
THE ELASTIC PROPERTIES OF WOVEN POLYMERIC FABRIC*

William E. Warren SAND—89-1820C

DE89 015391
Sandia National Laboratories

Albuquerque, New Mexico 87185

ABSTRACT

The in-plane linear elastic constants of woven fabric are determined in terms 

of the specific fabric microstructure. The fabric is assumed to be a spatially 

periodic interlaced network of orthogonal yarns and the individual yarns are 

modeled as extensible elastica. These results indicate that a significant 

coupling of bending and stretching effects occurs during deformation. Results 

of this theoretical analysis compare favorably with measured in-plane elastic 

constants for Vinee 1 yarn fabrics.

INTRODUCTI ON

Woven fabrics represent a class of polymeric materials which provide a number 

of beneficial mechanical properties, the most important of which include 

strength, flexibility, and relatively low density. Early weaving processes 

exploiting these properties developed empirically using yarns spun from naturaI 

fibers. The development of synthetic polymeric fibers with their wide
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diversity of mechanical, physical and chemical properties offered a corres­

ponding wide diversity of woven fabric properties together with the possibility 

of engineering fabrics for specific appiicat ions. Woven polymeric fabrics, 

for example, are often used as the filler in building up individual laminates 

of a composite material. The desire to engineer or design fabrics for specific 

applications has stimulated considerable interest in theoretical analysis 

relating their effective mechanical properties to specific aspects of the woven 

fabric morphology and microstructure.

The first comprehensive investigation of the relationships between various 

parameters of a woven fabric was apparently the work of Peirce PD* The Peirce 

model is strictly a geometrical or kinematical model describing the geometry of 

woven fabric and no consideration of forces or equilibrium is given. A more 

physical model utilizing an analysis of the inextensible elastica was developed 

by Olofsson C2D and Grosberg and Kedia []3D. An excellent summary of the 

analysis of the mechanical properties of woven fabrics prior to 1969 is included 

in the monograph by Hearle et al. [PD* More recent summaries have been presented 

by Ellis [PD and Treloar C6D*

The analysis of fabric structure and properties has followed primarily 

one of two paths: the descriptive geometricaI based principally on the work 

of Peirce PD, or the mechanistic PD* A number of the mechanistic approaches 

are based on energy methods [1, 8, 9D in which the strain energy due to yarn 

stretching is uncoupled from the strain energy due to yarn bending (crimp 

interchange effect). The bending energy is usuaIly obtained from an analysis 

of the inextensible elastica and represented in terms of elliptic integrals 

which are cumbersome to interpret because of the reversaI of independent and 

dependent variables inherent in this approach. In an effort to circumvent 

these comp I i cat ions. Leaf and Kandil pOD consider a saw-tooth model of 

plain-woven fabric, which a I so uncouples the yarn stretching energy from
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bending energy, and they obtain simple expressions for the effective linear 

elastic constants in the principle yarn directions in terms of the fabric 

microstructure. While these results are easily interpreted, they provide 

estimates of the elastic constants considerably higher than they measure 

experimentally. An energy method incorporating the Peirce geometry has been 

used by Named and Sadek pi] who minimize the energy using a pattern search 

computational program and obtain numerical results for uniaxial loading.

In this work we assume the woven fabric consists of a regular network of 

orthogonal interlaced yarns. We model the individual yarns as extensible 

elastica and thus couple stretching and bending effects at the outset. Con­

sideration is restricted to biaxial loading in the principal yarn directions 

in the plane of the fabric; the case of more general loading in the plane, as 

suggested by the trellis model of Kilby Cl2], will be the subject of future 

analysis. The initial unloaded yarn geometry is assumed to be a sequence of 

alternating circular arcs of constant radius R as considered by Olofsson p3].

We first obtain the solution to the differential equation describing the

non-linear deformation of an extensible elastica under the action of a normal

contact force 2V and a mid-point force T,. Our interest here is on theo

effective linear elastic constants, and for smalt T we obtain a linear dis- 

placement-force relation for each yarn which depends upon the elastic properties 

and initial weave geometry of that yarn. The mechanical response of the woven 

fabric is obtained from the interaction of two of these solutions corresponding 

to each yarn by enforcing equilibrium and compatibility of displacements. This 

provides the in-plane linear strain-stress relations for the woven fabric in 

the two principal yarn directions. These results indicate that a significant 

coupling of bending and stretching effects occurs during deformation.

