the

problem more specifically in the next section.

3, TWO DIMENSIONAL: INCLUSION

For a two dimensional inclusion, a direct application:of Eq. (2.9)

leads to:
aj (8111 [Ba1] {31
= (3.1)
a3 (8121 [B2a]]ls2

where s 1is the tangent vector along the interface of discontinuity

[Bls For example, the change in By component becomes:

(811 = 811 — 81, (3.2)
if BTI and 3;1 are the plastic distortions of the matrix and the inclu-
sion, respectively.

The ‘above representation suggests that we may define a complexksur—

face dislocation density o by:

-

a® =a] +1 a3 (3.3)

and rewrite equation (3.1)as:



20" = =(1811) + [8221) o= ((811] = [8,,]) S5

(3.4)

dz

=1 ([By2} = (821D %%'—'i ([B12]) + 181 1) Is

where z = X, + ixy, The first two terms in Eq. (3.4) are the effect due
to uniform stretching and the last two terms simple shear. By using the
complex dislocation density, Egq. (3.4), we have an advantage in calcula-
ting some of the contour integrals.,

The above description of surface dislocations can be uéed to calec-
ulate the stress distribution as a result of the misfit deformation
along a certain surface provided that we krow the stress functions due
to. one single edge dislocations For an edge dislocation at z; in an
isotropic and elastic medium with shear modulus u and Poisson's ratio v,

the stress potentials are :

1
$(z) =B O.-;--_-"E—l- (3.5)
— 1 El
p(z) =—B q T + B o eee— (3.6)
Aol (z = 2))2
where B is a material constant,
u
= mm———— o7
B bri(l — v) , (3.7)

The solutions of two dimensional inclusion problems can be expressed in
terms of the line integrals of equations (3.5) and (3.6) along the
inclusion surface with appropriate boundary conditions. = Functions ¢(z)
and Y{z) for an inclusion of a general shape in an infinite medium are

shown in Appendix A.



These expressions for ¢ and ¢ have been applied to circular and
elliptic inclusions and the well-known solutions of the inclusion prob-

lems (Mura, 1987) were confirmed.

4. TWIN STRUCTURE IDEALIZED AS PAIRS OF SHEAR TRANSFORMATIONS

It is assumed that the twin structure generated by the phase trans-
formation can be represented qualitatively. by pairé of inelastic shear
deformations in a rectangular grain, as shown schematically in Fig. 1.

Each pair consists: of a positive shear S at the right half and a
negative shear =S at lefrt,

duyp

B12 = 55y

S right half

(4.1)

—~ S left half,

The other components of 8 are zero, including Bj,j. The matrix is
assumed to deform ‘elastically. By applying equation (3.4), the misfit
strain between the matrix and the inclusion ¢an bé used to derive the
equivalent distribution of edge dislocations on the top and bottom part
of the twin. It is noted that, although there exist changes in plastic
strain along the twin boundaries, there is no distribution of disloca-
tions along these boundaries.

Elementary calculation shows that the solution in terms of the com-

plex stress functions for the twinning deformation is:

N
i ( i z,_ — 2 z .-z Zy. — Z (53
— 2 _1 1 . e — oottt -2
$(2) )" log ———-—-——-Zl " log — — log —

BB1o e e z . 2y



. . Y z,, 7 7,
BB, 2 0: "z oz, —z 2.~z z,.—z)
i= . :

z, E{
_< - “:Z> . (4.3)
ZN- ZN+

From the potential functions ¢(z) and y(z) shown in the above equations,

the stress components ares

23812 il . z, - Z
i i
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1 2 i Zo— 2
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Zo= T2 Por T F =T F P

5. STRESS INTENSITY

From the stress distribution, Egqs. (4.4) and (4.5), we observe that
at the ends of each twinning plane the stress tends to infinity accord-

ing to:

0y = 0, * 4Bi 8., log |z — z, > = for z ¥ z| i

i+ i+ odd

(5.1)

* +o  for z » z; i
i+

]

even



Therefore the stress intensity factor is:

u 812

=4 BiB8y =y (5.2)

It is observed that K is linearly proportional to the shear 81, deformed
within the twin and is independent of the dimension of the transformed

inclusion.

6.~ TOTAL ENERGY

The total elastic energy due to the transformation can be calcula-

ted by applying the relation,

[ o, e . dv : (6.1)

where gzj is the inelastic transformation strain and v is the volume of
the inclusion prior to the transformation. In the present case it has a
rectangular shape, and the transformation consists of several pairs of
shears, It has been shown' recently (Mura, Jusiuk and Tsuchida, 1985)
that the above equation is a valid expression even if the interface
between the inclusion and the matrix has a sliding contact boundary
condition., The derivation is shown in Appendix B.

