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ABSTRACT

The in-plane linear elastic constants of woven fabric are determined in terms
of the specific fabric microstructure. The fabric is assumed to be a spatially
periodic interlaced network of orthogonal yarns and the individual yarns are
modeled as extensible elastica. These results indicate that a significant
coupling of bending and strefching effects occurs during deformation. Results
of this theoretical analysis compare favorably with measured in-plane elastic

constants for Vincel yarn fabrics.
INTRODUCT ION

Woven fabrics represent a class of polymeric materials which provide a number
of beneficial mechanical properties, the most important of which include
strength, flexibility, and relatively low density. Early weaving processes
exploiting these properties developed empirically using yarns spun from natural

fibers. The development of synthetic polymeric fibers with their wide
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diversity of mechanical, physical and chemical properties offered a corres-
ponding wide diversity of woven fabric properties together with the possibility
of engineering fabrics for specific applications. Woven polymeric fabrics,

for example, are oftfen used as the filler in buifding up individual faminates
of a composite material. The desire fo engineer or design fabrics for specific
appiications has stimulated considerable interest in theoretical analysis
refating Their effective mechanical properties To specific aspects of the woven
fabric.-morphology and microstructure.

The first comprehensive investigation of the relationships between various
parameters of a woven fabric was apparently the work of Peirce [1]. The Peirce
model - is strictly a geomeirical or kinematical model describing the geometry of
woven fabric and no.consideration of forces or equilibrium is given. A more
physical model utilizing an analysis of the inexfensib}e elastica was developed
by Olofsson [27] and Grosberg and Kedia [3], ‘An excellent summary of the
analysis of the mechanical properties of woven fabrics prior to 1969 is included:
in the monograph by Hearle et al.[4]. More recent summaries have been presented
by Ellis [5] and Treloar [6].

The analysis of fabric structure and properties has followed primarily
one of fwo paths: the descriptive geometrical based principally on the work
of Peirce [1], or the mechanistic [7]. A number of the mechanistic approaches
are based on energy methods [7, 8, 9] fn which the strain energy due to yarn
stretching is uncoupled from the strain energy due to yarn bending (crimp
inferchange effect). The bending energy is usually obTafned from an analysis
of the inexfensible elastica and represented in terms of elliptic integrals
which are cumbersome to interpret because of the reversal of independent and
dependent variables inherent in this approach. In an effort fo circumvent
these complications, Leaf and Kandil [10] consider a saw-tooth model of

plain-woven fabric, which also uncouples the yarn stretching energy from



bending energy, and they obtain simple expressions for the effective |inear
elastic constants in the principle yarn directions in terms of the fabric
microstructure. . While these results are easily interpreted; They provide
estimates of the elastic consfants considerably higher than they measure
experimentally. An energy method incorporating the Peirce geometry has been
used by Hamed and Sadek [[11] who minimize the energy using a pattern search
computational program and obtain numerical results for uniaxial loading.

in this work we assume The woven. fabric consists of a regular network of
orthogonal interlaced varns. = We model the individual yarns as exfensfble
elastica and thus couple stretching and bending effects at the outset. Con-
sideration is resiricted to biaxial loading in the principal yarn directions
in the plane of the fabric; fthe case of more general loading in the plane, as
suggested by the trellis model of Kiitby [12], will be the subject of future
analysis. The initial unloaded yarn geometry is assumed o bé a sequence of
alternating circular arcs of constant radius R as considered by Ofofsson [13].

We first obtain the solution to the differential equation describing the
non-1| inear deformation of an extensible elastica under the action of & normal
contact force 2V and a mid-point force To. Our interest here is on the
effective linear elastic constants, and for small TO we obtain a linear dis-
placemenf—forcé relation for each yarn which depends upon the elastic properties
and initial weave geometry of that yarn. The mechanical response of the woven
fabric is obtained from the interaction of two of these solutions corresponding
to each yarn by enforcing equilibrium and compatibility of displacements. This
provides the in-plane |inear strain-sfress relations for the woven fabric in
the two principal yarn directions. These results indicate that a significant
coupling of bending and strefching effects occurs during deformation.