The theoretical analysis has been used to estimate the in-plane Young's 

moduli for one group of fabrics woven from a polymeric Vi nee I yarn as described
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by Leaf and Kandil [JO]. These theoretical estimates compare favorably with 

the experimentally measured moduli of [JO].

THE EXTENSIBLE ELASTICA

The first step in obtaining expressions for the effective elastic constants for 

the woven fabric requires an analysis of the force-displacement relation of the 

individual yarns. Each yarn will be modeled as an extensible elastica, and the 

geometry of this model is shown in Figure 1. The extensible elastica has been 

considered in detail by Antman Cl4] and Tadjbakhsh CIS], and in this analysis 

we make use of the intrinsic coordinates as presented for the inextensible case 

by Mitchell pB]. The elastica is assumed to deform in the (x, z) p I ane as 

shown, and the initial shape is taken to be an arc of a circle of radius R.

The undeformed shape of the elastica is defined by the slope

cf>(S ) = -2. , 0 < S < L
T o R ' __ o — o 1)

where SQ is arc length along the undeformed curve of totaI Iength Lq , and 

the deformed shape is defined by the slope

ip = ip(S) , 0 < S < L (2)

with S the arc length a long the deformed curve having totaI length L . The 

eIastica is assumed to stretch Iinearly under the effect of the axial force 

T(S) acting through the centroid of the cross-section of area A which pro­

vides the relation



dS
(3)

dSo

T(S)
EA

where E is the Young’s modulus of the elastica. The shear force Q(S) and 

axial force T(S) as shown in Figure 1c are given by

Q(S) = V Cos 4) - F Sin ^ 

T(S) = F Cos 4; + V Sin
(4)

where V and F are the forces at the symmetry point S = 0. In terms of the 

force To applied at the end S = L we find

V = T Sin a , ^os a (5)

which, with Equation , provides the important relation

T(S) = T Cos (ip - a), o T (6)

The end of the elastica at S = L is assumed to be an inflection point of the 

yarn, that is, a point of anti-symmetry of the yarn, and at this point the mo­

ment must vanish so we have M(L) = 0. The differential equation which des­

cribes the non-linear bending of the extensible elastica under the conditions 

just described is

El
dS

t (1
EA

chj;
dS

d<J>

o
1 = dT

I4J (7)

and this equation is to be solved subject to the boundary conditions
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\p(0) = 0

[ (1 + _L) # -i 
EA dS JS-L

d<j)

o
JS =L 

o o

(8)

The second condition insures that the moment at the end S = L vanishes. 

Since the initial shape is taken to be an arc of a circle of radius R, we 

have

_d(J>_ _ 1 
dS R 0 < S < L (9)

A first integral of Equation (7) may be obtained, and with the boundary condi­

tion (8^) leads to

R [ 1 + kR2y Cos (tfj - a) D = { 1 + 2kR2 [ Cos (ipo - a) - Cos - a) 

+ k2R4y C Cos2 (^o - a) - Cos2 (ijj - a) 3 f1^2

3

(10)

where we have made use of Equation (6) and the two constants

K Y =
I

AR2 ‘
(11)

The constant y represents a measure of the relative effects of bending and

stretching in the deformation of the elastica, and the case Y = 0 represents

the inextensibIe elastica. Equation (3) provides the relation between dS

and dS of o

dS = [I 1 + kR2y Cos Cf - a) 3 dSo (12)
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which is important in evaluating the deformed slope ipo at the end. The arc 

length S may be obtained from Equation (10) as an elliptic integral of 

Weirstrass* form Q4] but this resu11 is not particularly usefuI for the 

present application.