After some elementary calculations, we obtain the following expres-

sion of energy for the present problem,

usdz +i+1
W= =153 5 ZZ ("1)l J [ sin 28i dxdy . (6.2)

j=1i=l Vj



where ei is defined as the angle between x-axis and the ray from z;_ to
the point (x,y). As shown in Appendix B, equation (6.2) can be fur-

ther simplified to logarithmic functions.

The numerical result shows: that the energy of the two dimensional
is less than that of the three demensional counterpart (Mura, Mori and
Kato, 1976).  However, the energy of the two dimensional qualitatively
described the physical nature exhibited by its three~dimensional counter=-
part. - In addition, the present transformation: strain for the case of one
pair:of shears is obtained via an approximate polynomial transformation
(Asaro and Barnett, 1975). ~Finally, a numerical calculation for the total
energy waskthen carried out and the result is plotted as the bottom curve

in Fig. 2. This curve shows a continuous decrease in energy as the

number of pairs increases, provided that both the dimension of the inclusion

and the magnitude of the shear are fixed.
As discussed earlier, (Evans and Cannon, 1986) the criterion

for the nucleation of the twin structure may be related to the minimum
total energy . of the system. It is possible that an additional energy
contribution may come from other sources in which the surface energy
along the interface of the discontinuous shear deformation may be a dom-
inant quantity. It is not known how large the surface energy should
be. We calculatedt a series of curves by assigning a range of surface
energies.  The results are plotted as a series of curves in Fig. 2.
Each of these curves has a minimum value. The number of pairs which are

required to reach the minimum decreases as the magnitude of the assigned

surface energy increases.

10w



7. DISLOCATION AND CRACK INTERACTION

In the preceding sections, we have discussed the use of dislocations
to model  the misfit created by the inelastic transformation of the
inclusion against the matrix. Thé stress field generated as a result of
the misfit, however, depends on the constitutive properties. of the
inclusion as well as the 'matrix. At present, we shall assume that both
the inclusion and the matrix have the same isotropic elastic constants.

In order to calculate the toughening effect, we need an explicit
solution of the dislocation—crack  interaction problem. | There = are
several ways to derive the solution (Thomson, 1986). At present, a two-
dimensional solution is described in Appendix C. The problem is form-
ulated by invoking a distribution of (virtual) dislocations to model the
displacement of the crack surface. The edge dislocation which induces
the solution is located near the crack with the complex coordinate B8 .
The problem is schematically shown in Fig. 3 in which a complex coordi-
nate is chosen so that the negative x=-axis coincides with the semi-
infinite crack surface and the crack tip is located at the origin. Any
point in the two-dimensional body is represented by the coordinate z = X
+ iy,

As shown in Appendix C," the complex stress intensity K (K = Ky +
iK2> induced by an edge dislocation which is located at the complex

coordinate B with a complex Burgers vector b has the expression:

R=—@{Z(1+-’CB—)+%(1—%)] (7.1)
5

where K; and Ko are the mode I and mode II stress intensities, respect-

ively, and the complex constant g has been defined in Eq. (3.7).



The distribution function, also complex-valued, is:

= -
1 - /3 g a B, (x+8)YB
f(x) = - [ma (et —) + 5 (1 ~-3) =y ] (7.2)
Anv=x x-8 x=B 2 8~ (x-8)
from which we obtain K by taking the limit:
K = limx_>0¢2ﬂ Ar Y=x f{x). (7.3)

The real part of the function f(x) denotes the mode I component of the
distribution function and the imaginary part of f(x), the mode I1 compo~
nent.  The complex displacement for the c¢rack surface is:

n o} ;

u = bO fx f(x) dx (7.4)
where bo is' the magnitude of the Burgers vector for the (virtual) dis=~
location. The ‘above expressions are valid for b not necessarily
parallel to 8. For b // B8 , K reduces to:

by

K = e cOS %- [3'sin' 8+ i (3 cos 8 ~-1)]. (7.5)
2V 2nr (l-v)

8s - INCLUSION INDUCED TOUGHNESS

It has been illustrated earlier that the transformation strain for
an inclusion consisting of pairs of shears can be represented by a dis-
tribution of dislocations along the inclusion boundary. In the follow=
ing calculations, the deformation misfit is modeled approximately by a
discrete number of edge dislocations,

At present we only use four dislocations to represent the transfor-

mation of one pair of shears. The arrangement of the dislocations 1is



schematically shown in Fig. 4. It represents an inclusion which has ‘a
rectangular shape of 24x by Ay in dimension and has been subjected to a
pair of shears.. For the purpose of comparison, a dilatational transfor-

mation is approximately represented by ‘a circular arrangement of four

dislocations.

The stress intensity Kl induced by a symmetric pair of inclusions,
each consisting of a single pair of shear deformations, is calculated
and the result 1s shown in Fig. 5 where the directions of the shears to
the horizontal axis are w/2 and rw. The induced Ky which has ‘a negative
value indicates a  toughening effect for the crack tip region.