The theoretical analysis has been used to estimate the in~plane Young's

moduli for one group of fabrics woven from a polymeric Vincel yarn as described



by Leaf and Kandil [10]. These theoretical estimates compare favorably with

the experimental ly measured moduli of [10].
THE EXTENSIBLE ELASTICA‘

The first step in obtaining expressions for the effective elastic constants for
The woven fabric réquires an analysis of The force-displacement re!aTion‘of The
individual yarns. Each yarn will be modeled as an extensible elastica, and the
geometry of this model is shown in Figure 1. The extensible elastica has been
considered in detail by Antman [[14] and Tadjbakhsh [15], and i this analysis
we make use of the intrinsic coordinates as presented for the inextensible case
by Mitchell [161]. Tﬁe elastica is assumed to deform in the (x, z) plane as
shown, and the initial shape Is ftaken to be an arc of a circle of radius R.

The undeformed shape of the elastica is defined by the sliope

<L (1

where SO is arc length along The undeformed curve of total length LO , and

the deformed shape is defined by the slope
g=9(S) , 0<8<L (2)

with S the arc length along the deformed curve having fotal length L. The
elasficé is assumed To stretch |inearly under the effect of the axial force
T(S) acting through the centroid of the cross-section of area A which pro-

vides the relation



(3)

where E is the Young's modulus of the elastica. The shear force Q(S) and

axial force T(S) as shown in Figure lc are given by

Q(S) =V Cos ¢ - F Sin v

(4)

T(S) = F Cos ¢ +V Siny

where V. and ' F are the forces at the symmetry point S = 0. In terms of the

force T, applied at the end S =L we find

vV = To Sina , F = To Cos o (5)
which, - with Egquation (42), provides The important reiation

T(S) = TO Cos (¢ = a). (6)
The end of the elastica at S = L is assumed to be an inflection point of the
yarn, that is, a point of anti-symmetry of the yarn, and at this point the mo-
menT must vanish so we have M(L) = 0. The differential equation which des~

cribes the non-linear bending of the extensible elastica under the conditions

Jjust described is

d T,dp _ do 3 _ _ dT
EIE§{”+E‘/T’E‘5‘ a§;}‘ T (7

and this equation is to be solved subject to the boundary conditions



Yoy =0

; (8)
T dy > do
LO+ e g5 dsor = a5 ds oL
o] o .0
The second condition insures that t+he moment at the end - S = L vanishes.
Since the initial shape is taken: to be an arc of a circle of radius R; we
have
g _ 1 ‘ ‘
So ® 0 < SO < LO. (9)

A first integral of Equation (7) may be obtained, and with the boundary condi-

tion (82) leads. to

RL 1 +kR% Cos (p-a) ] %% = { 1+ 2«R* [ Cos (Y, = @) - Cos (¥ - ) ]
: (10}
+ k?R*y [ Cos® (Y, ~ a) - Cos? (y - @) ] }1/2

where we have made use of Equation: (6) and the two constants
I
Z

» Y % R ¢ . (i

~
i
o™

The constant Y represents a measure of the relative effects of bending and
stretching in the deformation of the elastica, and the case Yy = 0 represents
the inextensible elastica. Equation (3) provides the relation between dS

and dSO of

ds = [ 1+ «kR* Cos (y - o) J dS_ (12)



which is important in evaluating the deformed slope wo at the end. The 'arc
fength 'S may be obtained from Equation (10) as an elliptic integral of
‘Weirsfrass' form [14] but this result is not particularly useful for the
presenT application.

We now restrict interest to deformations due to small forces and assume

KR? << 1. To first order terms in «R?, Equations (10) and (12) become

L =f1-«rR?[Cos (g, -a) - (1+y) Cos (y-a) J}dy (13)
ds
_RP_:{1-KR2[Cos(1po—oc)—Cos(KP-G)]}‘W’ (14