We now restrict interest to deformations due to small forces and assume 

kR2 « 1. To first order terms in kR2, Equations (10) and (12) become

1 - kR2 [ Cos (ip - a) - (1 + y) Cos (ip - a) H J difj (13)

dS
—5^- = | 1 - kR2 [ Cos (ipo - a) - Cos (^ - a) U f d>|,> (14)

Making use of the boundary condition (8^) and the fact that the integral over 

dSQ is equal to the original length Lq = R<j)o , Equation (14) provides

4> = ip + kR2 C Sin - a) t Sin a - ip Cos (ij; - a) 3 (15)

where ipQ is the slope of the deformed curve at the end S = L and is deter­

mined by this equation. Consistent with our f irst order theory, we now let

^0 = 4>0 " 6 » 9 << 1 , (16)

and Equation (15) g ives

0 = kR2 C Sin (<|) - a) + Sin a - <f> Cos (^ - a) 3* (17)
To To o

Using the relations (Figure 1)



dx = Cos ^dS » dz = Sin i^dS

and Equation (13) together with the conditions x = 0, z = 0 at S = 0, 

integration provides

x0 = R Sin + -^ kR3 II 2(1 + y) Cos a - (1 - y) Sin a 

- (1 - y) Sin (2\po - a) J

(18)

zD = R( 1 - Cos ipQ) + -1 tcR3 C 2(1 + y) Sin a — 4 Cos (ipQ - a)

+ (1 - y) Cos (2^q - a) + (3 + y) Cos a H

where (xq, zq) is the position of the endpoint S = L of the deformed elastica. 

The displacements u , u are given by
X 2

u = x - RSind) 
x o ro

u = z - R( 1 - Cos cp ) 
z o o

(19)

which, with (18) and (17) gives the displacements in the form

kR3 (A Cos a - B Sin a) 

uz = ~ kR3 (-B Cos a + C Sin a)

(20)

where



A = 2(2 + y> 4> + 2cj> Cos 2<j) - (3 - y) Sin 2$1 To o o 1 o

B = 4 Cos <}> - (1 + y) - 2<j) Sin 2(|) - (3 - y) Cos 2<i> (21)To o ro o

C = 2(2+y) 2(j)o Cos 2<f>o + (3 - y) Sin 2<f) - 8 Sin <j>o

The result (20) with (5) takes the form

p3
ux = ^1 (AF - BV)

u
z

R3
4EI

(-BF + CV)

(22)

and we will use this result in the next section to obtain the linear elastic 

response of a woven fabric. We note that this result is consistent with the 

known existence of a Gibbs free energy /& - given by

s* = R3
8EI

(AF2 - 2BFV + CV2) (23)

such that

u x 3F » uz 3V

which follows directly from Castigl iano's first theorem p7].

(24)

FABRIC ELASTIC CONSTANTS

The geometry of the woven fabric under consideration here is shown in Figure 2. 

With reference to Figure 2b, the usual geometrical weave parameters of pick
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spacing p , yarn length % and crimp height h are represented in terms of 

the elastica parameters R and <f> by

p = 2R Sin <t>
o

l = 2R<f>o (25)

h = 2R (1 - Cos (J) ).

To fix ideas we denote the x-direction as the warp direction and the warp yarns 

have mechanical properties and an initial geometry which we identify with a 

subscript x . Similarly the y-direction is the weft direction and the weft 

yarns have mechanical properties and an initial geometry which we will identify 

with a subscript y .

Under the action of applied forces f and f acting in the (x, y)
x y

plane, the woven fabric will deform with each yarn behaving like the extensible 

elastica analysed in the previous section. Equilibrium requires the transverse 

contact force V to be the same for both warp and weft yarns, and geometric 

compatibility of the displacements requires the displacements in the z or 

transverse directions to be the same. From Equations (22) for the warp or 

x-direction yarn

ux 4E 1 
x x

Rx3

Uzx 4E"T
X X

(A f
X X

- B V) 
x

(-B f + C V) 
xx x

(26)

and for the weft or y-direction yarn



3

ByV )u = -~-=— (A f 
y 4E I y y

zy

y y

r 3
(-B v + C V) 

4E I y yy y 1

(27)

with

u = u zx zy (28)

The compatibility condition (28) determines the contact force V as

LB f + B f
v = x x y y 

(LCx + Cy)
(29)

where

E I R 3
1 =' e¥ 1' if1

xx y
(30)

and the in-pIane displacements u , u are v r x’ y

R 3 
x

ux “ 4E I (LC + C ) 
xx x y

I C L(A C - B 2) + A C 3 f - B B f | 
( x x x x y x xyyl

u =
y 4E 1 (DC + C ) 1 y y x y

| C LA C + (A C - B 2) ] f - LB B f j 
f y x yy y y xyxj

(31)

The resuIts of Equation (31) represent the displacement force relations for 

this woven fabric.