To estimate the overall K effect on the crack growth, two. lines of
inclusions are assumed as shown in Fig. 4. The arrangement is similar
to that of some known models (Wéertmah, Lin and Thomson, 1983; L.R.F.
Rose, 1987). The double line model shows a change in toughness as the
crack growss It approximately represents the R-curve, or the crack
growth resistance curve. The numerical values of these R~curves are
plotted in Fige. 6.° 1t is shown that each of the curves variés signifi-~
cantly onlyknear the crack tip region and that the effect is short-ranged.
However, since the transformations are induced by the crack tip stress
and the density is relatively large near the crack tip region, the local
influence on the crack propagation may not be totally discounted.
Moreover, results in Fig. 5 also indicate that the toughening effect due

to the inclusions consisting of single pair of shears depends strongly

on their orientations.



For the purpose of comparison, the numerical results corrésponding
to dilatational inclusions are plotted in Fig. 7. The dilatational
inclusions in most of the locations only result in a toughening effect,
except in regions in front of the crack tip where they may cause an
increase in crack tip stress intensity and enhance the crack propaga-
tion. ~ The R-curve always shows a negative limiting value which contri-
butes to the resistance to the crack growth,

The numerical value of K for an inclusion consisting of single pair
of shears has been expressed in terms of a non-dimensional constant:

C1=—Bb—': (
(1-v)vh

In the above equation y is the shear modulus, v is Poisson's ratio, b is

Axy2
T ) . {(8.1)

the Burgers vector, h is a distance and Ax is the distance between the
two dislocatiomns (or the grain size). For the R-curve calculation, the
non-dimensional constant is C;p where p is the number of inclusions per
h -along the longitudinal direction of the line of inclusions. The K

value for the case of pairs of dilatations is plotted with the nondimen~

sional constant:

by
(1=-v)¥h

which depends only on the first power of Ax/h. The numerical value of K

C2 = (8-2)

due to either a pair of shears or dilatation has the same order of mag-
nitude, but the non-dimensional constants are different by a factor
of Ax/h. It implies that the influence of a pair of shears is less than
the influence of dilatation by the ratio Ax/h. In other words, the
ratio of the stress intensities has the same order of magnitude as that

of the grain size vs.the distance from the crack tip. We conclude,



therefore, that if a grain with a pair of shear transformations is loca-
ted near the crack tip within several grain sizes, its influence to the
K value should not be neglected as compared to that due to a grain with

a dilatation transformation.

9. -~ CONCLUSION AND DISCUSSION

The present investigation shows that it is convenient to use -the
method of continuous distribution of dislocations: to calculate the gen-
eral  inclusion=-crack interaction problem. Since the method ‘does not
restrict the shape of the-inclusion; it can be programmed into an effi=
¢ient numerical routine such that the more general microstructure-crack
interaction problems can be handled.

This paper "only suggests - a: method of calcﬁlation. The more
difficult  -and fundamental  problem concerning ' the nucleation of
traﬁsformation twins remains  intact. Important problems such as the
determination of the transformation boundary and the density of the
transformed  grains remain unsolved. Recently, a more-than—additive
increase in toughness was observed for some composites 1{if the
transformation~toughened ‘ceramic = was supplemented - with-  whisker
reinforcement (Becher and Tiegs, 1987). This problem seems also related
to the criteria of transformation by which the transformation boundary

changes substantially as a result of the second toughening mechanism.



APPENDIX A

The potentials for the inclusion problem are:

3 8(2) == ([811] + [B22]) f;—:;—l— ([811] = [8p2]) [ 7= 7
le
- i ([512] *'[321}) f';f:“;:'* i ([312]
; dz)
+’[3211) [ — (A.1)
3 P(z) = ([8y1] + (B ) f 2-4 1 + ([811) = (822D f z =z,
dz, dz,
— i ([By2] — (B D) f PR, — 1 ([By2] + [8211) f z =2,
— ([By1] + [By2 D) f —— — ([By1] = [B32]) f s
o (z — z1)? (z — zy)2
Zl le
— i ([8y5] — [8By]) [ ———— — 1 ([B;,]
(z —'21)2
zy1 dzy
+ [B21]) [ ———— . (A.2)
(z — 21)2

By straight forward application of Eqs. (A.1) and (A.2), the results for
inclusion problems of circular and ellipitc inclusions subjected to uni-

form eigenstrains were confirmed.