Making use of the boundary condition (81) and. the fact that the integral over

dSO is equal fo the original length LO = R¢o , Equation (14) provides

oy = Vg * kR% [ Sin (Y, = @) + Sina - ¢ Cos (Y - o) 3, (15)

where g is the slope of the deformed curve at the end S =L "and is deter-

mined by this equation. Consistent with our first order theory, we now let

Yy = g - 8, B << | (16)

and Equation (15) gives

8 = kR® [ Sin (¢, - a) + Sin o - ¢  Cos (¢  ~ a) 1. a7

Using the reilations (Figure 1}



dx = Cos ¥dS , dz = Sin ydS

and Equation (13) Togefhér with the conditions x =0, z'= 0at S = 0,

intfegration provides

1

xO=RSinwO+Z|<R3[2(1 +v) Y, Cos o = (1 -y} Sina
= (= y) sin 2y - o) ]
(18)
z, = R(1 =~ Cos y_) +%.<R3 [ 201 +y) y, Sin o - 4 Cos (y - 0

-+

(1 =y) Cos (2p, - a) + (3 + ) Cos a]

L' of the deformed elastica.

where (xo, zo} is The position of The endpoint - S

The: displacements U, U, are given by

oo
H

X = R Sin ¢O

(19)

[t
L}

z, - R(1 - Cos ¢O)

which, with (18) and (17) gives the displacements in the form

ux=—}-1~;<R3 (A Cos & - B Sin a)
(20)
_ 3 ;
u, =z kR° (~-B Cos o + C Sin q)
where



A=2(2+Y) ¢o + 2¢O Cos 2¢o - (3 =v) Sin 2¢o
B =4 Cos ¢o - (L + vy - 2¢O Sin 2¢O - (3 - v) Cos 2¢O (21)
C'=2(2 + v) ¢O - 2¢O Cos 2¢o + (3 - v) Sin 2¢O = 8 Sin ¢O

The result (20)Y with (5) takes the form

_ R®
U>< -Zﬂ.::-r (AF - BV)
(22)
R3
UZ = —4_—E_I_ (“BF + CV)
and we will use This resultT in The next section to obtain the linear elastic

response of a woven fabric. We note that this result is consistent with the

known existence of a Gibbs free energy ./ given by

_ R? 2 _ 2 '
- geT (AF? - 2BFV + OV?) ; (23)
such that
_ 35 82
Uy T3F » Yz T3y (24)

which follows directly from Castigliano's first theorem [17].

FABRIC ELASTIC CONSTANTS

The geometry of the woven fabric under consideration here is shown in Figure 2.

With reference to Figure 2b, the usual geometrical weave parameters of pick
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spacing p , yarn length 7 ‘and crimp height h are represented in terms of

the elastica parameters R and ¢O by

p = 2R Sin ¢O
1 = 2R¢O (25)
h = 2R (1 - Cos ¢O).

To fix ideas we denote the x~direction as The warp direction and the warp varns
have mechanical properties and an initial geometry which we identify with a
subscript x . Similarly the y~direction is the weft direction and the weft
yarns have mechanical properties and an initial geometry which we will identify
with a subscript. vy .

Under the action of applied forces fx and fy acting in the (x, y)
plane, The woven fabric will deform with each yarn behaving |ike the extensible
elastica analysed in the previous section. Equilibrium requires the fransverse
contact force V +o be the same for both warp and weft yarns, and geometric
compatibility of the displacements requires the displacements in the 2z or
Transverse directions to be the same. From EquaTions’(ZZ) for the warp or

x~direction yarn

3
RX

UX = TE;‘I-; (AXfX - BXV)

(26)
R 3

- X
UZX = ZE;—I; (—BXfX + CXV)

and for the weft or y-direction yarn

-10-



=Y
U= (A f =B.V)
4.1
Y viy Yy Y
= Y
U = el (B V. + C: V)
z 4B 1 /
Y yry Y Y
with
Yox © uzy : | (28)
The compafibiliTy condition (28) determines the contact force V as
LBXfx + Byfy
Vo= ‘ (29)
(LC, + Cy)
where
E 1l R .3
= (LY X ‘ ‘
L=( E 1 PR 5 ) (30)
XX y

and The in-plane displacements Ug» uy are
3
u_ = X {Ceac -8 +ac 1f -887F |
X 4k T (LC. + C ) XX X XY X X Yoy
x*X X Yy
R ? (31)
= Y - 2 -
u, T, T T i C EAC, + (AC, - B 1 -8B f |

The-results of Equation (31) represent the displacement force relations for
This woven fabric.