The effective in-pIane strain-stress relations for this woven fabric may 

be readily obtained from the following relations estabIished from consideration 

of the weave geometry shown in Figure 2 and Equations (.25):
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e R S i n (j)
XX X ox

£ R S i n cj)
yy y °y

(32)

f =

= 2a R Sin
XX y oy

= 2a R S i n $
yy X ox

In Equation (32), £ and £ represent the material strains, and a
xx yy xx

and a the effective in-plane stresses with units of force per unit length.
yy

Using the relations of (32) in Equation (31) gives the strain-stress relations

R 3 
x

'xx 2E 1 (LC + C ) xx x y

{ [ L(A C - B 2) + A C U 
1 L xx x * y

- B B a ! 
x y yy 1

'yy 2E 1 (LC + C ) 11 y y x y

R Sint_y__ _£y ) o
R Sin 4> xx
x ox

{ C LA C + (A C 
f y x y y

- LB B a j . 
x y xx 1

R Sin (j)
V' 3 < FT-sfiTT » 0yy

y °y

(33)

The effective Young’s modulus E , E in the x and y directions,
x y

respectively, are given by

2EA (tCx + V Sin ♦ox

R 2R [ I(A C - B 2) + A C ] Sin * xy1- xx x xy oy

Ey =
2E I, (LC + C) Sin 4 

y y x y]oy

R 2R [ LA C + (A C - B 2) II Sin <{) 
y x y x yy y ox

(34)
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We note that since the terms Ax, . . » .all depend on the parameter

Y or y , the result (34) indicates that a significant coupling of bending x y

and stretching effects occurs during fabric deformation even in the I inear 

elastic regime.

RESULTS AND CONCLUSIONS

The effective fabric Young's moduIi as given by Equation (34) have been used 

to estimate the moduIi of a group of fabrics woven from a polymeric Vi nee I yarn 

as described by Leaf and Kandil pOU. The fabric group, group A of Cl01, was 

woven with identicaI warp and weft yarns of R60/2-tex Vinee I with varying pick 

spacing in the warp and weft directions. A comparison of the theoreticaI moduIi 

estimates with the experimentaIly determined moduIi as reported in ClOl for the 

three different fabrics of group A is shown in Tab Ie I. While the theoretical 

moduIi are somewhat lower than the measured values, the lower theoretical vaIues 

a I ways correspond to the lower experimentaI vaIues. This is particularly sig- 

nificant when we note that for fabrics A-1, A-2, the pick spacing in the x- 

direction is larger than in the y-direction while the reverse is true for A-3.
xx

Yet for a I I three weaves, the smaller moduI us is E as predicted by the 

theory and verified experiementaIly.

In view of uncertainties as to the Young's moduI us of the Vince I yarn it­

self and the degree of yarn flatening which directIy effects the I, A, and y 

of each yarn, comparison between the resuIts of the theory developed here and 

experiment as shown in Table I appears to be quite good. Additional experimen­

ta I comparisons with kevlar woven fabrics are underway. This Iinear theory 

based on the extensibIe eIastica, which effectively coup Ies yarn bending and 

stretching effects, readily extends to large non-1 inear deformations so long as 

the yarn force-dispIacement relation remains I inear. This extension to
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non-linear deformations is thus particularly relevant to the large class of 

fabrics woven from kevlar yarns since these yarns exhibit an essentially linear 

force-displacement relation up to fracture.
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FIGURE CAPTIONS

Figure 1. The Extensible Elastica:

(a) Schematic of woven yarn, (b) The intrinsic coordinates and 

applied forces, (c) Forces acting on an element.

Figure 2. Geometry of the woven fabric:

(a) Schematic of woven yarn interlace, (b) Cross-section of weave 

in either X (warp) or y (weft) direction.
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TABLE 1

Comparison of Theory and Experiment for 

Young's Moduli of Woven Vi nee I Fabric

Fabric

Number

E (N/cm)
X

Measured DO]

Ex (N/cm) 

Theoretica1

Ey (N/cm) 

Measured DoH

Ey (N/cm) 

Theoretica1

A-1 9.2 8.8 25.5 13.7

A-2 9.1 8.8 14.8 8.9

A-3 12.7 9.0 13.4 10.3
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