APPENDIX B

The elastic strain energy w of the inclusion and the matrix due to
plastic deformation of the inclusion with possible debonding is:

1 ;
W= — — g% Ve .
> f Gij (ui,j Eij) d ‘ (B.1)

The inclusion domain D is the sum of that for the matrix D-I and inclu-
sion T, The  potential 'energy for the matrix is the  equation when
expressed in terms of boundary traction:

f g, v, odvo= f Ogs MU ds — O, ML Uy (out) ds . (B.2)

[ o..u, , dv = o,. n,u, (in) ds . ‘ B.
J 9153 £21331<) (B.3)

[ o,.u, . adav=—1/[ "0o..n, [u]ds (B.4)
D lJ l,J az lJ J 1

where Gij nj = 0-on 8D and [ui] = u; (out) - uy (in).

This discontinuous [ui] is zero for a bBounded interface. For the
case of a sliding inclusion, the traction force is continuous and has no
J

shear along 3. For this case qij n. has no tangential shear component.

The term o,. n, [u
1]

]

cases Eq. (B.1) becomes:

i] vanishes along the interface. Therefore, for both

W =——1-f o,. e*, dv . (B.5)
2 g 13 i3



APPENDIX C

From Eq. (4.5), we can prove that:

N .
o1, = Bi B, [2 2%)(—1)1 (sin 26, —sin 26, )

- (sin 28 _ —sin 28 ) - (sin 28, — sin 26N+)} . (C.1)

Substituting the above equation into Eq. (6.1), the elastic energv

becomes :
1 X i
We=-= 2 (-1 [ 012 812 dv
j=1 v,
]
1 N . . N 5
=3 812 Z ("l)J ,-'( 4BiByo Z (-~1)" sin 261_ dxdy
j=1 v, i=0
]
~ f 2 Bi 8y, (sin 280_ + 'sin ZGN_) dxdy
v,
i
» NN o
=288, > Y DT sin2e dxay (C.2)
=1 i=1 v,
J
where we

have made use of the following relation:

N . N :

2. (=17 [ sin 28 _dxdy = 3 (-1)3 [ sin 20 dx dy . (C.3)
j=1 v, i=1 v,
. k ]



the integral in Eq. (C.2) can be further reduced to:

. gy = L ) (20)2
ij sin 261_ xdy = '2' (Xj— Xi) lOg 1 + —G(—j:—;(?)-z
2
_—é- (xj—l— xi)2 log 1 + (X(Z}:)x
j-1 i
1 (xJ— x,)2 + (2h)?
+ (2h)2 log . (C.4)

(xj‘l— xi)z + (2h)?



The

APPENDIX D
dislocation-crack
appendix.

interaction

solved
A fo f(x?) dx

~—co

problen in
formilate the pileup integral equation as:

is
For one edge dislocation located at B as shown in Fig. 3, we

this
— + g + ig
X - X

=0
xy

(D.1)
, a a
o+ 10 = +
v X x =38

where f(x) is the (virtual) distribution function, A is a constant and
a (-8 +38)

— +

X =3

t(x) =

1

(x = 8)2
The solution to the integral equation is:

fO
A2y =x

—00

(Do 2)
V=x" {oc (x°) + ic (x7)] dx~
v Xy
X7 -
1 -7 "3
- -a (
Amy—x

X
Yy—

8 a
x-8+ ~) -{--2-(1
b4
The complex stress intensity K [X

_B (x+8) /B
= 3) = = 8)2 } (D.3)
V2n Ar V=x f(x)] is:
K = —,/-——2—_1 ;(I-F/—E
VB

(D.4&)
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l.

FIGURE CAPTIONS

Schematic representation of the deformation: twinning for an inclu-
sion consisting of N/2 pairs of shear deformations. FEach pair: has
negative  shear =S at left and positive 'shear +S at right., An
equivalent -description of the inelastic¢ deformation is represented
by a distribution of edge dislocations located along the top and
bottom - boundaries . between = the inclusion .and = the = surrounding
matrix. - Points -at the ‘ends of the twin boundaries are labeled by
1+, 1=, ooe, N+, N-, with the complex coordinates Zl+' Zl~’ ooy
ZN+’ ZN—’ respectively.

Total energy per unit volume of grain versus the number of pairs of
shear deformations. (a) The curves are plotted with an incremental
values of surface energies. The surface energy density.increment is
0.0025 along the interface of the shears and the grain is square in
shape with volume V. "(b) The grain is rectangular in shape.

An' edge ‘dislocation located-at 8- -and Burgers vector b relative to a
semi~infinite crack which coincides with the negative real axis.

Two lines of inclusions located parallel to the crack surface.

Toughening by two symmetrically located inclusions each consisting
of one pair of shear transformations :located at h'and 0.8 h from the
crack: a) direction of shear ¢ = %- b) direction of
shear ¢ = w .

R=curves  generated by two parallel 1lines -of inclusions. Each
inclusion has one pair:.of s%ear transformations:

a) direction of shear ¢ = = b) direction of shear ¢ = ¢

a) Toughening by two symmetrically located inclusions of dilata-

tion, located at h and 0.5 h from the crack
b) The corresponding R-curves.
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