The effective in-plane strain-stress relations for This woven fabric may
be readily obtained from the following relations established from consideration

of the weave geometry shown in Figure 2 and Equations (25):

-1~



U T Exx Rx Sin ¢ox
=€ R Si
Uy T By Ry 3 %oy
(32)
foo=20. R Sin ¢
X XX Y oy
fy = Zoyy RX Sin ¢ox
I'n Equation (32}, €y and eyy represent the material strains, and O s

and Oyy the effective in-plane stresses with units of force per unit length.

Using the relations of (32) in Equation (31) gives the strain-stress relations

- Rx3 , Ry Sin ¢oy
Soc T ZE T (IC F C) {[LAL, -8B+ ALy ¢ R ST o, | Oxx
- BBO |
(33)
e = "y {Lac, + (e, -82 7 Eﬁ—iii—f95~) o
vy 2Ey1y (LCx + Cy) VA v, y Ry Sin ¢oy Yy
- BB 0, b .
The effective Young's modulus Ex , Ey in the x and y directions,
respectively, are given by
E ) 2ExIx (LC + Cy) Sin ¢ox
% RSR, [LAC, - 82 +AC Tsin g,
(34)
29 : 2EyIy (LC>< + Cy) Sin ¢oy

2 - 2 : ’
Ry RX C LAycX + (AyCy By Yy ] Sin ¢OX
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We'note that since the Terms Ax’ Ay, Bx’ oW . w-all ‘depend -on the parameter

Y. or yy , the result (34) indicates that a significant coupling of bending

X
and stretfching effecTS occurs. during fabric deformation even in the 'linear

elastic regime.
RESULTS . AND CONCLUS IONS

The effecfive fabfic Young's moduli as given by Equation (34) have‘been used

to estimate the moduli of a group of fabrics woven from a polymeric Vincel yarn
as described by Leaf and Kandil [[10]. The fabric group, group A of [10], was
woven with identical warp and weft yarns of R60/2-tex Vincel with varying pick
spacing in the warp and weft directions. A comparison of the theoretical moduli
estimates with The experimentally determined moduli as reported in [10] for the
three different fabrics of group A is shown in Table |. While the theoretical
moduli are somewhat: lower Than the measured values, the lower theoretical values
always correspond to the lower experimental values. This is particularly sig-
nificant when we note that for fabrics A—1, A-2, the bick spacing in.the x-
direction is larger than in the y-direction while the reverse is true for A-3,
Yet for all three weaves, The smaller modulus is Ex as predicted by the

Theory and verffied experiementally.

In view of uncertainties as to the Young's modulus of the Vincel yarn it-
self and the degree of yarn flatening which directly effects the 1, A, and ¥y
of each yarn, comparison between the resulfs of the theory developed here and
experiment as shown in Table | appears to be quite good. Additional experimen=-
tal comparisons with keviar woven fabrics are underway. This linear theory
based on the extensible elastica, which effectively couples yarn bending and
stretching effects, readily extends to large non-linear deformations so long as

the yarn force-displacement relation remains linear. This extension to

13-



non=linear deformations Is thus particularly relevant to the large class of
fabrics woven from kevlar yarns since these yarns exhibit an essentially linear

force-displacement relation up to fracture.
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FIGURE CAPTIONS

Figure 1. The Extensible Elastica:

{a) Schematic of woven yarn, . (b) The intrinsic.coordinates and

applied forces, (c) Forces acting on an element:

Figure 2, Geometry of the woven fabric:

(a) Schematic of woven yarn interlace, (b) Cross-section of weave

ineither X (warp) or y {weft) direction.
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TABLE |

Comparison of Theory and Experiment for

Young's Modul i of Woven Vincel Fabric

~

A

~

"~

Fabric Ex {(N/cm) EX {(N/cm) Ey (N/cm) Ey (N/cm)

Number Measured [10] Theoretical Measured [10] Theoretical
A-1 9.2 8.8 25.5 13.7
A-2 9.1 8.8 14.8 8.9
A-3 12.7 9.0 13,4 10.3
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